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have attracted much attention. In this paper we demonstrate that if agents have 
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We show that this bias may serve to significantly weaken the rejection of the REH 
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Introduction 
 

Tests of the rational expectations hypothesis (henceforth REH) in the bond market are 

particularly attractive because the payoffs of a bond – its coupons and its face value – 

are certain. This advantage has spawned a large empirical literature that has tested 

two specific predictions of the REH. First, over the life of a short bond, the expected 

return on a long bond should be equal to the short yield plus a risk premium. Second, 

the long yield should equal an average of the current short yield and expected future 

short yields over the life of the long bond, plus a risk premium.  

 

When the risk premium is assumed to be constant, as it is in most tests of the REH in 

the bond market, the first prediction can be tested by estimating a regression of the 

change in the long yield over the life of the short bond on the current yield spread 

between the short and long bonds. The second prediction can be tested by estimating 

a regression of the average change in the short yield over the life of the long bond on 

the current yield spread. If the REH holds then the coefficients in these two 

regressions, when the yield spread is appropriately scaled, should not be significantly 

different from unity (see, for example, Campbell and Shiller, 1991) 

 

These regressions have been estimated in a very large number of studies for different 

countries, different time periods, and different bond maturities. It is typically found 

that estimation of the first regression leads to a very strong rejection of the REH. The 

estimated slope coefficient is significantly less than one for bonds of all maturities 

and significantly less than zero for the longest maturity bonds. Estimation of the 

second regression leads to a much weaker rejection of the expectations hypothesis for 

bonds with shorter maturities and does not reject it for the longest maturities.1  

 

There are a number of potential explanations for this apparent failure of the REH. One 

possibility is that these regression tests fail to account for a time-varying risk 

premium that is correlated with the yield spread, so that OLS is inconsistent and the 

                                                 
1 See, for example, Shiller (1979), Shiller, Campbell and Schoenholtz (1983), 
Campbell and Shiller (1984), Mankiw and Summers (1984), Mankiw (1986), 
Campbell and Shiller (1991) and Campbell (1995). Hardouvelis (1994) demonstrates 
that the rejection of the REH is not confined to the US. 
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estimated slope coefficients are biased downwards (see, for example, Fama (1984), 

Mankiw and Miron (1996) or Evans and Lewis (1994)). Tests of the REH that allow 

for the possibility of a time-varying risk premium have generally produced weaker 

rejections of the REH, although results are sensitive to the choice of proxy for the risk 

premium, the bond maturities considered and the sample period used.2 Whether or not 

the REH can be rescued by allowing for a time varying risk premium remains a 

contentious issue (see also Hardouvelis (1994)). 

 

An alternative explanation for the rejection of the REH is measurement error. 

Stambaugh (1988) shows that estimation of the first regression is very sensitive to 

measurement error in the long yield, which induces a correlation between the 

regressor and the regression error. Again, OLS is inconsistent and the estimated slope 

coefficient is biased downwards. However, the reported rejection of the REH appears 

to be robust to measurement error. Campbell and Shiller (1991), for example, use 

instrumental variable estimation to mitigate the measurement error in the long yield 

and find that the REH is still strongly rejected. 

 

Bekaert, Hodrick and Marshall (1997, hereafter BHM) identify a source of small 

sample bias in these regression tests of the REH. They assume that the short yield 

follows a stationary first order autoregressive (AR1) process and that agents use this 

model in order to forecast the short yield. BHM show that this leads to a small sample 

bias in the regression tests that is related to the bias of the OLS estimator of the 

autoregressive coefficient in the AR1 model (see Kendall, 1954). Under this bias, the 

coefficients in the two regressions are biased upwards so that the empirical evidence 

actually represents unambiguously stronger evidence against the REH than 

asymptotic theory would imply. 

 

In this paper we identify an alternative source of small sample bias that may help to 

explain the reported rejection of the REH. This bias arises under the assumption that 

agents have information in addition to the current short yield that is useful for 

forecasting the future short yield. If agents conditioned their expectations of the 
                                                 
2 See, for example, Fama (1984), Shiller, Campbell and Schoenholtz (1983), Jones 
and Roley (1983), Simon (1989), Froot (1989), Tzavalis and Wickens (1997) and 
Harris (2001). 
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future short yield only on the current short yield (as in the BHM model), then the 

yield spread would be a constant multiple of the short yield if the short yield followed 

a stationary autoregressive process, and equal to a constant if the short yield followed 

a non-stationary process. The fact that both of these predictions are clearly 

counterfactual suggests that agents do use additional information to forecast the short 

yield. Indeed, this assumption has already been tested in the literature. In particular, 

Campbell and Shiller (1987) note that if agents have such information, the REH 

implies that the yield spread should Granger-cause changes in the short yield. Testing 

this using US data, they find that the hypothesis that the yield spread Granger-causes 

changes in the short yield cannot be rejected.3  

 

When agents have additional information about future changes in the short yield, 

there is a small sample bias in the estimated slope coefficients in the two regressions 

described above. If the short yield follows a non-stationary AR1 process, the slope 

coefficients in both regressions are biased downwards. This is an important case to 

consider since the null hypothesis that the short yield contains a unit root cannot be 

rejected using any of the standard statistical tests (see, for instance, Mishkin (1990), 

Chan et al. (1992) and Ait-Sahalia (1996)), and so rational agents could reasonably be 

assumed to use such a process for forecasting the short yield. Therefore, in sharp 

contrast with BHM, we find that the empirical evidence against the REH may be 

weaker than asymptotic theory would imply. If the short yield follows a stationary 

AR1 process, the coefficients in these two regressions are biased upwards, but the 

bias is significantly lower than implied by the BHM model.  

 

In the following section we set out the theoretical framework of the REH and the two 

regressions that are used to test the REH. In Section 3, we show that when agents 

have information in addition to the current short yield that is useful for forecasting the 

future short yield, the two regressions are subject to small sample bias. In Section 4, 

we conduct simulation experiments in order to quantify the bias. Section 5 concludes. 

 

                                                 
3 See also Driffill et al. (1997), who find that the hypothesis of Granger causality 
cannot be rejected for either the US or the UK. 
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2. Theoretical Background 

 

In this section we describe the two regression tests of the REH in the bond market. 

For the purpose of both expositing the REH and testing it empirically, it is 

conventional to use zero coupon bonds that make a single payment at maturity. 

Coupon bearing bonds can be viewed as a bundle of zero coupon bonds, one for each 

coupon and one for the redemption value, and so it is straightforward to generalise the 

REH to this case. Most tests of the REH in the bond market assume that the risk 

premium is constant. For the sake of exposition, and without loss of generality, we 

further assume that the constant risk premium is zero.4  

 

Consider an n-period zero coupon bond with unit face value, whose price at time t is 

. The yield to maturity of the bond, , satisfies the relation ntP ntY
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or, in natural logarithms, 
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log one-period return, , is just the change in log price, 1, +tnr nttn pp −+− 1,1 , which using 
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       (3) 
1,1

,1,11,

)1( +−

+−+

−−=

−=

tnnt

tntntn

ynny
ppr

 

                                                 
4 When the risk premium is assumed to be constant, the REH applied to the bond 
market is known as the Expectations Hypothesis. When it is further assumed to be 
zero, the REH is known as the Pure Expectations Hypothesis. Since a constant risk 
premium affects only the intercepts of the two regressions, the further assumption that 
the risk premium is zero is inconsequential. 
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Under the REH, the expected return for bonds of different maturities should be equal. 

There are two versions of the REH that have been commonly tested in the literature 

(see, for example, Campbell and Shiller, 1991). The first version is that the (certain) 

one-period return on a one-period bond should be equal to the expected one-period 

return on an n-period bond. 
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      (4) 

 

where   is the expectation of , conditional on the time t information set. 

The second version is that the expected n-period return on an investment in a series of 

one-period bonds should be equal to the (certain) n-period return on an n-period bond. 

itnt yE +, itny +,

  

 ntnttttt nyyEyEy =+++ −++ )( 1,11,1,1 K     (5) 

 

We now consider the two regressions that are based on (4) and (5) and which are used 

to test the REH, and derive expressions for the regressor and error term in each 

regression under the REH. 

 

2.1 The Long Yield Regression 

 

The one-period version of the REH given by (4) can be rearranged to show that under 

the REH, the current spread between long and short yields is equal to the expected 

change in the long yield next period. 
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Under the REH, therefore, differences between long and short bond yields should be 

matched by an expected subsequent change in the long yield over the life of the short 

bond in order to generate the expected capital gain or loss required to offset the initial 

yield premium. In order to test (6) the following regression is estimated. 
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where 1,1 +tε  is a random expectation error. If the REH holds then the coefficient 1β  

should be unity and 1α  captures the constant risk premium, which here is assumed to 

be zero. It is typically found that estimation of the long yield regression (7) leads to a 

very strong rejection of the REH, with the estimated slope coefficient significantly 

less than one for bonds of all maturities and significantly less than zero for the longest 

maturity bonds. 

 

Substituting the n-period expression of the REH, given by (5) into the long yield 

regression given by (7), the regressor and error term of the long yield regression, 

under the null hypothesis that 01 =α  and 1=β , are equal to 
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2.2 The Short Yield Regression 

 

The n-period version of the REH given by (5) can be rearranged to show that under 

the REH, the current spread between long and short yields is equal to the expected 

average change in the short yield over the life of the long bond. 
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Under the REH, therefore, differences between long and short bond yields should be 

matched by expected subsequent changes in the short yield over the life of the long 

bond in order to offset the initial yield premium. In order to test (10) the following 

regression is estimated. 
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where 1,2 ++ntε  is a random expectation error. If the REH holds then the coefficient 2β  

should be unity and 2α  captures the constant risk premium. It is typically found that 

estimation of the short yield regression (11) leads to a much weaker rejection of the 

expectations hypothesis for bonds with shorter maturities and does not reject it for the 

longest maturities. 

 

Substituting the n-period expression of the REH given by (5) into the short yield 

regression (11), the regressor and error term in the short yield regression, under the 

null hypothesis that 02 =α  and 12 =β , are equal to 
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3. Small Sample Bias in Regression Tests of the REH 

 

In this section we show that when agents use information in addition to the current 

short yield in order to forecast the future short yield, a small sample bias arises in the 

long yield regression (7) and the short yield regression (11) described above. In order 

to model the additional information that is available to agents, we assume that the 
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data generating process for the short yield includes explanatory variables in addition 

to the current short yield. These explanatory variables may be observable by the 

econometrician, or may simply represent information about the innovation to the 

short yield based on a diverse set of qualitative signals that are observed by the 

market, but are unobservable by the econometrician. This latter interpretation is 

consistent with the proposition of Campbell and Shiller (1987) that although the 

econometrician might not be able to improve on a simple AR1 model for the short 

yield, agents nevertheless have information that allows them to forecast the 

innovations of this model. For example there may be informative public statements 

by analysts or the monetary authorities on the likely course of future interest rates. 

This will affect the market’s expectations and hence be reflected in the current yield 

spread, and would explain why the yield spread Granger-causes future short yields. 

  

We therefore assume that the short yield follows an AR1 process that is augmented 

by a single exogenous variable, 

              

1,11,1 ++ ++= tttt vxyy ρ       (14) 

 

where  is a random error term that is serially uncorrelated and uncorrelated with 

both  and . The variable  is observed by the market, but may or may not be 

observed by the econometrician. It is clear that without specifying the properties of 

, the autoregressive parameter 
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 to be orthogonal to the contemporaneous short yield, . Note, importantly, that 

specifying  to be orthogonal to  is purely for convenience, and does not impose 

any restriction on the correlation between agents’ additional information and the short 

yield. If, as is likely, the additional information is correlated with  then  can 

simply be interpreted as the component of this information that is orthogonal to . 

We further assume that  is both serially uncorrelated, and uncorrelated with lags of 

. Although the purpose of these last two assumptions is to keep the analysis as 
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simple as possible, they are in fact supported by the data.5 With these assumptions, 

the market’s rational expectations of future values of the short yield are equal to 
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In the next two sub-sections we study the properties of the OLS estimator of the slope 

coefficients in the two regressions when the short yield is generated by (14) and 

expectations are formed using (15), in both the unit root case (i.e. when 1=ρ ) and the 

stationary case (i.e. when 1<ρ ). 

 

3.1. Unit Root Process for the Short Yield: Long Yield Regression 

 

We now consider the bias that arises in the long yield regression when the short yield 

is generated by (14) with 1=ρ , and expectations of the short yield are generated by 

(15). When 1=ρ , the regressor and error term in the long yield regression (7), which 

are given by equations (8) and (9) above, become 
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5 For example, using the estimated monthly zero coupon bond yield data of 
McCulloch and Kwon (1993) for the 524 observations from 1952M2 to 1992M1, the 
autocorrelation coefficient of the residual from an AR1 model for  is 0.034, with a 
p-value of 0.475, while the cross-correlation coefficient between the residual and the 
first lag of  is –0.007, with a p-value of 0.877. Longer lags of these autocorrelation 
and cross-correlation coefficients are even lower. Since the residual from this model 
includes the information variable , these results support the maintained assumptions 
about the dynamic properties of .  
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From (16), it can be seen that if agents have no information to forecast the future 

short yield other than the current short yield then the spread would be identically zero 

when there is a unit root. The expectation of all future values of the short yield would 

simply be equal to the current short yield, and so the long yield, which is the average 

expected future short yield, would always be equal to the current short yield.  

 

The regressor (16) and error term (17) of the long yield regression are not 

contemporaneously correlated and so the OLS estimator of 1β  in the long yield 

regression is consistent. However, the regressor is correlated with the first lag of the 

error term. This leads to a downward small sample bias in the OLS estimate of 1β . 

Thus when the short yield follows a unit root process, but agents have information 

about future values of the short yield, the bias that arises in the long yield regression 

unambiguously serves to generate rejections of the REH when it is true. Furthermore 

the sign of the bias is consistent with the empirical evidence for the long yield 

regression reported above.  

 

Inspection of equations (16) and (17) also shows that the downward bias in the slope 

coefficient of the long yield regression is independent of the marginal explanatory 

power of  in (14). This is because the marginal explanatory power of  affects 

both the variance of the regressor, and the covariance between the regressor and the 

lagged error term. However, it does not affect the ratio of the two, and so nor does it 

affect the bias in the estimated slope coefficient.

xt xt

6  

 

3.2. Unit Root Process for the Short Yield: Short Yield Regression 

 

When the short yield is generated by (14) with 1=ρ , and expectations of the short 

yield are generated by (15), the regressor and error term in the short yield regression 

(11), which are given by equations (12) and (13), become 
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6 As the marginal explanatory power of  approaches zero, the variance of the 
regressor approaches zero and the regression becomes degenerate. 
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The regressor and error term of the short yield regression are again not 

contemporaneously correlated and so the OLS estimator of 2β  is consistent, but there 

is a correlation between the regressor and the first n-2 lags of the error term. As in the 

long yield regression, this leads to a downward small sample bias in the OLS estimate 

of 2β  and hence the erroneous rejection of the REH when it is true. Again, the 

downward bias in the slope coefficient of the short yield regression is independent of 

the marginal explanatory power of  in (14), since it affects both the variance of the 

regressor, and the covariance between the regressor and each of the first n lags of the 

error term, but not the ratio of these. 

xt

 

3.3. Stationary Process for the Short Yield: Long Yield Regression 

 

When the short yield is generated by (14) with 1<ρ , it is straightforward to show 

that the regressor in the long yield regression (7), given by equation (8), becomes 
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Similarly, the error term in the long yield regression (7), which is given by (9), is 

equal to 
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Again, the regressor and regression error are not contemporaneously correlated, and 

so the OLS estimator of 1β  is consistent. However, there are now a number of 

sources of non-contemporaneous correlation between the regressor and the error term 

that contribute to a small sample bias in the OLS estimator of 1β . The first arises 

from the correlation between θ1 1y t,  and the first lag of θ2vt+1 . From inspection, 1θ  is 

negative while 2θ  is positive, and so there is a negative correlation between θ1 1y t,  

and lagged values of θ2vt+1 . This will lead to an upward bias in the OLS estimate of 

β  in the long yield regression (7). This is the bias identified by BHM.  

 

However, there is also a correlation between θ1 1y t,  and the first lag of γ 2 xt+1 , and 

between γ 1xt  and the first lag of γ 2 xt+1 . The coefficients 1γ  and 2γ  are both positive, 

and so the correlation between θ1 1y t,  and lagged values of γ 2 xt+1  is negative, 

contributing to an upward bias that reinforces the BHM bias. However, the 

correlation between γ 1xt  and the lag of γ 2 xt+1  is positive, contributing to a 

downward bias in the OLS estimate of 1β .  

 

The relative contribution of  to the overall bias in the estimated slope coefficient in 

the long yield regression (7) depends on the marginal explanatory power of  in the 

data generating process (14). When  has no explanatory power, the model reduces 

to the unaugmented AR1 model and only the bias identified by BHM remains, which 

has an unambiguously positive bias on the estimated coefficient in (7). When this 

fraction is unity, agents have perfect foresight, and the BHM bias is eliminated, 

leaving the two additional sources of bias that arise from the variable , and these 

act in opposite directions. The overall effect of the bias on the estimate of 

xt

xt

xt

xt

1β  in the 

long yield regression is uncertain. 
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3.4. Stationary Process for the Short Yield: Short Yield Regression 

 

When the short yield is generated by (14) with 1<ρ , the regressor in the short yield 

regression (11), which is given by (12), is equal to 
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The error term in the short yield regression (11), which is given by (13), is equal to 
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The bias in the short yield regression is similar in nature to that which arises in the 

long yield regression. There is the bias derived by BHM, which arises from a negative 

correlation between ty ,13θ  and the first n-1 lags of the first term in (23), leading to an 

upward bias in the OLS estimate of 2β  in the short yield regression (11). There is a 

negative correlation between ty ,13θ  and lags two to n-2 of the second term in (23), 

which serves to re-enforce the BHM bias. But there is also a positive correlation 

between tx3γ  and the first n-2 lags of the second term in (23), which serves to offset 

the BHM bias. Again, the relative importance of these three biases depends on the 

marginal explanatory power of  in the data generating process (14). xt

 

 14



4. Simulation Experiments 

 

In this section, we use Monte Carlo simulation to quantify the likely magnitude of the 

bias that we have identified, both in the unit root case and in the stationary case. First, 

however, we gauge the extent of information that is available to agents about the 

future short yield, in addition to the current short yield or, equivalently, the marginal 

explanatory power of  in the data generating process given by (14). Following 

Campbell and Shiller (1987), we employ the current and lagged yield spread as a 

proxy for the additional information about the future short yield that is available to 

agents. Using the McCulloch and Kwon (1993) dataset of estimated zero coupon 

bond yields, an AR1 model for the one month yield gives an 

xt

R 2  statistic of 0.955. In 

order to capture information that the market may have about innovations in the AR1 

model, and hence the marginal explanatory power of , we include all 31 yield 

spreads that are available in the McCulloch and Kwon data set and for which a full 

sample of data is available. This yields an 

xt

R 2  statistic of 0.974 when two lags of the 

yield spreads are included and an R 2  statistic of 0.981 when four lags of the yield 

spreads are included. Each lag of the yield spreads is jointly significant at the one 

percent level. These results suggest that the market does indeed have substantial 

information about the innovation in the AR1 model, explaining more than fifty 

percent of its variance. This represents a lower bound for the marginal explanatory 

power of , and is useful for interpreting the simulation results reported below. tx

 

In order to evaluate the bias that we have identified, we conduct simulation 

experiments for a range of values of the marginal explanatory power of . We 

assume that the short yield is generated by equation (14), with  and v

tx

xt t  drawn 

independently from simulated normal identical distributions. We assume that the 

market observes , knows the parameters of the model, and forms rational 

expectations of the short yield according to (15). The long yield is set according to 

equation (5). We report results for the following tests of the REH. 

tx

 

A. The estimated slope coefficient in the long yield regression, 
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B. The estimated slope coefficient in the long yield regression, with the 

approximation that  (an approximation that is commonly used in 

empirical studies because data is not available for bonds of adjacent maturities above 

one year), 
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C. The estimated slope coefficient in the short yield regression, 
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In each case, the regression parameters are estimated using the simulated data. The 

procedure is repeated 5000 times, and the average parameter estimate calculated. In 

order to test the statistical significance of the mean parameter estimate, its standard 

error across the 5000 simulation experiments is used. Simulations are performed for 

three bond maturities, namely 12, 36 and 60 months, with a sample size of 524 

observations (the number of observations in the McCulloch and Kwon dataset). The 

marginal explanatory power of , defined as the variance of  relative to the 

variance of 

xt xt

11 ++ += ttt vxe , is varied between 0.0 (which corresponds to the 

unaugmented AR case) and 1.00 (which corresponds to the perfect foresight case) for 

the stationary case, and between 0.25 and 1.00 for the unit root case.7

 

                                                 
7 As noted in the previous section, when the marginal explanatory power of  is zero 
(i.e. agents have no information about the future short yield other than the current 
short yield), the yield spread is identically zero when the short yield follows a unit 
root process, and so this case is degenerate. 

xt
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4.1 The Unit Root Case 

 

In order to investigate the magnitude of the bias in the unit root case, Panel A of 

Table 1 reports simulation results for the mean and standard error of the three 

estimated parameters using the model for the short yield given by equation (14) with 

ρ  set to unity. The marginal explanatory power of  is set to 0.25, 0.50, 0.75 and 

1.00.  

xt

 

As noted in the previous section the bias in the long yield regression is 

unambiguously negative, leading to the erroneous rejection of the REH. The 

downward bias increases with maturity, and for long maturity bonds is highly 

significant both statistically and economically. Also, as expected, the bias is 

independent of the marginal explanatory power of . xt

 

There is also a downward bias in the short yield regression, which increases with 

maturity and is independent of the marginal explanatory power of . The bias in the 

short yield regression is only about half as large as the bias in the long yield 

regression, but is nevertheless significant, particularly for long maturity bonds.  

xt

 

[Table 1] 

 

4.2 The Stationary Case 

 

Panel B of Table 1 reports simulation results for the mean and standard error of the 

three estimated parameters using the model for the short yield given by equation (14) 

with ρ  set to the empirically estimated value of 0.984 for the one month yield from 

the McCulloch and Kwon dataset. The marginal explanatory power of  is set to 

0.00, 0.25, 0.50, 0.75 and 1.00.  

xt

 

When the marginal explanatory power of  is zero, the model corresponds to the 

unaugmented AR1 model studied by BHM. Our simulation results for the AR1 model 

are very close to those of BHM and lead to exactly the same conclusions: there is a 

substantial upward bias that strengthens the reported rejection of the expectations 

xt
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hypothesis. The bias decreases with maturity, but remains substantial even for the 

longest maturity bonds.  

 

However, as the marginal explanatory power of  increases, this upward bias is 

reduced. The reduction in the bias is very substantial for shorter maturity bonds, even 

when the marginal explanatory power of  is low. The bias for each of the three 

estimated coefficients increases with maturity. When the marginal explanatory power 

is set to unity, the BHM bias does not arise, leaving just the two additional sources of 

bias that act in opposite directions. For short maturity bonds, these biases almost 

cancel, yielding an estimated coefficient in each case that is close to its true value. 

For longer maturity bonds, the net bias is positive but considerably smaller than that 

reported by BHM.  

xt

xt

 

5. Conclusion. 

 

Widely employed regression tests in the bond market frequently reject the REH. For 

the long yield regression, the slope coefficient, which should be unity under the REH, 

is typically found to be less than unity, and often less than zero. Using the short yield 

regression, the rejection of the REH is much weaker. BHM have noted a small sample 

upward bias in these regressions under the assumption of a stationary AR1 model for 

the short yield, which strengthens the rejection of the REH that is implied by these 

results. In this paper we identify an additional source of small sample bias in these 

regressions under the reasonable assumption that agents have information about 

future short yields beyond that contained in the current short yield. The bias arises 

whether the short yield has a unit root or is stationary, and is significantly larger for 

the long yield regression than for the short yield regression. If the short yield follows 

a stationary AR1 process, this bias serves to offset the bias identified by BHM. 

However, if the short yield contains a unit root, the BHM bias vanishes, and there is 

just the single bias that we have identified, which serves to unambiguously weaken 

the reported rejection of the REH that is implied by the empirical evidence. 
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Table 1  Simulated Parameter Estimates for the Long Yield Regression, Approximate Long Yield Regression and Short Yield Regression 
 
         PANEL A: ρ = 1        PANEL B: ρ = 0.984 

22 

 
Marginal explanatory power of xt

 
0.25        0.50        0.75        1.0           0.0         0.25         0.50         0.75         1.0         

 
A. The long yield regression 
 

1,11,11,1,1 )1/()( ++− +−−+=− tttntntn nyyyy εβα  
 
12m 0.980 (0.006) 0.980 (0.005) 0.981 (0.004) 0.980 (0.228)  2.081 (0.020) 1.297 (0.010) 1.189 (0.008) 1.125 (0.007) 1.076 (0.006) 
36m 0.936 (0.020) 0.936 (0.014) 0.938 (0.011) 0.937 (0.010)  2.017 (0.018) 1.776 (0.016) 1.657 (0.014) 1.536 (0.012) 1.463 (0.012)  
60m 0.891 (0.033) 0.892 (0.023) 0.896 (0.019) 0.894 (0.016)  1.962 (0.017) 1.852 (0.016) 1.786 (0.015) 1.707 (0.013) 1.669 (0.013)  
 
B. The approximate long yield regression 
 

'
1,11,

'
1

'
1,1,1 )1/()( ++− +−−+=− tttntntn nyyyy εβα  

 
12m 0.980 (0.006) 0.980 (0.005) 0.980 (0.004) 0.980 (0.003)  3.005 (0.019) 1.674 (0.009) 1.410 (0.008) 1.271 (0.007) 1.176 (0.006)  
36m 0.935 (0.020) 0.936 (0.014) 0.938 (0.011) 0.937 (0.010)  2.830 (0.018) 2.465 (0.015) 2.253 (0.013) 2.058 (0.011) 1.921 (0.011) 
60m 0.891 (0.033) 0.892 (0.023)  0.896 (0.019) 0.894 (0.016)  2.678 (0.017) 2.520 (0.016) 2.412 (0.015) 2.295 (0.013) 2.219 (0.013) 
 
C. The short yield regression 
 

1,2,1,22,1

1

1 ,1 )1/()()1/( −+

−

= + +−−+=−−∑ ntttnt

n

i it nyynyny εβα  
 
12m 0.990 (0.001) 0.990 (0.001) 0.990 (0.001) 0.990 (0.001)  1.535 (0.009) 1.156 (0.003) 1.084 (0.002) 1.052 (0.002) 1.037 (0.001) 
36m 0.966 (0.002) 0.966 (0.001) 0.966 (0.001) 0.967 (0.001)  1.494 (0.008) 1.391 (0.006) 1.312 (0.005) 1.270 (0.004) 1.230 (0.004) 
60m 0.940 (0.153) 0.941 (0.002) 0.941 (0.001) 0.942 (0.001)  1.459 (0.007) 1.422 (0.006) 1.376 (0.006) 1.351 (0.005) 1.327 (0.005) 
 
 
Notes: The table reports the mean and standard error of the estimated regression slope coefficient for each regression using 5000 replications. Results are reported for bond maturities of 12, 
36 and 60 months. The autoregressive parameter is set to 1 (Panel A) and 0.984 (Panel B). The marginal explanatory power of xt is set to 0.25, 0.50, 0.75 and 1.00 for ρ = 1, and 0.00, 0.25, 
0.50, 0.75 and 1.00 for ρ = 0.984. y1,t and yn,t are the yields on a one-period and n-period bond respectively.  
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