
Bridging The Gap: A Standards-Based Approach to OR/MS

Distributed Simulation

SIMON J E TAYLOR, Brunel University

STEPHEN J TURNER, Nanyang Technological University
STEFFEN STRASSBURGER, Ilmenau University of Technology
NAVONIL MUSTAFEE, Swansea University

In Operations Research and Management Science (OR/MS), Discrete Event Simulation (DES) models are

typically created using commercial simulation packages such as Simul8™ and SLX™. A DES model

represents the processes associated with a system of interest; but, in cases where the underlying system is

large and/or logically divided, the system may be conceptualized as several sub-systems. These sub-

systems may belong to multiple stakeholders, and creating an all-encompassing DES model may be

difficult for reasons such as, concerns among the intra- and inter-organizational stakeholders with regard

to data/information sharing (e.g., security and privacy). Furthermore, issues such as model composability,

data transfer/access problems and execution speed may also make a single model approach problematic. A

potential solution could be to create/reuse well-defined DES models, each modeling the processes

associated with one sub-system, and using distributed simulation technique to execute the models as a

unified whole. Although this approach holds great promise, there are technical barriers. One such barrier

is the lack of common ground between distributed simulation developers and simulation practitioners. In

an attempt to bridge this gap, this paper reports on the outcome of an international standardization effort,

the SISO-STD-006-2010 Standard for Commercial-Off-The-Shelf Simulation Package Interoperability

References Models (IRMs). This facilitates the capture of interoperability requirements at a modeling

level rather than a technical level and enables simulation practitioners and vendors to properly specify the

interoperability requirements of a distributed simulation in their terms. Two distributed simulation

examples are given to illustrate the use of IRMs.

Categories and Subject Descriptors: I.6.8 [Simulation and Modeling]: Distributed Simulation

General Terms: Standards

Additional Key Words and Phrases: Commercial-off-the-shelf Simulation Packages, Healthcare,

Manufacturing

ACM Reference Format:

…

DOI = …

1. INTRODUCTION

A computer simulation is used to conduct experiments with models that represent

systems of interest to enable decision makers to make better informed decisions [Pidd

2004]. One such simulation technique is Discrete-Event Simulation (DES) and it is

Authors’ addresses: S.J.E. Taylor, ICT Innovation Group, Department of Information Systems and

Computing, Brunel University, Stephen J. Turner, Parallel and Distributed Computing Center, Nanyang

Technological University, Steffen Strassburger, School of Economic Sciences, Ilmenau University of

Technology, Navonil Mustafee, School of Business and Economics, Swansea University.

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies show this notice on the first page or initial screen of a display along with the full citation.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with

credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any

component of this work in other works requires prior specific permission and/or a fee. Permissions may be

requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,

fax +1 (212) 869-0481, or permissions@acm.org.

@....

DOI….

39 01

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12824594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:permissions@acm.org

frequently applied across a range of industries such as manufacturing, travel,

finance, healthcare and supply chains [Hollocks 2006]. In the context of Operations

Research/Management Science (OR/MS) in general and operations management in

particular, DES models are typically created using specialist Commercial-Off-The-

Shelf (COTS) Simulation Package (CSP) software like Witness™ (Lanner Group),

Simul8™ (Simul8 Corporation), SLX™ (Wolverine Software), AnyLogic™ (XJ

Technologies) and Arena™ (Rockwell Automation), etc. Extant OR/MS literature

suggests that a vast majority of these models tend to be single DES models that

represent the processes associated with particular systems of interest. However, in

cases where the underlying system is large and/or logically divided, the system might

be conceptualized as several sub-systems. These sub-systems may belong to multiple

functional areas of an organization (e.g., a manufacturing facility may have several

well-defined sub-processes such as “assembly line” and “paint shop”) or they may be

related to several organizations (e.g., distinct sub-processes like “procurement”,

“transport” and “distribution” owned by individual organizations that form a part of a

supply chain [Gan et al. 2000]) or they may indeed be a combination of sub-systems

belonging not only to several organizations but also to several distinct functional

areas within each of these organizations (e.g., an organization may have two sub-

systems associated with “manufacturing” and “repair and maintenance”, and it may

depend on the “transport” and “distribution” sub-processes belonging to other

organizations for shipping of both new and returned goods). In such cases, creating

an all-encompassing DES model may be difficult for reasons such as, concerns among

the intra- and inter-organizational stakeholders with regard to data/information

sharing and/or security and privacy of shared data/information [Mertins et al. 2005;

Li et al. 2010]. Furthermore, issues such as model composability, data transfer/access

problems [Taylor et al. 2011] and execution speed [Mustafee et al. 2009] may also

make a single model approach problematic.

The alternative is to build separate DES models (or reuse existing models)

representing the various intra- and/or inter- organizational sub-systems that are

constituent parts of the larger system. These separate models can be linked together

over a computer network such as the Internet using specialist networking software to

create a distributed simulation of the underlying system of interest. Although this

approach of executing multiple DES models permits data-hiding and yet enables the

concurrent simulation of the overall system, there are considerable technological

barriers in implementing this solution; not least of which is the clear specification of

the interoperability requirements between each distributed model. This is derived

from the lack of common ground between distributed simulation developers and

OR/MS simulation practitioners. It is extremely difficult for an OR/MS simulation

practitioner to express how models should interoperate in technical terms. The

opposite holds true as well; it is unlikely that a distributed simulation developer will

fully understand model interoperability in valid OR/MS terms.

In an attempt to bridge this gap, this paper reports on the outcome of an

international standardization effort, the SISO-STD-006-2010 Standard for COTS

Simulation Package Interoperability References Models (IRMs) [SISO 2010a]. The

contribution of the paper is an approach to facilitating the capture of interoperability

requirements at a modelling level rather than a technical level and enables OR/MS

modellers and vendors to properly specify the interoperability requirements of a

distributed simulation in their terms. This is the first time interoperability

requirements have been specified (and standardized) from the point of view of OR/MS

simulation. This is a clear benefit to this simulation community as there is no other

standardized mechanism that does this and will facilitate the development of

distributed simulations in this area.

The rest of the paper is organized as follows. The next section presents a

discussion on distributed simulation in the context of OR/MS simulation practice.

This is followed by an overview of related work. The standardized guidelines for

CSP-based distributed simulation are then introduced. Two case studies that have

applied the SISO-STD-006-2010 guidelines are presented; the first case study is on a

healthcare supply chain and the second case study relates to a manufacturing

system. A conclusion then summarizes the paper and outlines future work.

2. DISTRIBUTED SIMULATION AND OR/MS SIMULATION PRACTICE

Distributed simulation can be defined as the distribution of the execution of a

simulation program across multiple processors [Fujimoto 2000]. Distributed

simulation software (sometimes called middleware) is quite complex and implements

well-known distributed simulation time management algorithms to achieve

synchronization between individual running simulations [Fujimoto 1990]. The

current standard to support this is the IEEE 1516 High Level Architecture [IEEE

2010] (first released in 2000 and updated in 2010). This came from the need of the

US Department of Defense to make Modeling and Simulation cost-effective through

reuse of computer simulations and to improve interoperability between its sometimes

very heterogeneous simulation systems. In HLA terminology, a distributed

simulation is called a federation, and each individual simulator is referred to as a

federate. The HLA Federate Interface Specification (Federate I/F Spec) defines the

various services provided by the Run-time Infrastructure (RTI). A distributed

simulation is therefore a federation composed of many federates interacting over a

communication network via RTI software [Fujimoto and Weatherly 1996]. The first

reference implementation of the RTI was the DMSO RTI [US Department of Defense

1999]; however the DMSO RTI middleware is no longer available. There are several

RTIs presently available including the Pitch pRTI [Karlsson and Olsson 2001], the

Service-Oriented HLA RTI (SOHR) [Pan et al. 2008], CERTI Open Source RTI

[Noulard et al. 2009] and Portico open source RTI [Malinga and Le Roux 2009].

There have been many significant advances in distributed simulation as applied to

military problems (e.g. the Millennium Challenge 2000 and 2002 [GlobalSecurity.org

2002] and the Joint Live Virtual Constructive Architecture [Henninger et al. 2008]).

With regard to a CSP-based distributed simulation (which is the focus of this

paper), the combination of a CSP and its model is a federate; a CSP-based federation

comprises of multiple CSP-based federates that interact with the RTI using the

services defined by the Federate I/F Spec. Thus, all communication between the

CSP-based federates (e.g., transfer of finished goods from the production line to the

warehouse) are represented as messages that are exchanged between them via the

RTI over the communication network.

To illustrate how distributed simulation might benefit OR/MS simulation practice,

consider a system that may be composed of several well-defined intra-organizational

sub-systems (e.g., a multi-national organization that operates in several countries),

or indeed, sub-systems owned by different organizations (e.g., an inter-organizational

supply chain). Here there may be concerns regarding information security since each

functional entity may not wish to reveal its data and internal processes to the other

functional entities that it works with (in the remainder of this section, we refer to

these functional entities as stakeholders; the stakeholders can belong to either the

same organization or to different organizations). If this system, as a whole, was

represented as a single model then these ‘secrets’ would be revealed as they would

have to be specified explicitly in the model. In addition to privacy, further problems

include:

— Data transfer/access problems. Stakeholders may be ‘open’ to each other (i.e.

happy to share data and internal processes). In such cases, although a single

model may reside on a single computer in a particular place (say, the place

associated with stakeholder X), that model will still need data drawn from

processes associated with the other stakeholders. However, databases can be large

and time consuming to copy (even when accessed over the Intranet). Also,

arguably, data when copied is instantly out of date. Running a model using copies

of stakeholders’ data can therefore be time consuming and inaccurate.

— Model composability problems. Even if each of the stakeholders had previously

developed models using the same CSP, these models cannot simply be ‘cut and

pasted’ into the same single model. Variable name clashes, global variables and

different validation assumptions are three examples of the many problems of this

approach. Further, if a stakeholder needs to update its model, it has to update the

single model. How do we make sure that every stakeholder has the correct version

of the single model? What if the update causes problems in another part of the

single model owned by another stakeholder? Additionally, models developed in

different CSPs are usually not compatible. One cannot transfer a model developed

in one CSP into another without significant effort.

— Execution Time. Large models will most likely develop large event lists that must

be processed and updated each time an event is executed. This can take a

considerable amount of time. Worse, the processing capacity of even a high

specification PC may not be enough to physically cope as the actual CSP may have

an upper limit on the event list size.

In the above cases, an alternative approach is needed. Here we create separate

DES models in separate CSPs for processes representative of each stakeholder.

Linking the models together over a network such as the Intranet or the Internet

using distributed simulation technologies creates a distributed simulation. This

allows the models to be executed separately and privately by the stakeholders to

simulate both intra- and inter- organization-specific processes while accessing local

data and avoiding many model composability issues.

The key benefits of distributed simulation is the creation of large, distributed

models that are private, access local up-to-date data, implement local changes

efficiently and share the processing load of the model across the computers of the

organizations. The modular nature of the individual models also means that these

can be potentially ‘plugged’ into different distributed models that an organization

might be part of as required [Lendermann 2006; Boer et al. 2009]. However, there

are significant barriers to this.

There are two predominant barriers to implementing a distributed simulation

solution in OR/MS. The first is that the present generation CSPs are not capable of

executing distributed models directly as these are set up for developing single

models. Thus, the CSPs have to be interfaced with existing distributed simulation

software by potentially costly software experts (i.e. a technical solution is not covered

by the CSP license fee). The second is that there is a very steep learning curve

associated with implementing a CSP-HLA integration solution because it requires

familiarity with distributed simulation theory, the HLA standard and HLA-based

technology. Contemporary simulation vendors and consultancies rarely have this

knowledge – successful distributed simulations of this kind have been created via

collaborations between OR/MS simulationists, CSP vendors and distributed

simulation specialists. These factors may be a reason why distributed simulation is

widely and successfully used in the military but not in industry [Strassburger et al.

2008]. Several researcher groups have developed technologies specifically for this

area. However, these often take different, incompatible approaches. The next

section reviews these attempts and related areas.

3. RELATED WORK

There has been much work that has investigated distributed simulation in OR/MS,

primarily motivated by the need for privacy across supply chains (a factor commonly

cited in the papers in this review). Researchers have used emerging technologies to

support distributed simulation. For example, Common Object Request Broker

Architecture (CORBA) [Zeigler et al. 1999], Message Passing Interface for Shared-

memory MultiProcessor (MPI-SMP) [Gan and Turner 2000], and Generic Runtime

Infrastructure for Distributed Simulation for Supply Chain Federation (GRIDS-SCF)

[Taylor et al. 2002]. More recently researchers have used technological standards

such as Distributed Component Object Model (DCOM) [Santos et al. 2008], Inter-

Process Communication (IPC) [Bandinelli et al. 2006] and Web Services [Lee et al.

2008]. The drawback with these approaches is that they are highly individualized

and are typically implemented by a research team and not developed for widespread

sustainable commercial use. The existence of a common standard is, however, a

major factor in developing a commonly available approach as there is typically much

documentation for the standard and its technologies and a very large community who

frequently use it. Rather than using low-level technologies and standards, other

researchers have developed approaches based on the HLA.

The problem of creating distributed simulations consisting of CSPs using the HLA

was first addressed in Strassburger et al. [1998]. Individual research projects

developed different, but incompatible approaches to the use of the HLA supporting

distributed simulation with specific CSPs: AnyLogic™ [Borshchev et al. 2002],

AutoSched™ [Gan et al. 2005; Lendermann et al. 2007], Witness™ [Taylor et al.

2005a], SIMUL8™ [Mustafee and Taylor 2006]; and simulation languages MODSIM

III™ [Johnson 1999], DEVS [Al-Zoubi and Wainer 2008] and SLX™ [Strassburger et

al. 2007]. A problem with these approaches is that they are also highly specific to the

CSPs that they use. Attempts to generalize approaches have developed CSP adaptor

software that can be (arguably) connected to any CSP. Research using this approach

includes the supply chain work carried out in the MISSION Project [Rabe et al.

2006], experiments with QUEST™, SIMPLE++™ and GAROPS™ [Hibino et al.

2002] and research into semi-conductor supply chains [Lendermann et al. 2007].

Uygun, Öztemel and Kubat [2009] refine the above approaches by attempting to

generalize data models used to interface with the HLA. In earlier work Gan et al.

[2000] investigated general distributed simulation of supply chain issues and,

following on from this, Taylor et al. [2005b] investigated the performance of

distributed simulation middleware HLA-RTI over different supply chain topologies

(pipeline topology, local feedback topology and fully interconnected topology).

Experiments were conducted by interfacing the middleware with a COTS Simulation

Package Emulator [Mustafee 2004; Taylor et al. 2005b] intended to assist in the

investigation of algorithmic approaches to distributed simulation in OR/MS. Jain et

al. [2007] developed a distributed simulation of a supply chain based on the HLA

intended to support CSPs in testing interoperability protocols between organizational

units.

While the above research builds on a common standard, the approaches are all

largely incompatible in terms of data exchange format, interoperability and time

management. In recent years attempts have been made to unify the above

approaches into a single standard that is based on the HLA standard [Taylor, et al.

2006]. Started in 2003, the CSP Interoperability Forum (CSPIF) held meetings at

many simulation conferences around the world. The CSPIF had around 70

international members formed from a mix of distributed simulation researchers,

simulation practitioners and CSP vendors (and included leading members of the

field). In 2005, discussions were held with the Simulation Interoperability Standards

Organization (SISO) and the CSPIF was invited to submit a Product Nomination

(the first step in becoming a recognized Product Development Group with a

standards development mandate). This resulted in the creation of the CSPI Product

Development Group (CSPI PDG). The CSPI PDG continued work in aligning these

CSP interoperability/distributed simulation approaches. The CSPI PDG standards

(products) are intended to provide guidance on how specific requirements of HLA-

based distributed simulation can be supported with CSPs. As part of this activity a

set of four Interoperability Reference Models (IRMs) have been defined to create a

common frame of reference to assess the capabilities of particular approaches and to

help practitioners and vendors achieve solutions to complex interoperability problems

[Taylor et al. 2007; Taylor et al. 2008; SISO 2010a]. These were created by following

SISO’s Balloted Standards Development and Support Process (BPDSP) which

involved several rounds of voting/balloting and refinement before a standard is

formally recognized by SISO’s Standards Activity Committee (SAC) and its Executive

Committee (EXCOM). Examples of research based on IRMs include Wang et al.

[2006] who study possible implementations; Taylor et al. [2005a] who investigate the

use of distributed simulation in engine manufacturing; Gan et al. [2005] and

Lendermann et al. [2007] who investigate the use of distributed simulation in

semiconductor manufacturing supply chains; Mustafee et al. [2009] who apply

distributed simulation in the context of a healthcare supply chain. Many of the

authors listed above have participated in the development of the CSPI standards.

Standardization of the ‘adaptor’ approach is still on-going but closely follows the

technological discussion in the case study.

Another related standard is the Core Manufacturing Simulation Data (CMSD)

Information Model (SISO-STD-008-2010) [SISO 2010b], which addresses the

development of a common data exchange format in the area of manufacturing

simulation. Although CMSD might to some extend also serve as a model exchange

format for converting models between different CSPs, its main focus is on

interoperability between simulation systems and other manufacturing IT systems

(e.g., Manufacturing Execution Systems) [Strassburger and Taylor 2012]. CMSD is

therefore no alternative solution to coupling CSPs using distributed simulation;

rather it supports other aspects of simulation interoperability.

4. GUIDELINES FOR CSP-BASED DISTRIBUTED SIMULATION

The range of state of the art CSPs are not easily used for distributed simulation. As

presented earlier, this type of distributed simulation is developed typically by a

partnership of problem owners, modelers, CSP vendors and distributed simulation

specialists. Modelers create the distributed simulation to the satisfaction of the

problem owners. However, as CSPs do not really have direct support for distributed

simulation (access to event lists, inclusion of external events, etc. [Strassburger et al.

1998]), modelers must express their needs to CSP vendors who then work with

distributed simulation specialists who jointly develop the distributed simulation as

needed. Often the result is not ideal with the technical implementation not

completely supporting the requirements of the modeler. The result is that the

modeler has to ‘make do’ with what technical implementation can provide and a

distributed model that cannot be satisfactorily validated against the real system.

Worse, it is possible that the distributed simulation specialists think that they have

done a perfect job and the modeler believes them as neither has a common language

to communicate expectations and solutions.

To illustrate this, consider the following. The owners of two factories want to find

out how many products their factories can manufacture in a year. Both factories

have been modeled separately using two CSPs. The models might interact by

sending entities (possibly the delivery and return of some defective stock), by sharing

resources (to reflect a shared set of machinists that can operate various

workstations), by scheduling shared events of various kinds (such an emergency

shutdown) or by sharing data (such as the current production volume).

Reiterating the overview given earlier, implementing this as a distributed supply

chain simulation or federation composes of a set of CSPs and their models. A CSP

will simulate its model using a DES algorithm. Each model/CSP represents a

federate normally running on its own computer. In a distributed simulation, each

model/CSP federate therefore exchanges data directly or via a runtime infrastructure

(RTI) implemented over a network in a simulation time synchronized manner.

Federate F1 consists of the model M1 and the COTS Simulation Package CSP1 and

federate F2 consists of the model M2 and COTS Simulation Package CSP2. In this

case federate F1 publishes and sends information to the RTI in an agreed format and

simulation time synchronized manner and federate F2 must subscribe to and receive

that information in the same agreed format and time synchronized manner, i.e. both

federates must agree on a common representation of data and both must use the RTI

in a similar way. Further, the “sending” or transfer of entities and the sharing of

resources require different distributed simulation protocols. In entity transfer, the

departure of an entity from one model and the arrival of an entity at another can be

represented through a time-stamped interaction message sent from one federate to

another. The sharing of resources cannot, however, be handled in the same way. For

example, when a resource is released or an entity arrives in a queue, a CSP executing

the simulation will determine if a workstation can start processing an entity. If

resources are shared, each time an appropriate resource changes state a time-

stamped communication protocol is required to inform and update the changes of the

shared resource state.

Trying to get some consensus between modeler, vendor and distributed simulation

specialist on these implementation details is extremely difficult; the degree of

subtlety involved in even describing these problems can lead to long, lengthy

discussions where the parties involved typically finish with no definitive

understanding of the problems that must be solved.

To attempt to solve this, the SISO standardization group CSPI PDG has created a

standardized set of Interoperability Reference Models or “interoperability design

patterns” that attempt to capture these subtleties. It allows the capture of

interoperability requirements at a modeling level rather than a technical level that

enables OR/MS modelers and vendors to properly specify the interoperability

requirements of a distributed simulation in their terms. These were formally

recognized by SISO in 2010 after two rounds of balloting as SISO-STD-006-2010

Standard for COTS Simulation Package Interoperability Reference Models [SISO

2010a]. These are effectively a set of simulation patterns or templates that enable

modelers, vendors and solution developers to specify the interoperability problems

that must be solved. The Interoperability Reference Models (IRMs) are intended to

be used as follows:

— To clearly identify the model/CSP interoperability capabilities of an existing

distributed simulation, e.g. the CSP-based distributed simulation is compliant

with IRMs Type A.1, A.2 and B.1.

— To clearly specify the model/CSP interoperability requirements of a proposed

distributed simulation, e.g. the CSP-based distributed simulation must be

compliant with IRMs Type A.1 and C.1.

An IRM is defined as the simplest representation of a problem within an

identified interoperability problem type. Each IRM can be subdivided into different

subcategories of problem. As IRMs are usually relevant to the boundary between two

or more interoperating models, models specified in IRMs will be as simple as possible

to “capture” the interoperability problem and to avoid possible confusion. These

simulation models are intended to be representative of real model/CSPs but use a set

of “common” model elements that can be mapped onto specific CSP elements. Where

appropriate, IRMs specify time synchronization requirements and present

alternatives that must be agreed upon. IRMs are intended to be cumulative (i.e.

some problems may well consist of several IRMs). Most importantly, IRMs are

intended to be understandable by modelers, vendors and distributed simulation

specialists. Other forms of the models have been developed using a CSPI schema.

The diagrammatic form presented here resulted from four years of consultation with

stakeholder groups represented by members of the CSPI PDG.

4.1 Interoperability Reference Model Types

There are four different types of IRM. These are:
Type A: Entity Transfer

Type B: Shared Resource

Type C: Shared Event

Type D: Shared Data Structure

Briefly, IRM Type A Entity Transfer deals with the requirement of transferring

entities between simulation models, such as an entity Part leaves one model and

arrives at the next. IRM Type B Shared Resource refers to sharing of resources

across simulation models. For example, a resource R might be common between two

models and represents a pool of workers. In this scenario, when a machine in a

model attempts to process an entity waiting in its queue it must also have a worker.

If a worker is available in R then processing can take place. If not then work must be

suspended until one is available. IRM Type C Shared Event deals with the sharing

of events across simulation models. For example, when a variable within a model

reaches a given threshold value (a quantity of production, an average machine

utilization, etc.) it should be able to signal this fact to all models that have an

interest in this fact (to throttle down throughput, route materials via a different

path, etc.) IRM Type D Shared Data Structure deals with the sharing of variables

and data structures across simulation models. Such data structures are semantically

different to resources, for example a bill of materials or a common inventory. Note

that during the development of the standard the above classification previously

appeared as Types I-VI [Taylor, et al. 2006]. We now detail each IRM in turn.

4.2 Interoperability Reference Model Type A: Entity Transfer

IRM Type A Entity Transfer represents interoperability problems that can occur

when transferring an entity from one model to another. Figure 1 shows a simple

illustrative example of the problem of Entity Transfer where an entity e1 leaves

activity A1 in model M1 at T1 and arrives at queue Q2 in model M2 at T2. For

example, if M1 is a car production line and M2 is a paint shop, then this represents

the system where a car leaves a finishing activity in M1 at T1 and arrives in a buffer

in M2 at T2 to await painting. Note that the IRM subtypes are intended to be

Fig. 1. IRM Type A.1: General Entity Transfer.

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1

Q

1
A1

Model M2

Q

2
A2

Entity e1 leaves A1 at

T1 and arrives at Q2 at

T2

composable, i.e. a distributed simulation that correctly transfers entities from one

model to a bounded buffer in another model should be can be compliant with both

IRM Type A.1 General Entity Transfer and IRM Type A.2 Bounded Receiving

Element.

There are currently three IRM Type A Sub-types
IRM Type A.1 General Entity Transfer

IRM Type A.2 Bounded Receiving Element

IRM Type A.3 Multiple Input Prioritization

4.3 IRM Type A.1 General Entity Transfer

IRM Type A.1 General Entity Transfer represents the case, as described above and

shown in Figure 1, where an entity e1 leaves activity A1 in model M1 at T1 and

arrives at queue Q2 in model M2 at T2 (see above for an example). This IRM is

inclusive of cases where there are many models and many entity transfers (all

transfers are instances of this IRM) but not where the receiving element is bounded

(IRM Type A.2), and multiple inputs need to be prioritized (IRM Type A.3).

The IRM Type A.1 General Entity Transfer is defined as the transfer of entities

from one model to another such that an entity e1 leaves model M1 at T1 from a given

place and arrives at model M2 at T2 at a given place and T1 =< T2 or T1<T2. The

place of departure and arrival will be a queue, workstation, etc. Note that this

inequality must be specified. This is a critical requirement as, if T1 <= T2 then the

distributed simulation is capable of producing a zero time advance and is classed in

distributed simulation terms as a “zero lookahead problem” [Bryant, 1977; Chandy

and Misra, 1979; Fujimoto, 1990]. Without going into the technical details (for which

the reader may refer to the aforementioned references) it is sufficient to state that

some distributed simulation implementations cannot support zero lookahead and

therefore will not be able to correctly implement this requirement. In such cases the

requirement T1 < T2 must be fulfilled. This sort of detail justifies the need for IRMs

as often this level of detail is overlooked.

4.4 IRM Type A.2 Bounded Receiving Element

Consider a production line where a machine is just finishing working on a part. If

the next element in the production process is a buffer in another model, the part will

be transferred from the machine to the buffer. If, however, the next element is

bounded, for example a buffer with limited space or another machine (i.e. no buffer

space), then a check must be performed to see if there is space or the next machine is

free. If there is no space, or the next machine is busy, then to correctly simulate the

behavior of the production process, the current machine must hold onto the part and

block, i.e. it cannot accept any new parts to process until it becomes unblocked

(assuming that the machine can only process one part at a time). The consequences

of this are quite subtle. This is the core problem of the IRM Type A.2. Figure 2

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1

Q

1
A1

Model M2

Q

2
A2

Entity e1 attempts to

leave A1 at T1 and

arrive at Q2 at T2 in a

bounded element (e.g.

queue)

Bounded

Fig. 2. IRM Type A.2: Bounded Receiving Element.

shows an illustrative example, where an entity e1 attempts to leave model M1 at T1

from activity A1 and to arrive at model M2 at T2 in bounded queue Q2. If A1

represents a machine then the following scenario is possible. When A1 finishes work

on a part (an entity), it attempts to pass the part to queue Q2. If Q2 has spare

capacity, then the part can be transferred. However, if Q2 is full then A1 cannot

release its part and must block. Parts in Q1 must now wait for A1 to become free

before they can be machined. Further, when Q2 once again has space, A1 must be

notified that it can release its part and transfer it to Q2. Finally, it is important to

note the fact that if A1 is blocked the rest of model M1 still functions as normal, i.e. a

correct solution to this problem must still allow the rest of the model to be simulated

(rather than just stopping the simulation of M1 until Q2 has unblocked).

This IRM is therefore inclusive of cases where the receiving element (queue,

workstation, etc.) is bounded but not where there are multiple inputs that need to be

prioritized (IRM Type A.3). A solution to this IRM problem must also be able to

transfer entities (IRM Type A.1). The IRM Type A.2 is defined as the relationship

between an element O in a model M1 and a bounded element Ob in a model M2 such

that if an entity e is ready to leave element O at T1 and attempts to arrive at

bounded element Ob at T2 then:

— If bounded element Ob is empty, the entity e can leave element O at T1 and arrive

at Ob at T2, or if bounded element Ob is full, the entity e cannot leave element O

at T1; element O may then block if appropriate and must not accept any more

entities.

— When bounded element Ob becomes not full at T3, entity e must leave O at T3 and

arrive at Ob at T4; element O becomes unblocked and may receive new entities at

T3.

— T1=<T2 and T3=<T4.

— If element O is blocked then the simulation of model M1 must continue.

— Note: In some special cases, element O may represent some real world process that

may not need to block. If T3<T4 then it may be possible for bounded element O to

become full again during the interval if other inputs to Ob are allowed.

4.5 IRM Type A.3 Multiple Input Prioritization

As shown in Figure 3, the IRM Type A.3 Multiple Input Prioritization represents the

case where a model element such as queue Q1 (or workstation) can receive entities

from multiple places. Let us assume that there are two models M2 and M3 which are

capable of sending entities to Q1 and that Q1 has a First-In-First-Out (FIFO)

queuing discipline. If an entity e1 is sent from M2 at T1 and arrives at Q1 at T2 and

an entity e2 is sent from M3 at T3 and arrives at Q1 at T4, then if T2<T4 we would

expect the order of entities in Q1 would be e1, e2. A problem arises when both

Fig. 3. IRM Type A.3 Multiple Input Prioritization.

COTS Simulation Package CSP1

Federate F1

Model M1

Q

1
A1

Entities arrive from different

models potentially at the same

simulation time

entities arrive at the same time, i.e. when T2=T4. Depending on implementation, the

order of entities would either be e1, e2 or e2, e1. In some modeling situations it is

possible to specify the priority order if such a conflict arises, e.g. it can be specified

that model M1 entities will always have a higher priority than model M2 (and

therefore require the entity order e1, e2 if T2=T4). Further, it is possible that this

priority ordering could be dynamic or specialized. This IRM is therefore inclusive of

cases where multiple inputs need to be prioritized. This IRM does not include cases

where the receiving element is bounded (IRM Type A.2). A solution to this IRM

problem must also be able to transfer entities (IRM Type A.1).

The IRM Type A.3 Multiple Input Prioritization is defined as the preservation of

the priority relationship between a set of models that can send entities to a model

with receiving queue Q, such that priority ordering is observed if two or more entities

arrive at the same time. Note that the priority rules must be specified and that

priority rules may change during a simulation if required for the real system being

simulated.

4.6 Interoperability Reference Model Type B: Shared Resource

IRM Type B deals with the problem of sharing resources across two or more models

in a distributed simulation. A modeler can specify if an activity requires a resource

(such as machine operators, doctors, runways, etc.) of a particular type to begin. If

an activity does require a resource, when an entity is ready to start that activity, it

must therefore be determined if there is a resource available. If there is then the

resource is secured by the activity and held until the activity ends. A resource

shared by two or more models therefore becomes a problem of maintaining the

consistency of the state of that resource in a distributed simulation. Note that this is

similar to the problem of shared data. However, in CSPs resources are semantically

different to data and we therefore preserve the distinction in this standard. There is

currently one IRM Type B Sub-type, the IRM Type B.1 General Shared Resource.

The IRM Type B.1 General Shared Resource represents the case, as outlined

above and shown in Figure 4, where the state of a resource R shared across two or

more models must be consistent. In a model M1 that shares resource R with model

M2, M1 will have a copy RM1 and M2 will have a copy RM2. When M1 attempts to

change the state of RM1 at T1, then it must be guaranteed that the state of RM2 in

M2 at T1 will also be the same. Additionally, it must be guaranteed that both M1

and M2 can attempt to change their copies of R at the same simulation time as it

cannot be guaranteed that this simultaneous behavior will not occur.

The IRM Type B.1 General Shared Resources is defined as the maintenance of

consistency of all copies of a shared resource R such that if a model M1 wishes to

change its copy of R (RM1) at T1 then the state of all other copies of R will be

guaranteed to be the same at T1, and if two or more models wish to change their

copies of R at the same time T1, then all copies of R will be guaranteed to be the

same at T1.

4.7 Interoperability Reference Model Type C: Shared Event

IRM Type C deals with the problem of sharing events (such as an emergency signal,

explosion, etc.) across two or more models in a distributed simulation. There is

currently one IRM Type C sub-type, the IRM Type C.1 General Shared Event. This

represents the case, as shown in Figure 5, where an event E is shared across two or

more models. In a model M1 that shares an event E with model M2 at T1, then we

are effectively scheduling two local events EM1 at M1 at T1 and EM2 at M2 at T1.

We must therefore guarantee that both copies of the event take place. Care must

also be taken to guarantee if two shared events E1 and E2 are instigated at the same

time by different models, then both will occur.

A shared resource R exists at two models M1 and M2. If shared resource R

changes at time T1 in model M1 then it must change at T1 in model M2

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1 Model M2

R R

Fig 4. IRM Type B.1: General Shared Resource.

Fig. 5. IRM Type C.1: General Shared Event.

A shared event E takes place in two models M1 and M2 at T1.

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1 Model M2

E E

The IRM Type C.1 General Shared Event is defined as the guaranteed execution

of all local copies of a shared event E such that if a model M1 wishes to schedule a

shared event E at T1, then the local copies EM1, EM2, etc. will be guaranteed to be

executed at the same time T1, and if two or more models wish to schedule shared

events E1, E2, etc. at T1, then all local copies of all shared events will be guaranteed

to be executed at the same time T1.

4.8 Interoperability Reference Model Type D: Shared Data Structure

IRM Type D deals with the problem of sharing data across two or more models in a

distributed simulation (such as a production schedule, a global variable, etc.) A

shared data structure that is shared by two or more models therefore becomes a

problem of maintaining the consistency of the state of that data structure in a

distributed simulation. Note that this is similar to the problem of shared resources.

However, in CSPs resources are semantically different to data and we therefore

preserve the distinction in this standard. Note also that we consider the sharing of a

single data item such as an integer as being covered by this IRM. There is currently

one IRM Type D Sub-type, the IRM Type D.1 General Shared Data Structure.

IRM Type D.1 General Data Structure represents the case, as outlined above and

shown in Figure 6, where a data structure D shared across two or more models must

be consistent. In a model M1 that shares a data structure D with model M2, M1 will

have a copy DM1 and M2 will have a copy DM2. When M1 attempts to change the

value of DM1 at T1, then it must be guaranteed that the value of DM2 in M2 at T1

will also be the same. Additionally, it must be guaranteed that both M1 and M2 can

attempt to change their copies of D at the same simulation time as it cannot be

guaranteed that this simultaneous behavior will not occur. The IRM Type D.1

General Shared Data Structure is defined as the maintenance of consistency of all

copies of a shared data structure D such that if a model M1 wishes to change its copy

of D, DM1 at T1 then the value of all other copies of D will be guaranteed to be the

same at T1, and if two or more models wish to change their copies of D at the same

time T1, then all copies of D will be guaranteed to be the same at T1.

We now present OR/MS distributed case studies, one in healthcare and the other

in manufacturing, that have been guided by the SISO-STD-006-2010 standard [SISO

2010a]. Other examples of IRM use can be found in Strassburger et al. [2007], Raab

et al. [2008], Taylor et al. [2009], Garg et al. [2009] and Pedrielli et al. [2011].

A shared data item D exists at two models M1 and M2. If shared data item D

changes at time T1 in model M1 then it must change at T1 in model M2

COTS Simulation Package CSP1

Federate F1

COTS Simulation Package CSP2

Federate F2

Model M1 Model M2

D D

Fig. 6. IRM Type D.1: Shared Data.

5. THE NATIONAL BLOOD SERVICE CASE STUDY: A DISTRIBUTED SUPPLY CHAIN
SIMULATION

The first case study discusses the UK National Blood Service (NBS) supply chain and

its realization as a distributed simulation using the CSP Simul8™ and the DMSO

HLA-RTI distributed simulation middleware. The National Blood Service (NBS) is a

part of the UK National Health Service Blood and Transplant (NHSBT) organization.

The NBS infrastructure consists of 15 Process, Testing and Issuing (PTI) centers

which together serve 316 hospitals across England and North Wales. Each PTI

Center thus serves around 20 hospitals. The NBS is responsible for collecting blood

through voluntary donations, classifying it by ABO and Rhesus grouping, testing the

blood for infectious diseases such as HIV, and processing the blood into around 115

different products (the main ones being Red Blood Cells [RBC], platelets and

plasma). The NBS stores the stockpile, transfers excess stock between different NBS

centers, and issues the different blood products to the hospitals as per their demand.

Each hospital has different ordering policies and local strategies vary regarding

optimum local stock levels. Although this initially appears to be a simple supply

chain, issues of multiple blood products, individual ordering strategies, blood unit

assignment and shelf life (RBC usually has a shelf life of only 35 days) make this an

extremely complex one.

To investigate this system, the NBS Supply Chain simulation was created by

Katsaliaki and Brailsford [2007] and was modeled with inputs from the Southampton

PTI Center. This included only RBC and platelets which together comprise 85% of

issues and are the chief source of wastage and shortages. We refer to this model as

the ‘conventional’ NBS Supply Chain model. We have selected this case study for our

distributed simulation implementation since multiple stakeholders are involved in

this supply chain (e.g., the NBS PTI and the different hospitals) and it illustrates

privacy and data access issues, and also because all the elements of the model were

developed in the CSP Simul8. The conventional model contains the processes of the

NBS PTI Center, from the collection of blood to the delivery of blood products, and

the processes of a hospital. The model captures physicians’ requests for blood and the

processes whereby the hospital blood bank checks its stock levels and places orders.

The order entities and item entities are represented as information flow (hospital

orders) and material flow (blood products) respectively.

The problem with the non-distributed approach is threefold. Firstly, the data

used is private and sensitive as it involves information related to clinical practice.

Most data in healthcare systems data cannot just be taken on demand and is subject

to stringent and length data protection checks. Admittedly in the UK data sharing

does take place between hospitals in Primary Care Trusts and, to some extent,

Strategic Health Authorities (although these have recently been disbanded).

However, the NHSBT and the NHS hospitals are effectively separate organizations

and it cannot be assumed that data is freely shared. Further, to generalize the

original work by Katsaliaki and Brailsford, i.e. a supply chain analysis tool usable by

the many developed countries that have equivalent blood supply chains, then one

cannot assume that privacy issues will be any different.

Hospital 4Hospital 2

Hospital 3

NBS PTI

Shared Input Buffer

Flow of Material (delivery of blood)

Flow of Information (order for blood)

Demand for blood

Hospital 1

Fig. 7. Information and material flow among the models of the distributed

supply chain simulation

Secondly, the data is fixed. The data sources are private and not easily moved.

There is much data in the model that is used to model the demand for blood, the

availability of blood products and the current stock of the blood units in the supply

chain. These are updated frequently and centralizing the data in a single model

would make it difficult to ensure the data is up to date. Finally, the execution time is

extremely poor. A single year took 14 minutes to run with a single supply center and

single hospital, 78 minutes with two hospitals, 17.5 hours with three hospitals and

35.8 with four (1.7GHz processor desktop PC with 1GB RAM). Note that in terms of

execution time it may be possible to simplify the modeling approach to increase the

speed of the simulation (such as by sacrificing the detail at which blood product

orders are placed and/or the shelf-life of blood products). However, the goal here is to

understand wastage and ordering patterns and a sacrifice in detail for the sake of

performance may produce results faster but not at the required level of detail.

Information and material flows in the distributed version of the NBS model is

shown in Figure 7. It is at this point where the guidelines became extremely useful

as it allowed the modeling team and the distributed simulation team to use the

simple set of diagrams to actively engage in specifying how the models interacted.

The main interaction between the supply center and the hospitals is by sending and

receiving entities that represent orders and deliveries of blood units and products.

There are no shared resources, shared data structures or shared events. IRM Type A

Entity Transfer is therefore the main guideline for this distributed simulation.

In this model there are essentially two entity transfers: (a) orders from a hospital to

Fig. 8. IRM for National Blood Service Supply Chain Simulation.

Simul8

Hospital Federate

Simul8

NBS Federate

Hospital

Rec

BP

Place

Order

NBS

Rec

Order

Both IRM A.1 T1<T2

No change to Entity

name, attributes or

type

Send

BP

Order

BloodProduct

the NBS centre, and (b) blood units from the NBS centre to a hospital. IRM Type A.1

General Entity Transfer was therefore appropriate for this work. It was discussed if

IRM Type A.2 Bounded Receiving Element was also appropriate. However, it is

assumed in the model there will always be space for blood units. Similarly the

queuing of order entities did not pose a problem. IRM Type A.3 Multiple Input

Prioritization suggested that there could have been problems with the queuing of

orders received by the supply center. It was decided that if two or more orders

arrived at the same time then these would be processed in an arbitrary order as

orders are taken within a certain timeframe. IRM Type A.1 General Entity Transfer

requires the inequality T1 =< T2 or T1<T2 to be specified. It was decided that as the

transfer of entities would effectively represent the scheduling of a future event (the

placing and receiving of an order, the sending and receiving of a blood product) then

T1<T2 would always be held (Figure 8). The IRMs gave significant clarity to the

development of the distributed simulation as it allowed the developers and the

modelers to discuss interoperability in a clear and consistent manner.

The distributed NBS models representing the supply center and hospitals are

executed on different computers. Each CSP simulates one element of the supply

chain and is connected with the other models via a computer network. The NBS

federation is composed of one PTI federate and several hospital federates interacting

via an RTI and specially developed adapter software (more details given below). The

technical implementation of the NBS case study follows approaches developed in

Taylor et al. [2006], Mustafee and Taylor [2006] and Mustafee et al. [2009]. More

specifically, to link a CSP to an RTI we have developed an approach to using an

adaptor called the CSP Controller Middleware (CCM) (as modifying a CSP or RTI

directly is often not possible). The CCM links the CSP and the RTI; it supports two

RTI time advance mechanisms – the Time Advance Request and the Next Event

Request; it implements entity transfer as user-defined HLA interactions. The NBS

distributed simulation federation is shown in Figure 9. Appendix 1 presents the

Federation Execution Data (FED) file associated with the case study implementation;

the syntax of the FED file is part of the Federate I/F Spec. Although, unlike the

Simul8 PTI Federate

HLA Run Time Infrastructure (DMSO RTI)

Simul8 CSP

NBS PTI

Model

CSP Controller

Middleware

Simul8 Hospital Federate

Simul8 CSP

Hospital 1

Model

Time synchronized Entity Transfer between models

CSP Controller

Middleware

Simul8 Hospital Federate

Simul8 CSP

Hospital 2

Model

CSP Controller

Middleware

Simul8 Hospital Federate

Simul8 CSP

Hospital 3

Model

CSP Controller

Middleware

Simul8 Hospital Federate

Simul8 CSP

Hospital 4

Model

CSP Controller

Middleware

Manager Federate
(coordinates the

execution of the

federation)

NBS

FEDERATION

Fig. 9. The NBS Distributed Simulation Federation comprising of one NBS-PTI

model, four NBS-Hospital models and one Manager Federate. The CSP

Controller Middleware is the interface between the CSP Simul8™ and HLA

RTI.

Federation Object Model (FOM), the FED does not have types associated with

attributes and parameters (e.g., integer, strings), it does contain the extract of the

FOM that is necessary for the RTI to function (Kuhl et al. 1999) and is useful in

understanding the HLA user-defined object and interaction classes that have been

used in the implementation of a distributed simulation. For example, Appendix 1

shows that the NBS federation uses a total of eight user-defined interaction classes

to represent the information flow and the material flow between the PTI and four

hospitals (e.g., “Hospital1Orders”, “Hospital2Orders”, “NBSDeliveryHospital1”,

“NBSDeliveryHospital2”). Further, it shows that each interaction has between five to

eight parameters, e.g., product type (RBC or platelets, blood group, delivery type

(scheduled delivery or emergency delivery), time when the blood unit expires, etc.

6. THE TRACTOR FACTORY CASE STUDY: A DISTRIBUTED SIMULATION IN THE
CONTEXT OF MANUFACTING

Within the planning, design and redesigning of new production facilities at Deere &

Co., a leading manufacturer for agricultural, forestry, and construction equipment,

DES models are routinely used to simulate the behavior of the systems under

investigation [TAYLOR et al. 2009]. Dedicated solution sets exist for the simulation

of certain types of production systems, like assembly lines or paint systems. These

models are used for the planning of new factories as well as for supporting ongoing

factory operations. The CSP used in the presented case study was SLX™

[HENRIKSEN 1997].

Fig. 10. Information and material flow among the models of the

distributed manufacturing simulation

The basis of the case study is a planned tractor factory in South America

[Strassburger et al. 2007]. With a target production of 40 tractors per day, Monday

through Friday, the production system under investigation consists of seven

components, as shown in Figure 10: in total four pre-paint asynchronous assembly

lines for chassis, transmissions and front axle assembly, two post-paint asynchronous

assembly lines for cabs and tractors, and a wet-on-wet paint system. Each component

of the production system consists of multiple manned work stations. The information

and material flow of the overall production system is shown in Figure 10.

Trans-

mission

Assembly Line A

Trans-

mission

Assembly Line B

Front Axle

Assembly Line

Final Cab

Assembly

Demand Files

Final

Tractor

Assembly

Flow of Parts

Flow of Information

(buffer content)

Paint Shop

Simulation
Shared

Input

Buffer

Input

Buffer
Input

Buffer

Input

Buffer

Input

Buffer

Chassis

Assembly

In the traditional application of simulation in the company, each of the production

sections would be simulated using a separate simulation model using established

simulation frameworks. This yields good results when each section is investigated

separately. It does, however, imply the usage of simplified assumptions about the

input and output behavior of the different sections. In order to simulate and take into

account interdependencies between the different production sections (like different

shift regimes and the size of input buffers) correctly, an overall simulation of all

relevant production sections was needed.

The motivation for using distributed simulation in this example was therefore the

integration of independently developed existing models which cannot easily be

combined within a single CSP for common execution. The IRMs discussed in this

paper were used to identify the interoperability requirements in the feasibility

analysis conducted between the simulation experts at Deere & Co. as the domain

experts and the institution performing the integration of the models into a

distributed simulation. In this analysis it was determined that the main focus of the

combination of the models was the correct implementation of the material flow.

There are several types of entities which must be transferred between the models, all

relating to parts which are the output of a certain system. Entity transfer had to take

into account bounded input buffers in all of the production systems receiving parts.

There is a travel time for parts between each of the sections. With one exception

there is a unique input buffer for each of the sending models. In one case, there was a

shared bounded input buffer into which two models deliver parts, but without any

prioritization.

With the help of the IRMs it was therefore possible to define that the

interoperability solution for the distributed manufacturing simulation had to be

capable of implementing a IRM Type A.2 entity transfer with T1<T2 and T3 < T4 in

all cases. In one case there was also shared input buffer into which two models

deliver entities. This input buffer also qualifies as an IRM A.3 model, but as the

scenario does not required input prioritization, this fact had no implications on the

required implementation.

Figure 11: Implementation scheme for IRM A.2 in the manufacturing case

study

The distributed simulation that was developed in this case study uses the open

source CERTI [Noulard et al. 2009]. Like the NBS case study, the implementation of

the actual entity transfer was performed using HLA interaction messages. However,

unlike the NBS case study, there was also a need to exchange information about

buffer content of the several input buffers. This was achieved using HLA object

instances generated for each relevant input buffer (compare Figure 11). Each model

sending into a certain input buffer would have to subscribe to the class of that buffer

and would subsequently be informed about changes in the buffer content. The

sending model is thus enabled to decide about the necessity to delay an entity

transfer depending on the buffer content.

Appendix 2 presents the abridged FED file associated with the tractor factory case

study; the FED file lists the user-defined object classes and interaction classes that

Source 1 Queue 1
Work-

station 1
Sink 1

Model 1

Source 2 Queue 2
(Bounded)

Work-

station 2
Sink 2

Model 2

HLA Runtime Infrastructure

Buffer Object
- Contents

- Availability

Buffer Object

(local copy) HLA Attribute

Update

HLA Interaction

Message

Check contents

before unloading

Update

Contents

have been used. As can be seen from the appendix, the sender-receiver relationship

between the federates is represented by building a hierarchy of interaction classes

and sub-classes. As the root user-defined class, an interaction class called

“TransferEntity” is specified. It has subclasses which correspond to all potential

recipient models, e.g. “TransferEntityToPaintShop”,

“TransferEntityToChassisAssembly”, etc. Further to this subclass identifying the

target federate, individual interaction classes are introduced for each connection

between a sending model and a target model. In our example (compare Figure 10),

there would be a single subclass to “TransferEntityToPaintShop” called

“TransferEntityChassisAssemblyToPaintShop”. This interaction class is published by

the sending model (Chassis Assembly) and is subscribed by the receiving model

(Paint Shop). With regard to our second example (subclass

“TransferEntityToChassisAssembly”), there are three interaction subclasses that are

published by the sending models (Front Axle Assembly Line, Transmission Assembly

Line A, Transmission Assembly Line B) and which are subscribed by the receiving

model (Chassis Assembly). These three interaction subclasses are

“TransferEntityTransmissionAssemblyAToChassisAssembly”,

“TransferEntityTransmissionAssemblyBToChassisAssembly”, and

“TransferEntityFrontAxleAssemblyToChassisAssembly”. For transmitting the state of

a transferred entity, the interaction classes have a single parameter named “Entity”.

The type of this parameter is a complex data type (record) identifying the name of the

entity, identifiers for the source and destination (which identify the sink of the

sending model and the targeted source of the receiving model), and other simulation

dependent attributes (e.g., a unique sequence number of the entity and a set of option

codes). With regard to IRM Type A.2 (Bounded Receiving Element), some mechanism

for checking if there is sufficient space in the input queue/buffer of the receiving

model had to be implemented. In our implementation the input queue/buffer is

modeled as a persistent object class instance in the HLA sense (Figure 11).

Furthermore, a hierarchical definition of these object classes has been used; this is

similar to the one used for the user-defined interaction classes. Thus, we have

defined the HLA object class “UpdateObject” as the root of user-defined object classes;

there are sub-classes “UpdateObjectChassisAssembly”, “UpdateObjectPaintShop”, etc.

under the root class; these classes further encapsulate the sub-class “InputBuffer”

(please refer to Appendix 2).

The implemented interoperability solution makes use of the SLX-HLA-Interface

(Figure 12). This interface is implemented as a dynamic-link-library and provides

functions to SLX models that allow direct access to HLA functionality [Strassburger

et al. 1998]. This functionality is further encapsulated by introducing easy-to-use

statements into the SLX language [Strassburger 2006]. All models are executed on a

single multicore PC. Runtimes of all models simulating a week’s production range

between 30 seconds and 8 minutes, depending on different lookahead values. This

setting illustrates that in this case study it was not speed up or memory constraints

that led to the usage of distributed simulation, but the need to integrate different,

heterogeneous simulation models. Further implementation details can be found in

[Strassburger et al. 2007].

SLX Federate

HLA Run-Time Infrastructure (CERTI)

SLX CSP

HLA Interface for

SLX

SLX Federate

SLX CSP

Front Axle

Assembly

Line Model

Time synchronized Entity Transfer and Object Update between models

HLA Interface for

SLX

SLX Federate

SLX CSP

Transmission

Assembly Line

A Model

HLA Interface for

SLX

SLX Federate

SLX CSP

Transmission

Assembly Line

B Model

HLA Interface for

SLX

SLX Federate

SLX CSP

Chassis

Assembly

Model

HLA Interface for

SLX

TRACTOR

FACTORY

FEDERATIONSLX Federate

SLX CSP

Final Cab

Assembly

Model

HLA Interface for

SLX

Final Tractor

Assembly

Model

SLX Federate

SLX CSP

Paint Shop

Model

HLA Interface for

SLX

 Fig. 12. The Distributed Simulation of the tractor factory, including seven

simulation models all implemented in the CSP SLX™, but in partially

different simulation frameworks. Distributed Simulation offered the only

way to integrate these models.

7. CONCLUSION

This paper has argued that the development of a single all-encompassing simulation

model that represents well-defined sub-systems belonging to multiple functional

areas (associated with either one organization, or indeed, related with several

organizations) can bring with it issues of data/information sharing, data

transfer/access, model composability and execution time. Distributed simulation has

been introduced as a possible solution to the above as it addresses concerns among

the intra- and inter-organizational stakeholders with regard to data/information

sharing and/or security and privacy of shared data/information. The paper has also

argued that a set of standardized Interoperability Reference Models (IRMs) can

assist in development of CSP-based distributed simulation as it clarifies

communication issues between the modelers and distributed simulation specialists.

The case studies have demonstrated how distributed simulation in OR/MS can be

realized and its benefits and barriers. It has shown how data privacy is maintained

and how problems of data transfer/access can be avoided. It has illustrated how

issues of model composability can be avoided by keeping the models separate.

Although influenced by work described in the related work section, the technological

implementation took a great deal of time and required expert knowledge, developers

with appropriate skills and close collaboration with the vendor. Using the IRMs

helped reduce the time needed to understand how models interacted.

In reality how realistic is this? Our case studies have demonstrated that if

concerns relating to privacy, data and model composition are an issue then

distributed simulation affords a potential solution to concurrent simulation execution

both within the confines an organization (e.g., simulation of well-defined sub-

processes such as “procurement” and “manufacturing” within an organization) and

across organizations (e.g., supply chain simulation without complex non-disclosure

agreements and data access policies). However, a significant barrier is the skill set

needed to achieving an implementation. Generally in the military simulation

community the skills needed to implement a distributed simulation is arguably

widespread; however, in the OR/MS community of users and vendors represented by

CSPs it is not. We argue that the way forward is standardization. Standardization

activities bring together stakeholders to debate appropriate solutions to problems.

The CSPI PDG have produced the first of several standards targeted at distributed

simulation in OR/MS. These IRMs are an important step forward as these are

intended to simplify issues in distributed simulation as well as forming the basis for

relevant stakeholders to engage over technical solutions. Garg, et al. [2009] and

Pedrielli, et al. [2011] have investigated generic implementations of the IRMs for the

HLA using a similar approach to the CSP Controller Middleware mentioned in this

paper (section 5). Now that the HLA Evolved [IEEE 2010] and the Distributed

Simulation Engineering and Execution Process (DSEEP) [IEEE 2011] standards

have been finalized, work continues to standardize HLA representations of the IRMs

by developing guideline Federation Object Model and Simulation Object Model

specifications and RTI implementations. The first step towards this is the creation of

the CSPI specification schema which formally represents the interoperability

relationships between models. Investigations are also being carried out to produce

IRM versions compatible with the Base Object Model standard [SISO 2006] to better

link in IRM research with contemporary HLA research. Similarly, the Levels of

Conceptual Interoperability Model (LCIM) [Tolk et al. 2007] is being studied to

determine at which Level the IRMs should be included.

ACKNOWLEDGEMENTS

The authors would like to thank the Simulation Interoperability Standards

Organization (SISO), the members of the CSPI PDG and the involved CSP vendors

for their on-going support of this work.

REFERENCES

AL-ZOUBI, K. AND WAINER, G. 2008. Interfacing and coordination for a DEVS simulation protocol

standard. In Proceedings of the 12th IEEE/ACM International Symposium on Distributed

Simulation and Real-Time Applications (DS-RT2008). IEEE Computer Society Washington, DC,

300-307.

BANDINELLI, R., RAPACCINI, M., TUCCI, M. AND VISINTIN, F. 2006. Using simulation for supply

chain analysis: reviewing and proposing distributed simulation frameworks. Production

Planning & Control, 17, 2, 167-175.

BOER, C.A., DE BRUIN, A. AND VERBRAECK, A. 2009. A survey on distributed simulation in industry.

Journal of Simulation, 3, 1, 3-16.

BORSHCHEV, A., KARPOV, Y. AND KHARITONOV, V. 2002. Distributed simulation of hybrid systems

with AnyLogic and HLA. Future Generation Computer Systems, 18, 6, 829–839.

BRYANT, R. E. 1977. Simulation of packet communication architecture computer systems, Technical

Report MIT/LCS/TR-188, Massachusetts Institute of Technology, Cambridge, Massachusetts.

CHANDY, K. M. AND MISRA, J. 1979. Distributed simulation: A case study in design and verification of

distributed programs. IEEE Transactions on Software Engineering, 5, 5, 440-452.

FUJIMOTO, R.M. 2000. Parallel and distributed simulation systems. New York, NY: John Wiley & Sons.

FUJIMOTO, R.M. 1990. Parallel discrete event simulation. Communications of the ACM, 33, 10, 30-53.

FUJIMOTO, R.M. AND WEATHERLY, R.M. 1996. Time management in the DoD High Level

Architecture. In Proceedings of the 10th Workshop on Parallel and Distributed Simulation

Workshop. IEEE Computer Society, Washington, DC, 60-67.

GAN, B.P. AND TURNER, S.J. 2000. An asynchronous protocol for virtual factory simulation on shared

memory multiprocessor systems. Journal of Operational Research Society, 51, 4, 413-422.

GAN, B.P., LENDERMANN, P., LOW, M.Y.H., TURNER, S.J., WANG, X. AND TAYLOR, S. J. E. 2005.

Interoperating Autosched AP using the High Level Architecture. In Proceedings of the 37th

Winter Simulation Conference, ACM Press, New York, NY, 394-401.

GAN, B.P., LIU, L., JAIN, S., TUMER, S.J., CAI, W. AND HSU, W. 2000. Distributed supply chain

simulation across enterprise boundaries. In Proceedings of the 32nd Winter Simulation

Conference, ACM Press, New York, NY, 1245-1251.

GARG, A.K., VENKATESWARAN, J. AND SON, Y.-J. 2009. Generic interface specifications for

integrating distributed discrete-event simulation models. Journal of Simulation, 3: 114-128.

GLOBALSECURITY.ORG. 2002. Millennium Challenge. Available online

http://www.globalsecurity.org/military/ops/millennium-challenge.htm [last accessed 26

February, 2012].

HENNINGER, A. E., CUTTS, D., LOPER, M., LUTZ, R., RICHBOURG, R., SAUNDERS, R. AND

SWENSON, S. 2008. Live Virtual Constructive Architecture Roadmap (LVCAR) Final Report.

M&S CO Project No. 06OC-TR-001.
HENRIKSEN, J.O. 1997. An Introduction to SLX™. In Proceedings of the 1997 Winter Simulation

Conference, SCS, Atlanta, pp.559-566.

HIBINO, H., FUKUDA, Y., YURA, Y., MITSUYUKI, K. AND KANEDA, K. 2002. Manufacturing adapter

of distributed simulation systems using HLA. In Proceedings of the 34th Winter Simulation

Conference, ACM Press, New York, NY, 1099-1107.

HOLLOCKS, B.W. 2006. Forty years of discrete-event simulation - a personal reflection. Journal of the

Operational Research Society, 57, 12, 1383-1399.

IEEE. 2010. IEEE 1516-2011 IEEE standard for modeling and simulation (M&S) high level architecture

(HLA). New York, NY: Institute of Electrical and Electronics Engineers.

IEEE. 2011. IEEE 1730-2011 IEEE standard for distributed simulation engineering and execution process

(DSEEP). New York, NY: Institute of Electrical and Electronics Engineers.

JAIN, S., RIDDICK, F., CRAENS, A. AND KIBIRA, D. 2007. Distributed simulation for interoperability

testing along the supply chain. In Proceedings of the 39th Winter Simulation Conference, ACM

Press, New York, NY, 1044-1052.

JOHNSON, G.D. 1999. Networked simulation with HLA and MODSIM III. In Proceedings of the 31st

Winter Simulation Conference, ACM Press, New York, NY, 1065-1070.

KARLSSON, M. AND OLSSON, L. 2001. pRTI 1516 - rationale and design. In Proceedings of the 2001 Fall

Simulation Interoperability Workshop. Simulation Interoperability Standards Organization,

Orlando, Florida, USA, 01F-SIW-038.

KATSALIAKI, K. AND BRAILSFORD, S. 2007. Using simulation to improve the blood supply chain.

Journal of the Operational Research Society, 58, 2, 219-227.

KUHL F., WEATHERLY R. AND DAHMANN J. 1999. Creating computer simulation systems: an

introduction to the high level architecture. Upper Saddle River, NJ: Prentice Hall PTR.

LEE, S., ZHAO, X., SHENDARKAR, A., VASUDEVAN, K. AND SON, Y.-J. 2008. Fully dynamic epoch

time synchronisation method for distributed supply chain simulation. International Journal of

Computer Applications in Technology, 31, 3-4, 249-262.

LENDERMANN, P. 2006. About the need for distributed simulation technology for the resolution of real-

world manufacturing and logistics problems. In Proceedings of the 38th Winter Simulation

Conference, ACM Press, New York, NY, pp. 1119 - 1128.

LENDERMANN, P., TURNER, S. J., LOW, M. Y. H., GAN, B. P., JULKA, N., CHAN, L. P., CAI, W. T.,

LEE, L. H., CHEW, E. P., TENG, S. Y. AND MCGINNIS, L. F. 2007. An Integrated and

Adaptive Decision-support Framework for High-Tech Manufacturing and Service Networks.

Journal of Simulation, 1, 2, 69-79.

LI, J., YUAN, A. AND WU, Q. 2010. A framework of simulation for cluster supply chain collaboration. In

Proceedings of the International Conference on Internet Technology and Applications, ITAP 2010,

art. no. 5566100.

MALINGA, L. AND LE ROUX, W. H. 2009. HLA RTI performance evaluation. In Proceeding of the

European Simulation Interoperability Workshop, Istanbul, Turkey, pp. 1-6.

MERTINS, K. , RABE, M. AND JÄKEL, F-W. 2005. Distributed modeling and simulation of supply chains.

International Journal of Computer Integrated Manufacturing, 18, 5, 342-349.

MUSTAFEE, N. 2004. Performance evaluation of interoperability methods for distributed simulation.

MSc. Dissertation, Department of Information Systems, Computing and Mathematics, Brunel

University, UK.

MUSTAFEE, N. AND TAYLOR, S.J.E. 2006. Investigating distributed simulation with COTS simulation

packages: experiences with Simul8 and the HLA. In Proceedings of the 2006 Operational

Research Society Simulation Workshop (SW06), Operational Research Society, Birmingham, UK,

pp. 33-42.

MUSTAFEE, N., TAYLOR, S.J.E., KATSALIAKI, K. AND BRAILSFORD, S. 2009. Facilitating the

analysis of a UK National Blood Service supply chain using distributed simulation.

SIMULATION: Transactions of the Society of Modeling and Simulation International. Volume

85, 2, 113-128.

MUSTAFEE, N., TAYLOR, S.J.E., KATSALIAKI, K. AND BRAILSFORD, S. 2006. Distributed simulation

with COTS simulation packages: a case study in health care supply chain simulation. In

Proceedings of the 38th Winter Simulation Conference, ACM Press, New York, NY, pp. 1136-

1142.

NOULARD, E., ROUSSELOT, J-Y. AND SIRON, P. 2009. CERTI, an Open Source RTI, Why and How. In

Proceeding of the Spring Simulation Interoperability Workshop, 23-27 March 2009, San Diego,

United States, 09S-SIW-015.

PAN, K., S.J. TURNER, W. CAI, AND Z. LI. 2008. Design and performance evaluation of a service oriented

HLA RTI on the grid. In Grid Computing: Infrastructure, Service, and Application, Taylor and

Francis, London.

PEDRIELLI, G., TERKAJ, W., SACCO, M. AND TOLIO, T. 2011. Simulation of complex manufactuing

systems via HLA-based infrastructure. In Proceedings of the 25th Workshop on Principles of

Advanced and Distributed Simulation, IEEE Computer Society, Washington DC.

PIDD, M. (2004). Computer simulation in management science (5th edition). Chichester, UK: John Wiley &

Sons.

RAAB, M., SCHULZE, T., AND STRASSBURGER, S. 2008. Management of HLA-based distributed legacy

SLX-Models. In: Proceedings of the 2008 Winter Simulation Conference, ACM Press, New York,

NY, pp. 1086-1093.

RABE, M., JAEKEL, F.-W. AND WEINAUG, H. 2006. Reference models for supply chain design and

configuration. In Proceedings of the 38th Winter Simulation Conference, ACM Press, New York,

NY, pp. 1143 - 1150.

SANTOS, R.A., NORMEY-RICO, J.E., GOMEZ, A.M., ARCONADA, L.F.A. AND DE PRADA MORAGA, C.

2008. Distributed continuous process simulation: An industrial case study. Computers and

Chemical Engineering, 32, 6, 1195–1205.

SISO. 2006. SISO-STD-003-2006 Base Object Model (BOM) Template Specification.Simulation

Interoperability Standards Organization, Orlando, Florida.

SISO. 2010a. SISO-STD-006-2010 Standard for COTS Simulation Package Interoperability Reference

Models. Simulation Interoperability Standards Organization, Orlando, Florida.

SISO. 2010b. SISO-STD-008-2010 Standard for Core Manufacturing Simulation Data ─ UML Model.

Simulation Interoperability Standards Organization, Orlando, Florida.

STRASSBURGER, S. The Road to COTS-Interoperability: From Generic HLA-Interfaces Towards Plug-

And-Play Capabilities. In Proceedings of the 2006 Winter Simulation Conference, ACM Press,

New York, NY, pp. 1111-1118.

STRASSBURGER, S., SCHULZE, T. AND FUJIMOTO, R. M. 2008. Future trends in distributed

simulation and distributed virtual environments – Results of a Peer Study. In Proceedings of the

2008 Winter Simulation Conference, ACM Press, New York, NY, pp, 777-785.

STRASSBURGER, S., SCHULZE, T., KLEIN, U. AND HENRIKSEN, J. O. 1998. Internet-based

simulation using off-the-shelf simulation tools and HLA. In Proceedings of the 30th Winter

Simulation Conference, ACM Press, New York, NY, pp. 1669-1676.

STRASSBURGER, S., SCHULZE, T. AND LEMESSI, M. 2007. Applying CSPI reference models for factory

planning. In Proceedings of the 39th Winter Simulation Conference, ACM Press, New York, NY,

pp. 603-609.

STRASSBURGER, S. AND TAYLOR, S. J. E. 2012. A comparison of the CSPI and CMSD standards. In

Proceedings of the 2012 Spring Simulation Interoperability Workshop. Orlando, USA, March 26-

30, 2012.

TAYLOR, S. J. E., SUDRA, R., JANAHAN, T., TAN, G. AND LADBROOK, J. 2002. GRIDS-SCF: an

infrastructure for distributed supply chain simulation. Simulation: Transactions of the Society of

Modeling and Simulation International, 78, 5, 312-320.

TAYLOR, S. J. E., BOHLI, L., WANG, X., TURNER, S. J. AND LADBROOK, J. 2005a. Investigating

distributed simulation at the ford motor company. In Proceedings of the 9th International

Symposium on Distributed Simulation and Real-Time Applications (DSRT 2005), IEEE

Computer Society, Washington, DC, 139-147.

TAYLOR, S. J. E., TURNER, S. J., MUSTAFEE, N., AHLANDER, H. AND AYANI, R. 2005b. COTS

distributed simulation: a comparison of CMB and HLA interoperability approaches to type I

interoperability reference model problems. Simulation: Transactions of the Society of Modeling

and Simulation International, 81, 1, 33-43.

TAYLOR, S. J. E., WANG, X., TURNER, S. J. AND LOW, M. Y. H. 2006. Integrating heterogeneous

distributed COTS discrete-event simulation packages: an emerging standards-based approach.

IEEE Transactions on Systems, Man and Cybernetics: Part A, 36, 1, 109-122.

TAYLOR, S. J. E., MUSTAFEE, N., STRASSBURGER, S., TURNER, S. J., LOW, M. Y. H AND

LADBROOK, J. 2007. The SISO CSPI PDG standard for commercial off-the-shelf simulation

package interoperability reference models. In Proceedings of the 2007 Winter Simulation

Conference, ACM Press, New York, NY, pp. 594-602.

TAYLOR, S.J.E., TURNER, S.J. AND STRASSBURGER, S. 2008. Guidelines for commercial-off-the-shelf

interoperability. In Proceedings of the 40th Winter Simulation Conference, ACM Press, New

York, NY, 193-204.

TAYLOR, S.J.E., TURNER, S.J., STRASSBURGER, S., MUSTAFEE, N. AND PAN, K. 2009. Commercial-

off-the-shelf simulation package interoperability: Issues and futures. In Proceedings of the 41st

Winter Simulation Conference, ACM Press, New York, NY, pp. 203-215.

TAYLOR, S.J.E., GHORBANI, M., KISS, T., FARKAS, D., MUSTAFEE, N., KITE, S., TURNER, S.J. AND

STRASSBURGER, S. 2011. Distributed computing and modeling and simulation: Speeding-up

simulations and creating large models. In Proceedings of the 2011 Winter Simulation

Conference, ACM Press, New York, NY, pp. 161-175.

TOLK, A., DIALLO, S. Y. AND TURNITSA, C. D. 2007. Applying the levels of conceptual interoperability

model in support of integratability, interoperability, and composability for system-of-systems

engineering. Journal on Systemics, Cybernetics and Informatics, 5, 5, 65-74.

US DEPARTMENT OF DEFENSE. 1999. High Level Architecture Run-Time Infrastructure RTI 1.3-Next

Generation programmer’s guide. US Department of Defense Modeling and Simulation

Office,USA.

UYGUN, O., ÖZTEMEL, E. AND KUBAT, C. 2009. Scenario based distributed manufacturing simulation

using HLA technologies. Information Sciences, 179, 10, 1533-1541.

WANG, X., TURNER, S. J., LOW, M. Y. H AND TAYLOR, S. J. E. 2006. COTS simulation package (CSP)

interoperability – a solution to synchronous entity passing. In Proceedings of the 20th Workshop

on Principles of Advanced and Distributed Simulation, IEEE Computer Society, Washington,

DC, USA, pp. 201-210.

ZEIGLER. B. P., KIM, D. AND BUCKLEY, S. J. 1999. Distributed supply chain simulation in a

DEVS/CORBA execution environment. In Proceedings of the 31st Winter Simulation Conference,

pp. 1333-1340.

APPENDIX 1 - FED FILE FOR THE NATIONAL BLOOD SERVICE CASE STUDY

(FED

 (Federation NBS_SupplyChainSimulaion)

 (FEDversion v1.3)

 ;; no routing spaces are defined

 (spaces)

 ;; OBJECT CLASSES

 ;; Class ObjectRoot and its two sub-classes RTIprivate and Manager are required.

 ;; Parameters associated with these classes/sub-classes are not shown for brevity

 (objects

 (class ObjectRoot

 (attribute privilegeToDelete reliable timestamp)

 (class RTIprivate)

 (class Manager)

 ;; WE DO NOT DEFINE ANY USER-DEFINED OBJECT CLASSES SINCE WE USE ONLY

INTERACTIONS

 ;; End of ObjectRoot

)

 ;; End of objects

)

 ;; INTERACTION CLASSES

 ;; Class InteractionRoot and its two sub-classes RTIprivate and Manager are required.

 ;; Parameters associated with these classes/sub-classes are not shown for brevity

 (interactions

 (class InteractionRoot reliable receive

 (class RTIprivate reliable receive)

 (class Manager reliable receive)

 ;; USER-DEFINED INTERACTION CLASSES

 (class Hospital1Orders reliable timestamp

 (parameter Hospital1Product)

 (parameter Hospital1Group)

 (parameter Hospital1Deltype)

 (parameter Hospital1Wheretogo)

 (parameter Hospital1Usage)

)

 (class Hospital2Orders reliable timestamp

 (parameter Hospital2Product)

 (parameter Hospital2Group)

 (parameter Hospital2Deltype)

 (parameter Hospital2Wheretogo)

 (parameter Hospital2Usage)

)

 (class Hospital3Orders reliable timestamp

 (parameter Hospital3Product)

 (parameter Hospital3Group)

 (parameter Hospital3Deltype)

 (parameter Hospital3Wheretogo)

 (parameter Hospital3Usage)

)

 (class Hospital4Orders reliable timestamp

 (parameter Hospital4Product)

 (parameter Hospital4Group)

 (parameter Hospital4Deltype)

 (parameter Hospital4Wheretogo)

 (parameter Hospital4Usage)

)

 (class NBSDeliveryHospital1 reliable timestamp

 (parameter NBSProductH1)

 (parameter NBSGroupH1)

 (parameter NBSDeltypeH1)

 (parameter NBSWheretogoH1)

 (parameter NBSUsageH1)

 (parameter NBSTimeenteredsystemH1)

 (parameter NBSExpirationtimeH1)

 (parameter NBSExpirationrulehospH1)

)

 (class NBSDeliveryHospital2 reliable timestamp

 (parameter NBSProductH2)

 (parameter NBSGroupH2)

 (parameter NBSDeltypeH2)

 (parameter NBSWheretogoH2)

 (parameter NBSUsageH2)

 (parameter NBSTimeenteredsystemH2)

 (parameter NBSExpirationtimeH2)

 (parameter NBSExpirationrulehospH2)

)

 (class NBSDeliveryHospital3 reliable timestamp

 (parameter NBSProductH3)

 (parameter NBSGroupH3)

 (parameter NBSDeltypeH3)

 (parameter NBSWheretogoH3)

 (parameter NBSUsageH3)

 (parameter NBSTimeenteredsystemH3)

 (parameter NBSExpirationtimeH3)

 (parameter NBSExpirationrulehospH3)

)

 (class NBSDeliveryHospital4 reliable timestamp

 (parameter NBSProductH4)

 (parameter NBSGroupH4)

 (parameter NBSDeltypeH4)

 (parameter NBSWheretogoH4)

 (parameter NBSUsageH4)

 (parameter NBSTimeenteredsystemH4)

 (parameter NBSExpirationtimeH4)

 (parameter NBSExpirationrulehospH4)

)

 ;; End of InteractionRoot

)

 ;; End of Interactions

)

;; End of FED file

)

APPENDIX 2 - FED FILE FOR THE TRACTOR FACTORY CASE STUDY

(FED

 (Federation TractorFactorySimulaion)

 (FEDversion v1.3)

 ;; no routing spaces are defined

 (spaces)

 ;; OBJECT CLASSES

 ;; Class ObjectRoot and its two sub-classes RTIprivate and Manager are required.

 ;; Parameters associated with these classes/sub-classes are not shown for brevity

 (objects

 (class ObjectRoot

 (attribute privilegeToDelete reliable timestamp)

 (class RTIprivate)

 (class Manager)

 ;; USER-DEFINED OBJECT CLASSES

 (class UpdateObject

 (class UpdateObjectChassisAssembly

 (class InputBuffer

 (attribute BufferName reliable timestamp)

 (attribute ModelName reliable timestamp)

 (attribute Content reliable timestamp)

 (attribute Available reliable timestamp)

)

)

 (class UpdateObjectPaintShop

 ;; Attributes for sub-class Input Buffer not repeated

 (class InputBuffer ….)

)

 (class UpdateObjectFinalTractorAssembly

 (class InputBuffer ….)

)

 ;; End of UpdateObject

)

 ;; End of ObjectRoot

)

 ;; End of objects

)

 ;; INTERACTION CLASSES

 ;; Class InteractionRoot and its two sub-classes RTIprivate and Manager are required.

 ;; Parameters associated with these classes/sub-classes are not shown for brevity

 (interactions

 (class InteractionRoot reliable receive

 (class RTIprivate reliable receive)

 (class Manager reliable receive)

 ;; USER-DEFINED INTERACTION CLASSES

 (class TransferEntity reliable timestamp

 (class TransferEntityToChassisAssembly reliable timestamp)

 (class TransferEntityTransmissionAssemblyAToChassisAssembly reliable timestamp

 (parameter Entity)

)

 (class TransferEntityTransmissionAssemblyBToChassisAssembly reliable timestamp

 (parameter Entity)

)

 (class TransferEntityFrontAxleAssemblyToChassisAssembly reliable timestamp

 (parameter Entity)

)

)

 (class TransferEntityToPaintShop reliable timestamp)

 (class TransferEntityChassisAssemblyToPaintShop reliable timestamp

 (parameter Entity)

)

)

 (class TransferEntityToFinalTractorAssembly reliable timestamp)

 (class TransferEntityFinalCabAssemblyToFinalTractorAssembly reliable timestamp

 (parameter Entity)

)

 (class TransferEntityPaintShopToFinalTractorAssembly reliable timestamp

 (parameter Entity)

)

)

 ;; End of TransferEntity

)

 ;; End of InteractionRoot

)

 ;; End of Interactions

)

;; End of FED file

)

