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1 Introduction

In a companion paper (Grant et al, [6]), we revisited the setting of Harsanyi’s [10, 11] utilitarian

impartial observer theorem in which a society of individuals I has to choose among different social

policies, each of which induces a probability distribution or ‘lottery’` over a set of social states

X . Each individual i has preferences %i over these lotteries. These preferences are known, and

they differ.

To help choose among social policies, Harsanyi [10] proposed that each individual should

imagine herself as an (impartial) observer who does not know which person she will be. That is,

the observer faces not only the real lottery ` over the social outcomes in X , but also a hypothetical

lottery z over which identity in I she will assume. In forming preferences % over all such ‘extended

lotteries’, the observer is forced to make interpersonal comparisons; for example, she is forced to

compare being person i in social state x with being person j in social state x′.

Harsanyi assumed that when the observer imagines herself being person i she adopts person

i’s preferences over the outcome lotteries. He also assumed that all individuals are expected

utility maximizers, and that they continue to be so in the role of observer. Harsanyi argued that

these “Bayesian rationality”axioms force the observer to be a utilitarian. More formally, over all

extended lotteries (z, `) in which the identity lottery and the outcome lotteries are independently

distributed, the observer’s preferences admit a representation of the form

V (z, `) =
∑
i

ziUi (`) , (1)

where zi is the probability of assuming person i’s identity and Ui (`) :=

∫
X

ui (x) ` (dx) is person

i’s von Neumann-Morgenstern expected utility for the outcome lottery `. By fixing the identity

lottery in (1) to be the equal-chance lottery zu = (1/I, . . . , 1/I), the observer can use V (zu, ·) to

obtain an ‘impartial’ranking of the outcome lotteries (and hence, the associated social policies).1

1 This is essentially the method Weymark [18] uses to obtain an “impartial ranking” over social policies in
his formalization of Harsanyi’s impartial observer theorem. As an alternative, Gajdos and Kandil’s [5] ‘totally
ignorant’observer considers all possible distributions over individuals to derive a ranking over social policies that is
a weighted average of Harsanyi’s utilitarian and Rawls’egalitarian criteria. Roemer [15] observes that such notions
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In our companion paper, we restricted attention to product lotteries, 4 (I) × 4 (X ), and,

more significantly, only required each of Harsanyi’s axioms to hold on a (further) restriction of

this domain. In particular, we required the observer to satisfy a form of mixture independence only

for mixtures of two product lotteries in which the outcome lottery was the same. In conjunction

with a richness assumption, this yielded a generalized utilitarian representation of the form:

V (z, `) =
∑
i

ziφi (Ui (`)) , (2)

where zi is again the probability of assuming person i’s identity and Ui (`) is again person i’s

expected utility from the outcome lottery `, but each φi (.) is a (possibly non-linear) transformation

of person i’s expected utility.2 This allowed us to accommodate two objections that have been

raised against Harsanyi’s utilitarian impartial observer: one concerning ex ante fairness that is

similar to Diamond’s [3] critique of Harsanyi’s [11] aggregation theorem; and one concerning

different attitudes toward risk.

Fleurbaey [4] raises another objection to Harsanyi’s utilitarianism which also applies to the

generalized utilitarian representation in (2). To illustrate his objection, consider two individuals,

i and j and three social outcomes xi, xj and x̄. Person i strictly prefers outcome xi to outcome xj

and is indifferent between x̄ and a (1/2,1/2) lottery over states xi or xj : that is, ui (xi) > ui (xj)

and 1
2ui (xi) + 1

2ui (xj) = ui (x̄). Person j strictly prefers outcome xj to outcome xi and is also

indifferent between x̄ and a (1/2,1/2) lottery over states xi or xj : that is, uj (xi) < uj (xj) and

1
2uj (xi)+ 1

2uj (xj) = uj (x̄). Perhaps, there is some (possibly indivisible) good, and xi is the state

in which person i gets the good; xj is the state in which person j gets it, while x̄ is a state in which

neither receives the good but each gets some compromise alternative that each rates equivalent

(in terms of her own risk preferences) to a lottery that gives her an equal chance of getting or not

getting the good. Finally, suppose the observer is indifferent to: (i) being i getting xi and being

j getting xj ; (ii) being i getting x̄ and being j getting x̄; and, (iii) being i getting xj and being

of impartiality reduce any consideration of social justice to simply one of rational prudence on the part of the
observer. He, among others, contends that this constitutes an inadequate basis for a theory of social justice. We
do not take a position on this here as the issues it raises are beyond the scope of this paper.

2 See Grant et al [6], Theorem 1. Again by fixing the identity lottery to be the equal-chance lottery, the observer
can use the representation in (2) to obtain an ‘impartial’ranking of the outcome lotteries and the associated social
policies.
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j getting xi.

Consider the two extended (product) lotteries illustrated in tables (a) and (b), in which rows

are the people and columns are the outcomes.

xi x̄ xj xi x̄ xj

i 1/4 0 1/4 i 0 1/2 0

j 1/4 0 1/4 j 0 1/2 0

(a) (b)

In each, the observer has an equal chance of being person i or person j. In table (a), the observer

has an equal chance of being in state xi or state xj , but whichever of these two social states

obtains, one person will get the good and the other will miss out. In table (b), state x̄ obtains

with probability 1, that is, each individual receives the ‘compromise’ alternative. Given the

assumptions we made in the previous paragraph for our generalized utilitarian observer, she must

be indifferent between these two extended lotteries since by applying the generalized utilitarian

representation in (2), we obtain:

V ((a)) =
1

2
φi

(
1

2
Ui (xi) +

1

2
Ui (xj)

)
+

1

2
φj

(
1

2
Uj (xi) +

1

2
Uj (xj)

)
=

1

2
φi (Ui (x̄)) +

1

2
φj (Uj (x̄)) = V ((b)) .

Following Fleurbaey’s reasoning, one might argue that an observer who is concerned about

inequality should express a (strict) preference for the extended lottery (b) over (a), since the former

results in no inequality ex post according to the interpersonal comparisons of the individuals’

welfare implicit in the observer’s preferences over extended lotteries, while the latter results in

certain ex post inequality. In the setting of Harsanyi’s [11] aggregation theorem, he proposes an

alternative to generalized utilitarianism that he calls the ‘expected equally-distributed equivalent-

utility maximizing.’

In our setting, the expected equally-distributed equivalent-utility representation takes the form:

V (z, `) =

∫
ϕ−1 (

∑
i ziϕ (Ui (x))) ` (dx) , (3)

where the function ϕ (·) plays a similar role as the φi (·) functions in (2), that is, translating each
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person i’s von Neumann expected utility to the observer’s expected utility for identity lotteries.

Unlike the case of the generalized utilitarian, however, the observer’s expected utility of the

identity lottery z for a given social state x is translated back, using the inverse mapping ϕ−1,

so that it corresponds to the ex post utility level that if obtained for certain by every individual

would be regarded by the observer as being equivalent to the distribution induced by z of ex

post welfares for that social state. The expected equally-distributed equivalent-utility is thus

obtained by summing (more precisely, integrating) the probability weighted equally-distributed

equivalent-(ex post) utilities.3

The main aim of this paper is to characterize, in the setting of Harsanyi’s impartial observer

theorem, the class of observers who admit a representation of the form in (3). We provide such

an axiomatization in section 3.

As its name suggests, the expected equally-distributed equivalent-utility representation bears

a close resemblance to Atkinson’s [2] equally-distributed equivalent income function for ranking

income distributions and Rothschild-Stiglitz’s [16] certainty-equivalent function for ranking lot-

teries over money/wealth. For these representations, the degree of concavity of the functions that

are analogous to the function ϕ in (3) measure the degree of aversion to income inequality and the

degree of aversion to risk, respectively. We show in section 4 that the concavity of ϕ corresponds

to a notion of aversion to ex post inequality by the observer in the sense that a strict preference

for the extended lottery described in table (b) over the extended lottery described in table (a)

follows if ϕ is concave. Furthermore, we show that the same axiom on the observer’s preferences

in Grant et al [6] that induced a generalized utilitarian observer to exhibit a concern about ex ante

fairness is also suffi cient (and necessary) for the ϕ function in (3) to be concave. This provides

an intriguing link between what it takes for a generalized utilitarian to exhibit an ex ante pref-

erence for fairness and for an expected equally-distributed equivalent-utility maximizer to display

an aversion to ex post inequality.

3 Analogous to what Weymark (1991) showed can be done with the utilitarian representation, by fixing the
identity lottery to be the equal-chance lottery, the observer can use the representation in (3) to obtain an ‘impartial’
ranking of the outcome lotteries and the associated social policies. A different approach was taken by Karni and
Weymark (1998), whose domain consists of equal-chance identity lotteries only (but different individuals may face
different social alternative lotteries). As this domain does not include identity lotteries in which the observer can
be a given individual with certainty, Karni and Weymark had to strengthen Harsanyi’s principle of acceptance.
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Finally, in section 5, we consider an observer who satisfies both sets of axioms (including both

independence properties) that characterize the generalized utilitarian and the expected equally-

distributed equivalent-utility maximizer. A natural conjecture is that this would be enough to

induce utilitarianism. It turns out that this is not quite enough, and we illustrate the gap with

an example. However, if there are three or more agents, then under some mild richness conditions

on the preferences, it is indeed only utilitarians who reside in the intersection of the set of gener-

alized utilitarians and the set of expected equally-distributed equivalent-utility maximizers. This

provides a new axiomatization of utilitarianism.

2 Set up and Notation

Let society consist of a finite set of individuals I = {1, . . . , n}, n ≥ 2, with generic elements i and

j. The set of final outcomes or social states is denoted by X with generic element x. The set X

is assumed to have more than one element and to be a compact metrizable space and associated

with it is the set of events E , which is taken to be the Borel sigma-algebra of X . Let 4 (X ) (with

generic element `) denote the set of outcome lotteries; that is, the set of probability measures on

(X , E) endowed with the weak convergence topology. With slight abuse of notation, we will let x

or sometimes [x] denote the degenerate outcome lottery that assigns probability weight 1 to social

state x.

Each individual i in I is endowed with a preference relation %i defined over the set of outcome

lotteries 4 (X ). We assume throughout that for each i in I, the preference relation %i is a

complete, transitive binary relation on 4 (X ), and that its asymmetric part �i is non-empty. We

assume these preferences are continuous in that weak upper and weak lower contour sets are closed.

Hence, for each %i there exists a non-constant continuous function Vi : 4 (X ) → R, satisfying

for any ` and `′ in 4 (X ), Vi (`) ≥ Vi (`′) if and only if ` %i `′. In summary, a society may be

characterized by the tuple
〈
X , I, {%i}i∈I

〉
.

In Harsanyi’s story, an observer imagines herself behind a veil of ignorance, uncertain about

which identity she will assume in the given society. Let 4 (I) denote the set of identity lotteries

on I. Let z denote the typical element of 4 (I), and let zi denote the probability assigned by the
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identity lottery z to individual i. They represent the imaginary risks in the mind of the observer

as she conducts thought experiments in which she envisages assuming the identity of someone else.

With slight abuse of notation, we will let i or sometimes [i] denote the degenerate identity lottery

that assigns probability weight 1 to the observer assuming the identity of individual i.

As discussed above, we assume that the outcome and identity lotteries faced by the observer

are independently distributed; that is, she faces a product lottery (z, `) ∈ 4 (I) × 4 (X ). We

refer to this as an identity-outcome lottery or, where no confusion will arise, simply as a product

lottery.

The observer is endowed with a preference relation % defined over 4 (I)×4 (X ). We assume

throughout that % is complete, transitive continuous (in that weak upper and weak lower contour

sets are closed in the product topology), and that its asymmetric part � is non-empty, and so it

admits a (non-trivial) continuous representation V : 4 (I)×4 (X )→ R. That is, for any pair of

product lotteries, (z, `) and (z′, `′), (z, `) % (z′, `′) if and only if V (z, `) ≥ V (z′, `′).

As we noted in the introduction above, % and its representation V (·, ·) explicitly involve

interpersonal comparisons. For example, V (i, x) > V (j, x′) means the observer assesses that it is

better to be person i in social state x than person j in social state x′. Hence, for each x, we can

view the vector (V (1, x) , . . . , V (n, x)) as the distribution across individuals of interpersonally-

comparable utilities associated with that social state.4

As discussed in the introduction, we have the following special families of preferences.

Utilitarianism The observer is a utilitarian if her preferences % admit a representation of the

form

V (z, `) =

n∑
i=1

ziUi(`),

where, for each individual i in I, Ui : 4 (X )→ R is a von Neumann-Morgenstern expected-

utility representation of %i; i.e., Ui (`) :=

∫
X
Ui (x) ` (dx).

(Ex Ante) Generalized Utilitarianism The observer is an (ex ante) generalized utilitarian if

4 In Fleurbaey [4], social states are not explicitly modelled. Rather, there are ‘states of the world’with given
probabilities and the data are state-contingent distributions of ex post utilities across individuals. The utilities are
assumed to be interpersonally comparable.
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her preferences % admit a representation
〈
{Ui, φi}i∈I

〉
of the form

V (z, `) =

n∑
i=1

ziφi (Ui(`)) ,

where, for each individual i in I, φi : R → R is a continuous, increasing function, and

Ui : 4 (X )→ R is a von Neumann-Morgenstern expected-utility representation of %i.

Also discussed in the introduction is the following representation for an observer that can

exhibit Fleurbaey’s [4] notion of aversion to ex post inequality.

Expected Equally-Distributed Equivalent Utility The observer is an expected equally-distributed

equivalent-utility maximizer if her preferences % admit a representation
〈
{Ui}i∈I , ϕ

〉
of the

form

V (z, `) =

∫
X
ϕ−1 (

∑n
i=1 ziϕ (Ui (x))) ` (dx) ,

where, ϕ : R → R is a continuous, increasing function, and for each individual i in I,

Ui : 4 (X )→ R is a von Neumann-Morgenstern expected-utility representation of %i.

3 Expected Equally-Distributed Equivalent-Utility

In this section, we provide an axiomatization of an expected equally-distributed equivalent-utility

maximizer.

The first axiom is Harsanyi’s acceptance principle. For degenerate product lotteries of the

form (i, `) or (i, `′), the observer knows she will assume identity i for sure. The acceptance prin-

ciple requires that, in this case, the observer’s preferences % must coincide with that individual’s

preferences %i over outcome lotteries.

Acceptance Principle. For all i in I and all `, `′ ∈ 4 (X ), ` %i `′ if and only if (i, `) % (i, `′).

Second, we assume that the observer’s preferences satisfy independence for certain mixtures

of product lotteries. Note we need to be careful. The set of product lotteries 4 (I) × 4 (X ) is

not a convex subset of 4 (I × X ) and hence not all probability mixtures of product lotteries are

well defined. We first define an independence property that is a restriction of the one introduced

in Grant et al [6].
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Independence over Identity Lotteries with Degenerate Outcome Lotteries. Suppose (z, x),

(z′, x′) ∈ 4 (I) × X are such that (z, x) ∼ (z′, x′). Then, for all z̃, z̃′ ∈ 4(I): (z̃, x) %

(z̃′, x′) if and only if (αz̃ + (1− α) z, x) % (αz̃′ + (1− α) z′, x′) for all α in (0, 1].

To understand the mechanics of this axiom, first notice that the two mixtures on the right side

of the implication are identical to α(z̃, x)+(1− α) (z, x) and α(z̃′, x′)+(1− α) (z′, x′), respectively.

These two mixtures of product lotteries are well defined: they mix identity lotteries holding the

social state (that is, degenerate outcome lottery) fixed.5 Second, notice that the two product

lotteries, (z, x) and (z′, x′), that are ‘mixed in’with weight (1− α) are themselves indifferent. The

axiom states that ‘mixing in’two indifferent lotteries (with equal weight) preserves the original

preference between (z̃, x) and (z̃′, x′) prior to mixing.

As the product lotteries being mixed hold the social state fixed, there is no uncertainty about

each individual’s ex post utility. Thus, the product lotteries being mixed are essentially equivalent

from the perspective of an ex post egalitarian. The only uncertainty that is to be resolved con-

cerns which particular identity the observer will assume. As the domain of this randomization is

purely hypothetical, coupled with the fact that the ex post utilities of the individuals are already

determined, standard arguments made against independence with regard to fairness or inequality

aversion considerations do not seem to apply, so the axiom postulates that independence over

identity lotteries holds in this restricted (but arguably, intuitive) domain.

We next consider a ‘dual’independence property that holds for mixtures of outcome lotteries

holding the identity lotteries fixed.6

Independence over Outcome Lotteries (for the Observer). Suppose (z, `), (z′, `′) ∈ 4 (I)×

4 (X ) are such that (z, `) ∼ (z′, `′). Then, for all ˜̀, ˜̀′ ∈ 4(X ): (z, ˜̀) % (z′, ˜̀′) if and only

if (z, α˜̀+ (1− a) `) % (z′, α˜̀′ + (1− a) `′) for all α in (0, 1].

Now the product lotteries being mixed hold the identity lottery fixed, so the mixing concerns

5 In Grant et al [6], the axiom applies holding fixed any outcome lottery, not just a degenerate outcome lottery
as is done here.

6 More properly speaking, this axiom is dual to the independence over identity lotteries that was the key axiom
in the characterization of the generalized utilitarian impartial observer in Grant et al [6].
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the uncertainty associated with which social outcome will obtain. Thus, the axiom essentially

requires that if the identity lottery is fixed, then the observer should exhibit an independence

property analogous to what is required from an individual whose preferences over outcome lotteries

are expected utility. Indeed, if the observer satisfies acceptance, then this independence entails

that the preferences of each individual satisfy the standard independence of expected utility:

Independence over Outcome Lotteries (for Individual i). For all `, `′ and `′′ in 4 (X ),

` %i `′ if and only if α`+ (1− α) `′′ %i α`′ + (1− α) `′′ for all α in (0, 1].

Hence, we have the individuals are expected utility maximizers and thus each %i admits a von

Neumann-Mogernstern representation.

Proposition 1 Suppose that % satisfies acceptance and independence over outcome lotteries, then

for all i in I, %i satisfies independence over outcome lotteries.

Proof. Fix `, `′ and `′′ in 4 (X ) and α in (0, 1]. By acceptance, ` %i `′ if and only

if (i, `) % (i, `′) and α` + (1− α) `′′ %i α`′ + (1− α) `′′ if and only if (i, α`+ (1− α) `′′) %

(i, α`′ + (1− α) `′′). But applying independence over outcome lotteries, we have (i, `) % (i, `′) if

and only if (i, α`+ (1− α) `′′) % (i, α`′ + (1− α) `′′). Hence, ` %i `′ if and only if α`+(1− α) `′′ %i

α`′ + (1− α) `′′. Since α can be any value in (0, 1], the result holds.

To obtain our representation result, we work with two richness conditions on the domain of

individual preferences. The first entails that none of the outcomes under consideration are Pareto

dominated. The second entails that there are no ‘dominated’identity lotteries.

Absence of Unanimity over Outcomes For all x, x′ ∈ X , if x �i x′ for some i in I, then

there exists j in I such that x′ �j x.

Redistributive Scope For all z, z′ in 4 (I), if (z, x) � (z′, x) for some x in X , then there exists

x′ in X such that (z′, x′) � (z, x′).
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Absence of Unanimity over Outcomes is perhaps a natural restriction in the context of Harsanyi’s

thought experiment. The whole exercise is motivated by the need to make social choices when

agents disagree. We do not need to imagine ourselves as an observer facing an identity lottery to

rule out an outcome that every individual agrees is dominated by some other outcome, that is,

that is Pareto dominated. We contend that this should still hold even if the observer may have

concerns about ex post inequality. In fact, in his setting, Fleurbaey [4] explicitly requires that

social preference over constant acts respect the Pareto ordering.7

Redistributive scope, on the other hand, rules out the case where one individual is always

worse off than another (from the perspective of the observer) regardless of the outcome. There

are many economic contexts in which this condition will be met.8

These axioms are suffi cient to yield an expected equally-distributed equivalent-utility repre-

sentation.

Theorem 2 Suppose that absence of unanimity over outcomes and redistributive scope apply.

Then, the observer satisfies acceptance, independence over identity lotteries with degenerate out-

come lotteries and independence over outcome lotteries if and only if her preferences % admit a

representation of the form

V (z, `) =

∫
X
ϕ−1 (

∑
i ziϕ (Ui (x))) ` (dx) ,

where, for each individual i in I, Ui : 4 (X ) → R is a von Neumann-Morgenstern expected-

utility representation of %i; and ϕ : R → R is a continuous, increasing function. Moreover, the

composite functions ϕ ◦ Ui are unique up to common affi ne transformations.

The proof is in the appendix but we provide here a sketch. We begin by noting that as a

corollary to a result from another companion paper (Grant et al, [7]), it follows that in the presence

of absence of unanimity over outcomes, acceptance and independence over identity lotteries with

degenerate outcome lotteries yields a generalized utilitarian representation restricted to 4 (I) ×

7 In Grant et al [6], the observer was not concerned with ex post inequality per se, so we required absence of
unanimity to hold for all outcome lotteries, not just outcomes (that is, degenerate outcome lotteries).

8 However, there are other contexts in which the condition will fail. For example, in The House at Pooh Corner,
readers might prefer to be Tigger than to be Eyeore regardless of the outcome (Milne, [13]).
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X of the form:

V̂ (z, x) =
∑
i ziWi (x) . (4)

By adding ‘outcome’independence, it follows that all the functions Wi are common monotonic

transformations of each individual’s expected utility function Ui. This in turn allows us to express

a version of the representation given in (4) in which Wi (x) = ϕ ◦ Ui (x). Finally by extending

this to all product lotteries in 4 (I) × 4 (X ), we obtain the the expected equally-distributed

equivalent-utility representation in (3).

4 Ex Post Egalitarianism

The only restrictions placed by the axioms in Theorem 2 on the shape of the function ϕ from

the expected equally-distributed equivalent-utility representation are that it is continuous and

increasing. In a standard utilitarian social welfare function, each Ui-function maps individual

i’s income to an individual utility. These incomes differ across people, and concavity of the

Ui-functions is associated with egalitarianism over incomes. In the expected equally-distributed

equivalent-utility representation, the function ϕ maps individual i’s ex post utility Ui (x) to the

ex post utility of the observer. These ex post utilities may differ across people, and concavity

of the ϕ-functions is associated with egalitarianism over ex post utilities, often called ex post

egalitarianism.9 To see the relevance of this for Fleurbaey’s notion of ex post inequality aversion,

recall from the introduction the two identity-outcome lotteries presented in tables (a) and (b),

which correspond to (
1

2
[i] +

1

2
[j] ,

1

2
[xi] +

1

2
[xj ]

)
and

(
1

2
[i] +

1

2
[j] , x̄

)
,

respectively. Recall also, each individual is indifferent between the outcome lottery 1
2 [xi] + 1

2 [xj ]

and the (degenerate) outcome lottery x̄, and the observer is indifferent between: (i) being i getting

xi and being j getting xj ; (ii) being i getting x̄ and being j getting x̄; and, (iii) being i getting

xj and being j getting xi. Following Fleurbaey’s line of argument, this implies that an ex post

9 See, for example, Harel, Safra and Segal [8] and Fleurbaey [4].
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egalitarian should express the strict preference(
1

2
[i] +

1

2
[j] , x̄

)
�
(

1

2
[i] +

1

2
[j] ,

1

2
[xi] +

1

2
[xj ]

)
, (5)

since the former identity-outcome lottery results in no inequality ex post, while the latter results

in certain ex post inequality.

To see how a strictly concave ϕ leads to our expected equally-distributed equivalent-utility

maximizing observer exhibiting the desired strict preference expressed in (5), first notice that

V (i, xi) = V (j, xj) implies that ϕ−1 ◦ ϕ (Ui (xi)) = ϕ−1 ◦ ϕ (Uj (xj)), that is, Ui (xi) = Uj (xj)

whether or not ϕ is concave. Similarly, V (i, x̄) = V (j, x̄) and V (i, xj) = V (j, xi) imply that

Ui (x̄) = Uj (x̄) and Ui (xj) = Uj (xi), respectively.

With a strictly concave ϕ, however, the observer will express the strict preference:(
i,

1

2
[xi] +

1

2
[xj ]

)
�
(

1

2
[i] +

1

2
[j] , xi

)
. (6)

This follows since

V

(
1

2
[i] +

1

2
[j] , xi

)
= ϕ−1 ◦

(
1

2
ϕ (Ui (xi)) +

1

2
ϕ (Uj (xi))

)
< ϕ−1 ◦ ϕ

(
1

2
Ui (xi) +

1

2
Uj (xi)

)
, (since ϕ is strictly concave and Ui (xi) > Uj (xi) )

=
1

2
Ui (xi) +

1

2
Ui (xj) = V

(
i,

1

2
[xi] +

1

2
[xj ]

)
.

Notice that

V

(
1

2
[i] +

1

2
[j] , x̄

)
= ϕ−1 ◦

(
1

2
ϕ (Ui (x̄)) +

1

2
ϕ (Uj (x̄))

)
= ϕ−1 ◦ ϕ (Ui (x̄)) =

1

2
Ui (xi) +

1

2
Ui (xj) = V

(
i,

1

2
[xi] +

1

2
[xj ]

)
,

where the second equality follows from the assumption that Ui (x̄) = Uj (x̄). Hence, we have,

V

(
1

2
[i] +

1

2
[j] ,

1

2
[xi] +

1

2
[xj ]

)
=

1

2
ϕ−1 ◦

(
1

2
ϕ (Ui (xi)) +

1

2
ϕ (Uj (xi))

)
+

1

2
ϕ−1 ◦

(
1

2
ϕ (Ui (xj)) +

1

2
ϕ (Uj (xj))

)
= ϕ−1 ◦

(
1

2
ϕ (Ui (xi)) +

1

2
ϕ (Uj (xi))

)
[since Ui (xj) = Uj (xi) & Uj (xj) = Ui (xi)]

= V

(
1

2
[i] +

1

2
[j] , xi

)
.
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Combining these last two sets of inequalities with (6) implies the strict preference in (5).

We will show that concavity of the function ϕ is equivalent to an axiom that we introduced

in Grant et al [6] to enable a generalized utilitarian observer to exhibit a concern about (ex

ante) fairness that is similar to Diamond’s [3] critique of Harsanyi’s aggregation theorem. In

the discussion above, we showed that a (strictly) concave ϕ led the expected equally-distributed

equivalent-utility maximizing observer to exhibit the preference in (6). The axiom we propose

may be viewed as a generalization of this expression of preference. To explain the axiom, suppose

the observer is indifferent between the identity-outcome lotteries (z, `′) and (z′, `). Consider now

a product lottery (z, `) that (in general) lies in a different indifference set. There are two ways

to randomize between these indifference sets while remaining in the set of product lotteries. The

product lottery (z, α`+ (1− α) `′) randomizes between these indifference sets in outcome lotteries

(i.e., real life chances); while the product lottery (αz + (1− α) z′, `) randomizes between these

indifference sets in identity lotteries (i.e., imaginary accidents of birth). We argued in Grant

et al [6] that a preference for fairness corresponds to preferring a randomization between these

indifference sets in outcome lotteries (i.e., real life chances) to a randomization in identity lotteries

(i.e., imaginary accidents of birth).

Preference for Life Chances. For any pair of identity lotteries z and z′ in 4 (I) and any

pair of outcome lotteries ` and `′ in 4 (X ), if (z, `′) ∼ (z′, `), then (z, α`+ (1− α) `′) %

(αz + (1− α) z′, `) for all α in (0, 1).

Adding this axiom to the conditions of Theorem 2 yields the desired property for ϕ.

Proposition 3 (Concavity) Suppose that absence of unanimity over outcomes and redistributive

scope apply. Then, an expected equally-distributed equivalent-utility maximizing observer with

representation
〈
{Ui}i∈I , ϕ

〉
exhibits preference for life chances if and only if ϕ is concave.

Notice if we strengthened the axiom Preference for Life Chances so that (αz + (1− α) z′, `) %

(z, α`+ (1− α) `′) held as well, or equivalently we required the observer to be indifferent between

these two identity-outcome lotteries, then the corresponding proposition would require ϕ to be

13



affi ne. And by taking an appropriate normalization, we see that such an observer’s preferences are

utilitarian. In the next section, we consider an alternative way the axioms can be strengthened to

induce (full) utilitarianism.

5 Independence along both margins and Utilitarianism.

In Grant et al [6], we assumed the observer’s preferences satisfied the strengthening of Absence

of Unanimity over Outcomes that requires none of the outcome lotteries under consideration are

Pareto dominated.

Absence of Unanimity For all `, `′ ∈ 4 (X ), if ` �i `′ for some i in I, then there exists j in

I such that `′ �j `.

Given preferences that satisfy absence of unanimity, we showed in Theorem 1 of Grant et al

[6] that acceptance, independence over outcome lotteries for each individual’s preferences and the

following independence property characterized ex ante generalized utilitarianism.

Independence over Identity Lotteries. Suppose (z, `), (z′, `′) ∈ 4 (I)×4 (X ) are such that

(z, `) ∼ (z′, `′). Then, for all z̃, z̃′ ∈ 4(I): (z̃, `) % (z̃′, `′) if and only if (αz̃+(1− α) z, `) %

(αz̃′ + (1− α) z′, `′) for all α in (0, 1].

A natural question is whether (given the richness conditions, redistributive scope and absence of

unanimity) acceptance, independence over identity lotteries and independence over outcome lot-

teries are enough to induce utilitarianism. An observer might satisfy both independences because

she views the two types of randomization symmetrically —if independence applies to one margin,

then perhaps it should apply to the other —without taking a direct position on whether the two

types of randomization are equivalent.

It turns out, however, that acceptance and both of these independence properties are not

enough to induce utilitarianism. In fact, we can see this with a simple example similar to the one

that appeared in the introduction. Once again, suppose that there are two individuals, i and j,

and two states, xi and xj , denoting which agent is given a (possibly indivisible) good. Suppose

14



that the observer’s preferences again satisfy (i, xi) ∼ (j, xj) and (i, xj) ∼ (j, xi). Suppose that

both individuals satisfy independence. Specifically, for any outcome lottery `, player i’s expected

utility is given by Ui (`) = ` (xi)−` (xj) and player j’s expected utility is given by Uj (`) = ` (xj)−

` (xi). Hence, Ui (xi) = Uj (xj) = 1 and Ui (xj) = Uj (xi) = −1. Let the observer’s preferences be

given by the expected equally-distributed equivalent-utility representation

V (z, `) := ` (xi)ϕ
−1 (zi − zj) + ` (xj)ϕ

−1 (zj − zi) ,

where the function ϕ is given by:

ϕ (u) =


um for u ≥ 0

− (−u)
m for u < 0

, for some m > 0.

By Theorem 2, it follows the observer’s preferences satisfy acceptance, independence over outcome

lotteries and independence over identity lotteries with degenerate outcome lotteries. It is less

obvious that they satisfy (full) independence over identity lotteries, but this can be readily seen

by considering the monotonic transformation

V̂ (z, `) := ϕ ◦ V (z, `) = ϕ ◦
(
[` (xi)− ` (xj)]ϕ

−1 (zi − zj)
)

= ziϕ (Ui (`)) + zjϕ (Uj (`)) .

V̂ is a generalized utilitarian representation. Hence, it follows from Grant et al [6] that the

preferences satisfy independence over identity lotteries as well.

These preferences even have the property (similar to utilitarianism) that if the observer thinks

she is equally likely to be either person, then she is indifferent as to who gets the good. But these

preferences do not satisfy utilitarianism unless m = 1. To see this, notice that these preferences

fail to exhibit indifference between life chances and accidents of birth. For example, we have

(i, xi) ∼ (j, xj), but (i, αxi + (1− α)xj) � (α [i] + (1− α) [j] , xi) except in the special case when

α = 1
2 .

Nevertheless, the intuition that independence along both margins should imply utilitarianism

is correct. If there are three or more agents, then under some mild richness conditions on the

preferences, the combination of identity independence, outcome independence and acceptance do

imply utilitarianism.
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The example shows that the two richness conditions we have used so far, redistributive scope

and absence of unanimity, are not enough. But they are close. The ϕ-function in the example is

a homogenous function. Again, this is general: Lemma 9 in the appendix shows that if we start

from a generalized utilitarian representation with a common φ-function, then independence over

outcome lotteries implies that this common φ-function is always homogenous; that is homogeneity

is necessary. But homogeneity is not suffi cient except in very special cases. Notice in the example

that the point of inflection of the homogenous ϕ-function (the “zero”) occurs exactly at outcome

lottery ˆ̀, where ˆ̀(xi) = 1/2. For this outcome lottery, the observer is indifferent over which

identity lottery she faces. This is a very “knife-edge” property, and it can be ruled out in a

number of ways. The following extra richness condition suffi ces.

Three-Player Richness For all outcomes x, y in X and all α in [0, 1], there exist individuals

i and j in I such that (i, α [x] + (1− α) [y]) � (j, α [x] + (1− α) [y]).

Given redistributive scope, three-player richness implies that there must be at least three individ-

uals. In words, it says that there is no outcome lottery involving just two outcomes at which the

observer is indifferent over all the possible identities she could assume. In the example above, the

condition was violated at ˆ̀, where ˆ̀(xi) = 1/2, since the observer was indifferent between being

either person there. If we add a third person k to the example, then the condition would be met

provided that either the outcome lottery at which the observer is indifferent between being person

i or person k or the outcome lottery at which she is indifferent between being person j or person

k is not exactly equal to 1/2.10

With this extra condition in place (and hence troublesome examples like the example above

ruled out), the symmetric richness conditions and symmetric independence axioms over identity

and outcome lotteries yield Harsanyi’s utilitarianism.

Theorem 4 (Utilitarianism) Suppose that absence of unanimity, redistributive scope and three-

player richness all apply. Then, the following are equivalent:

10 Notice that if there are three or more possible outcomes, the condition still only places restrictions for lotteries
involving just two. In particular, there still could be some lottery in the interior of the simplex where the observer
is indifferent as to identity. The condition would, however, be violated if there were divisible and disposable private
goods and (hence) some outcome that equalized the welfare of all individuals. In that setting, however, since the
outcome set is itself very rich, we can anyway induce a suffi ciently rich set of utility lotteries.
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(a) The observer satisfies the acceptance principle, independence over identity lotteries and in-

dependence over outcome lotteries.

(b) There exist a continuous function V : 4 (I) ×4 (X ) → R that represents % and, for each

i in I, a function Ui : 4 (X ) → R that is a von Neumann-Morgenstern expected-utility

representation of %i such that for all (z, `) in 4 (I)×4 (X ),

V (z, `) =

∫
X

(
I∑
i=1

ziUi(x)

)
` (dx) .

Moreover the functions Ui are unique up to common affi ne transformation.

The proof is in the appendix. The example discussed above shows that three-player richness

is essential.

Appendix: Proofs

Proof of Theorem 2 (Ex Post Generalized Utilitarianism): It is immediate that the

preferences generated by the representation satisfy the axioms. We will show that the axioms

imply the representation

Step 1. Generalized Utilitarian Representation of % restricted to 4 (I) × X . The

following lemma is a corollary of Theorem 1 in Grant et al [7]. This Theorem establishes a

representation of the preferences that is affi ne in identity lotteries. Since we only assume the inde-

pendence over identity lotteries for identity-outcome lotteries that are degenerate in the outcome

lottery, the affi ne representation need only hold for % restricted to 4 (I)×X .

Lemma 5 (Affi ne Representation 1) Suppose that absence of unanimity over outcomes holds.

Then, % satisfies the acceptance principle and independence over identity lotteries with degenerate

outcome lotteries if and only if there exist a continuous function W : 4 (I) × X → R that

represents % restricted to 4 (I)× X and, for each individual i in I, a function Wi : 4 (X ) → R

that represents %i restricted to X , such that for all (z, x) in 4 (I)×X ,

W (z, x) =

I∑
i=1

ziWi(x). (7)

Moreover, the functions Wi are unique up to common affi ne transformations.
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The uniqueness of the functionsWi follows because absence of unanimity implies the restriction

of % to 4 (I) × X satisfies the following property that we showed in the proof of Theorem 1 in

Grant et al [7] guarantees uniqueness of the affi ne representation in (7).

Property U For each non-extreme (wrt %) identity lottery/outcome pair (z, x) in 4 (I) × X ,

there exists an outcome y in X and two individuals i and j in I such that (i, y) � (z, x) �

(j, y).

To show that this property holds, consider any non-extreme (with respect to %) (z, x) ∈

∆(I) × X . Let (ẑ, x̂) be maximal with respect to % and (z′, x′) be minimal with respect to

% on ∆(I) × X . These maxima and minima exist because % is continuous and both ∆(I)

and X are compact. Because (ẑ, x̂) is maximal, by independence over lotteries with degenerate

outcomes, there exists an i ∈ I such that (i, x̂) ∼ (ẑ, x̂). Similarly, there exists a j ∈ I such that

(j, x′) ∼ (z′, x′). (It could be that ẑ is the degenerate identity lottery [i] or that z′ is the degenerate

identity lottery [j].) Because (z, x) is non-extreme, we therefore have (i, x̂) � (z, x) � (j, x′). If

(i, x̂) ∼ (i, x′), the result follows by setting y = x′. Otherwise, (i, x̂) � (i, x′) and, therefore,

x̂ �i x′ by acceptance. By absence of unanimity over outcomes, there then exists a k ∈ I such

that x′ �k x̂. By acceptance, (k, x′) � (k, x̂). If (z, x) � (k, x′), then (i, x̂) � (z, x) � (k, x̂)

and the proof is complete. Otherwise, we have (k, x′) � (z, x) � (j, x′) and again the proof is

complete.11

Step 2. Affi ne in outcome lotteries representation of %.

First we show, given redistributive scope, we need at most two identity lotteries z1 and z2, to

‘cover’the entire range of the observer’s preferences in the following sense: for all product lotteries

(z, `) either (z, `) ∼
(
z1, `′

)
for some `′, or (z, `) ∼ (z2, `

′′) for some `′′, or both. Moreover the set

of product lotteries for which ‘both’applies are not all indifferent.

To state this more formally, let the identity lotteries z1 and z2 (not necessarily distinct) and

outcome lotteries `1, `2 (not necessarily distinct) be such that
(
z1, `1

)
� (z2, `2) and such that(

z1, `1
)
% (z, `) % (z2, `2) for all product lotteries (z, `). That is, the product lottery

(
z1, `1

)
is

11 We thank John Weymark for providing us with this compact and elegant proof.
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weakly better than all other product lotteries, and the product lottery (z2, `2) is weakly worse than

all other product lotteries. And let the outcome lotteries `1 and `2 (not necessarily distinct) be such

that
(
z1, `1

)
%
(
z1, `

)
%
(
z1, `1

)
for all product lotteries

(
z1, `

)
, and

(
z2, `

2
)
% (z2, `) % (z2, `2)

for all product lotteries (z2, `). That is, given the identity lottery z1, the outcome lottery `1 is

(weakly) worse than all other outcome lotteries; and, given the identity lottery z2, the outcome

lottery `2 is (weakly) better than all other outcome lotteries. The existence of these special lotteries

follows from the continuity of %, the non-emptiness of �, and the compactness of ∆ (I)×∆ (X ).

Moreover, by independence over outcome lotteries, we can take `1, `1, `2, and `2 each to be a

degenerate outcome lottery. Let these be x1, x1, x2, and x2, respectively. This in turn means that

by independence over identity lotteries with degenerate outcome lotteries, we can take z1 and z2

each to be a degenerate identity lottery. Let these be i1 and i2, respectively.

The following result follows from an analogous argument used in Grant et al [6] to prove

their Lemma 7 (also called spanning). The roles of identities and outcomes are reversed and

redistributive scope here plays the role that axiom of absence of unanimity played there.

Lemma 6 (Spanning) Assume redistributive scope applies and that the observer satisfies accep-

tance and independence over outcome lotteries. Let i1, i2, x1, x1, x
2, and x2 be defined as above.

Then, (a) either
(
i1, x1

)
∼ (i2, x2) or

(
i2, x

2
)
∼
(
i1, x1

)
or
(
i2, x

2
)
�
(
i1, x1

)
and (b) for all

product lotteries (z, `), either
(
i1, x1

)
% (z, `) %

(
i1, x1

)
or
(
i2, x

2
)
% (z, `) % (i2, x2) or both.

Proof. (a) If i1 = i2, then the first two cases both hold. Otherwise, suppose that the first two

cases do not hold; that is,
(
i1, x1

)
� (i2, x2) and

(
i1, x1

)
�
(
i2, x

2
)
. By the definition of x1,

we know that
(
i1, x2

)
%
(
i1, x1

)
, and hence

(
i1, x2

)
� (i2, x2). Using redistributive scope and

acceptance, there must exist another outcome x 6= x2 such that (i2, x) �
(
i1, x

)
. Again by the

definition of x1, we know that
(
i1, x

)
%
(
i1, x1

)
, and hence (i2, x) �

(
i1, x1

)
. By the definition

of x2, we know that
(
i2, x

2
)
% (i2, x), and hence

(
i2, x

2
)
�
(
i1, x1

)
, as desired. Part (b) follows

immediately from (a). �

With Lemma 6 in hand, we can now construct the affi ne in outcome lottery representation of

%. The construction is analogous to one used in the proof of Lemma 8 in Grant et al [6] with
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the roles of identities and outcomes reversed and absence of unanimity replaced by redistributive

scope.

Lemma 7 (Affi ne Representation 2) Suppose redistributive scope applies. Then, the observer

satisfies the acceptance principle and independence over outcome lotteries if and only if there

exist a continuous function V : 4 (I) ×∆ (X ) → R that represents % and is affi ne in its second

argument.

Proof. Let i1, i2, x1, x1, x
2, and x2 be defined as in Lemma 6 above. Given continuity, an immedi-

ate consequence of Lemma 6 is that, for all product lotteries (z, `), either (z, `) ∼
(
i1, `′

)
for some

`′, or (z, `) ∼ (i2, `
′′) for some `′′ or both. Moreover, we can choose the `′ such that its support

only contains outcomes x1 and x1. And similarly for `′′ with respect to outcomes x2 and x2.

The proof of lemma now proceeds with two cases.

Case (1) The easiest case to consider is where i1 = i2. In this case,
(
i1, x1

)
�
(
i1, x1

)
and(

i1, x1
)
% (z, `) %

(
i1, x1

)
, for all (z, `). Then, for each (z, `), let V (z, `) be defined by

(
i1, V (z, `)

[
x1
]

+ (1− V (z, `)) [x1]
)
∼ (z, `) .

By continuity and independence over outcome lotteries, such a V (z, `) exists and is unique.

To show that this representation is affi ne, notice that if
(
i1, V (z, `)

[
x1
]

+ (1− V (z, `)) [x1]
)
∼

(z, `) and
(
i1, V (z, `′)

[
x1
]

+ (1− V (z, `′)) [x1]
)
∼ (z, `′), then independence over outcome lotteries

implies (i1, [αV (z, `) + (1− α)V (z, `′)]
[
x1
]
+[1−αV (z, `)−(1− α)V (z, `′)] [x1]) ∼ (z, α`+ (1− α) `′).

Hence αV (z, `) + (1− α)V (z, `′) = V (z, α`+ (1− α) `′), as required.

Case (2). If
(
i1, x1

)
∼ (i2, x2), then

(
i1, x1

)
% (z, `) %

(
i1, x1

)
for all (z, `) and hence case

(1) applies. Similarly, if
(
i2, x

2
)
∼
(
i1, x1

)
, then

(
i2, x

2
)
% (z, `) % (i2, x2) for all (z, `), and

again case (1) applies (with i2 in place of i1). Hence suppose that
(
i1, x1

)
�
(
i2, x

2
)
and that(

i1, x1

)
� (i2, x2). Then, by Lemma 6,

(
i1, x1

)
�
(
i2, x

2
)
�
(
i1, x1

)
� (i2, x2); that is, we have

two overlapping intervals that ‘span’the entire range of the observer’s preferences.

Then, just as in case (1), we can construct an affi ne function V 1(·, ·) to represent the observer’s

preferences % restricted to those (z, `) such that
(
i1, x1

)
% (z, `) %

(
i1, x1

)
, and we can construct
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an affi ne function V 2(·, ·) to represent % restricted to those (z, `) such that
(
i2, x

2
)
% (z, `) %

(i2, x2). We can then apply an affi ne re-normalization of either V 1 or V 2 such the (re-normalized)

representations agree on the ‘overlap’
(
i2, x

2
)
% (z, `) %

(
i1, x1

)
. Since V 1(·, ·) and V 2(·, ·) are

affi ne, the re-normalized representation is affi ne. �

Step 3. Combining the representations obtained in Steps 1 and 2.

In summary, we have shown from Step 1 that W (z, x) =
∑
i ziWi (x) represents % restricted

to 4 (I) × X and from Step 2 that V (z, `) is a representation of % that is affi ne in `, that is,

V (z, `) =
∫
V (z, x) ` (dx).

For i = 1, . . . , I, set Ui (`) := V ([i], `). By acceptance, it follows that Ui (`) is a(n expected

utility) representation of %i.

Notice that Wi (x) is a monotonic transformation of Ui (x). Let ϕ :
[
V (i2, x2) , V

(
i1, x1

)]
→[

Wi2 (x2) ,Wi1
(
x1
)]
be the monotonic transformation implicitly defined by Wi (x) = ϕ ◦Ui (x).12

Also notice that V (z, x) is a monotonic transformation ofW (z, x). Let ξ :
[
W (i2, x2) ,W

(
i1, x1

)]
→[

V (i2, x2) , V
(
i1, x1

)]
, implicitly be defined by V (z, x) = ξ ◦W (z, x).

By construction we have, for any i ∈ I and any x ∈ X , V (i, x) = ξ ◦Wi (x) = ξ ◦ ϕ ◦ Ui (x).

Hence ξ = ϕ−1. Putting this all together we obtain,

V (z, `) =

∫
ϕ−1 ◦W (z, x) ` (dx) =

∫
ϕ−1

(∑
i

ziWi (x)

)
` (dx)

=

∫
ϕ−1

(∑
i

ziϕ ◦ Ui (x)

)
` (dx) ,

as desired. �

Proof of Proposition 3 (Concavity)

Concavity ⇒ Preference for Life-Chances.

Suppose (z, `′) ∼ (z′, `). Using the fact that the representation is affi ne in its second argument,

we have V (z, α`+ (1− α) `′) = αV (z, `) + (1− α)V (z, `′). Using the fact that (z, `′) ∼ (z′, `),

the last expression is equal to αV (z, `) + (1− α)V (z′, `). But the concavity ϕ implies that ϕ−1

12 For a given i, Ui (X ) may only be a subset of the domain of ϕ. However, by Lemma 6, it is clear that a single
ϕ can be used for the entire domain.

21



is convex, and so,

αV (z, `) + (1− α)V (z′, `)

=

∫ [
αϕ−1 ◦

(∑
i

ziϕ (Ui (x))

)
+ (1− α)ϕ−1 ◦

(∑
i

z′iϕ (Ui (x))

)]
` (dx)

≥
∫
ϕ−1 ◦

(∑
i

[αzi + (1− α) z′i]ϕ (Ui (x))

)
` (dx)

= V (αz + (1− α) z′, `) .

Hence, the observer exhibits a preference for life chances. �

Preference for Life-Chances ⇒ Concavity

If ϕ−1 is not convex, then there exist v < w in the domain of ϕ−1 (i.e., the set{∑
i

ziϕ (Ui (x)) : z ∈ 4 (I) , x ∈ X
}

which by the richness conditions is an interval of the form
[
ϕ (Ui2 (x2)) , ϕ

(
Ui1
(
x1
))]
) such that

αϕ−1 (v) + (1− α)ϕ−1 (w) < ϕ−1 (αv + (1− α)w)

holds for some α in (0, 1). Note that the continuity of ϕ implies that the set of pairs (v, w) satisfying

this inequality is an open set. Moreover, there exists u ∈ (v, w) and ε > 0 such that the inequality

is satisfied for all v′ ∈ (u − ε, u) and w′ ∈ (u, u+ ε).13 Fix such v′ and w′. By definition, there

exists an identity lottery z and an outcome x such that
∑
i ziϕ (Ui (x)) = v′ (or, equivalently,

V (z, x) = ϕ−1 (v′)). Without loss of generality, all zi > 0 and not all Ui (x) are the same.14

Hence, for ε suffi ciently small there exists an identity lottery z′ satisfying
∑
i z
′
iϕ (Ui (x)) = w′

(and V (z′, x) = ϕ−1 (w′)). Choose x′′ such that
∑
i ziϕ (Ui (x′′)) is equal to some v′′ 6= v′ (if,

for all x′′,
∑
i ziϕ (Ui (x′′)) = v′, then, as not all individuals’preferences agree on the order of

the outcomes, a slight change in z would allow it). Without loss of generality v′′ > v′. Consider

13 Let a∗ be the maximal a for which the intersection of the line a + bt, b = ϕ−1(w)−ϕ−1(v)
w−v , and the graph of

ϕ−1 over (v, w) is non empty. Then, u is the minimal t such that
(
t, ϕ−1 (t)

)
is a tangency point of a∗ + bt

14 If some zi = 0, then v′ can be slightly changed. If Ui (x) = Uj (x) for all i, j, then
∑
i z
′
iϕ (Ui (x)) is independent

of z′ and, by absence of unanimity, a slight change in v′ gives x′ for which Ui (x′) 6= Uj (x
′) for some i, j (otherwise

there is a unanimus preference of x over x′, or vice versa)
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` = (1− δ) [x] + δ [x′′]. Then,

V (z, `) = (1− δ)ϕ−1

(∑
i

ziϕ (Ui (x))

)
+ δϕ−1

(∑
i

ziϕ (Ui (x′′))

)
= (1− δ)ϕ−1 (v′) + δϕ−1 (v′′) .

Hence, if ε is chosen suffi ciently small so that w′ < v′′, then there exists δ′ such that `′ =(
1− δ′

)
[x] + δ′ [x′′] satisfies V (z, `′) = ϕ−1 (w′). Summarizing,

V (z′, x) = ϕ−1 (w′) = V (z, `′) and (z′, x) ∼ (z, `′)

But then we would have (for some α in (0, 1)),

V (z, α [x] + (1− α) `′) = αV (z, x) + (1− α)V (z, `′)

= αϕ−1 (v′) + (1− α)ϕ−1 (w′) < ϕ−1 (αv′ + (1− α)w′)

= ϕ−1

(∑
i

[αzi + (1− α) z′i]ϕ (Ui (x))

)
= V (αz + (1− α) z′, x) ,

a violation of preference for life chances. �

Proof of Theorem 4 (Utilitarianism). It is clear that (b) implies (a). We will show (a)⇒(b).

We observed in Grant et al [6, p. 1955] that independence over outcome lottteries implies a

property we called indifference between individuals facing similar risks. It thus follows from

Theorem 1 and Proposition 6 in Grant et al [6, p. 1947 and p. 1952, respectively] that the

preferences may be represented by a generalized utilitarian representation with common utility

transformation function, that is, V (z, `) =
∑I
i=1 ziφ

[
Ûi(`)

]
. It is enough to show that this

common φ-function is affi ne. Since the proof is long, we will break it into 6 steps, and we will

signpost some parts.

Step 1 is to prove the following lemma that shows the function φ−1 ◦ V is affi ne on 4 (X ), from

which it immediately follows that

V̂ (z, `) =

∫
X
φ−1 ◦ V (z, [x]) ` (dx)

=

∫
X
φ−1

(∑n
i=1 ziφ

(
Ûi (x)

))
` (dx)

is an expected equally-distributed equivalent-utility representation of the observer’s preferences.
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Lemma 8 Suppose that absence of unanimity and redistributive scope both apply, and that the

observer satisfies the acceptance principle, independence over outcome lotteries and independence

over identity lotteries. Let V and φ be defined so that, V (z, `) =
∑I
i=1 ziφ

[
Ûi(`)

]
and V represents

the observer’s preferences. Then, for each z in 4 (I), the function φ−1 ◦ V (z, ·) : 4 (X ) → R is

affi ne.

Proof. Fix an identity lottery z and an individual i. Let Ûi ⊂ R be the interval such that

u ∈ Ûi implies that there exists an ` such that Ûi (`) = u. We will first show that φ−1 ◦ V (z, ·)

is affi ne on the inverse image of Ûi; that is, on the subset of outcome lotteries {` ∈ 4 (X ) :

φ−1 ◦ V (z, `) ∈ Ûi}. If this inverse image is empty, then affi nity is trivial. Hence, consider two

outcome lotteries `, `′ (not necessarily distinct) such that φ−1◦V (z, `) ∈ Ûi and φ−1◦V (z, `′) ∈ Ûi.

By the definition of Ûi, there exist two outcome lotteries ¯̀ and ¯̀′ such that φ−1 ◦ V (z, `) = Ûi
(
¯̀
)

and φ−1 ◦ V (z, `′) = Ûi
(
¯̀′
)
; that is, (z, `) ∼

(
i, ¯̀
)
and (z, `′) ∼

(
i, ¯̀′
)
. Applying independence

over outcome lotteries yields

(z, α`+ (1− α) `′) ∼
(
i, α¯̀+ (1− α) ¯̀′

)
for all α in [0, 1]. Hence, φ−1 ◦ V (z, α`+ (1− α) `′) ∈ Ûi. Applying the representation yields:

φ−1 ◦ V (z, α`+ (1− α) `′) = Ûi
(
α¯̀+ (1− α) ¯̀′

)
= αÛi

(
¯̀
)

+ (1− α) Ûi
(
¯̀′
)

(by affi nity of Ûi)

= αφ−1 ◦ V (z, `) + (1− α)φ−1 ◦ V (z, `′) .

where the third equality is by the definition of ¯̀ and ¯̀′. This argument holds for all i.

An immediate consequence of Lemma 6 is that there exist two individuals i1 and i2 such that

range
[
φ−1 ◦ V (z, ·)

]
⊆ Ûi1 ∪ Ûi2 and the inverse image of Ûi1 ∪ Ûi2 is ∆ (X ). We know that

φ−1 ◦ V (z, ·) is affi ne on the inverse image of Ûi1 and Ûi2 . Moreover, by Lemma 6, the interior of

Ûi1i2 (= interior Ûi1 ∩ Ûi2) is not empty. Hence φ−1 ◦ V (z, ·) is affi ne on ∆ (X ). This argument

holds for all z. �

It follows from Lemma 7 in Grant et al [6, p. 1960] that absence of unanimity, acceptance and

independence over identity lotteries imply there exist individuals i1, i1, i2 and i2 (not necessarily
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distinct) and outcome lotteries `1 and `2 (also not necessarily distinct) such that (i)
(
i1, `1

)
�

(i2, `2) and such that
(
i1, `1

)
% (z, `) % (i2, `2), for any product lottery (z, `), (ii) either

(
i1, `

1
)
∼

(i2, `2) or
(
i2, `2

)
∼
(
i1, `1

)
or
(
i2, `2

)
�
(
i1, `

1
)
, and (iii) for any product lottery (z, `) either(

i1, `1
)
% (z, `)%

(
i1, `

1
)
or
(
i2, `2

)
% (z, `)% (i2, `2) or both. Now since we also have independence

over outcome lotteries we can take each `1 and `2 to be a degenerate outcome lottery. Let these

be x1 and x2.

Recall that, given our representation with a common φ-function, (i, `) ∼ (j, `′) implies Ûi(`) =

Ûj(`
′). Hence, from (ii) either Ûi1(x

1) = Ûi2(x2) or Ûi2(x2) = Ûi1(x
1) or Ûi2(x2) > Ûi1(x

1).

Notice that for all product lotteries (z, `), we have φ−1 ◦ V (z, `) = φ−1
(∑

i ziφ
[
Ûi (`)

])
∈[

Ûi1
(
x1
)
, Ûi1

(
x1
)]
∪
[
Ûi2 (x2) , Ûi2 (x2)

]
. We will first concentrate on the interval

[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
,

but we will return to the interval
[
Ûi2 (x2) , Ûi2 (x2)

]
in Step 5. If Ûi1

(
x1
)

= Ûi1
(
x1
)
, then affi n-

ity of φ−1 ◦ V (z, ·) on the interval
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
is trivial.15 Hence, assume Ûi1

(
x1
)
<

Ûi1
(
x1
)
.

Defining x̂ and ū. Since
(
i1, x1

)
�
(
i1, x

1
)
, by redistributive scope, there exists an outcome x̂

such that (i1, x̂) �
(
i1, x̂

)
. Consider the outcome lotteries `[λ] defined by `[λ] := λ [x̂]+(1− λ)

[
x1
]
.

By the continuity of both Ûi1 and Ûi1 , there must exist an outcome lottery ¯̀ (:= `[λ̄]) such that(
i1, ¯̀

)
∼
(
i1, ¯̀

)
. Let ū be given by

ū := φ−1
[
V
(
i1, ¯̀

)]
= φ−1

[
V
(
i1, ¯̀

)]
(8)

The level of utility ū is going to be important in the argument below. By the definition of x1, if

ū does not lie in the interval
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
, then ū < Ûi1

(
x1
)
.

Step 2 is to show that, for all u′ and u′′ ∈
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
and all α and β in [0, 1],

φ−1 [βφ [αu′ + (1− α) ū] + (1− β)φ [αu′′ + (1− α) ū]]

= αφ−1 [βφ (u′) + (1− β)φ (u′′)] + (1− α) ū. (9)

To show this, fix u′ and u′′ ∈
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
. Denote by z′ = β′

[
i1
]

+
(
1− β′

)
[i1]

and z′′ = β′′
[
i1
]

+
(
1− β′′

)
[i1], the identity lotteries with support just on i1 and i1 for which

15 In this case, Ûi2 (x2) = Ûi1 (x
1) and hence showing that φ is affi ne on [Ûi2 (x2), Ûi2 (x2)] would be enough.

25



φ−1
[
V
(
z′, x1

)]
= u′ and φ−1

[
V
(
z′′, x1

)]
= u′′. Also fix α and β in [0, 1], and define uβ by:

uβ := φ−1
[
V
(
βz′ + (1− β) z′′, x1

)]
. (10)

By the definition of ū and the fact that V is affi ne in identity lotteries, we have

ū = φ−1
[
V
(
βz′ + (1− β) z′′, ¯̀

)]
. (11)

By lemma 8, the function φ−1 ◦V (βz′ + (1− β) z′′, ·) is affi ne on ∆ (X ), hence combining expres-

sions (10) and (11), we get

φ−1
[
V
(
βz′ + (1− β) z′′, α

[
x1
]

+ (1− α) ¯̀
)]

= αuβ + (1− α) ū (12)

Our two affi nity properties allow us to expand the left side of this expression . First, by the

affi nity of V
(
·, α
[
x1
]

+ (1− α) ¯̀
)
on ∆ (I), we get

V
(
βz′ + (1− β) z′′, α

[
x1
]

+ (1− α) ¯̀
)

= βV
(
z′, α

[
x1
]

+ (1− α) ¯̀
)

+ (1− β)V
(
z′′, α

[
x1
]

+ (1− α) ¯̀
)

= βφ
[
φ−1 ◦ V

(
z′, α

[
x1
]

+ (1− α) ¯̀
)]

+ (1− β)φ
[
φ−1 ◦ V

(
z′′, α

[
x1
]

+ (1− α) ¯̀
)]
(13)

Second, by the affi nity of φ−1 ◦ V (z′, ·) and φ−1 ◦ V (z′′, ·) on ∆ (X ), we have

[
φ−1 ◦ V

(
z′, α

[
x1
]

+ (1− α) ¯̀
)]

=
[
αφ−1 ◦ V

(
z′, x1

)
+ (1− α)φ−1 ◦ V

(
z′, ¯̀

)]
(14)

and[
φ−1 ◦ V

(
z′′, α

[
x1
]

+ (1− α) ¯̀
)]

=
[
αφ−1 ◦ V

(
z′′, x1

)
+ (1− α)φ−1 ◦ V

(
z′′, ¯̀

)]
. (15)

Substituting u′ = φ−1 ◦V
(
z′, x1

)
, u′′ = φ−1 ◦V

(
z′′, x1

)
and ū = φ−1 ◦V

(
z′, ¯̀

)
= φ−1 ◦V

(
z′′, ¯̀

)
,

expressions (14) and (15) become

[αu′ + (1− α) ū] and [αu′′ + (1− α) ū] ,

respectively. Substituting these back into expression (13) and then substituting back into the left

side of expression (12) yields

φ−1 [βφ [αu′ + (1− α) ū] + (1− β)φ [αu′′ + (1− α) ū]] = αuβ + (1− α) ū. (16)
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Using the definition of uβ in expression (10) and the affi nity of V
(
·, x1

)
on ∆ (I), we have

uβ = φ−1
[
V
(
βz′ + (1− β) z′′, x1

)]
= φ−1

[
βV

(
z′, x1

)
+ (1− β)V

(
z′′, x1

)]
= φ−1

[
βφ
(
φ−1

[
V
(
z′, x1

)])
+ (1− β)φ

(
φ−1

[
V
(
z′′, x1

)])]
= φ−1 [βφ (u′) + (1− β)φ (u′′)] (17)

where the last line follows from the definitions of u′ and u′′. Substituting expression (17) back

into expression (16) yields expression (9), as desired. Our choice of u′, u′′, α and β was arbitrary,

so this completes step 2. �

Re-normalization. Recall that functions
[
Ûi

]
i∈I

are unique only up to a common affi ne trans-

formation and that the composite functions
[
φ ◦ Ûi

]
i∈I

are also unique only up to a common

affi ne transformation. Hence, we can re-normalize such that the utility level ū = 0. With slight

abuse of notation, we will continue to use φ and
[
Ûi

]
i∈I

to denote these re-normalized functions.

With this re-normalization, expression (9) becomes

φ−1 [βφ (αu′) + (1− β)φ (αu′′)] = αφ−1 [βφ (u′) + (1− β)φ (u′′)] . (18)

Since u′ and u′′ were arbitrary, expression (18) holds (for all α and β in [0, 1]) for all utility pairs

in the (re-normalized) interval
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
. Recall that 0 need not lie in this interval.

Step 3 is to show that expression (18) also holds (for all α and β in [0, 1]) for all utility pairs u′

and u′′ in
[
0, Ûi1

(
x1
)]
even if 0 < Ûi1

(
x1
)
; that is, even if ū does not lie in

[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
.

To show this, we will establish that expression (18) holds in each interval in a sequence of intervals

I0, I1,. . . , with (i) I0 :=
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
; (ii) In ∩ In+1 an interval with positive length (and

so having a non-empty interior), for all n = 0, 1, . . .; and (iii)
⋃∞

n=0
In =

(
0, Ûi1

(
x1
)]
. The

continuity of φ (·) then implies that (18) holds on all of
[
0, Ûi1

(
x1
)]
.

Fix an α̃ ∈ (0, 1) for which α̃Ûi1
(
x1
)
> Ûi1

(
x1
)
(> α̃Ûi1

(
x1
)
). Set In :=

[
α̃nÛi1

(
x1
)
, α̃nÛi1

(
x1
)]
.

By construction, In ∩ In+1 is an interval with positive length and
⋃∞

n=0
In =

(
0, Ûi1

(
x1
)]
. To

see that In satisfies (18), consider a pair of utilities u′ and u′′ in In and fix α, β in [0, 1]. By
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construction, both û′ := u′/α̃n and û′′ := u′′/α̃n are in
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
. Since α̃n and αα̃n

are in [0, 1], expression (18) implies

φ−1 [βφ (α̃nû′) + (1− β)φ (α̃nû′′)] = α̃nφ−1 [βφ (û′) + (1− β)φ (û′′)] (19)

and

φ−1 [βφ (αα̃nû′) + (1− β)φ (αα̃nû′′)] = αα̃nφ−1 [βφ (û′) + (1− β)φ (û′′)] . (20)

Substituting u′ for α̃nû′ and u′′ for α̃nû′′ and then combining expressions (19) and (20), we obtain

φ−1 [βφ (αu′) + (1− β)φ (αu′′)] = αφ−1 [βφ (u′) + (1− β)φ (u′′)] ,

as required. �

Step 4 consists of the following lemma showing that φ must be an affi ne transformation of a

homogenous function.

Lemma 9 Suppose that φ (·) satisfies equation (18) for all u′, u′′ in
[
min

{
0, Ûi1

(
x1
)}
, Ûi1

(
x1
)]

and all α and β in [0, 1], then

φ (u) =

{
Cuk +D u ≥ 0

−C (−u)
k

+D u < 0

for some C, k in R++ and some D in R.

Case 1.16 Ûi1
(
x1
)
≥ 0. We shall show that

φ (αu′′)− φ (αu′) = γ (α) [φ (u′′)− φ (u′)] . (21)

for all u′, u′′ ∈
[
0, Ûi1

(
x1
)]
and all α ∈ (0, 1).

Consider four positive numbers u1, û1, u2, û2 in
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
such that u1 < û1 and

u2 > û2. Suppose (contra-hypothesis) that for some α ∈ (0, 1),

φ (αu1)− φ (αû1)

φ (αu2)− φ (αû2)
6= φ (u1)− φ (û1)

φ (u2)− φ (û2)
=: −r. (22)

16 The proof draws on Moulin’s [14, p. 45] proof of Robert’s [17] theorem that a social welfare ordering that is
additively separable and independent of a common utility scale admits a generalized utilitarian representation with
a power function.
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Then we have,

φ−1

[
1

1 + r
φ (u1) +

r

1 + r
φ (u2)

]
= φ−1

[
1

1 + r
φ (û1) +

r

1 + r
φ (û2)

]
.

And (22) implies that

φ−1

[
1

1 + r
φ (αu1) +

r

1 + r
φ (αu2)

]
6= φ−1

[
1

1 + r
φ (αû1) +

r

1 + r
φ (αû2)

]
.

But (18) implies (setting β = 1/ (1 + r))

φ−1

[
1

1 + r
φ (αû1) +

r

1 + r
φ (αû2)

]
= αφ−1

[
1

1 + r
φ (û1) +

r

1 + r
φ (û2)

]
,

and

φ−1

[
1

1 + r
φ (αu1) +

r

1 + r
φ (αu2)

]
= αφ−1

[
1

1 + r
φ (u1) +

r

1 + r
φ (u2)

]
,

leading to a contradiction. Hence, (21) obtains.

The continuous, increasing solutions of (21) are known (Aczel [1987, Chap. 2]) to be

φ (u) = C+uk
+

+D+

for some C+, k+ in R++ and some D+ in R.17

Case 2. 0 ∈
(
Ûi1
(
x1
)
, Ûi1

(
x1
))
. By an analogous argument to the one employed in Case 1, for

u in the sub-interval
[
0, Ûi1

(
x1
)]
, we obtain φ (u) = C+uk

+

+ D+; and for u in the sub-interval[
Ûi1
(
x1
)
, 0
]
⊂ R−, we obtain φ (u) = −C− (−u)

k−
+D−, for some C−, k− in R++ and some D−

in R. Continuity of φ implies that D+ = D− =: D. Thus we obtain:

φ (u) =


C+uk

+

+D u ≥ 0

−C− (−u)
k−

+D u < 0

. (23)

It remains to show that k+ = k− and C+ = C−.

To show that k+ = k−, we again exploit expression (18). Consider u′, u′′ ∈
(
Ûi1
(
x1
)
, Ûi1

(
x1
))

such that u′ < 0, u′′ > 0. Then, for any α, β in (0, 1),

βφ (αu′) + (1− β)φ (αu′′) = −βC− (−αu′)k
−

+ (1− β)C+ (αu′′)
k+

+D

and

βφ (u′) + (1− β)φ (u′′) = −βC− (−u′)k
−

+ (1− β)C+ (u′′)
k+

+D.

17 Aczel [1987] does not include 0 in the domain of (21). If 0 is excluded, then (21) has a logorithmic solution
and a solution in which both C+ and k+ are both negative.
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Choose α, β in (0, 1), such that

−βC− (−αu′)k
−

+ (1− β)C+ (αu′′)
k+

> 0 and − βC− (−u′)k
−

+ (1− β)C+ (u′′)
k+

> 0.

Therefore, on the left side of (18) we have

φ−1 (βφ (αu′) + (1− β)φ (αu′′)) =

(
−βC−αk− (−u′)k

−
+ (1− β)C+ (αu′′)

k+

C+

)1/k+

and on the right side of (18) we have

αφ−1 (βφ (u′) + (1− β)φ (u′′)) = α

(
−βC− (−u′)k

−
+ (1− β)C+ (u′′)

k+

C+

)1/k+

=

(
−βC−αk+ (−u′)k

−
+ (1− β)C+ (αu′′)

k+

C+

)1/k+

.

This is possible only if k+ = k− =: k.

It only remains to show that C+ = C−. Recall that by redistributive scope and independence

over outcome lotteries, there exists an outcome x̂ such that Ûi1 (x̂) > Ûi1 (x̂). We used this fact

to construct ū. Case 2 (i.e., ū = 0 ∈
(
Ûi1
(
x1
)
, Ûi1

(
x1
))
) corresponds to the situation in which

Ûi1 (x̂) > 0 > Ûi1
(
x1
)
.

Recalling the notation we used to define ū, set `[λ] := λ [x̂]+(1− λ)
[
x1
]
. By independence over

outcome lotteries and our construction, Ûi1
(
`[λ]

)
is linear and decreasing in λ, and is positive at

λ = 0 and negative at λ = 1; and Ûi1
(
`[λ]

)
is linear and increasing in λ, and is negative at λ = 0 and

positive at λ = 1. Recall that λ̄ corresponds to ū; that is, `[λ̄] = ¯̀and Ûi1
(
`[λ̄]

)
= Ûi1

(
`[λ̄]

)
= 0.

By outcome independence, λ̄ is implicitly given by

λ̄Ûi1 (x̂) +
(
1− λ̄

)
Ûi1
(
x1
)

= 0 = λ̄Ûi1 (x̂) +
(
1− λ̄

)
Ûi1
(
x1
)
. (24)

Using (24) we can write for λ > λ̄, Ûi1
(
`[λ]

)
= Ûi1 (x̂)

(
λ− λ̄

)
/
(
1− λ̄

)
and Ûi1

(
`[λ]

)
=

Ûi1 (x̂)
(
λ− λ̄

)
/
(
1− λ̄

)
, and so,

Ûi1
(
`[λ]

)
Ûi1
(
`[λ]

) =
Ûi1 (x̂)

Ûi1 (x̂)
.

Similarly, for λ < λ̄, Ûi1
(
`[λ]

)
= Ûi1

(
x1
) (
λ̄− λ

)
/λ̄ and Ûi1

(
`[λ]

)
= Ûi1

(
x1
) (
λ̄− λ

)
/λ̄, and so,

Ûi1
(
`[λ]

)
Ûi1
(
`[λ]

) =
Ûi1
(
x1
)

Ûi1 (x1)
.
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Furthermore, again from equation (24), since−Ûi1
(
x1
)
/Ûi1 (x̂) = λ̄/

(
1− λ̄

)
= −Ûi1

(
x1
)
/Ûi1 (x̂),

we have Ûi1 (x̂) /
[
−Ûi1 (x̂)

]
=
[
−Ûi1

(
x1
)]
/Ûi1

(
x1
)
. Hence,

Ûi1
(
`[λ]

)
Ûi1
(
`[λ]

) =
Ûi1
(
x1
)

Ûi1 (x1)
(25)

for all λ 6= λ̄.

Also to simplify notation, let z[γ] := γ [i1] + (1− γ)
[
i1
]
. Using this notation, case 2 implies

V
(
z[0], `[0]

)
≥ V

(
z[1], `[1]

)
> V

(
z[1], `[0]

)
and V

(
z[1], `[1]

)
> V

(
z[0], `[1]

)
. Let v̄ := V

(
z[1], `[λ̄]

)
=

φ (0). By independence over identity lotteries, V
(
z[γ], `[λ̄]

)
= v̄ for all γ.

By construction, for all λ < λ̄, V
(
z[0], `[λ]

)
> V

(
z[0], `[λ̄]

)
> V

(
z[1], `[λ]

)
; and for all λ >

λ̄, V
(
z[0], `[λ]

)
< V

(
z[0], `[λ̄]

)
< V

(
z[1], `[λ]

)
. By the affi nity of V (·, `) on ∆ (I), for all λ,

V
(
z[γ], `[λ]

)
is affi ne in γ. Thus there exists a unique γ̄ ∈ (0, 1) such that V

(
z[γ̄], `[0]

)
= v̄. That

is,
(
z[γ̄], `[0]

)
∼
(
z[γ̄], `[λ̄]

)
. An immediate implication of independence over outcome lotteries is

that V
(
z[γ̄], `[λ]

)
= v̄ for all λ ≤ λ̄. We claim that V

(
z[γ̄], `[λ]

)
= v̄ for all λ. Suppose not: that is,

without loss of generality, there exists a λ > λ̄ such that V
(
z[γ̄], `[λ]

)
> v̄. Then, by independence

over outcome lotteries, by mixing with
(
z[γ̄], `[0]

)
, we would have V

(
z[γ̄], `[λ]

)
> v̄ for all λ > 0, a

contradiction. Thus, V
(
z[γ̄], `[λ]

)
= v̄ for all λ.

We can solve for γ̄ using the definition of V and the fact that

γ̄φ
(
Ûi1
(
x1
))

+ (1− γ̄)φ
(
Ûi1
(
x1
))

= γ̄φ
(
Ûi1 (x̂)

)
+ (1− γ̄)φ

(
Ûi1 (x̂)

)
.

Hence,

γ̄ =
φ
(
Ûi1
(
x1
))
− φ

(
Ûi1 (x̂)

)
(
φ
(
Ûi1 (x̂)

)
− φ

(
Ûi1 (x1)

))
+
(
φ
(
Ûi1 (x1)

)
− φ

(
Ûi1 (x̂)

)) .
By the definition of γ̄, we have

γ̄φ
[
Ûi1
(
`[λ]

)]
+ (1− γ̄)φ

[
Ûi1
(
`[λ]

)]
= v̄ (26)

for all λ. By the affi nity of Û , we have Ûi1
(
`[λ]

)
= λÛi1 (x̂) + (1− λ) Ûi1

(
x1
)
and Ûi1

(
`[λ]

)
=

λÛi1 (x̂)+(1− λ) Ûi1
(
x1
)
. Since this holds for all λ and since φ is differentiable almost everywhere,

we have

γ̄φ′
[
Ûi1
(
`[λ]

)] (
Ûi1 (x̂)− Ûi1

(
x1
))

+ (1− γ̄)φ′
[
Ûi1
(
`[λ]

)] (
Ûi1 (x̂)− Ûi1

(
x1
))

= 0 (27)
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at almost all λ.

Indeed, for all λ 6= λ̄ such that Ûi1
(
`[λ]

)
and Ûi1

(
`[λ]

)
lie in

(
Ûi1
(
x1
)
, Ûi1

(
x1
))
, we can use

our homogenous expression for φ and obtain:

φ′
[
Ûi1
(
`[λ]

)]
= Kφ′

[
Ûi1
(
`[λ]

)]
, (28)

where K := (1− γ̄)
(
Ûi1
(
x1
)
− Ûi1 (x̂)

)
/
[
γ̄
(
Ûi1 (x̂)− Ûi1

(
x1
))]

is a constant (that is, K does

not depend on λ).

Since φ is a power function we have by plugging in (23) to expression (28), for λ > λ̄,

kC+
(
Ûi1
(
`[λ]

))k−1

= KkC−
(
−Ûi1

(
`[λ]

))k−1

.

This reduces to [
Ûi1
(
`[λ]

)
−Ûi1

(
`[λ]

)]k−1

= K
C−

C+
.

Similarly for for λ < λ̄,

kC−
(
−Ûi1

(
`[λ]

))k−1

= KkC+
(
Ûi1
(
`[λ]

))k−1

.

This reduces to [
−Ûi1

(
`[λ]

)
Ûi1
(
`[λ]

) ]k−1

= K
C+

C−
.

But, by expression (25), the ratio on the left side of both these expressions is equal to−Ûi1
(
x1
)
/Ûi1

(
x1
)

for all λ 6= λ̄. Thus we have shown that C+ = C−. �

Step 5 extends the argument to cover the interval
[
Ûi2 (x2) , Ûi2 (x2)

]
. So far we have shown

that φ must have the form given in Lemma 9 —that is, an affi ne transformation of a homogenous

function —on the interval
[
Ûi1
(
x1
)
, Ui1

(
x1
)]
. We next show that the same function extends over[

Ûi2 (x2) , Ûi2 (x2)
]
.

We can repeat Step 2 through Step 4 above focussing on the interval
[
Ûi2 (x2) , Ûi2 (x2)

]
. The

argument is the same except that we need to be careful about the normalization that set ū = 0

prior to Step 3. Since we are re-normalizing a second time, we have to keep track of how this

second re-normalization is related to the first.

In particular, to be consistent with our notational convention above, let
[
Ûi

]
i∈I

and φ be the

individual levels and φ-function given the normalization that set ū = 0 above. In these utility

32



units, let the utility level that is analogous to ū (see expression (8) for the definition) for our

analysis of the interval
[
Ûi2 (x2) , Ûi2 (x2)

]
be ū2. Denote our re-normalized utility function for

each individual i by Ũi (`) := Ûi (`) − ū2 (so that the utility level ū2 is re-normalized to zero as

before). For each utility level u, let ũ denote the corresponding re-normalized individual utility

level and let φ̃ denote the correspondingly re-normalized φ-function. Then, we can re-normalize

φ̃ such that for all u in R, φ̃ [ũ] = φ̃ [(u− ū2)] = φ [u].

By repeating Steps 2 to 4, we know that φ̃ [ũ] must have a form analogous to that in Lemma

9 on the interval
[
Ûi2 (x2) , Ûi2 (x2)

]
. With slight abuse of notation, we can keep track of the

re-normalization by writing

φ̃ (u) =


C̃ [u− ū2]

k̃
+ D̃ u− ū2 ≥ 0

−C̃ (− (u− ū2))
k̃

+ D̃ u− ū2 < 0

.

By Lemma 6, we know that
[
Ûi2 (x2) , Ûi2 (x2)

]
∩
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
has a non-empty interior.

Thus, the φ̃ (u) and φ (u) must coincide on this interval. Clearly, if either function were affi ne,

then both functions must be affi ne and we would be done. Suppose then that k 6= 1 and k̃ 6= 1.

We will show that this implies that ū2 = 0; that is, the two normalizations must be the same.

Suppose first that the overlap
[
Ûi2 (x2) , Ûi2 (x2)

]
∩
[
Ûi1
(
x1
)
, Ûi1

(
x1
)]
contains a subinterval

in which both u > 0 and u− ū2 > 0. Then we know that

C̃ [u− ū2]
k̃

+ D̃ = Cuk +D (29)

for all u in that subinterval. Differentiating yields

k̃C̃ [u− ū2]
k̃−1

= kCuk−1.

Notice that if k = k̃ = 2, then we would have [u− ū2] /u = C/C̃ and, since the right side is

constant, this implies ū2 = 0. Therefore, assume that k 6= 2 or k̃ 6= 2. Differentiating again,

dividing the second derivative by the first, and rearranging yields

[u− ū2]

u
=
k̃ − 1

k − 1
.

But again the right side is constant, implying that ū2 = 0. The argument on subintervals where

either u < 0 or u− ū2 < 0 is similar.
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Since ū2 = 0 (if k 6= 1), the first derivative reduces to uk−k̃ = k̃C̃/kC. But again the right

side is a constant. Hence k = k̀, so that k̃C̃/kC = uk−k̃ = 1. Therefore C = C̃. Finally, using

expression (29), we obtain D = D̃. In other words, the two functions φ and φ̃ must be the same.

�

Step 6 completes the proof by showing that k = 1. To do this, we invoke our third richness

condition, three-player richness.

Recall from the proof of Lemma 9, for the outcome lottery `[λ̄] := λ̄ [x̂] +
(
1− λ̄

) [
x1
]
, we

had Ûi1
(
`[λ̄]

)
=Ûi1

(
`[λ̄]

)
. That is,

(
i1, `[λ̄]

)
∼
(
i1, `[λ̄]

)
. Hence, by three-player richness, there

exists another individual ı̂ such that
(
ı̂, `[λ̄]

)
�
(
i1, `[λ̄]

)
. That is, Ûı̂

(
`[λ̄]

)
6= 0. Consider the

graphs of Ûi1
(
`[λ]

)
and Ûı̂

(
`[λ]

)
as functions of λ ∈[0, 1] to R. Both are lines. The first passes

through the point
(
λ̄, 0
)
, while the second does not. And, by the definitions of x1, x̂ and i1,

the line Ûi1
(
`[·]
)
is strictly decreasing. Suppose that Ûı̂

(
`[λ̄]

)
> 0 —the argument for the case

Ûı̂

(
`[λ̄]

)
< 0 is similar. Then, we can find λ and λ′ such that 0 < λ < λ′ < λ̄ and such that the

vectors
(
Ûi1
(
`[λ]

)
, Ûı̂

(
`[λ]

))
� 0 and

(
Ûi1
(
`[λ′]

)
, Ûı̂

(
`[λ′]

))
� 0. Moreover, since Ûı̂

(
`[λ̄]

)
6= 0,

these vectors are not colinear.

By the affi nity of φ−1 ◦ V (Lemma 8), for all z, `, `′ and all α,

φ−1

[∑
i

ziφ
[
αÛi (`) + (1− α) Ûi (`′)

]]

= αφ−1

[∑
i

ziφ
[
Ûi (`)

]]
+ (1− α)φ−1

[∑
i

ziφ
[
Ûi (`′)

]]
. (30)

In particular, this must hold for z = (1/2)
[
i1
]
+(1/2) [̂ı], `[λ] and `[λ′]. Substituting in these values

along with our homogenous functional forms φ (u) = Cuk +D and φ−1 (v) = [(v −D) /C]
1/k, the

left side of expression (30) becomes:

φ−1

[
1

2
φ
(
αÛi1

(
`[λ]

)
+ (1− α) Ûi1

(
`[λ′]

))
+

1

2
φ
(
αÛı̂

(
`[λ]

)
+ (1− α) Ûı̂

(
`[λ′]

))]
= φ−1

[
1

2
C

[(
αÛi1

(
`[λ]

)
+ (1− α) Ûi1

(
`[λ′]

))k
+
(
αÛı̂

(
`[λ]

)
+ (1− α) Ûı̂

(
`[λ′]

))k]
+D

]
=

1

21/k

[(
αÛi1

(
`[λ]

)
+ (1− α) Ûi1

(
`[λ′]

))k
+
(
αÛı̂

(
`[λ]

)
+ (1− α) Ûı̂

(
`[λ′]

))k]1/k

.
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And the right side of expression (30) becomes:

1

21/k

(
α

[(
Ûi1
(
`[λ]

))k
+
(
Ûı̂
(
`[λ]

))k]1/k

+ (1− α)

[(
Ûi1
(
`[λ′]

))k
+
(
Ûı̂
(
`[λ′]

))k]1/k
)
.

Combining these yields:[(
αÛi1

(
`[λ]

)
+ (1− α) Ûi1

(
`[λ′]

))k
+
(
αÛı̂

(
`[λ]

)
+ (1− α) Ûı̂

(
`[λ′]

))k]1/k

= α

[(
Ûi1
(
`[λ]

))k
+
(
Ûı̂
(
`[λ]

))k]1/k

+ (1− α)

[(
Ûi1
(
`[λ′]

))k
+
(
Ûı̂
(
`[λ′]

))k]1/k

. (31)

Notice that if “=”were replaced by “≤”, then expression (31) becomes the Minkowski inequality.

Recall that if the Minkowski inequality holds with equality (and the vectors involved are not

colinear), then k = 1. Since the vectors we chose were not colinear, we have k = 1, completing

the proof. �

Remark. Notice that our third richness condition, three-player richness, was only used in the last

step (Step 6) of the proof. Specifically, it allowed us to construct vectors that were not colinear,

and hence to apply the Minkowski inequality.18

The previous step (Step 5) illustrates how our counterexample in section 5 relies on there

being two outcomes and two agents. Recall the construction of ū. Starting from the interval[
Ûi1
(
x1
)
, Ui1

(
x1
)]
, redistributive scope ensures there exists an outcome x̂ such that (i1, x̂) �(

i1, x̂
)
. Continuity then ensures there exists an outcome lottery `[λ̄] between x

1 and x̂ such that(
i1, `[λ̄]

)
∼
(
i1, `[λ̄]

)
, and ū corresponds to the utility level at that lottery. Similarly, starting

from the interval
[
Ûi2 (x2) , Ûi2 (x2)

]
, redistributive scope ensures there exists an outcome x̂2 such

that (i1, x̂2) �
(
i1, x̂2

)
and continuity ensures there exists an outcome lottery `[λ̄2] between x2

and x̂2 such that
(
i2, `[λ̄2]

)
∼
(
i2, `[λ̄2]

)
, and ū2 corresponds to the utility level at that lottery.

An implication of Step 5 is that if ū 6= ū2, then φ is affi ne. In the example, there are only two

outcomes and two agents, hence `[λ̄] and `[λ̄2] must be the same lottery, and therefore ū and ū2

are trivially equal. But in a world with three agents or three outcomes, such a coincidence is knife

edge.

18 Even here, we only need this condition if Ûi1 (x̂) ≤ 0. If Ûi1 (x̂) > 0, then we have
(
i1, x1

)
� (i1, x̂) and(

i1, x1
)
�
(
i1, x̂

)
. In this case, our first richness condition (absence of unanimity) already implies that there exists

an ı̂ such that (ı̂, x̂) �
(
ı̂, x1

)
%
(
i1, x1

)
, and hence that Ûı̂

(
`[λ̄]

)
> 0.
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