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1 INTRODUCTION
Nash equilibrium (henceforth NE) is the most widely used equilibrium concept in game

theory. Though a large and growing number of experimental studies indicate its weaknesses, it

has proved difficult to find systematic patterns in the deviations from NE. Given this, we believe

that it is worth considering alternative theories.

Goeree and Holt (2001) (henceforth GH) published an article with the provocative title “Ten

Little Treasures of Game Theory and Ten Intuitive Contradictions” in which they claim that “for

each of these ten games there is an experimental treatment in which behavior conforms nicely to

predictions of NE” but where “a change in the payoff structure produces a large inconsistency

between theoretical predictions and observed behavior”.1 In the present paper we restrict atten-

tion to the five one-shot games, which GH studied. We argue that many of the “inconsistencies”

in these games can be explained by ambiguity.

Ambiguity describes situations where individuals cannot or do not assign subjective proba-

bilities to uncertain events. This may be because the problem is complex or unfamiliar. There

is by now considerable experimental evidence which shows that individuals treat ambiguous

decisions differently from risks with known probabilities. The best known example is the Ells-

berg paradox, Ellsberg (1961).2 There is also experimental evidence that behavior in games

is affected by ambiguity see Colman and Pulford (2007) or Eichberger, Kelsey, and Schipper

(2007). We believe that ambiguity may be present in experimental games since the relevant

uncertainty is the strategy choice of one’s opponent. Human behavior is not intrinsically easy to

predict. We believe that it is plausible that there may be ambiguity in GH’s experiments since

each game was only played once. Hence subjects did not have time to become familiar with the

game or the behavior of their opponents.

We use a model of ambiguity axiomatized by Chateauneuf, Eichberger, and Grant (2008),

1 Goeree and Holt (2001) p. 1402.
2 This has been confirmed by the subsequent experimental literature, see for instance Camerer and Weber (1992)
and Cohen, Jaffray, and Said (1985).
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(henceforth CEG), in which ambiguity is modelled by non-additive beliefs. Applying this the-

ory to games, implies that players will maximize a weighted average of the equilibrium pay-off,

the best pay-off and the worst pay-off of any given strategy. Subsection 2.1 will introduce these

preferences, provide some intuition for the parameters of this model and point to the experi-

mental literature, which tries to estimate them.

Tversky and Wakker (1995) study the relationship between decision weights and attitudes

towards risk and characterize the possibility and certainty effects. A majority of individuals ap-

pear to behave cautiously when there is ambiguity. Following Wakker (2001), who relates such

behavior to a generalized version of the Allais paradox, we shall refer to such cautious behavior

as pessimism. This article contains also a brief survey of the relevant experimental literature.

Experimental evidence also shows, that a minority of individuals respond to ambiguity in the

opposite way, which we shall refer to as optimism.

We model ambiguity in games by postulating that each player views the strategy choice

by his/her opponents as ambiguous. Players may react to this ambiguity either in an optimistic

way by over-weighting good outcomes or in a pessimistic way by over-weighting bad outcomes.

Subsection 2.3 defines an Equilibrium under Ambiguity (EUA), the equilibrium notion which

will be used in this paper.

Organization of the Paper The next section describes our basic model of ambiguity

in games. In section 3 we argue that GH’s results on one-shot games can be explained by

ambiguity. In Section 4 we discuss competing theories such as Quantal Response Equilibrium

and section 5 concludes. The appendix contains proofs of those results not proved in the text.

2 STRATEGIC AMBIGUITY
This section introduces our model of ambiguity and uses it as the basis of a solution concept

for normal form games.

2.1 Non-additive beliefs

In the present paper we restrict attention to ambiguity in 2-player games, which requires the
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following notation. A 2-player game Γ = h{1, 2} ;S1, S2, u1, u2i consists of players, i = 1, 2,

finite pure strategy sets Si and payoff functions ui (si, s−i) for each player. The space of all

strategy profiles is denoted by S. The notation, s−i, denotes the strategy chosen by i’s opponent.

The set of all strategies for i’s opponent is S−i. We shall adopt the convention that female

pronouns (she, her etc.) denote player 1 and male pronouns denote player 2.3

Beginning with Schmeidler (1989), ambiguous beliefs have been modelled as capacities,

which are similar to subjective probabilities except that they are not necessarily additive. We

shall use a model of ambiguity from CEG, which has the advantage that it is parsimonious in

the number of parameters. This theory represents beliefs by a neo-additive capacity ν defined

by:

ν (A|α, δ, π) =

⎧⎨⎩ 1 for A = S−i,
αδ + (1− δ)π (A) for ∅ $ A $ S−i,
0 for A = ∅,

where α, δ ∈ [0, 1], π is an additive probability distribution π on S−i and π(A) :=
P

s−i∈S−i
πi(s−i).

They show that preferences may be represented in the form:

Vi (si;α, δ, π) = δ

∙
α max

s−i∈S−i
ui (si, s−i) + (1− α) min

s−i∈S−i
ui (si, s−i)

¸
+(1−δ) ·Eπui (si, s−i) ,

where Eπui (si, s−i) , denotes a conventional expectation taken with respect to the probability

distribution π.4

One can interpret π as the decision-maker’s belief. However (s)he may not be fully confident

in this belief. Thus it is an ambiguous belief. His/her confidence is modelled by the weight

(1 − δ) given to the expected payoff Eπui (si, s−i) . Or equivalently δ can be interpreted as a

measure of the ambiguity the decision-maker perceives. The highest (resp. lowest) possible

level of ambiguity corresponds to δ = 1, (resp. δ = 0). Ambiguity-attitude is measured by α,

which represents the optimism/pessimism of the decision maker. Purely optimistic preferences

are given by α = 1, while the highest level of pessimism occurs when α = 0. If 0 < α <

1, the individual is neither purely ambiguity-averse nor purely ambiguity-loving, since (s)he

responds to ambiguity partly in an optimistic way by overweighting good outcomes and partly

3 Of course this convention is for convenience only and bears no relation to the actual gender of subjects in
GH’s experiments.
4 For simplicity, we will write, in slight abuse of notation, Vi (si;α, δ, π) instead of Vi (si; ν (·|α, δ, π)) .
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in a pessimistic way by overweighting bad outcomes.

A possible interpretation is that the optimism parameter, α, is a personal characteristic of the

decision maker like his/her risk preferences. In contrast, the degree of ambiguity, δ,may depend

on the situation. In particular, one would expect there to be more ambiguity when players

interact for the first time. Growing familiarity with the game and the behavior of opponents is

likely to reduce ambiguity.

CEG also show that these preferences may also be represented in the multiple priors form:5

Vi (si;α, δ, π) = αmax
p∈P

Epui (si, s−i) + (1− α)min
p∈P

Epui (si, s−i) , (1)

where P := {p ∈ ∆ (S−i) : p > (1− δ)π} . For the case of one opponent with three pure

strategies, Figure 1 shows the set of probability distributions P(δ, π).

π1

...
...
...
...
...
...
...
...
...
...
...
...
...
............................................

.....................................

r π2π3

p1 = (1− δ)π1

p2 = (1− δ)π2

p3 = (1− δ)π3

HHHHHHj

P(δ, π)

p2 = 1 p3 = 1

p1 = 1

Figure 1. The set P(δ, π)

The multiple priors representation in equation (1) can be interpreted as follows. When an

individual perceives a situation as ambiguous (s)he considers more than one probability dis-

tribution to be possible. He/she reacts to ambiguity partly in an optimistic way by using the

most favorable possible probability and partly in a pessimistic way by using the least favorable

distribution.

5 Gilboa and Schmeidler (1989) axiomatized the multiple priors model, which represents ambiguous beliefs
by sets of probability distributions. Multiple priors and non additive beliefs produce related models of ambiguity.
However they are not, in general, identical
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2.2 Evidence on Individual Decisions

Experiments on decision-making with known probabilities have shown that individuals tend to

overweight both high and low probability events. As a result the decision weights assigned to

events are an inverse S-shaped function compared to the given probability distribution, (see for

instance, Gonzalez and Wu (1999) and Abdellaoui (2000)). This can be explained by insensi-

tivity of perception in the middle of the range. For instance, the change from a probability of

0.55 to 0.60 is not perceived as great as the change from 0 to 0.05.

If probabilities are not known, a similar phenomena has been found (see, Kilka and Weber

(2001)). Individuals overweight both highly likely and highly unlikely events. (In this case

the likelihood of events is subjective.) This produces a pattern of decision weights like that

illustrated in Figure 2. The curved line represents the decision weights of a typical experimen-

tal subject and the 45o line represents SEU beliefs for comparison. This diagram is based on

observations that subjects are willing to take courses of action, which yield high outcomes in

unlikely events but refuse to accept even a small chance of bad outcomes. The more unfa-

miliar the source of uncertainty is the lower is the elevation of the curve, i.e. the curve shifts

downwards in less familiar situations. This can be interpreted as an effect of ambiguity.

.............................................

likelihood0

.........................................

1

1

w(p)

decision
weight

Figure 2. Inverse-S decision weights

Kilka and Weber (2001) report an experimental study of choices in financial markets, which

was able to distinguish beliefs from decision weights. They found that decision weights deduced

from actual choices were markedly non-additive. Moreover the weighting scheme of a neo-
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probability0
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1

1

δα

1− δ(1− α)

..................

....................

α

α

Figure 3. Neo-additive capacity

additive capacity provides a simple version of an inverse-S shaped function relating beliefs, p,

to decision weights, w(p).

w(p) :=

⎧⎨⎩ 1 for p = 1,
δα+ (1− δ) · p for 0 < p < 1,
0 for p = 0.

This weighting scheme is illustrated in Figure 3. It can be seen as a piecewise linear approxi-

mation to that in Figure 2.

Kilka and Weber (2001) used their data to estimate degrees of optimism and ambiguity sep-

arately. In terms of our notation, they report the following values:
α δ αδ

Average 0.5 0.52 0.26
Max. 0.62 0.61 0.34
Min. 0.4 0.41 0.18

The values of both optimism α and ambiguity δ vary around 0.5 with deviations of 0.1.

2.3 Equilibrium under Ambiguity

We shall use a solution concept based on Dow and Werlang (1994).6 Formally, we assume that

each player maximizes his/her expected payoff with respect to a non-additive belief. In equilib-

rium, beliefs have to be reasonable in the sense that each player “believes” that the opponents

play best responses. To model this we require that the support of any given player’s beliefs con-

tain only best responses of the other players. Denote by Ri(νi) = argmax{Vi (si, νi) | si ∈ Si}

6 Dow and Werlang (1994) assumed ambiguity-aversion. Their solution concept was later generalized to an arbi-
trary number of players in Eichberger and Kelsey (2000) and extended to include optimistic behavior in Eich-
berger and Kelsey (2006).
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the best response correspondence of player i, given beliefs represented by the capacity νi.

Definition 2.1 A pair of capacities ν∗ = hν∗1, ν∗2i is anEquilibrium Under Ambiguity (EUA)
if

∅ 6= supp ν∗1 ⊆ R1(ν
∗
2) and ∅ 6= supp ν∗2 ⊆ R1(ν

∗
1).

7

If s∗i ∈ supp ν∗i for i = 1, 2, we say that s∗ = hs∗1, s∗2i is an equilibrium strategy profile.
If supp ν∗i contains a single strategy profile for 1 = 1, 2 we say that it is a pure equilibrium,
otherwise we say that it ismixed.8

A mixed equilibrium, where the support contains multiple strategy profiles, should be inter-

preted as an equilibrium in beliefs rather than randomizations.

2.4 Support of Ambiguous Beliefs

Most theories of ambiguity are formulated for single person decisions. To study ambiguity in

games it is necessary to extend them to allow for the interactions between different decision-

makers. In the absence of ambiguity, each player is assumed to choose a strategy which max-

imizes his/her expected payoff with respect to beliefs which are compatible with the mixed

strategies of their opponents. Most equilibrium notions rest on some degree of consistency be-

tween actual behavior and beliefs, since players are likely to adapt their beliefs if they observe

behavior which contradicts them. In the presence of ambiguity, perfect consistency is unlikely

since there do not exist non-additive randomizing devices, which prevents us from constructing

strategies, corresponding precisely to ambiguous beliefs. We consider games where each player

believes that the strategy choice of his/her opponents is possibly ambiguous.9 An equilibrium

is a situation where players behave optimally relative to their beliefs.

There is more than one way to extend the notion of a support from probability distributions

to capacities. This definition determines how tight the relationship between beliefs and actual

behavior is. Definition 2.1 requires the strategies in the support of a given player’s equilibrium

7 Existence of equilibrium can be proved in a standard way using fixed-point theorems, see Dow and Werlang
(1994), Eichberger and Kelsey (2000) and Eichberger, Kelsey, and Schipper (2006).
8 Our aim is to modify Nash equilibrium by allowing for the possibility that players may view their opponents
behavior as ambiguous. If beliefs were additive, then in a 2-player game, Definition 2.1 would coincide with
Nash equilibrium. In this sense we have modified Nash equilibrium to allow for ambiguity.
9 There are other possible modelling choices, for instance, one could consider there is ambiguity about the
opponents’ type.
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belief, be best responses. It is ambiguous whether the opponents play best responses. As

result, in addition, the best and worst possible plays by one’s opponent are taken into account

when evaluating a strategy. Decision-relevant strategies outside the support can be interpreted

as events a player views as unlikely but which, due to ambiguity about the behavior of the

opponents, cannot be completely ruled out.

Several solution concepts for games with strategic ambiguity have been suggested, (see for

instance Marinacci (2000) and Lo (1996)). The main difference between the various solution

concepts is that they use different support notions. Thus the definition of support deserves

careful consideration.

Definition 2.2 We define the support of the neo-additive capacity ν(·|α, δ, π) by supp ν =
suppπ.

As explained above a neo-additive capacity is intended to represent a situation where the

decision-maker’s belief is represented by the additive probability distribution π but (s)he is not

fully confident in this belief. Given this it is plausible that the support of ν should coincide with

that of π. Eichberger and Kelsey (2006) show that, for a neo-additive capacity ν(·|α, δ, π),

supp ν =
\

p∈P
supp p, 10

where P is the set of probability distributions defined in equation (1).11

3 EXPERIMENTAL GAMES
Goeree and Holt (2001) present evidence that NE is a good predictor in some games but

not in others. In particular they consider five one-shot games, in which there is evidence in

favour of NE. However, in each case, a seemingly irrelevant parameter change produces the

opposite result. In this section we argue that this evidence can be explained by ambiguity. For

10 This definition of support essentially coincides with the inner support notion in Ryan (1997).
11 Much of the existing literature on ambiguity in games has explicitly or implicitly restricted attention to the case
of pessimistic players. In the present paper, an important part of our explanation of behavior in experimental games
relies to a large extent on optimistic responses to ambiguity. It is, therefore, necessary to reconsider the support
notions put forth in the previous literature. For a more detailed discussion of the relation of our proposal to
earlier support notions see Eichberger and Kelsey (2006).
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expository reasons we shall discuss the experiments in a different order to GH. To avoid undue

repetition, we shall discuss the first example in detail and present an outline of the argument for

the remaining games.

3.1 The Kreps Game

The impact of ambiguity is illustrated by the Kreps game, which is an asymmetric coordination

game with a safe strategy for Player 2, NN.12 The normal form of the game is described in the

following table:
GameA Player 2

Player 1
L (26%) M (8%) NN (68%) R (0%)

T (68%) 200, 50 0, 45 10, 30 20,−250
B (32%) 0, −250 10, −100 30, 30 50, 40

The numbers in brackets denote the number of subjects playing the respective strategies in GH’s

experiment. The only two Nash equilibria in pure strategies are hT,Li and hB,Ri. There is also

a mixed strategy equilibrium, in which Player 2 choosesM andL each with positive probability.

The only strategy which will not be played in any NE isNN. In stark contrast, almost two thirds

of subjects chose NN. Interestingly, this game shows another behavioral feature not mentioned

in GH. Given the strong incentive of Player 2 to choose NN, Player 1 could be expected to play

the best reply B. This is, however, not the case for subjects in GH’s experiment.

We claim that these results can be explained by ambiguity. For player 2, strategy NN gives

a certain pay-off of 30, even with ambiguity. All the other strategies can potentially give him

a negative pay-off. Thus pessimistic responses to ambiguity can motivate him to choose NN .

Suppose that he has an ambiguous belief that player 1 will play s1, where s1 can either take the

values T or B, then the Choquet expected utility of his other strategies is given by:13

V2 (L) 6 δ · [α · 50− (1− α) · 250] + (1− δ) ·max {u2(T, L), u2(B,L)}

= 50− δ · (1− α) · 300 6 30;

12 The name comes from Kreps (1995) who discusses the possibility that the level of payoffs, rather than their rela-
tive values, may affect players’ behavior. The payoffs have been modified to allow the game to be run ex-
perimentally. These modifications do not affect the set of equilibria.
13 For convenience we are suppressing the arguments α, δ and π.
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V2 (M) 6 δ [α.45− (1− α) · 100] + (1− δ) ·max {u2(T,M), u2(B,M)}

= 45− δ (1− α) · 145 6 30;

V2 (R) 6 δ · [α · 40− (1− α) · 250] + (1− δ) ·max {u2(T,R), u2(B,R)}

= δ · [α · 40− (1− α) · 250] + (1− δ) · 40 = 40− δ · (1− α) · 290 6 30;

provided δ(1− α) > max{50−30
300

, 45−30
145

, 40−30
290

} = 3
29
= 0.103. From which it follows that NN

is a best response. Most estimates for α and δ exceed this value by far. Hence in EUA, Player

2 will choose NN, for any beliefs compatible with the estimated values of α and δ.

The observed behavior of more than two thirds of Player 1’s choosing T , can be obtained

as an equilibrium under ambiguity, π∗1(T ) = π∗2(NN) = 1, but never as a NE. Assuming 2 is

believed to play NN, the CEU value of payoffs for Player 1 are:

V1(s1, NN) = δ ·
∙
α · max

s2∈S2
u1(s1, s2) + (1− α) · min

s2∈S2
u1(s1, s2)

¸
+ (1− δ) · p1(s1, NN)

=

½
δ · α · 200 + (1− δ) · 10) for s1 = T,
δ · α · 50 + (1− δ) · 30 for s1 = B.

Thus T, is preferred to B if and only if 150δα − (1 − δ)20 > 0, which would be positive for

δα ≈ 0.25 and δ ≈ 0.5. Hence, with the experimentally observed parameter values for α and δ,

(T,NN) are equilibrium strategies.

3.2 The Traveller’s Dilemma

In the Traveller’s Dilemma, each player makes a claim ni for a payment between 180 and

300 cents, i.e., ni ∈ S := {180, 181, 182, ..., 298, 299, 300}.14 Given two claims (n1, n2), both

players obtain the minimum min{n1, n2}, but, if the claims are not equal, the player with the

higher claim pays R > 1 to the other, yielding the payoff function:

ui(n1, n2) = min{n1, n2}+R · sign(nj − ni),

with i, j ∈ {1, 2} and i 6= j.

It is easy to see that for R > 1 each player has an incentive to undercut the opponent’s claim

by one unit. The following diagram shows the best-reply of Player 1. Hence, for any R > 1,

14 The story which motivates the game can be found in Basu (1994), where this game was introduced.
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claiming the minimum amount, (n∗1, n∗2) = (180, 180), is the unique NE. In fact, n∗i = 180 is

the only rationalizable strategy for each player, since it is the only strategy which cannot be

undercut by the opponent.

180 n1

n2

300

300

best reply

Figure 4. Best response of Player 1 without ambiguity

GH show, however, that the experimental results, depend on R. For large R, players claim

180, or close to this amount, as predicted by the NE. For R = 180, almost 80 percent of the

subjects chose ni 6 185. In contrast to the NE predictions, for small R, players make claims

close to 300, i.e., for R = 5, almost 80 percent of the players chose n > 295.

The evidence can be explained by ambiguity as follows. In the Traveller’s Dilemma, payoffs

are high if players coordinate on a high claim. As a result there are two possible best responses

to an action by one’s opponent. Either one can undercut by one unit or alternatively one can

choose 299, which yields the highest coordination gain and maintains at least the chance to

avoid the penalty. For R = 180 however, the penalty for being the highest bidder is extreme,

wiping out any possible gain from coordination. Hence, even a small amount of pessimism

in response to ambiguity will deter players from making a high claim and the only possible

equilibrium is where both claim 180.
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180 n1

n2

300

300

¡
¡
¡
¡
¡
¡
¡
¡

.............................................
n̄(α, δ,R)

Figure 5. Best reply of Player 1 with ambiguity

In contrast, for R = 5, the penalty is so low that a little ambiguity and optimism, αδ
1−δ > 0.1,

suffices to make it worthwhile to claim 299. Figure 5 illustrates the equilibrium best-reply

correspondence. There is a mixed equilibrium with two best responses 299 and n̄. For example,

if α = 0.4 and δ = 0.6, the ambiguous beliefs that one’s opponent would choose [n] = 285

would be 0.18 and the belief for 299 would equal 0.82. The observation, that 80 percent of

subjects chose a claim higher than 295, seems to be not obviously incompatible with EUA for

these values of α and δ. Further details are given in Proposition A.2 in the appendix. The table

below gives the values of n̄ for R = 5 and plausible parameter values.
α

δ

0.4 0, 5 0.62
0.41 268 274 280
0.52 279 283 286
0.61 285 288 291

3.3 Matching Pennies

In experiments on the Matching Pennies game, GH discover that subjects tend to conform

with NE predictions if the game is symmetric, but deviate systematically if the payoffs are

asymmetric. They study the following two versions of matching pennies.15 The ratios to the left
15 GH also consider a third version of matching pennies. This can be analyzed in a similar way.
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of the strategies indicate the unique NE mixed strategies and the bold numbers in brackets to

the right of the strategies show the percentage of players choosing the respective strategy in the

experiments.

Game B Player 2

Player 1
0.5 L (48%) 0.5 R (52%)

0.5 T (48%) 80, 40 40, 80
0.5 B (52%) 40, 80 80, 40

Game C Player 2

Player 1
0.12 L (16%) 0.88 R (84%)

0.5 T (96%) 320, 40 40, 80
0.5 B (4%) 40, 80 80, 40

The games differ only in the payoff of Player 1 for hT,Li , which is indicated by a bold-

face number. In mixed-strategy NE, the probabilities which a given player uses to randomize

are chosen to make his/her opponent indifferent between all of his/her equilibrium strategies.

Hence, a change in player 1’s payoff is predicted to leave her own behavior unchanged, while

causing a change in the behavior of player 2.

Actual play reveals, however, a quite different pattern. While the relative frequency of strat-

egy choices in Game B correspond to the NE prediction, they deviate dramatically from the

predictions in the asymmetric game. In Game C, Player 1’s choose almost exclusively strategy

T, the payoff which has been increased. As a result they make their behavior predictable, which

is exploited by the subjects in the role of Player 2. It is surprising that Player 1 does not appear

to foresee this shift in the behavior of her opponent. It appears as if Player 2 understands the

change in Player 1’s incentives better than she does herself. One interpretation of Player 1’s

behavior may be a shift in decision weights to extremely attractive low-probability events.

Ambiguity makes little difference to game B. Symmetry implies that the only equilibrium

is where each player believes that his/her opponent is equally likely to use either strategy. In

game C, optimistic responses to ambiguity cause player 1 to overweight unlikely events which

yield the high payoff 320. This causes her to choose strategy T almost exclusively. From Player

2’s point of view, the two strategies are symmetric. However 1 has a bias in favour of T. Hence

13



R is a best response for 2. Thus there is an equilibrium with ambiguity where the equilibrium

strategy combination is hT, Li . There is no NE which describes such behavior. There is a

unique NE, where Player 2 plays π(L) = 1
8

and Player 1 plays π(T ) = 1
2
. Such randomizations

are incompatible with the observed choices.

3.4 A Coordination Game with a Secure Option

GH study a coordination game, which is modified by giving Player 2 an extra secure option.

GameD Player 2

Player 1
L (?) H (84) S(?)

L (4) 90, 90 0, 0 0, 40
H (96) 0, 0 180, 180 0, 40

Game E Player 2

Player 1
L (?) H (76) S(?)

L (36) 90, 90 0, 0 400, 40
H (64) 0, 0 180, 180 0, 40

The two versions of the game are distinguished by the payoff of Player 1 when the secure

strategy, S, is played, (shown in bold). This strategy is strictly dominated by a mixture of L and

H, hence it will never be played in a NE.

The prediction of NE is the same for the two games. In each case there are three NEs, one

where both play H, one where both play L and a mixed strategy equilibrium where both players

randomize between H and L. GH note however, that 96 percent of subjects in the role of Player

1 and 84 percent of subjects in the role of Player 2 chose the strategy of the Pareto-dominant

equilibrium hH,Hi in Game D. Increasing the payoff of Player 1 for the strategy combination

hS, Li in Game E made it substantially more likely that Player 1 would choose L. This is even

more surprising since there was no corresponding change in the behavior of Player 2.

If players view their opponents behavior as ambiguous then Player 1’s perceives the worst

pay-off of both strategies to be the same. Thus pessimism will not influence her decision. In

game D, optimism increases the incentive for Player 1 to choose H and thus have some chance

of achieving the maximum pay-off, 180.

As discussed previously, experimental evidence suggests that δ ≈ 0.5 and αδ ≈ 0.25 are

plausible parameter values. For these values there remain multiple EUA leading either to coor-
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dinated behavior on hH,Hi or hL,Li. However it is not implausible that there is more ambi-

guity in coordination games, since the multiplicity of equilibria makes prediction of opponents’

behavior harder. If ambiguity is sufficiently high, δ > 5
7
, even a low degree of optimism α = 0.4

will induce Player 1 to choose strategy H, no matter what belief π2 she holds regarding the op-

ponent. In this case, the only EUA would be π∗1(H) = π∗2(H) = 1, which corresponds fairly

closely to GH’s observations for Game D.

In Game E, optimistic responses to ambiguity may cause Player 1 to switch to strategy

L, even if she believes that Player 2 chooses H. Thus, there is a tendency to deviate from

coordinated behavior on H. In this case, any ambiguous beliefs compatible with the empirically

observed values of αδ ≈ 0.25 and δ ≈ 0.5 will induce Player 1 to choose L. For Player 2 the

CEU payoff difference remains unchanged. Hence, for ambiguity and optimism represented by

the parameter values αδ ≈ 0.25 and δ ≈ 0.5, there is a unique pure equilibrium in which both

players use strategy L.

The experimental results reported by GH (p.1408) show that coordination on the Pareto-

dominant NE, hH,Hi , is high (80 percent) in Game D, whereas coordination was low, 32

percent on hH,Hi and 16 percent on hL,Li , in Game E with the outside option yielding a

payoff of 400 for Player 1. This increase in “uncoordinated” behavior indicates that Player

2 found it more difficult to adjust to the incentive created by the potential payoff of 400 for

optimistic opponents.

3.5 A Minimum-Effort Coordination Game

In the minimum effort coordination game (also know as the weakest link model of public goods,

see Cornes and Sandler (1986)) two players have to choose effort levels from the set E =

{110, ..., 170} at a marginal cost of c < 1 yielding payoffs

ui(e1, e2) := min{e1, e2}− c · ei,

for i = 1, 2. GH played this experiment with the marginal cost parameters 0.1 and 0.9 and

observed the following distributions of play:16

16 Note that GH have grouped the data for five successive integers.
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Game F e = 115 e = 125 e = 135 e = 145 e = 155 e = 165
c = 0.1 0.1 0.02 0.1 0.1 0.08 0.6
c = 0.9 0.5 0.18 0.05 0.07 0.05 0.15

The observations show a clear concentration of play on high effort levels in the case of low

costs, c = 0.1, and on the low ones for high costs, c = 0.9. Coordinating on any of the six

possible effort levels is a Nash equilibrium for either possible value of costs i.e., the set of NE’s

is {(e∗1, e∗2) ∈ E2| e∗1 = e∗2}. Thus Nash equilibrium is unable to explain why an increase in the

cost parameter changes behavior. Since the experiments were one-shot games and there were

many possible equilibria, coordination is not very likely.

We shall argue that such observations can be explained by ambiguity. In this game, the

best outcome is that your opponent plays the highest possible strategy. Suppose there is an

equilibrium with ambiguity in which both players coordinate on an effort level other than the

highest. If Player 1 increases her effort by one unit, the perceived marginal benefit is δα, which

is the weight on the highest outcome. The marginal cost of increasing effort is c. Thus if δα > c

it is in her interest to increase her contribution. Player 2 will think similarly. Hence under

the assumption δα > c the only possible equilibrium is where both players make the highest

contribution.

Suppose there is an equilibrium with ambiguity in which both players use an effort level

other than the lowest (i.e. 115). If Player 1 decreases her contribution by one unit the perceived

marginal reduction in benefit is δα + (1− δ) . The marginal cost saving is c. Thus if c >

δα + (1− δ) it is worth decreasing effort, which implies that the only possible equilibrium is

where both players coordinate on the lowest effort level.

With the average values of αδ ≈ 0.25 and δ ≈ 0.5 reported by Kilka and Weber (2001), one

has δ · α − c > 0 for c = 0.1 and c > [δ · α+ (1− δ)] for c = 0.9. For marginal costs of 0.1,

equilibrium with ambiguity predicts that players would try to coordinate on the highest effort

level, while for c = 0.9 they should coordinate on the lowest effort level. The observed behavior

seems to correspond well with this prediction. In particular, taking into consideration that

αδ ≈ 0.25 and δ ≈ 0.5 are average values of ambiguity and optimism and that the multiplicity
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of equilibria may create a high degree of ambiguity in a one-shot game, it is possible that

individual players have degrees of optimism and ambiguity satisfying

[δ · α+ (1− δ)] > c > δ · α. (2)

In this case, there would be multiple EUA with equilibrium contributions between the extremes.

4 COMPETING EXPLANATIONS
The above discussion of the “Treasures” has shown the potential of EUA to explain obser-

vations in many experiments. GH survey evolutionary and learning models as descriptions of

behavior in games and suggest several alternatives, which appear to provide good explanations

of experimental data. In particular, they find that evolutionary models with random shocks may

describe observed behavior better than NE. The logistic quantal response function of McK-

elvey and Palfrey (1995) also offers better predictions of behavior in experiments on one-shot

games. This may be interpreted either as dynamic noisy learning rule or as an iterated noisy

introspection process. They used this as the basis of an alternative equilibrium concept, Quan-

tal Response Equilibrium (QRE), which proved to be a successful alternative in explaining the

results of experimental games. For example, Boylan and Grant (2006) show that behavior in

the asymmetric Matching-Pennies game can be explained by QRE, a fact also noted by Goeree,

Holt, and Palfrey (2004).

For two players17 with finite strategy sets S1 and S2 and payoff functions u1(s1, s2) and

u2(s1, s2), a Quantal Response Equilibrium (QRE) is a mixed strategy combination (π1, π2)

such that

πi(si) = fi(si, π−i) :=
exp

¡
λi · Eπ−iui(si, ·

¢P
si∈Si

exp
¡
λi · Eπ−iui(s, ·

¢
for all si ∈ Si. The parameter λi measures the responsiveness of a player. For λi = 0 one has

a uniform distribution over one’s strategies, independent of the expected payoff. For λi → ∞

all the weight is shifted to the strategy with the highest expected payoff. The parameter λi can

be adjusted such that the best-possible fit of the equilibrium probabilities πi with the relative

17 A generalisation to games with many players is straightforward.
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Figure 6.

frequencies of actual behavior is achieved.

In the matching-pennies games of Section 3.3 we have only two pure strategies. Thus, we

can identify the mixed strategy of each player with the probability qi of playing the strategies T

or L, respectively.
q1 = f1(T, q2) := exp(λ1·[80q2+40(1−q2)])

exp(λ1·[80q2+40(1−q2)])+exp(λ1·[40q2+80(1−q2)]) ,

q2 = f2(L, q1) := exp(λ2·[40q1+80(1−q1)])
exp(λ2·[80q1+40(1−q1)])+exp(λ2·[40q1+80(1−q1)]) .

For λ = 10, the quantal response function f1(T, q2) looks almost like the best-reply correspon-

dence of the symmetric matching-pennies Game A.

On the other hand, if the payoff of Player 1 from (T,L) is increased to 320 as in Game B,

the following equilibrium conditions obtain:
q1 = f1(T, q2) := exp(λ1·[320q2+40(1−q2)])

exp(λ1·[320q2+40(1−q2)])+exp(λ1·[40q2+80(1−q2)]) ,

q2 = f2(L, q1) := exp(λ2·[40q1+80(1−q1)])
exp(λ2·[80q1+40(1−q1)])+exp(λ2·[40q1+80(1−q1)]) .

The figure below shows the quantal response function f1(T, q2), again for the parameter values

λ = 1 and λ = 10. The quantal response function becomes now almost vertical at q2 = 0.125.

18



0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15 0.2 0.25

0.2

0.4

0.6

0.8

1

λi = 1 λi = 10

The equilibrium value of q1 must be close to this value and therefore, QRE describes actual

behavior better than NE.

There is a deeper reason why EUA, like QRE allows a better description of behavior. In

both cases, players consider absolute as well as relative payoffs. In the QRE this is achieved by

the assumption that the probability that a pure strategy will be played depends on its expected

payoff. In an EUA, we consider still best replies, but due to optimism and ambiguity the best

and worst outcomes are over-weighted. Depending on the degree of ambiguity these effects may

be stronger or weaker, just as the parameter λ increases or reduces the impact of the expected

payoffs.

Both approaches are more flexible in describing actual behavior than NE, however we believe

that EUA may be given a more attractive interpretation. Optimism can be viewed as a personal

characteristic, which we may take as given, like a player’s preferences. Ambiguity, on the other

hand, is more situation-dependent. In particular, one would predict that a one-shot game is by

nature more ambiguous than a repeated game. Hence, there are testable hypotheses regarding

EUA which have no counter-part in QRE. Moreover, there is substantial evidence on individual

behavior, which allows one to predict the attitude of a decision-maker towards ambiguity. Such

evidence can help to restrict behavior in EUA, which makes the theory more powerful. It is a

particular strength of EUA that it can explain the diverging behavior in many games with the

same set of ambiguity and optimism parameters.

Indeed, a recent paper by Haile, Hortascu, and Kosenok (2003) shows that "without a priori

distributional assumptions, a QRE can match any distribution of behavior by each player in any
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normal form game".

Boylan and Grant (2006) also find that the Quantal Response Equilibrium of McKelvey and

Palfrey (1995) explains behavior in the asymmetric matching pennies experiments of GH better

than NE. Moreover, they show that fairness-based payoff transformations as suggested in Fehr

and Schmidt (1999) and Rabin (1993) do not predict the observed behavior.

5 CONCLUSION
In this paper we have shown that many of the treasures of game theory from GH can be

explained as responses to ambiguity. We have only analyzed those treasures based on normal

form games. The other experiments concern dynamic games some of which also have incom-

plete information. To study the impact of ambiguity in these cases it would be necessary to

develop new solution concepts for such games. This is beyond the scope of a short article.

Nevertheless we believe that explanations based on ambiguity could be found for many of these

games as well. For instance, the treasure from GH entitled ‘Should you believe a threat that is

not credible’ is very similar to the model of frivolous lawsuits in Eichberger and Kelsey (2004).

The preferences we use have the effect of over weighting the best and worst outcomes. The

worst outcome may often be death. However it is likely that ambiguity-aversion would cause

other bad outcomes to be over weighted such as losing large sums of money. Similarly optimism

might have the effect that a number of good outcomes are overweighted rather than just the best

outcome. While this objection may have some merits in general, the games studied in this paper

typically have salient best and worst outcomes. It does not seem implausible that these should

be subjectively overweighted. In Eichberger and Kelsey (2006) we show that much of our

analysis can be extended to the more general case where a number of good and bad outcomes

are over weighted.
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Appendix A. TECHNICAL APPENDIX

This appendix is not intended for publication. It is included to enable the referee and editor to

check the proofs. Each section gives details of the model and proves the claims made in the

corresponding section of the text.

A.1 The Traveller’s Dilemma

Consider Player 1. Suppose she holds beliefs which are represented by a neo-additive capacity:

ν(A|α, δ, π) = αδ+(1− δ) π(A). Given these beliefs, Player 1’s Choquet expected utility from

the choice of n1 is

V (n1;α, δ, π) = δ

∙
αmax

n2∈S
u1 (n1, n2) + (1− α) min

n2∈S
u1 (n1, n2)

¸
+(1− δ) ·

X
n2∈S

u1 (n1, n2) · π(n2).

Lemma A.1 Suppose Player 1’s beliefs are given by a neo-additive capacity ν(·|α, δ, n2) de-
fined by ν(∅|α, δ, n2) = 0, ν(S2|α, δ, n2) = 1, ν(A|α, δ, n2) = δα if n2 /∈ A, ν(A|α, δ, n2) =
δα+(1− δ) , if n2 ∈ A. Note that ν(·|α, δ, n2) has degree of pessimism α, degree of ambiguity
δ. If α and δ satisfy α < 0.5, δ < 0.5 and 0.1 6 αδ

1−δ 6 0.9, then the best-reply correspondence
is

R1(ν(·|α, δ, n2)) =

⎧⎨⎩ 299 for n2 < n(α, δ,R)

n2 − 1 otherwise
with

n(α, δ,R) := 300− 1− δ

αδ
[2R− 1] .

Proof. First note that R > 1, n1 = 299 weakly dominates n1 = 300, moreover, for α, δ > 0,

n1 = 300 is strictly dominated. Since the highest pay-off for n1 = 299 is greater than that for

n1 = 300, and under our assumptions on α and δ, the highest payoff gets positive weight in the

Choquet integral. Thus we may eliminate the possibility that either player plays strategy 300.

Consider n2 = 180. The CEU of a pure strategy n1 is easily computed as18

V (n1;α, δ, π
180) :=

Z
u1 (n1, ·) dν1(·|α, δ, π180)

= δ

∙
αmax

n2∈S
u1 (n1, n2) + (1− α) min

n2∈S
u1 (n1, n2)

¸
+ (1− δ) · u1 (n1, 180)

18 Here πn2 denotes the Dirac measure with support n2.
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=

⎧⎨⎩ δ [α (180 +R) + (1− α)180] + (1− δ) · 180 for n1 = 180,

δ [α (n1 +R) + (1− α) (180−R)] + (1− δ) · [180−R] for 180 < n1 < 300,

Consider next n2 ∈ (180, 300). The CEU of a pure strategy combination (n1, n2) is,

V (n1;α, δ, π
n2) :=

Z
u1 (n1, ·) dν1(·|α, δ, πn2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ [α (180 +R) + (1− α)180] + (1− δ) · [180 +R] for n1 = 180;

δ [α (n1 +R) + (1− α) (180−R)] + (1− δ) · [n1 +R] for 180 < n1 < n2;

δ [α (n1 +R) + (1− α) (180−R)] + (1− δ) · n1 for n1 = n2;

δ [α (n1 +R) + (1− α) (180−R)] + (1− δ) · [n2 −R] for n2 < n1 < 300.

(ii) For n2 = 180, V (n1;α, δ, π180) is strictly increasing in n1 for n1 > 180. Hence,

V (299;α, δ, π180)− V (180;α, δ, π180) = αδ (299− 180)− (1− αδ)R

= 119αδ − (1− αδ)R.

Thus

R1(ν(·|α, δ, 180)) =

⎧⎨⎩ 299 for αδ > R
119+R

,

180 otherwise.
Notice, for R = 5, R

119+R
= 5

124
≈ 0.041 6 0.1. Hence, R1(ν(·|α, δ, 180)) = 299. For

R = 180, we have R
119+R

= 180
299
≈ 0.6 and depending on the values of α and δ the best reply

may be R1(ν(·|α, δ, 180)) = 180.

(iii) Consider now n2 ∈ (180, 300).

For n1 ∈ (180, n2) ∪ (n2, 300) the CEU value is strictly increasing in n1. Hence, only

n1 = 180, n1 = n2 − 1, n1 = n2, or n1 = 299 can be best responses.

(a) Comparing n1 = n2 − 1 and n1 = n2, we observe that

V (n2;α, δ, π
n2)− V (n2 − 1;α, δ, πn2)

= {δ [α (n2 +R) + (1− α) (180−R)] + (1− δ) · n2}

− {δ [α (n2 − 1 +R) + (1− α) (180−R)] + (1− δ) · [n2 − 1 +R]}

= δα+ (1− δ) · [1−R] = [δα+ δ(R− 1)]− (R− 1) < 0
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holds, for R > 1 + α. For R = 5 and R = 180, this condition is satisfied. Hence, n1 = n2

cannot be a best reply.

(b) Comparing n1 = 180 and n1 = 299.

(b1) Suppose 181 6 n2 6 298, then we observe that

V (299;α, δ, πn2)− V (180;α, δ, πn2) = [δ [α (299 +R) + (1− α) (180−R)] + (1− δ) · [n2 −R]]

− [δ [α (180 +R) + (1− α)180] + (1− δ) · [180 +R]]

= 119δα+ (1− δ) · [n2 − 180− 2R] T 0⇔ n2 T 180 + 2R−
δα

1− δ
119.

By the assumption 0.1 6 αδ
1−δ 6 0.9, we obtain for R = 5, 180 > 180 + 2R − 0.1 · 119 >

180 + 2R− δα
1−δ119. Hence, for R = 5, V (299;α, δ, πn2) > V (180;α, δ, πn2) for all n2 > 180.

Moreover, for R = 180, we find that 180+ 2R− δα
1−δ119 > 180 + 2R− 0.9 · 119 > 300. Thus,

V (180;α, δ, πn2) > V (299;α, δ, πn2) in this case.

(b2) For n2 = 299

V (299;α, δ, π299)− V (180;α, δ, π299)

= {δ [α (299 +R) + (1− α) (180−R)] + (1− δ) · 299}

− {δ [α (180 +R) + (1− α)180] + (1− δ) · [180 +R]}

= 119δα+ (1− δ) · [119−R] T 0 ⇐⇒ 119

µ
1 +

αδ

1− δ

¶
T R.

For R = 5, this condition is satisfied, hence, n1 = 299 is the best reply to a belief concentrated

on n2 = 299. For R = 180, however, n1 = 180 may be the best reply.

(c) Comparing n1 = n2 − 1 with n1 = 299.

(c1) For n2 = 299, we obtain

V (298;α, δ, π299)− V (299;α, δ, π299)

= {δ [α (298 +R) + (1− α) (180−R)] + (1− δ) · (298 +R)}

− {δ [α (299 +R) + (1− α) (180−R)] + (1− δ) · 299}

= δα (−1) + (1− δ) · (R− 1) R 0

for R R 1 + αδ
1−δ . From δ < 0.5 we have R > 1 + αδ

1−δ for R > 2. Thus, n1 = 298 is the best
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reply to 299.

(c2) For n2 < 299, we obtain

V (n2 − 1;α, δ, πn2)− V (299;α, δ, πn2)

= {δ [α (n2 − 1 +R) + (1− α) (180−R)] + (1− δ) · (n2 − 1 +R)}

− {δ [α (299 +R) + (1− α) (180−R)] + (1− δ) · (n2 −R)}

= δα (n2 − 300) + (1− δ) · (2R− 1) ,

thus

n2 R 300−
1− δ

αδ
[2R− 1] =: n(α, δ,R).

Hence,

R1(ν(·|α, δ, n2)) =

⎧⎨⎩ 299 for n2 < n(α, δ,R),

n2 − 1 otherwise.
Notice, for R = 5, n(α, δ, R) can range between 210 and 290. For R = 180, we have

180 > n(α, δ, R). Thus, n1 = n2 − 1 is the best response for all n2 > 180.

The following proposition yields the symmetric equilibrium under ambiguity of this game.

The notation [x] refers to the smallest integer larger or equal to x. For ease of notation, we will

suppress the arguments of the function n(α, δ,R) and will write n for its value.

Proposition A.2 (EUA of the traveller’s dilemma) Suppose the conditions of Lemma A.1 are
satisfied.

1. For R = 180, in the unique symmetric EUA both players have beliefs:
π∗(180) = 1.

In response, both players choose n∗1 = n∗2 = 180.

2. For R = 5, in the unique symmetric EUA both players have beliefs:

π∗([n]) =

∙
1 +

αδ

1− δ

¸
· 299− [n]
299− [n] +R

,

π∗(299) =
R

(299− [n] +R)
− αδ

1− δ
· (299− [n])
(299− [n] +R)

,

where
n(α, δ,R) := 300− 1− δ

αδ
[2R− 1] .

In response, both players choose n∗1, n∗2 ∈ {[n] , 299}.

26



Proof. The equilibrium beliefs π∗ of an EUA must make players indifferent between the claims

of [n] and 299.Clearly, all strategies which are not best responses will be played with probability

zero. Hence, we can set π∗(n) = 0 for all n /∈ {[n] , 299}. For notational convenience, let

π∗([n]) = β and π∗(299) = 1− β. An EUA is defined by the equation,

V ([n] ;α, δ, π∗)− V (299;α, δ, π∗) = 0.

Equivalently, one has

δ [α ([n] +R) + (1− α) [180−R]] + (1− δ) · {[n] · π∗([n]) + ([n] +R) · π∗(299)}

−δ [α (299 +R) + (1− α) [180−R]] + (1− δ) · {([n]−R) · π([n]) + (299) · π(299)}

= δα ([n]− 299) + (1− δ) · {R · β + ([n]− 299 +R) · (1− β)} = 0.

Solving for β, we obtain

β =

∙
1 +

αδ

1− δ

¸
· 299− [n]
299− [n] +R

.

Hence,

π∗([n]) =

∙
1 +

αδ

1− δ

¸
· 299− [n]
299− [n] +R

π∗(299) =
R

(299− [n] +R)
− αδ

1− δ
· (299− [n])
(299− [n] +R)

.

A.2 Matching Pennies

Let x be the payoff of Player 1 at the strategy combination (T, L). Consider first Player 1’s

payoffs:19

V1(T )− V1(B) = δ [αx+ (1− α) 40] + (1− δ) [x · π(L) + 40 · π(R)]

−δ [α80 + (1− α) 40]− (1− δ) [40 · π(L) + 80 · π(R)]

= δα (x− 80) + (1− δ) [x·π(L)− 40] .

19 For convenience we suppress α, δ and π.
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Similarly, for Player 2 we obtain

V2(L)− V2(R) = δ [α80 + (1− α) 40] + (1− δ) [40 · π(T ) + 80 · π(B)]

−δ [α80 + (1− α) 40]− (1− δ) [80 · π(T ) + 40 · π(B)]

= (1− δ)40 · [π(B)− π(T )] = (1− δ)80

∙
1

2
− π(T )

¸
.

In game B, where x = 80,

π∗(L) = π∗(R) =
1

2
,

π∗(T ) = π∗(B) =
1

2
,

is the only EUA for any degree of optimism α and any degree of ambiguity δ.

Straightforward computations show that when x = 320,

V1 (T )− V1 (B) = 240δa+ (1− δ)320

∙
π(L)− 1

8

¸
> 240δa− (1− δ)40.

For values of αδ ≈ 0.25 and δ ≈ 0.5, which are approximately the average values found in

Kilka and Weber (2001), T will be preferred to B for any beliefs about player 2’s behavior.

Consistent beliefs of Player 2 are π(T ) = 1 for which value

V2(L;α, δ, π)− V2(R;α, δ, π) = (1− δ)80

∙
1

2
− π(T )

¸
< 0

follows. Hence,

π∗(L) = 0, π∗(R) = 1,

π∗(T ) = 1, π∗(B) = 0,

will be equilibrium beliefs in the unique EUA for optimism and ambiguity parameters close to

αδ ≈ 0.25 and δ ≈ 0.5.

A.3 A Coordination Game with a Secure Option

Consider players who view their opponents behavior as ambiguous, one obtains the following

evaluations of their actions. For GameD, one obtains the CEU-payoff differences:

V1(H;α, δ, π2)− V1(L;α, δ, π2) = 90δα+ 180(1− δ)

∙
π2(H)−

1

2
π2(L)

¸
and V2(H;α, δ, π1)− V2(L;α, δ, π1) = 90δα+ 180(1− δ)

£
π1(H)− 1

2
π1(L)

¤
.

With the level of ambiguity, δ ≈ 0.5, and ambiguity-attitudes, αδ ≈ 0.25, there remain
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multiple EUA leading either to coordinated behavior on hH,Hi or hL,Li. If ambiguity is

sufficiently high, δ > 5
7
, even a low degree of optimism α = 0.4 will induce Player 1 to choose

the strategy H, no matter what belief π2 she holds regarding the opponent. In this case, the only

EUA would be π∗1(H) = π∗2(H) = 1.

In Game E, we obtain the following CEU payoff:

V1(H;α, δ, π2)− V1(L;α, δ, π2) = −220δα+ (1− δ) · [580 · π2(H) + 310 · π2(L)− 400]

6 −220δα+ 180(1− δ).

In this case, the empirically observed values of αδ ≈ 0.25 and δ ≈ 0.5 are high enough to

induce Player 1 to choose strategy L, no matter what beliefs π∗2 she holds over her opponent’s

behavior. For Player 2 the CEU payoff difference remains unchanged. Hence, for ambiguity and

optimism represented by the parameter values αδ ≈ 0.25 and δ ≈ 0.5, the unique equilibrium

under ambiguity has beliefs π∗1(L) = π∗2(L) = 1.

A.4 A Minimum-Effort Coordination Game

Consider player 1. Her (Choquet) expected pay-off is given by:

V1(e1;α, δ, π
e2) = δ ·

∙
α · max

e2∈E2
u1(e1, e2) + (1− α) · min

e2∈E2
u1(e1, e2)

¸
+ (1− δ) · u1(e1, e2)

= δ · [α · (e1 − c · e1) + (1− α) · (110− c · e1)] + (1− δ) · (min{e1, e2}− c · e1)

= δ · (1− α) · 110 + [δ · α · e1 + (1− δ) ·min{e1, e2}]− c · e1.

For any level of effort e2, which the opponent may choose the payoff from increasing effort by

one unit is: ⎧⎨⎩ [δ · α+ (1− δ)]− c if e1 < e2,

δ · α− c if e1 > e2.

Hence, choosing the highest effort level is always optimal if δ·α−c > 0. The unique equilibrium

beliefs of EUA are in this case π∗1(170) = π∗2(170) = 1. Conversely, for c > [δ · α+ (1− δ)]

the lowest level of effort is optimal, yielding an EUA with beliefs π∗1(110) = π∗2(110) = 1.

With the average values of αδ ≈ 0.25 and δ ≈ 0.5, one has δ · α − c > 0 for c = 0.1 and

c > [δ · α+ (1− δ)] for c = 0.9. For marginal costs of 0.1 one would expect players to try to

29



coordinate on the highest effort level, while for c = 0.9 they should coordinate on the lowest

effort level.
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