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Abstract

The paper proposes a framework for modelling cointegration in fractionally integrated
processes, and considers methods for testing the existence of cointegrating relationships using
the parametric bootstrap. In these procedures, ARFIMA models are fitted to the data, and
the estimates used to simulate the null hypothesis of non-cointegration in a vector autore-
gressive modelling framework. The simulations are used to estimate p-values for alternative
regression-based test statistics, including the F goodness-of-fit statistic, the Durbin-Watson
statistic and estimates of the residual d. The bootstrap distributions are economical to com-
pute, being conditioned on the actual sample values of all but the dependent variable in the
regression. The procedures are easily adapted to test stronger null hypotheses, such as sta-
tistical independence. The tests are not in general asymptotically pivotal, but implemented
by the bootstrap, are shown to be consistent against alternatives with both stationary and
nonstationary cointegrating residuals. As an example, the tests are applied to the series for
UK consumption and disposable income. The power properties of the tests are studied by
simulations of artificial cointegrating relationships based on the sample data. The F test per-
forms better in these experiments than the residual-based tests, although the Durbin-Watson
in turn dominates the test based on the residual d.

1 Introduction

Cointegration methods are well established as a basis for testing relationships amongst nonsta-
tionary time series exhibiting stochastic trends. These methods invoke the ‘I(1) paradigm’ to
represent nonstationary series. The crucial implication is that the ordinary differences of a se-
ries are stationary and weakly dependent, having either a stable and invertible ARMA form or,
at worst, a representation with comparable asymptotic properties. To validate the asymptotic
analysis customarily used in these methods it is necessary, at least, that the partial sums of the
difference series, normalised by n−1/2 where n denotes sample size, should converge to Brownian
motion.1 In routine applications of the method this assumption is rarely tested, beyond making
the decision whether to treat a series as I(0) or I(1).

The assumption in cointegration analysis that unity is a ‘special’ value for the autoregressive
root has often been criticised, especially by Bayesians (e.g. Sims and Uhlig, 1991). An alternative
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1Davidson (2001a) analyses conditions for convergence in a variety of time series models.
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approach is to embed I(1) processes in the wider class of fractionally integrated processes, or I(d)
for real d > 0. Baillie (1996) provides a survey. Recent papers looking at fractional cointegration
include Cheung and Lai (1993), Baillie and Bollerslev (1994), Robinson and Marinucci (1998),
Jeganathan (1999), Kim and Phillips (2000), Marinucci (2000), Davidson (2001b). For applica-
tions see among others Booth and Tse (1995), Masih and Masih (1995), Sephton (1996), and
Duecker and Startz (1998).2

In this context, none of the usual inference procedures are appropriate. On the one hand,
the usual central limit theorems and associated limit results for I(0) data do not apply when
the data series are fractional, and the standard t and F tests are not generally valid. Spurious
correlations can be expected, for reasons closely related to the spurious regressions analysis of
I(1) series (Phillips 1986). This case has been analysed by Marmol (1996, 1998). On the other
hand, the conventional cointegration analysis is equally inapplicable. The usual tests for (non-
)cointegration depend on the statistics converging to known functionals of Brownian motion.
In the I(d) case with d 6= 1, the corresponding functionals are related to the limit processes
called fractional Brownian motion. These are distinguished from regular Brownian motion by
exhibiting correlated increments (see e.g. Davidson and de Jong, 2000) and the usual tabulations
don’t apply. Thus, neither of the conventional approaches to testing for a time series relationship
is available. Moreover, the statistics are asymptotically non-pivotal, meaning that their limiting
distributions depend on d and other nuisance parameters. When d is arbitrary there is no prospect
of tabulating them for general use, even as first-order asymptotic approximations.3

In these circumstances, simulation is a natural approach to the testing problem, and this
paper investigates the use of parametric bootstrap tests. Section 2 sets the scene by introducing
a modelling framework for fractional cointegration. Section 3 discusses the issues relating to the
design and implementation of bootstrap tests. Section 4 then introduces the test statistics to be
used in this framework. It derives the limiting null distributions and consistency properties of the
Durbin Watson and F statistics, in this context. Section 5 applies the methods to a well-known
data set, UK nondurable consumption and personal disposable income. The properties of the
tests are studied by Monte Carlo experiments, and while these results are specific to the empirical
application, such evaluations should be viewed as a routine feature of the bootstrap approach.
Section 6 contains concluding remarks. Additional technical results are given in the Appendix.

2 Fractional Cointegration

2.1 Fractionally Integrated Processes

Following Granger (1986), a set of I(d) variables are said to be cointegrated, or CI(d, b), if there
exists a linear combination that is I(d − b) for b > 0. In the usual applications of the concept,
d = b = 1, but even with integer values of d and b, it is not difficult to envisage generalisations.
The multicointegration model of Granger and Lee (1990), for example, can be fitted into this
framework by formally admitting the integrals of I(1) variables to the data set. However, I(2) is a

2Be careful to distinguish the case of ‘fractional cointegration’ where the data are fractionally integrated, from
the case where they are I(1) but have a fractionally integrated linear combination. While we do not address the
latter problem specifically because the testing problem can in principle be treated as a standard one, it is an
important special case of the setup examined here. See for example Dittmann (2000).

3Breitung and Hassler (2002) show how to construct asymptotically pivotal tests of non-cointegration and
cointegrating rank, by fractionally differencing the data, so that the hypothesis becomes one of I(0) against I(−b)
for b > 0. Their statistic is chi-squared under H0, and so can also be viewed as an alternative to the conventional
cointegrating rank tests, using standard asymptotics. Their approach still depends on estimation of d, and a
comparison with the present approach is an interesting topic for future work.
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relatively unusual feature of macroeconomic series. A more commonly arising issue is for data to
have bounds on their range of variation (e.g. interest or employment rates) in spite of exhibiting
persistent local trends. Such series may be modelled as I(d) where d is a real number between 0
and 1. Alternatively, a process might have long memory albeit stationary increments, and hence
be I(d) for 1 < d < 3/2. Modelling dynamic relationships between processes of this type requires
a generalization of the conventional cointegration setup.

2.2 Fractional VECMs

Granger (1986) suggests generalising the vector ECM model by an equation that can be recast
in the form4 h

B(L) + ((1− L)−b − 1)αβ0
i
(1− L)dxt = D(L)εt (2.1)

where xt and εt are N × 1, εt ∼ i.i.d.(0,Σ), B(L) and D(L) are finite-order matrix polynomials
in the lag operator with all roots outside the unit circle. The constant matrices α and β are
N×r, having rank r, representing the error correction and cointegrating coefficients respectively.
Note that the zero-order term of the expansion of (1−L)−b is unity, and therefore model (2.1) has
the conventional error-correction representation such that current-dated values of the variables
occur only in the leading term. However, also note that the condition

(1− L)d−bβ0xt ∼ I(0) (2.2)

is required so that the equation balances, having both sides I(0). Setting d = b = 1 yields the
usual Johansen (1988, 1991) style VECM, but d and b can be real values with d > 0 and 0 < b ≤ d.
In this model, all the elements of xt exhibit the same order of integration, not necessarily unity,
and similarly the cointegrating residuals β0xt are all of order d− b. Duecker and Startz (1998),
for example, estimate a bivariate model of US and Canadian interest rates having this general
form.

Once the possibility of fractional cointegration has been admitted, however, a number of
difficult issues arise. If d has no special value, there is no logical necessity for the assumption
that d is the same for all the series under consideration, especially when the empirical facts do
not support this restriction. Therefore, a dynamic modelling framework that can formally admit
the generation of series with different d values needs to be established. Consider the following
generalisation. Letting

∆(L) = diag{(1− L)d1, . . . , (1− L)dN} (2.3)

where d1, . . . , dN are any nonnegative reals, and similarly

K (L) = diag{(1− L)b1 , . . . , (1− L)bN} (2.4)

where 0 ≤ bi ≤ di, write £
B(L) +αβ0(K (L)−1 − I )¤∆(L)xt = D(L)εt. (2.5)

Here, there is an understanding that the system generatesN series integrated to orders d1, . . . , dN ,
such that

∆(L)xt = wt ∼ I(0) (2.6)

(defining wt). To balance the equation, it is required that

β0K (L)−1wt ∼ I(0) (2.7)

4See Granger (1986), equation (4.3). We adopt here the more standard VECM notation, similar to Johansen
(1988, 1991).
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and in this sense, the system exhibits cointegration. Letting bi = b and di = d for all i, it
reproduces (2.1). We refer to this class as fractional vector error correction models, or FVECMs.

The FVECM provides a very general modelling framework, but the case closest to the standard
VECM is that where di − bi = a ≥ 0 for all i, such that

K (L)−1∆(L) = (1− L)aI .
For clarity, and without loss of generality, consider the case a = 0. The question of interest is
whether this model has the usual property that

β0xt ∼ I(0). (2.8)

It is clear that to have this property, the model requires further restrictions. Let the variables be
indexed in decreasing order of magnitude of di. If d1 > d2, then (2.8) can hold only if the first row
of β is zero, so that x1t does not appear in any cointegrating relation. However, also note that
provided d1 = d2 there is no reason why variables integrated to lower order should not appear in
the same cointegrating relation. To fix ideas, let N = 3, and r = 1. It is clearly possible that

β1x1t + β2x2t ∼ I(d3) (2.9)

for d3 < d1, and hence if x3t ∼ I(d3) that
β1x1t + β2x2t + β3x3t ∼ I(0) (2.10)

A necessary condition for cointegration is that the two largest orders of integration of variables
in the relation are equal. However, no other restrictions are implied.

In the remainder of the paper, we develop simple regression-based tests for the existence of
such relationships. For the sake of simplicity, the asymptotic analysis is carried out on models
of the form (2.1), with the same d assumed for all the variables, but the generalization to (2.5),
subject to the cited restriction, represents a relatively minor extension apart from the notational
overhead. A variant of this type is examined in Davidson (2000b).

3 Bootstrap Tests for Non-cointegration

The bootstrap technique in econometrics can play two distinct roles: to improve the first-order
approximations of asymptotically pivotal statistics, and to yield first-order asymptotic approxi-
mations in cases where tests are not asymptotically pivotal. The second of these roles is played
in the present application. The application of bootstrap methods to time series data is discussed
in, for example, Shao and Tu (1995), Li and Maddala (1996, 1997) and Horowitz (1997, 2000).
The block resampling method is sometimes advocated for capturing dependence in a time series
application, but that requires stationarity. The approach to be applied here is the parametric
bootstrap, otherwise known as the recursive bootstrap. For an application of a similar method,
to a test of restrictions on the long-run parameters in a standard VECM, see Fachin (2000).

3.1 The Parametric Bootstrap

In the test of fractional cointegration, the bootstrap test entails the following steps.

1. ARFIMA(p, d, q) processes are fitted to the variables in the model.

2. The series are fractionally differenced according to the estimates from step 1, to estimate
wt in (2.6), and a dynamic model of the differences is constructed. The object is to estimate
model (2.1) or (2.5) subject to the restrictions of the null hypothesis, α = β = 0. There
are several different approaches to this step, to be detailed in Section 3.4 below.
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3. The residuals from stage 2, estimating εt, are re-sampled with replacement and used to
generate series according to (2.1) or (2.5), under H0. Any suitable statistics to test for a
cointegrating relationship can be computed from these. The values of these statistics in the
observed data are located in the bootstrap distributions to yield an estimated p-value.

These methods should yield valid first-order approximations to the true p-values. The appli-
cation of the bootstrap to long memory models has not been much researched to date, although
a recent application to tests of integration order (not cointegration) is Andersson and Gredenhoff
(1998). Some well-known issues point to the need for caution. Basawa et. al. (1991a,b) show
that bootstrap tests for unit roots, with the stable AR(1) as alternative, are inconsistent. The
problem arises because of the well-known discontinuity in the family of distributions of statistics
based on AR processes, at the point where the root is unity. Here, the order of magnitude of the
error-of-estimate jumps from n−1/2 to n−1, and bootstrapping with an estimated autoregressive
root may place it the wrong side of the discontinuity.

However, unlike the case of the AR coefficient there is no discontinuity in the distributions of
statistics based on I(d) processes, either at the point d = 1 or elsewhere.5 Dufour (2000, Propo-
sition 6.3) demonstrates the asymptotic validity of bootstrap p-values based on asymptotically
non-pivotal statistics, under an equicontinuity condition on the family of distribution functions.
The distributions of our statistics should satisfy these conditions everywhere. There are no known
reasons to doubt the asymptotic validity of bootstrap testing of the value of d, although a number
of important issues of test design remain to be considered.

3.2 Treatment of the Nuisance Parameters

Dufour (2000) points out that exact α-level tests can be performed by Monte Carlo, even in the
presence of nuisance parameters under the null, if these parameters are treated appropriately.
Denoting these parameters by θ ∈ Ω0 where Ω0 denotes the region of the parameter space
corresponding to H0, a test of level α is performed, by definition, by rejecting only if

sup
θ∈Ω0

G(θ) ≤ α (3.1)

where G represents the p-value, or probability of the test statistic falling in the critical region
under H0. In other words, the unknown parameters should be replaced by their ‘worst-case’
values. This implies estimating them by maximizers of G, according to the criterion in (3.1).
Dufour calls these maximised Monte Carlo (MMC) tests.

By contrast, the bootstrap method can be identified with a Monte Carlo test in which θ is
replaced by a consistent estimate, and these tests are only asymptotically correct α-level tests.
The asymptotic approximation of the raw bootstrap can be poor, although it can be much
improved by methods such as pre-pivoting (Beran 1988). It is however worth remarking that the
hazard due to approximation error is asymmetric. In the event of rejection at the chosen level,
one would wish to know whether the result might be reversed by a different choice of θ, yielding a
larger G and hence a more conservative test. If the hypotheses of interest are not rejected at the
chosen significance level, the test outcome is the same as the MMC test outcome. The bootstrap
approximation can produce, at worst, ‘false positives’ at the α level.

5The normalized partial sums switch to a.s. continuity in the limit at d = 1/2, but note that the distributions
of functionals of these processes do not experience a discontinuous shift comparable to the AR-unit-root model.
For example, the OLS estimator with I(d) regressors and I(0) disturbances converges at n1/2 (independent of d)
for d < 1/2, and at rate nd for d ≥ 1/2 (see Davidson 2001b).
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3.3 ARFIMA estimation

Successful implementation of these methods depends on being able to compute good estimates of
the fractional integration parameters. Maximum likelihood estimation in both the time domain
and the frequency domain has been extensively studied, see Sowell (1992), Cheung and Diebold
(1994), Hauser (1999) among other references. The Whittle frequency domain likelihood (see Fox
and Taqqu 1986, Velasco and Robinson 2000) has been adopted for this study. It is simple to
compute and has been found both fast and reliable, generally locating a point close to the Sowell
(1992) time domain estimate when both are computed.

Model selection is guided by the Schwarz (1978) criterion supplemented by a measure of
residual autocorrelation. The ARFIMA model has generally good characteristics in samples of
reasonable size, with well determined estimates of the fractional integration parameter d that
are not too sensitive to the choice of ARMA specification. The well-known exception to this
generalization is a tendency for the ARMA(p, q) with an autoregressive root near unity to mimic
the ARFIMA(p, d, q) with d close to unity. In certain cases, adding an autoregressive term can
dramatically reduce the estimate of d. This is an identification problem, the ARIMA(p, 1, q)
being nested within both the ARMA(p + 1, q) and the ARFIMA(p, d, q), and suppressing the
extra AR term may resolve it.

Experimenting with a range of different macroeconomic series of lengths in the 100-500 range,
two broad lessons emerge. First, it is notable how often the ‘pure-fractional’ case, with p = q = 0,
provides an adequate representation, in terms of both maximizing the Schwarz criterion and show-
ing no significant residual autocorrelation. ARFIMAs are frequently more parsimonious in this
sense than their ARIMA counterparts. Second, some series are much more amenable to fractional
modelling than others, for no reason that is immediately apparent from eyeballing the time plot.
By ‘amenable’ may be meant either the existence of an adequate low-order specification, the
robustness of the d-estimate to alternative ARMA specifications, or both of these features. Pos-
sibly, these differences can be attributed to the presence of nonlinear dependence features that
can be handled with varying degrees of success by the ARFIMA class in different realizations.
This is an issue that merits further study.

3.4 Representation of the Null Hypothesis

Setting b = 0 in (2.1), or K (L) = I in (2.5), gives

B(L)wt = D(L)εt (3.2)

where wt ∼ I(0) is the vector of fractional differences. Step 2 of the bootstrap procedure entails,
in principle, estimating this model assuming H0 to be true, subject to the caveats on choice of
specification discussed below. Fractional differencing must be approximated in finite samples
since it involves lags of infinite order. After integer differencing as necessary to give |d| < 1/2,
this is performed using the approximation

(1− L)dxt ≈
t−1X
j=0

bjxt−j t = 1, . . . , n (3.3)

where b0 = 1 and

bj =
−dΓ(j − d)

Γ(1− d)Γ(j + 1) (3.4)

for j > 0. These coefficients are easily computed by the recursion bj = (j − d− 1)bj−1/j.
The bootstrap replications could then, in principle, be performed by randomly resampling

the residuals ε̂t (say), and passing the series so generated back through the filter (3.2) to yield
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a resampled series {w∗t }n1 = w∗1 , . . . ,w∗n. This would be integrated back to get the resampled
series {x∗t }n1 , non-cointegrated by construction but having, asymptotically, the same short-run
dynamics as the observed data.

For a model involving several variables, such a procedure threatens to be computationally
burdensome. However, the tests considered in this paper are simple regression-based statistics,
implying the partition xt = (yt, z 0t)0 where yt is the scalar ‘explained’ variable, and zt the explana-
tory variables. An important feature of the setup is that the whole procedure may be conditioned
on zt. In other words, the observed regressors are used in the bootstrap replications, and yt alone
is resampled. In this case, the VAR in wt should be replaced by a dynamic regression, used to
generate a residual series with the schematic form

ε1t = ∆
dyt −E(∆dyt| . . .∆dzt+1,∆dzt,∆dzt−1,∆dyt−1, . . .). (3.5)

Note the inclusion in this regression of both leads and lags of the conditionally fixed variables.
The null hypothesis does not rule out the possibility that ∆dyt may Granger-cause ∆dzt, and it
is necessary to purge the residuals of this potential dependence.6 Once this is done, however,
they can be randomly resampled and back-filtered through the fitted form of (3.5) to generate
the bootstrap series {∆dyt}n1 . Asymptotically, these series exhibit the same pattern of cross-
autocorrelation with the observed {∆dzt}n1 as the original series. Finally, re-integrating yields a
resampled series {yt}n1 conforming to the null hypothesis, such that ∆dyt is generally dynamically
correlated with ∆dzt, but (yt, zt) is not a cointegrated set. This approach has clear advantages
over resampling the whole data set. It is computationally much more tractable, and should also
yield a more powerful test, since the conditional null distributions of the test statistics have lower
dispersion, in general, than the unconditional distributions.7

It should be emphasised that the dynamic modelling exercise at Step 2 is not intended to cap-
ture the DGP of the observed data. Its object is to allow the correlation structure of {∆dyt,∆dzt}
under the null hypothesis to be recreated from the resampled residuals. There is a major penalty
to be incurred by overfitting it. This is best illustrated by considering a leading case of the
alternative hypothesis, say

yt = γ0zt + ut ut ∼ i.i.d., independent of zt. (3.6)

Clearly, in this case ε1t in (3.5) corresponds to ut. For clarity let d = 1, and note that if (3.6) is
true the criterion of choosing the best-fitting representation in the observed data leads inevitably
to

ε1t = ∆yt +∆yt−1 +∆yt−2 + · · ·− γ 0∆zt − γ 0∆zt−1 − γ 0∆zt−2 − · · · .
Obviously, backsolving this equation generates yt not ∆yt. Note that the test based on the best-
fitting representation is asymptotically correctly sized, since if H0 is true the appropriate model
is chosen, based on the data. However, this test would have little power against alternatives such
as (3.6), since the short-run dynamics would tend to be contaminated by the long-run dynamics
in that case. There is a balance of advantages here, and the optimal choice of lag length will
depend on sample size, but as a rule of thumb, one or two lags and leads should often suffice to
represent the dynamics adequately if H0 is true, yielding a correctly sized asymptotic test.

6Compare the analyses of e.g. Phillips and Loretan (1991), Saikkonen (1991) and Stock and Watson (1993).
These authors point out that the inclusion of both leads and lags in a least squares cointegrating regression is
necessary to purge short-run dynamic effects. The present procedure implements this strategy under the null
hypothesis of non-cointegration, with the specific object of rendering the residuals orthogonal to the conditionally
fixed variables in the bootstrap.

7Although the full VAR specification of (2.5) is only implicit in this framework, it plays the role of formally
justifying the linear modelling of the short-run dynamics in (3.5).
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This approach also points to the option of testing stronger hypotheses than just non-cointegr-
ation. Thus, if ∆dzt and its leads and lags are omitted from the conditioning set in (3.5), which
is equivalent to modelling yt solely using its univariate ARFIMA representation, this corresponds
to the null of statistical independence between yt and zt. The additional restrictions can be
viewed, in terms of (2.1) or (2.5), as corresponding to the block diagonality of B(L), D(L) and
Σ in respect of their first row/column. Below we call this the strong null, in contrast to the weak
null of simple noncointegration. Further, by suppressing the leads but not the lags from (3.5), a
‘semi-weak’ null can be specified, under which yt is neither cointegrated with nor Granger-causes
zt. Testing each of this hierarchy of non-dependence hypotheses may be a useful exercise, since if
one can be rejected and not another, this can provide a new view of the evidence for a relationship
contained in the sample.

4 The Choice of Test

4.1 Residual-based Tests

In this section, we assume for simplicity that the DGP has the form (2.1). Consider the regression

yt = γ 0zt + ut (4.1)

where xt = (yt, z 0t)0 ((k + 1)× 1) is an I(d) vector, for d > 1/2.8 xt is a nonstationary fractional
process that can be thought of as possibly a subvector from a model with structure (2.1). It is
assumed to satisfy the weak convergence property,9

n1/2−dx[nδ]
d→ X (δ) 0 ≤ δ ≤ 1

where X = (Y,Z ) is a fractional Brownian motion with parameter d.10 The null hypothesis
under test is H0 : b = 0, implying that ut ∼ I(d) for any choice of γ. Under the alternative
hypothesis b > 0, there exists γ such that ut ∼ I(d− b).

Let Ψ ((k + 1)× (k + 1)) represent the covariance matrix of X , defined by

EX (δ)X (δ)0 = δ2d−1Ψ 0 ≤ δ ≤ 1. (4.2)

It is shown in the Appendix that when H0 is true, Ψ has full rank, and if γ̂ is the OLS estimator
of γ then

γ̂
d→ Ψ−122Ψ21 + ζ (4.3)

where Ψ22 (k × k) and Ψ21 (k × 1) are derived from the obvious partition of Ψ, and ζ is a
zero-mean random vector. On the other hand, when b > 0, Ψ is singular, the vector (1,−γ0) lies
in its null space, and it can be shown (see Davidson 2001b, Table 1) that

γ̂ − γ = Op(nmax{−b,1−2d}). (4.4)

With the exception of Duecker and Startz (1998) who estimate the FVECM directly by
maximum likelihood, the applied studies referenced in the introduction proceed by estimating d
from the OLS regression residuals. Except for Baillie and Bollerslev (1994), who use approximate

8Note that the case d = 1/2 is nonstationary but requires special treatment, and is not considered here.
9 d→ denotes convergence in distribution.

10See Davidson and de Jong (2000) for details. Note that this result establishes the limit as fractional Brownian
motion of type I, in the typology of Marinucci and Robinson (1999).
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maximum likelihood but do not attempt to test for non-cointegration, these studies base their
tests on the Geweke and Porter-Hudak (1983) (GPH) estimator of d − b, applied to the OLS
residuals.

If the least squares residuals are

ût = ut + (γ̂ − γ)0zt (4.5)

where ut ∼ I(d−b) and zt ∼ I(d), consider the cases d−b < 1/2 and d− b > 1/2.11 In the former
case, note that with d > 1/2,

(γ̂ − γ)0zt = Op(nmax{1/2−d,d−b−1/2}) = op(1)

and hence, the residuals can proxy for the true disturbances asymptotically. On the other hand, if
d− b > 1/2 then ut is nonstationary but satisfies a functional central limit theorem for fractional
processes (see Davidson and de Jong 2000). Letting ξ (k × 1) denote the limit in distribution of
nmin{b,2d−1}(γ̂ − γ) we have the weak convergence

n1/2−d+bû[nδ]
d→ U(δ) + ξ0Z (δ) 0 ≤ δ ≤ 1 (4.6)

where U is a fractional Brownian motion of order d − b, so intererestingly enough, the residual
process does not share the memory characteristics of the true disturbances, even in the limit.
However,

∆ût = ∆ut + (γ̂ − γ)0∆zt (4.7)

where the first right-hand side term is Op(1) and the second is Op(n−b), provided d < 3/2.
Therefore, as shown by Hassler, Marmol and Velasco (2000), log-periodogram regression can be
based either on ût to estimate d − b, or on ∆ût to estimate d − b − 1, depending on which of
these quantities falls in (−1/2, 1/2). In Section 5 we consider as a candidate for bootstrapping a
procedure closely related to the residual GPH test, based on the Robinson (1994) nonparametric
estimator of d.

4.2 The Dickey-Fuller/Durbin-Watson Approach

Other candidate test statistics based on the regression residuals are the (unaugmented) Dickey-
Fuller (DF) and Durbin-Watson (DW) statistics. In fact, tests based on DF = nφ̂ and on
DW ≈ −2φ̂ where

φ̂ =

Pn
t=2 ût−1∆ûtPn
t=2 û

2
t−1

(4.8)

are virtually equivalent from the point of view of computing bootstrap p-values. Note that the
weak-dependence correction (augmentation) of the DF is inappropriate when∆ût is long memory,
and these statistics are not asymptotically pivotal in any case, due to dependence on d. In a
bootstrap exercise, either form of the statistic, or φ̂ itself, will serve equally well. In the example
of Section 5 the DW is cited for no better reason than its familiarity.

Letting θ̂ = (1, −γ̂), note that

φ̂ =
θ̂
0Pn

t=2 xt−1∆xtθ̂

θ̂
0Pn

t=2 xt−1x
0
t−1θ̂

. (4.9)

11As noted above, the case d− b = 1/2 requires separate treatment.
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Assume H0 is true. It is shown in the Appendix that for 1/2 < d < 3/2, and subject to the
additional assumption E(ε4jt) <∞ for j = 1, . . . k + 1 in the case d > 1, that

nmin{1,2d−1}φ̂ d→ θ0Jθ
θ0Hθ

(4.10)

where θ = (1, −(Ψ−122Ψ21 + ζ)0)0, H =
R 1
0 XX

0ds, and

J =


1

Γ(d− 1)
R 1
0 ξ
d−2 R 1−ξ

0 XdW 0dξ +Λ, d > 1R 1
0XdX

0 +Λ∗, d = 1

Λ∗, d < 1.

(4.11)

Thus, there are three distinct cases to consider. In the formula corresponding to d > 1, W is a
regular Brownian motion defined by the weak convergence

n−1/2
[nδ]X
t=1

wt
d→W (δ) 0 ≤ δ ≤ 1 (4.12)

where wt = (1− L)dxt, and

Λ = lim
n→∞n

1−2d
nX
t=2

t−1X
j=1

E(∆xj∆x
0
t). (4.13)

This matrix satisfies the relation
Ψ = Λ+Λ0 (4.14)

since when ∆xt is a long-memory process, its contemporaneous covariances are asymptotically
negligible relative to the summed autocovariances.

The case d = 1 is the ‘standard’ result, in which X =W . In this case the decomposition

Ψ = Σ+Λ∗ +Λ∗0 (4.15)

holds where Σ = E(∆xt∆x 0t). and Λ∗ =
P∞
j=1E(∆xt−j∆x

0
t) <∞.

However, if d < 1 then
Σ+Λ∗ +Λ∗0 = 0. (4.16)

In this case the stochastic integral (the random component of J ) is of smaller order of magnitude
than n. Ψ is still defined by (4.2), but it does not have a decomposition either of the form (4.14)
or (4.15). Note that Λ and Λ∗ are different matrices, being different functions of d and the other
model parameters as well as having different normalizations.

Since these distributions depend both on d and on the parameters of the short-run dynamics
in (2.1), the object of modelling the fractional differences in the simulation procedure described
in Section 3.4 can be seen as ensuring that the bootstrap distribution of φ̂ is that of (4.10), to a
first-order approximation. The case Ψ21 = 0, such that the distribution of γ̂ has zero mean in
the limit, corresponds to the ‘strong null’ hypothesis of independence between yt and zt.

The test based on this distribution is consistent against alternatives in which ut is a mean
reverting process. It is shown in the Appendix that with b > 0,

nmin{1,2d−1}|φ̂| = Op(nθ) (4.17)
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where12

θ =




1, 0 < d− b < 1/2
2(b− d+ 1), 1/2 < d− b < 1
0, 1 < d− b < d

, d > 1

(
2d− 1, 0 < d− b < 1/2
2b, 1/2 < d− b < d

, d ≤ 1.

(4.18)

4.3 The Goodness of Fit Test

The third test proposed is based on the usual F statistic for the joint ‘significance’ of the regres-
sors. This is the statistic whose asymptotic form is13

F = n

Pn
t=1 y

2
t −

Pn
t=1 û

2
tPn

t=1 û
2
t

. (4.19)

Like the GPH and DW/DF, the statistic is not asymptotically pivotal, but since it is based on
the goodness of fit of the regression, and not merely on the properties of the residuals, it promises
additional sensitivity in detecting a relationship. The main problem is to tabulate the distribution
under the null hypothesis. The ‘spurious regression’ phenomenon implies that F = Op(n) under
the null hypothesis b = 0. It is shown in the Appendix that on H0,

F

n
d→
³
Ψ
−1/2
22 Ψ21 +

p
ψ11.2G

−1
22 G21

´0
G22

³
Ψ
−1/2
22 Ψ21 +

p
ψ11.2G

−1
22 G21

´
ψ11.2

¡
g11 −G12G

−1
22 G21

¢ . (4.20)

Here, the Gij are the partitioned blocks of a full-rank matrix G =
R 1
0 WdW

0
ddr where Wd is a

(k+1)-vector of independent standard fractional Brownian motions, and the scalar constant ψ11.2
is positive under H0 but zero under the alternative. It is easy to show that under the alternative
hypothesis b > 0, F/n = Op(nθ) where

θ =

(
2d− 1, 0 < d− b < 1/2
2b, 1/2 < d− b < d

. (4.21)

Comparing this with the divergence rates of the DW test in (4.18), note that the test has power
even against alternatives where d > 1 and the residuals are non-mean reverting. This suggests
that the F test may perform better against nonstationary alternatives that the DW test. In this
case, the resampling procedures described in Section 3.4 have as their object the reproduction
of the distribution in (4.20), to a first-order approximation. Setting Ψ21 = 0 in (4.20) gives the
‘strong null’ distribution, and note that increasing the absolute magnitude of the covariances
shifts the distribution in (4.20) to the right. This suggests that in tests of the weak null, the F
test may show a corresponding diminution of test power against local alternatives.

12The case d−b = 1/2 will typically involve a slowly varying sequence, converging slower than n−ε for any ε > 0.
13 In practice, yt and zt in this formula may be regarded as deviations from fitted means and deterministic

trends, so that the statistic tests for a relationship net of these effects. The asymptotic distribution then depends
on functionals of demeaned or detrended fractional Brownian motion, but is otherwise unchanged. For clarity of
exposition these corrections are not shown explicitly.
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4.4 Relation to existing tests

These methods can of course be applied to the case of regular cointegration, corresponding to
d = 1. It is therefore desirable to say how they relate to the existing tests of cointegration. The
following points may be noted.

1. In conventional tests of cointegration, an asymptotically pivotal statistic is compared with
a tabulated distribution. This is achieved in general by replacing unknown parameters by
consistent estimates. In the present tests, unknown parameters are also estimated, but in
this case are used to construct a DGP to simulate the distribution of the data under the
null. These two approaches to first-order approximation may have different characteristics
in given samples, and it is of interest to compare them

2. Although the tests described employ a least squares regression, they are not directly com-
parable with the Engle-Granger (1987)-type test of cointegration, based on the regression
residuals. Being based implicitly on modelling of the full system dynamics, they are not
susceptible to the critique of the latter tests by Kremers et. al (1992), that the dynamic
corrections are subject to invalid restrictions. Note that the specification in (3.5) embodies
joint determination of all the variables, notwithstanding that we condition on the regres-
sors. The choice of regression-based statistics is merely convenient, and other features of
the simulated distribution, such as the eigenvalues of the VAR, might also be tabulated.

3. As specified, the test is of the hypothesis of zero cointegrating rank, against the alternative
of positive rank. However, note the fact that in a collection of variables of cointegrating rank
2, one of them can always be dropped, while retaining cointegration amongst the remaining
set (compare Davidson 1998, Theorem 2). Therefore, in the event that the null hypothesis
of zero rank is rejected, a test of rank 1 against the alternative of higher rank could be
implemented (taking relevance of the ‘dependent’ variable as a maintained hypothesis) by
dropping regressors in turn. The natural statistic to bootstrap in this case would be the
maximum of the test statistics over the possible deletions. The same procedure might be
iterated for tests of still higher cointegrating rank.

4. A major advantage over the usual tests is that, even if the ‘explained’ variable is I(1), the
regressors can be validly integrated to any order compatible with a cointegrating relation-
ship, including I(0). By contrast, all the variables in the Engle-Granger regression, or the
Johansen VAR, must be I(1) to validate the usual tabulations. Since we condition on them,
the distribution of the regressors is arbitrary. Even cointegration amongst the regressors is
allowable in principle, although note that for simplicity, the asymptotic analysis given here
rules out this possibility. The test of higher cointegrating rank described in 3 above could
distinguish this case.

5. The ability to test for relationships in the weak and strong senses defined in Section 3.4
may yield valuable extra information. In the former case, the test determines whether
cointegration exists after correlation between the changes in the series has been taken into
account. As noted, the Engle—Granger type of test corrects for such correlations in a fairly
crude manner.

6. That the goodness of fit test may prove a more powerful test of cointegration than the purely
residual-based tests has been argued above, and is confirmed experimentally in the examples
examined in the next section. These may prove a useful addition to the test armoury, once
the difficulty of deriving asymptotically pivotal versions has been circumvented by the
simulation approach.
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5 Application: UK Consumption

5.1 Cointegration Tests

It is useful to look the performance of these procedures with a familiar data set, albeit one that, as
it turns out, is amenable to the conventional testing approach. This permits a direct comparison
of methods. One of the best known studies to have been interpreted (retrospectively) in the
cointegration framework is that of UK real nondurable consumption and real personal disposable
income by Davidson et. al. (1978). The data examined here are the logarithmic, quarterly,
seasonally adjusted series for 1955 Quarter 1 to 1996 Quarter 4. The data are shown in Figure 1.
After removing the deterministic trend,14 a parsimonious representation of the log income series
yt is

(1− L)0.977(1− .123L)(yt − 10.49− 0.0065t) = û1t (5.1)

The residual Box-Pierce Q statistic for this model with 12 lags is 14.55. The log-consumption
series ct, proves more difficult to model with an autoregressive component for the reasons outlined
in Section 3.3, but the equation

(1− L)1.028(ct − 10.43− .0062t)
= (1− 0.069L+ 0.141L2 + .094L3 − 0.131L4)û2t (5.2)

exhibits a residual Q for 12 lags of 13.54. These are the representations used in the test of
cointegration.

There is a strong theoretical presumption that these series should be integrated to the same
order, although that this common value is 1 is conventionally tested only with the I(0) autoregres-
sive model as the alternative. The robust standard errors for the fractional coefficients of income
and consumption are respectively 0.132 and 0.194, so that the hypotheses of unit ds (and hence
of equal ds) are not rejected under fractional alternatives, although the confidence intervals are
wide. Whilst in practical applications one might wish to impose the restriction, the object of the
present exercise requires us to assume that no d value is ‘special’. Likewise, we should not pre-
judge the issue of equality of the coefficients, under the null hypothesis of non-cointegration. Note
that (5.1) is not used for bootstrap resampling, although it is used for estimating the regression
in differences.

The bootstrap replications for the strong null are performed by randomly resampling the
residuals from (5.2), with replacement. For the weak null hypothesis, the bootstrap samples are
constructed using the fitted equation

ε̂2t = û2t − 0.23û2,t−1 − 0.16û1,t+1 − 0.28û1t − 0.21û1,t−1 (5.3)

where û1t and û2t are from (5.1) and (5.2) respectively. In other words, the short-run dynamic
model is generalized, as parsimoniously as possible, by specifying the interactions between the
individually pre-whitened series. The series {ε̂∗2t}n1 are obtained by random resampling with
replacement from the distribution of {ε̂2t}n1 obtained from (5.3). The resampled ‘consumption’
series {c∗t}n1 are then obtained by passing ε̂∗2t back through (5.3) and (5.2). That is to say, the
series û∗2t used to obtain c∗t from (5.2) is generated from

û∗2t = 0.23û
∗
2,t−1 + 0.16û1,t+1 + 0.28û1t + 0.21û1,t−1 + ε̂∗2t.

14The detrending is done by preliminary regression, although note that the fractional coefficient is estimated
after differencing, so that the trend coefficient corresponds to the mean of the series. In recent work, Velasco and
Robinson (2000) report that both nonstationarity and deterministic components can be allowed for in Whittle
estimation by suitable trimming of the periodogram, and this approach should be considered for future work.
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Figure 1: UK log real consumption and log real PDI: (i) Actual (ii) Deviations from linear trend.

F DW res-d ∆res-d

test statistics 229.6 0.397 0.393 −.608
p-value, strong null 0 0 0.03 0
p-value, semi-weak null (1 lag) 0.03 0.05 0.15 0.07
p-value, weak null (1 lag, 1 lead) 0.13 0.21 0.37 0.39

Table 1: Cointegration Tests, 1955Q1-1996Q2

The procedure for the semi-weak hypothesis is similar, but using the fitted equation

ε̂2t = û2t − 0.17û2,t−1 − 0.27û1t − 0.19û1,t−1
in place of (5.3).

Table 1 shows the results of bootstrap tests using 10,000 bootstrap replications.15 The F
statistic is the test for significance of the regressors excluding constant and trend. Hence, in
this case it is just the squared t value for yt from the fitted cointegrating regression with trend
dummy, which is

ĉt = 0.795yt + 2.0781 + 0.00103t.

The last two columns of the table give the Robinson (1994) nonparametric estimator of d for
the levels and differences of the residuals, respectively. The latter should have power against
nonstationary alternatives, as discussed in Section 4.1.

It has been pointed out that the simple DHSY model is found to predict the UK data well up
until 1984, but breaks down thereafter. Since this fact points to a possible shift in the long-run

15This number of replications represents a degree of overkill, but the experiments run very quickly and were
extended to check the experimental error. In practice, 500 or so should give ample experimental precision, relative
the other approximation errors involved.

14



1955 1960 1965 1970 1975 1980 1985 1990 1995

-.05

-.025

0

.025

.05

(i)

1955 1960 1965 1970 1975 1980 1985 1990 1995

-.025

0

.025

(ii)

Figure 2: Regression Residuals: (i) Full sample (ii) Sample to 1984Q4.

F DW res-d ∆res-d

test statistics 369.65 1.102 0.242 −0.492
p-value, strong null 0 0 0 0.04
p-value, weak null (1 lag, 1 lead) 0.01 0.008 0.13 0.72
p-value, weak null (2 lags, 2 leads) 0.11 0.054 0.32 0.78.

Table 2: Cointegration Tests, 1955Q1-1984Q4

relationship, it is also desirable to conduct the test over this shorter span. In this case the fitted
regression is

ĉt = 0.668yt + 3.42 + 0.0015t

and the test results are given in Table 2. Here, we check the effect of over-parameterising the
null model by extending the number of lags and leads to two, although the one-lead-one-lag test
is the one to be relied on, and shows a reasonably clear-cut rejection by the F and DW criteria.

For comparison, the augmented Dickey Fuller statistic, applied to the residuals in Figure
2(ii), is equal to −4.35 with one lag and −3.44 with two lags. MacKinnon’s (1991) tables give
the approximate 5% and 1% critical values in 120 observations as −3.86 and −4.46, respectively.
It might be found surprising that the evidence for cointegration seems equivocal, but note that
this version of the DHSY model includes a linear trend, which the original paper and many
subsequent variants have not. There is no doubt that these series share a strong deterministic
trend. The match between the stochastic trends is somewhat less clear cut, and the bootstrap
tests summarise the evidence quite neatly.

5.2 Size and Power Evaluation

The properties of these tests are studied by Monte Carlo replication of the whole test procedure.
Randomly generated ARFIMA(0,d,0) series are added to 0.795yt, plus intercept and trend, to
form the artificial regressand. The shocks are independent normal variates, whose variance is set
equal to the variance of the differences of the ‘predicted part’ of the artificial regression, after
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F DW residual d

alternatives 1% 5% 10% 1% 5% 10% 1% 5% 10%
strong d = 1 0.576 0.706 0.779 0.020 0.052 0.089 0.005 0.021 0.042
null d = 0.75 0.967 0.991 0.997 0.183 0.324 0.407 0.044 0.140 0.232

d = 0.5 1 1 1 0.612 0.735 0.782 0.229 0.483 0.621
d = 0.25 1 1 1 0.875 0.926 0.945 0.579 0.811 0.897
d = 0 1 1 1 0.978 0.993 0.995 0.833 0.955 0.975

true d = 1 0.022 0.067 0.125 0.019 0.049 0.094 0.006 0.024 0.058
null d = 0.75 0.269 0.505 0.639 0.177 0.293 0.365 0.032 0.115 0.200

d = 0.5 0.913 0.989 0.998 0.599 0.708 0.763 0.217 0.464 0.604
d = 0.25 1 1 1 0.88 0.93 0.949 0.561 0.806 0.879
d = 0 1 1 1 0.980 0.993 0.996 0.810 0.950 0.979

weak d = 1 0.009 0.052 0.102 0.013 0.042 0.069 0.017 0.043 0.090
null d = 0.75 0.146 0.337 0.467 0.083 0.218 0.319 0.029 0.097 0.186

d = 0.5 0.680 0.890 0.955 0.482 0.743 0.856 0.140 0.325 0.462
d = 0.25 0.982 0.998 1 0.995 0.999 1 0.361 0.621 0.791
d = 0 0.999 1 1 1 1 1 0.672 0.857 0.943

Table 3: Powers of UK consumption cointegration tests.

detrending, as a scaling adjustment. The bootstrap tests are conducted on these series using
500 bootstrap replications at each Monte Carlo replication. The simulation of the test procedure
includes the fitting of the artificial regressand’s d by maximum likelihood. The only concession
of realism to feasibility is the omission of the specification search for the ARFIMA model of the
regressand. This was chosen as ARFIMA(0,d,0) for each replication.

If the bootstrapping process correctly represents the distribution of the test statistics under
the null hypothesis, the asymptotic distribution of the p-values is uniform on [0, 1], by construc-
tion. Therefore, the proportion of p-values falling below α in the replications approximates the
power of a α-level test. In particular, simulating the null hypothesis in this manner yields a check
on the size of the test, since the value returned should be converging to α in this case. Table
3 gives these estimated powers for tests of levels 1%, 5% and 10%, based on 1000 Monte Carlo
replications.16

To simulate tests of the weak null hypothesis, two approaches were taken. In the case where
the added disturbance has d = 1, such that the null of non-cointegration is true, the model of
the differences corresponding to (3.5) takes the form

∆ct = 0.795∆yt + ut ut ∼ NID(0,σ2).

In other words, the correct representation of the short-run dynamics contains ∆yt alone, with no
lags and leads of either variable. We refer to this case in Table 3 as the test of the ‘true null’,
in contrast to the test of the strong null (independence, which is false even when d = 1) and
of the weak null, where ∆ct−1, ∆yt−1, ∆yt and ∆yt+1 are included in the dynamic regression.
The interest is to determine how far this over-fitting (which would typically be done in practice)
lowers the power of the test

A notable feature of these results is the good performance of the F test, which is best in all
cases. It is to be expected that this test would perform best with the strong null hypothesis,

16Both variants of the d test perform poorly relative to the F and the DW, and for the sake of clarity, results
for the residual d in differences are not reported.
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since in this case the null is false even if the residuals are I(1), but it also performs better on
average against the weak nulls, and against the stationary alternatives. By contrast, the test
based on the Robinson residual d estimate performs poorest by a substantial margin, although
it does have some power against the stationary alternatives.17 The performance of the Durbin
Watson statistic is creditable, however. Be careful to note that the null is false when d = 1 in the
strong null test, so the entries in this row of the table are not technically sizes, although only the
F test has power against this alternative. In the other cases, the sizes (i.e. rejection frequences
in the cases d = 1) are on the whole fairly accurate, to within the expected experimental error,
and the asymptotic approximation in 166 observations. Note that in a different application with
values of d smaller than 1 (Davidson 2000b), quite substantial size distortion has been observed,
although this can be corrected by prepivoting. See the cited paper for details.

It should not be overlooked that these power evaluations are specific to the consumption-
income example, and are not a substitute for a full-scale Monte Carlo evaluation based on a
range of different models. However, they are representative of other evaluations that have been
conducted with different data sets.. Note too that, given adequate computing power, such a
case-specific evaluation should be a routine part of any practical testing exercise.

6 Concluding Remarks

The role of bootstrap methods in econometrics often emphasized, as for example by Horowitz
(1997), is that of providing second-order refinements to existing asymptotic tests. The methods
in this paper, by contrast, are chiefly motivated by the idea of obtaining first-order approxima-
tions to asymptotically non-pivotal tests. This approach has specific advantages in the fractional
cointegration model, but as the consumption example has illustrated, they can be used as an al-
ternative to the usual first-order tests. In addition to being applicable to any order of integration,
it provides the means to test both strong and weak forms of the non-cointegration hypothesis,
permitting a more sensitive appraisal of the relationship under investigation. Its power in the
model of interest can be checked directly by simulation.

An advantage that has not been explored here, but will be the subject of future work, is the
ability to base tests on more general regression models. These might contain dummy variables to
permit switches of regime, for example, or lags of regressors and regressand, and even nonlinear-
in-variables models. The main issue in such implementations will be the adequacy of the ARFIMA
framework to represent the distribution of the data, but modifications of the approach can easily
be envisaged; for example, in the case of shift dummies, suitable shifts might be applied to the
artificial regressands.

The feasibility of the method for routine application should also be emphasized. With 166
observations, and a realistically adequate 500 bootstrap replications, the procedures reported
here, coded in Ox 2.20 (Doornik, 1999), take around 4 seconds on a 300 MHz Pentium II.
Increasing the number of regressors would not increase this time proportionately, since these are
held fixed and much of the manipulation is done only once, not 500 times.

However, some work remains to be done to develop these procedures for general application.
Learning more about their properties in different data sets and sample sizes, and possible pitfalls
in their use, as well as a head-to-head comparison with conventional asymptotic tests and also
the maximized Monte Carlo procedure, are on the agenda for future work.

17Hassler, Marmol and Velasco (2000) point out that trimming the periodogram should improve the properties
of this estimator, although whether such refinements could make this test competitive with the other two is an
open question. The improvement would clearly need to be dramatic.
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A Appendix

This section provides details of the derivations given in Sections 4.1-4.3. Let xt = (yt, z 0t)0 denote
a I(d) vector for d > 1/2. According to the formula in equation (3.12) of Davidson and de Jong
(2000), the long-run covariance matrix (4.2) in the case being considered has the form

Ψ =
1

Γ(2d− 1)
µ

1

2d− 1 +
Z ∞

0
((1 + τ)d−1 − τd−1)2dτ

¶
Ω (A-1)

where

Ω = lim
n→∞n

−1E

Ã
nX
t=1

wt

nX
s=1

w 0
t

!
and wt = (1− L)dxt.18 It follows that

nX
t=1

xtx
0
t = Op(n

2d). (A-2)

Note that the null hypothesis H0 : b = 0 in (2.1) rules out cointegration amongst the zt variables.
Under this hypothesis, Ψ has full rank. Under the alternative, ut is either covariance stationary
(d − b < 1/2), or has long run variance of order n2(d−b)−1 for b > 0. This implies |Ψ| = 0. Let
the partition of Ψ into the first 1 and last k rows and columns be

Ψ =

·
ψ11 Ψ12
Ψ21 Ψ22

¸
.

The vector Wd of standard fractional Brownian motions satisfies EWd(δ)Wd(δ)
0 = δ2d−1I for

0 ≤ δ ≤ 1. One can write X = L0Wd such that L0L =Ψ, and L has the partition

L =

· p
ψ11.2 00

(L−122 )
0Ψ21 L22

¸
where ψ11.2 = ψ11 −Ψ12Ψ−122Ψ21 and L022L22 =Ψ22. Thus,·

Y
Z

¸
=

·p
ψ11.2Wd1 +Ψ12L

−1
22Wd2

L022Wd2

¸
. (A-3)

whereWd = (Wd1,W
0
d2)

0. Similarly define the partition of G =
R 1
0 WdW

0
ddr into its first 1 and

last k rows and columns as

G =

·
g11 G12

G21 G22

¸
.

Under H0 : b = 0, with d > 1/2,

n1/2−dy[nδ]
d→ Y (δ) =Ψ021Ψ

−1
22 Z (δ) + V (δ) (A-4)

where Z and V =
p
ψ11.2Wd1 are uncorrelated by construction, and being Gaussian, are therefore

independent. We have EZ (δ)Z (δ)0 = δ2d−1Ψ22, EV (δ)2 = δ2d−1ψ11.2 and E(Z (δ)V (δ) = 0 for
0 ≤ δ ≤ 1. Therefore, on H0,

γ̂
d→
µZ 1

0
ZZ 0ds

¶−1 Z 1

0
ZY ds

18 If the ds of different elements of the vector are different, the simple scale factor in (A-1) is replaced a more
complicated dependence of the matrix on the d values and Ω. See Davidson and de Jong (2000) for the details of
this case.
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=Ψ−122Ψ21 +
µZ 1

0
ZZ 0ds

¶−1 Z 1

0
ZV ds

=Ψ−122Ψ21 +
p
ψ11.2L

−1
22G

−1
22 G21.

This is the formula in (4.3) where ζ =
p
ψ11.2L

−1
22G

−1
22 G21.

Since it is somewhat more straightforward, we first derive the distribution of the F/n statistic
under H0. The formula in (4.19) may also be written in the form

F

n
=

Pn
t=1 z

0
tyt (

Pn
t=1 ztz

0
t)
−1Pn

t=1 ztytPn
t=1 y

2
t −

Pn
t=1 z

0
tyt (

Pn
t=1 ztz

0
t)
−1Pn

t=1 ztyt
.

Combining the functional central limit theorem for fractional processes with the continuous map-
ping theorem, and substituting for the Y process using (A-4) leads straightforwardly to

F

n
d→
³R 1
0 ZZ

0drΨ−122Ψ21 +
R 1
0 ZV dr

´0 ³R 1
0 ZZ

0dr
´−1 ³R 1

0 ZZ
0drΨ−122Ψ21 +

R 1
0 ZV dr

´
R 1
0 V

2dr − R 10 Z 0V dr ³R 10 ZZ 0dr´−1 R 10 ZV dr .

Standard manipulations using (A-3) put this expression into the form of (4.20).
Next, consider the statistic φ̂ in (4.9) under H0. For the denominator,

1

n2d
θ̂
0 nX
t=2

xtx
0
t θ̂

d→ θ0
Z 1

0
XX 0dsθ

follows by a straightforward teaming of the fractional FCLT with the continuous mapping theo-
rem. For the three cases of the numerator, first note that if 1 < d < 3/2 in (2.1) and E(ε4jt) <∞
for j = 1, . . .N ,19 the result

1

n2d−1

nX
t=2

xt−1∆x 0t
d→ 1

Γ(d− 1)
R 1
0 ξ
d−2 R 1−ξ

0 XdW 0dξ +Λ

holds by Theorem 4.1 of Davidson (2001b) . For d = 1 the result

1

n

nX
t=2

xt−1∆x 0t
d→ R 1

0XdX
0 +Λ∗

is standard (see e.g. Davidson 2000a, Chapter 15). For 1/2 < d < 1, the result

1

n

nX
t=2

xt−1∆x 0t
p→ Λ∗

follows by Theorem 4.3(iv) of Davidson (2001b).
Under the alternative hypothesis b > 0, there exists γ such that ut = yt − γ 0zt ∼ I(d − b).

Here, it is convenient to expand the denominator of (4.19) and (4.8) according to

nX
t=1

û2t =
nX
t=1

u2t − (γ̂ − γ)0
nX
t=1

ztz
0
t(γ̂ − γ). (A-5)

19 It is not yet clear whether the existence of fourth moments can be relaxed by refining the proof of this result.
Given that moments of order strictly exceeding 2 are sufficient for the FCLT, according to Davidson and de Jong
(2000), the conjecture may not be unreasonable, though a proof is currently lacking.
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If d > 1/2 and d− b < 1/2, so that ut is stationary, the first term on the right-hand side is Op(n)
and the second term is Op(nmax{2(d−b),2(1−d)}). Note that the first term dominates the second,
so that the residual variance consistently estimates the disturbance variance. Also note that if
d− b > 1/2, both terms are of Op(n2(d−b)), and the estimation error does not vanish in the limit.
Our results do not depend on the latter condition, however. Since

Pn
t=1 y

2
t = Op(n

2d) continues
to apply, the stated rates of divergence in (4.21) follow directly.

The numerator of (4.9) may be expanded similarly to (A-5), as

nX
t=2

ût−1∆ût =
nX
t=2

ut−1∆ut − (γ̂ − γ)0
nX
t=2

zt−1∆ut −
nX
t=2

ut−1∆z 0t−1(γ̂ − γ)

+ (γ̂ − γ)0
nX
t=2

zt−1∆z 0t−1(γ̂ − γ).

The facts that ut ∼ I(d− b) and zt ∼ I(d), Theorems 4.1 and 4.3 from Davidson (2001b), and the
results in Section 3 of that paper, yield the following rates of divergence.

nX
t=2

ut−1∆ut = Op(nmax{1,2(d−b)−1})

nX
t=2

zt−1∆ut = Op(nmax{1,d,2d−b−1})

nX
t=2

ut−1∆zt = Op(nmax{1,2d−b−1})

nX
t=2

zt−1∆zt = Op(nmax{1,2d−1}).

Also using (4.4), we obtain

nX
t=2

ût−1∆ût = Op(nmax{1,2(d−b)−1).

Considering (A-5), combining (4.4) with (A-2) and the analogous

nX
t=1

u2t = Op(n
max{1,2(d−b)})

we obtain
nX
t=1

û2t = Op(n
max{1,2(d−b)}).

Combining these results gives the conclusions of (4.17)+(4.18). However, be careful to note that
in general, the rates of divergence of the two terms in (A-5) are the same. These results do not
depend upon the error in γ̂ becoming asymptotically negligible.
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