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Abstract

Existing numerical characterizations of the optimal income tax have
been based on a limited number of model speci�cations. As a result, they
do not reveal which properties are general. We determine the optimal tax
in the quasi-linear model under weaker assumptions than have previously
been employed; in particular, we remove the assumption of a lower bound
on the utility of zero consumption and the need to permit negative labor
incomes. A Monte Carlo analysis is then conducted in which economies are
selected at random and the optimal tax function constructed. The results
show that in a signi�cant proportion of economies the marginal tax rate
rises at low skills and falls at high. The average tax rate is equally likely
to rise or fall with skill at low skill levels, rises in the majority of cases
in the centre of the skill range, and falls at high skills. These results are
consistent across all the speci�cations we test.
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1 Introduction

An analysis of the optimal nonlinear income tax was �rst undertaken in the
seminal paper of (Mirrlees 1971). That paper, and the many which followed,
have determined the properties an optimal tax must possess (a survey of these
results can be found in (Myles 1995)). These theoretical results provide only
limited information. An important practical issue upon which they are silent is
that of the progressiveness of the tax system. All developed countries utilize tax
systems with increasing marginal and average tax rates. The theory has so far
not fully resolved whether this is optimal. It is well-known that the marginal tax
rate should be zero for the highest skill consumer which implies the tax function
cannot have an everywhere-increasing marginal rate. But the results are silent
on the behavior for the rest of the skill distribution and on the progressiveness
of the average tax rate.
The limitations of the theoretical analysis have lead to the use of numer-

ical simulations to investigate the optimal tax function. The most signi�cant
results have been obtained by combining a log-normal distribution of skill with
either Cobb-Douglas ((Mirrlees 1971)) or CES utility ((Kanbur and Tuomala
1994)). These speci�cations have produced an optimal tax function for which
the marginal tax rate either �rst rises with skill and then falls or is highest
for the lowest skill and then falls. Which of these applies is dependent upon
the degree of equity in social welfare and the standard deviation of the skill
distribution (see (Kanbur and Tuomala 1994)). These qualitative properties
have remained consistent in all the simulation results that have been reported.
This consistency would suggest that the optimal income tax should always have
these properties were it not for the very narrow range of model speci�cations
that have been used to generate the results.
To make progress around the di¢ culty of limited speci�cations, this paper

pursues a very di¤erent approach to the characterization of the optimal tax func-
tion. Our analysis begins with the observation that the structure of the optimal
tax function is critically dependent upon the distribution of skills. This point
was made clear by (Diamond 1998) who showed that tax rates may increase
above the modal income for some skill distributions and (Myles 2000) where it
was shown that a distribution of skill could be constructed which would sup-
port any chosen qualitative pattern of marginal tax rates. Consequently there
can be no concept of a general structure for the optimal income tax function.
Having said this, it may be the case that some structures can occur only for a
small subset of possible skill distributions and that �most�economies do share
a common structure. To obtain an insight into whether this claim is valid, our
approach is to de�ne an economy by its distribution of skills. We then make
repeated random draws from the set of possible economies, compute the optimal
tax function for each draw, and then study the �general� structure of the tax
function. This procedure does not determine a typical tax function. Instead,
what it does achieve is an evaluation of the proportion of economies for which
the average and marginal tax rates will behave in a chosen manner. For exam-
ple, our results can be used to predict the proportion of economies for which
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the marginal rate of tax decreases as skill increases (it is very small). More
importantly, looking at the pattern of results as a whole provides an insight
into the most likely structure of optimal tax rates. We are not aware of any
previous use of such Monte Carlo methods in tax theory.
The results are obtained by generalizing the quasi-linear model of Weymark

(1986a, 1986b, 1987) in several ways. First, we allow for the possibility that
there is more than one consumer with each skill level. This is very straightfor-
ward to implement. The second generalization is more signi�cant and involves
the removal of the assumption that the utility of a zero consumption level has
a �nite lower bound (the lower bound is set at zero in Weymark (1986a,b,
1987)). This assumption rules out many commonly-used utility functions (such
as logarithmic utility) and has an undue in�uence upon the nature of optimal
allocations. In addition, we also extend the model by removing the assumption
that negative labor incomes are permissible. We do not �nd the possibility of
negative labor incomes, as permitted in several previous contributions, to be
appealing in the context of a model of labor supply. As our results show, these
changes signi�cantly a¤ect the solution process for the model and the nature of
optimal allocations. It should be stressed that although the results are devel-
oped here in the context of optimal income taxation, they are also applicable to
nonlinear incentive schemes in general. The same generalizations can be applied
to other applications of the quasi-linear model.

2 Quasi-Linearity and Tax Rates

This section brie�y introduces the model of income taxation with quasi-linear
utility. (Lollivier and Rochet 1983) applied this to a model with a continuum of
consumers. The model with a �nite numbers of consumers on which this paper
is based is analyzed in detail in Weymark (1986a,b, 1987).
An economy is described by a vector E � fs1; ::; sk; n1; :::; nkg 2 <k+�<k++;

where si is a skill level and ni the number of consumers with that level of skill.
It is assumed that the vector fs1; ::; skg is ordered, so si < si+1. An allocation
is a vector A � fz1; ::; zk; x1; :::; xkg where zi is the pre-tax income and xi the
consumption of a consumer with skill level si. With ` denoting labor supply;
all consumers have preferences described by the quasi-linear function

U = u (x)� `: (1)

Throughout the paper, we impose the following assumption.
Assumption 1: u (x) is strictly monotonically increasing, limxi!0 u

0(xi) =1
and u00(xi) < 0.
With a consumption level of x, the marginal rate of substitution (MRSi) be-

tween consumption and labor for a consumer with skill si is equal to 1=u0 (x) si,
so that the condition of agent monotonicity applies. By de�nition, income, la-
bor supply and skill are related by z = s`. So, a consumer with skill level si
receiving pre-tax income zi must supply labor `i = zi=si: Using this, given an
allocation A, the utility achieved at skill level i is Ui � u (xi)� zi=si:
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The optimal allocation is chosen to maximize the welfare function W =Pk
i=1 �iniUi; where the welfare weights satisfy �i � 0: Any candidate for the

optimal allocation must satisfy the incentive compatibility constraints

u(xi)�
zi
si
� u(xj)�

zj
si
; all i; j; (2)

and the feasibility constraint

kX
i=1

zi =
kX
i=1

xi: (3)

As (Weymark 1986a) noted, the tax function is kinked at the location of
each consumer, so the marginal tax rate is not formally de�ned at these points.
However, it is possible to take the gradient of the indi¤erence curve as deter-
mining an implicit marginal rate of tax (which is equal to the left-derivative of
the supporting function). For any allocation, A, the marginal tax rate (MTRi)
facing a consumer with skill level si is

MTRi := 1�MRSi = 1�
1

u0 (xi) si
; (4)

and the average tax rate

ATRi :=
zi � xi
zi

: (5)

3 Existing Analysis

In this section we adopt the assumptions of Weymark (1986a,b, 1987) concerning
utility and income. Under these assumptions we derive a characterization of the
optimal allocation (but taking into account that we allow for several consumers
with each skill level). This is then employed to investigate the extent of bunching
and the structure of optimal taxes.
The Weymark model is identi�ed by two key assumptions on permissible

income levels and the structure of the utility function. The �rst of these as-
sumptions is that negative income levels are permitted (though consumption
must be non-negative). The second is that there is a lower bound on utility at a
consumption level of zero. We state the assumptions here but reserve discussion
until later.
Assumption 2: (Possibility of negative incomes) A 2 <k �<k+:
Assumption 3: (Lower bound on utility) u(0) = 0:

3.1 Characterization of optimal allocation

The optimization that results when Assumptions 1-3 are imposed is termed
Program I. This can be stated as:

Program I: max
fA2<k�<k+g

W =
kX
i=1

�iniUi subject to (2) and (3).

4



Program I can be simpli�ed by using two standard results. The proof of the
�rst can be found in (Röell 1985).

Lemma 1 (Guesnerie and Seade/Röell) The incentive compatibility constraints
form a monotonic chain to the left.

The implication of this lemma is that the incentive compatibility constraints
can be reduced to a set of equalities relating the allocation of each consumer to
that of the consumer with the next lowest level of skill. These equalities can be
written as

zi+1 = zi + si+1[u(xi+1)� u(xi)]; i = 1; � � � ; k � 1: (6)

The next lemma relates the monotonicity of the allocation and the incentive
compatibility constraints. The proof of this result and all those that follow is
given in the Appendix.

Lemma 2 If an allocation A 2 <k � <k+ satis�es 0 � x1 � x2 � � � � � xk and
(6), then:
(i) z1 � z2 � � � � � zk;
and
(ii) the allocation satis�es incentive compatibility:

Collecting the reduced set of incentive compatibility constraints (6) and the
resource constraint gives the system2666664

n1 n2 n3 � � � nk�1
1 �1 0 � � � � � �
0 1 �1 0 � � �
...
0 : : : : : : 0 1

nk
0
...
0
�1

3777775
264 z1

...
zk

375 =
2666664

kP
i=1

nixi

�s2 [u (x2)� u(x1)]
...

�sk [u (xk)� u(xk�1)]

3777775 :
(7)

Solving for the income levels associated with each level of skill provides

264 z1
...
zk

375 = 1
kP
i=1

ni

26666664
1
Pk

i=2 ni
Pk

i=3 ni � � � nk
1 �n1

Pk
i=3 ni nk

1 �n1 � [n1 + n2] nk
...

...
...

...
1 �n1 � [n1 + n2] �

Pk�1
i=1 ni

37777775

2666664
kP
i=1

nixi

�s2 [u (x2)� u(x1)]
...

�sk [u (xk)� u(xk�1)]

3777775 :
(8)

Let N =
kX
i=1

ni. Then the income of a consumer with skill level i; i = 1; :::; k,

can be written as

zi =
1

N

24 kX
j=1

njxj +
kX
j=1

[ai;j+1sj+1 � ai;jsj ]u(xj)

35 ; (9)
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with

ai;1 = 0; i = 2; :::; k

ai;j =

( Pk
q=j nq; i = 1; :::; j � 1

�
Pj�1

q=1 nq; i = j; :::; k
; j = 2; :::; k (10)

ai;k+1 = 0; i = 1; :::; k:

Combining these results, Program I can be expressed as a simpler problem
involving only the choice of the consumption allocation. This choice is subject
to the single constraint that the consumption allocation forms a non-decreasing
sequence. Once the consumption allocation has been chosen, the income allo-
cation is de�ned by (9).
Let X := fx1; :::; xkg 2 <k+: The precise statement of the reduced form of

Program I is

Program I�: max
fX2<k+g

kX
i=1

�iniUi; subject to 0 � x1 � x2 � � � � � xk;

with zi given by (9). The necessary conditions for this problem can be found
by forming the Lagrangean

L =
kX
i=1

�
�ini

�
u(xi)�

zi
si

�
+ �i(xi � xi�1)

�
; (11)

where x0 := 0: The �rst-order conditions for the choice of the consumption
levels are

@L
@xj

= �jnju
0(xj)�

kX
i=1

�ini
si

@zi
@xj

+ �j � �j+1 = 0; j = 1; :::; k; (12)

�1 > 0 if x1 = 0; �j > 0 if xj = xj�1; j = 2; � � � ; k; (13)

and �k+1 := 0 as a notational convenience.
At this point a new notation is introduced that draws a closer parallel with

the work of Weymark. To do this de�ne

�j := �jnj �
1

N

kX
i=1

ai;j+1sj+1 � ai;jsj
si

�ini; j = 1; � � � ; k; (14)

where ai;j is de�ned in (10) and

� :=
1

N

kX
i=1

�ini
si
: (15)

Using this notation, the necessary conditions (12) can be rewritten as

�ju
0(xj) = �nj � �j + �j+1; j = 1; :::; k: (16)
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The necessary conditions (16), alongside the complementary slackness condi-
tions (13), form the complete set of conditions describing the optimal consump-
tion allocation. Given the consumption allocation, the de�nition of the income
allocation then follows from (9).

3.2 Bunching

The nature of the allocations that can arise under Assumptions 1-3 can be best
understood by investigating the conditions under which bunching will not occur
and the patterns of bunching that can occur. The following results extend those
of (Weymark 1986a) to allow for the variable number of consumers with each
skill level.
The central result that characterizes when there is no-bunching is the fol-

lowing. Note that this result permits �1 < 0 but requires all other �s to be
positive.

Lemma 3 There is no bunching if and only if �1n1 <
�2
n2
< : : : < �k

nk
and �2 > 0.

The next result characterizes the marginal tax rate when there is no bunching
and �1 > 0.

Proposition 1 If �1
n1
< �2

n2
< : : : < �k

nk
and �1 > 0, the marginal tax rate at

skill level si is given by MTRi = 1� �i
�nisi

:

It should be observed that under the conditions of the proposition MTRi is
dependent only upon the distribution of population across skill levels,
fs1; ::; sk; n1; :::; nkg : Hence given an economy, E; that satis�es the conditions
required of

�j
nj
, the same pattern of marginal tax rates will hold regardless of

the preferences represented by the utility of consumption u(x). This result was
�rst noted and employed by(Myles 2000).
The next result shows there is bunching of the lowest-skill consumers if the

initial values of �j are negative. In addition, each consumer is allocated a
consumption level of zero.

Lemma 4 If �1 < 0; :::; �j < 0 but �j+1 > 0; then xj = 0 for i = 1; :::; j and
xj+1 > 0:

Using this result on bunching at the bottom, it is possible to characterize
the tax rate that the bunched consumers face.

Proposition 2 If �1 < 0; :::; �j < 0 but �j+1 > 0; then the marginal tax rate
at skill level si; i = 1; :::; j, is given by MTRi = 1:

The proposition shows that when there is bunching of the lowest-skill con-
sumers at a zero consumption level, it remains possible to calculate the marginal
tax rate of these consumers without specifying the utility function u(x). The
value of the marginal tax rate is due to the assumption that u(0) = 0 forcing
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the indi¤erence curves to be asymptotic to the pre-tax income axis as consump-
tion tends to zero. In this circumstance, any allocation that assigns a zero
consumption level can be supported only by a consumption function which is
�at.
The next lemma describes the outcome when the conditions for no bunching

are violated. This result is the equivalent of Proposition 6 in (Weymark 1986a).

Lemma 5 Assume that consumers j to j +m; m � 0; are bunched. Consumer
j +m+ 1 will also be bunched with j to j +m if

�j+m+1

nj+m+1
�

Pm
t=0 �j+tPm
t=0 nj+t

:

It should be noted that this result also implies the condition for bunching
to begin. Bunching will start if

�j
nj
>
�j+1
nj+1

; (17)

in which case j + 1 will be bunched with j: Although the proposition shows
when bunching will begin, it should be stressed that it does not determine the
structure of the bunching intervals. Put another way, the result provides the
su¢ cient condition for adding another skill level to the set that are bunched
but it does not state the necessary condition. Consequently the result does not
give a complete characterization of bunching. At present, no conditions that
are necessary and su¢ cient are known but we have developed a computational
procedure that worked in all cases to which it was applied.
The behavior of the marginal tax rate for bunched consumers is described

in the next result. This shows that the marginal tax rate increases with skill
across the set of bunched consumers.

Proposition 3 Assume that consumers i = j; :::; j +m are bunched. Then the

marginal tax rate faced by i is MTRi = 1�
��
si�
; �� :=

Pj+m
i=j �iPj+m
i=j ni

:

The MTR is determined by the weighted average value of �i for the con-
sumers who are bunched and is independent of the utility of consumption. Be-
cause of agent monotonicity, the MTR increases with skill at the bunched allo-
cation.

3.3 Implementation

In this section we explore the implementation of the model. What this shows is
that bunching occurs in a high proportion of economies so that the character-
ization with no-bunching is of limited interest. Solving the bunching problem,
we provide an implementation of the model that illustrates the structure of op-
timal taxes. However, for the reasons we detail in the following sub-section, we
believe the assumptions under which this is derived are inappropriate so do not
place a great emphasis upon this.
The analysis in the previous section has shown that there will be no-bunching

only if a very particular pattern of the �js emerge. The discussion in (Weymark
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1986a) noted that the values of �j for an economy are especially sensitive to
small changes in the set of skill levels. This raises the issue of what patterns of
�js can emerge. We shed some light upon this by considering a special case in
which the values of �j can be related simply to the number of skill levels and
the di¤erence between successive skill levels. The sensitivity of the �js to small
changes in the set of skill levels is re�ected in similar sensitivity of the structure
of the tax function to similar small changes. To overcome this sensitivity and
obtain a general picture of the tax function we conduct a Monte Carlo analysis,
choosing economies randomly and averaging. The details of our methodology
are described later.
An interesting pattern for the � values can be obtained by assuming that

the skills levels j and j +1 are related by sj+1 = (1+ �)sj : If �i = ni = 1; then
it is possible to solve to �nd

�j = s1 (1 + �)
j�1

"�
1

k

� kX
i=1

1

s1 (1 + �)
i�1 (1 + �j)�

jX
i=1

1

(1 + �)
i�1 �

#
: (18)

Now let the highest and lowest skill levels be related by sk = ms1, so that m
measures the ratio of the highest skill to the lowest skill: Since we also have
sk = (1 + �)

ks1; we can solve to write

� = m1=k�1 � 1; (19)

so that the constant of proportionality, �, can be adjusted to keep m constant
as k is changed. The results from applying these calculations are plotted in the
following �gures.
Figure 1 plots �j for k = 5. In this case �i is negative for i = 1; :::; 4: It

decreases until i = 3 then increases. In Figure 2, k is raised to 10. This increases
the values of � for the lowest-skill levels but the negativity remains. When k is
increased to 100 in Figure 3, �i is positive until i = 10, becomes negative, and
then becomes positive at i = 70:

What does this exercise show? First it emphasizes that even for this restric-
tive pattern of skill levels there need be no monotonicity in the �s. Secondly,
it makes clear that negative � values can be a frequent problem. For the lower
values of k; the fact that the initial � values are negative implies the welfare
function would be unbounded if utility did not have a lower bound. Although
increasing k removes the negativity of � for the lowest skills, it remains negative
for intermediate skills. In every case, there would be extensive bunching with
this pattern of skills. These �gures show only one possible outcome; others can
be achieved by using (18) with di¤erent values of m.
Table 1 reports the results of a numerical analysis of bunching. The skill

levels are drawn at random from the interval [1; 10] with the number of skills
given by k. Four methods of determining the number of consumers with each
skill are employed. A detailed description of these methods is reserved until
Section 5. For the present it is su¢ cient to observe that the proportion of
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Figure 1: Parameters m = 10; k = 5

Figure 2: Parameters m = 50; k = 10
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Figure 3: Parameters m = 50; k = 100

economies with no-bunching tends rapidly to zero as k increases. Hence the
characterization of no-bunching applies to an empty set of economies for even
a fairly small number of skill levels.

n P=k Uniform Log-normal Chi-square
k = 5 0.302 0.265 0.669 0.421
k = 10 0.001 0.002 0.148 0.006
k = 20 0.0 0.0 0.0 0.0

Table 1: Proportion of Economies with No-Bunching

The results in Table 2 report the proportion of economies for which the
MTR and ATR increase between two consecutive skill levels. Hence the �rst
number in the top row, 0.624, shows that in 62.4% of economies the MTR was
higher for the second skill level than the �rst. The second number, 0.712, shows
that it was higher in 71.2% of economies for the third skill level than the second.
Reading the results in this way, it can be seen that in the majority of economies
theMTR initially rises with skill and then falls. Surprisingly, the ATR behaves
in the same manner. These descriptions apply to both methods of selecting the
number of consumers with each skill. Additionally, when n = P=k; z1 < 0 in
93.7% of economies and x1 = 0 in 30%. The corresponding numbers for n � �2
were 87.1% and 25.7%. Negative incomes are therefore a frequent occurrence.
Zero consumption levels are less frequent, but still not unusual.

11



n = P=k MTR 0.624 0.712 0.663 0.628 0.561 0.493 0.459 0.363 0
ATR 0.612 0.543 0.503 0.506 0.518 0.516 0.452 0.304 0.088

n ��2 MTR 0.608 0.632 0.573 0.542 0.514 0.460 0.394 0.291 0
ATR 0.589 0.514 0.550 0.564 0.586 0.544 0.392 0.234 0.076

Table 2: Proportion of Increases in MTR and ATR
k = 10, 1 < s < 10, P = 10000, ] sim. = 1000

3.4 Discussion

It is important to fully comprehend the consequences of the assumptions upon
utility and income in order to appreciate why a relaxation is needed. We begin
by discussing the assumption placed on utility but eventually conclude that it
is interlinked with the possibility of negative income.
Consider �rst the assumption that there is a lower bound upon utility, specif-

ically that u(0) = 0. This assumption is not a usual one and it rules out many
standard utility functions, including the class of isolelastic functions u(x) = x1�"

1�"
for " � 1 (= ln(x) for " = 1). The implication of this assumption is that con-
sumption levels of zero are possible in the optimum allocation. Hence if a set
of skill levels generate a value of �1 < 0, the solution to Program I�has x1 = 0.
We have already noted that this outcome arises in numerous cases, so if inter-
preted literally the model frequently generates optimal allocations where some
consumers receive no consumption.
The next step is to consider what happens if the assumption of a �nite lower

bound is relaxed. An alternative assumption would be that limx!0 u(x) = �1
as applies, for example, with logarithmic utility. Under this assumption, if
�1 < 0 then limx!0 �1u(x) =1 and the value of social welfare is unbounded as
the consumption of the lowest skill consumer tends to zero. Since this cannot
be a sensible solution to the allocation problem, there must be some further fea-
tures of such an allocation that render it unacceptable. The following example
illustrates what these features are.

Example 1 Consider an economy with two consumers. Consumer 1 has skill
level s1 = 1 and consumer 2 has skill level s2: Both have preferences U =
ln(x)� `: Assuming �1 = �2 = 1; the value of �1 can be written as

�1 = 1�
s2
2

�
1� 1

s2

�
; (20)

so that �1 < 0 when s2 > 3: Solving the optimization problem gives

x1 =

8<:
1� s2

2

�
1� 1

s2

�
1
2

�
1+ 1

s2

� if
1� s2

2

�
1� 1

s2

�
1
2

�
1+ 1

s2

� > 0

0 otherwise
(21)
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Figure 4: Income of Low-Skill Consumer

Clearly, x1 = 0 if s2 � 3, which corresponds to the range in which �1 < 0:
Now consider incomes and welfare. A plot of z1 as a function of s2 is given

in Figure 4 which shows that z1 tends to �1 as s2 ! 3: The behavior of z2
is the converse - it tends to +1 as s2 ! 3. For s2 > 3, z1; z2 and W are
unde�ned. Hence the solution to Program I�for u(x) = ln(x) is only de�ned for
s2 < 3. If the skill levels are too diverse there is no optimal allocation.

As the next section will make clear, the solution method has to be signi�-
cantly modi�ed to accommodate negative values of �i - the solution in general
is not to simply assign a zero consumption level. The analysis we present does
not require any assumption to be placed upon u(0) which is clearly more in line
with standard analysis.
The second assumption was to allow negative income levels, that is to permit

optimal allocations that satisfy zi < 0. As explained by (Weymark 1986a),
previous authors ((Guesnerie and La¤ont 1984) and (Lollivier and Rochet 1983))
also did not restrict incomes to be positive. Allowing incomes to be negative
does not seem to be a natural assumption in the context of the model of income
taxation. The income of consumer i is de�ned by zi := si`i: Since the level of
skill is non-negative, with si � 0, income can only be negative if labor supply
is negative, `i < 0; �but it is di¢ cult to see what interpretation can be given
to this. Consequently, we conclude that in a model of income taxation the
constraint that labor income is non-negative must be imposed and the solution
for the optimal allocation adapted to incorporate this constraint.
A simple example is su¢ cient to illustrate the e¤ect that the non-negative

income requirement has upon the optimal allocation.
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Example 2 Assume an economy with four consumers who have skill levels
s1 = 1:3516; s2 = 9:6729; s3 = 15:4798 and s4 = 17:9347. These generate
values of �1 = �3:8265; �2 = 0:2313; �3 = 3:2747 and �4 = 4:3206. Solving
Program I�allowing negative incomes, Theorem 2 in (Weymark 1986a) would
imply no bunching at the optimum. With the utility function u(x) = x1=2 the
optimal consumption plan would be x1 = 0; x2 = 0:2305; x3 = 46:1962 and
x4 = 80:4176. These consumption levels are supported by the income vector
z1 = �30:3956; z2 = �25:719; z3 = 72:0295 and z4 = 110:9623, so that two of
the four consumers are allocated a signi�cantly negative labor income.
Using the results we derive in Section 4, the optimal allocation if income

is constrained to be non-negative is given by x1 = 10:6327; x2 = 10:6327; x3 =
53:1735 and x4 = 80:4176, z1 = 0; z2 = 0; z3 = 62:4028 and z4 = 92:4494. At
this allocation, consumers 1 and 2 are both bunched with a zero income level and
identical levels of consumption. Their consumption levels are also signi�cantly
above those when income can be negative.

The contrast between the allocation with non-negativity and that when neg-
ative incomes are allowed shows that it is much more than just a simpli�cation.
When non-negativity is imposed the solution changes dramatically and the re-
sult on no-bunching no longer applies.
Finally, we have noted how the structure of the utility function is important

when some �s are negative. The example also illustrates a further fact: negative
betas and non-negative incomes are closely inter-linked. By this it is meant that
there is a direct connection between the �nding of a negative value of �1 and
zero income as a binding constraint. This will become clear when we formally
characterize the optimal allocation with non-negative incomes.

4 Non-Negative Incomes

This section summarizes the derivation of the solution to the quasi-linear op-
timal income tax problem when a non-negativity constraint is placed upon in-
come. We begin with the statement of the basic optimization and then gradually
re�ne this to a form that allows comparison with the earlier results. Section 5
then describes the properties of the tax function that emerge from an imple-
mentation of this solution.
The analysis described in Section 3 allows income to be negative. We have

already described the consequences of this assumption and the reasons for wish-
ing to reject it. We now restrict the choice set to non-negative incomes, so that
A 2 <k+�<k+: In addition we want to remove the assumption that the utility of
zero consumption has a lower bound. Hence we drop Assumption 3 and replace
Assumption 2 by
Assumption 2�: (Non-negativity of income) A 2 <k+ �<k+:
We can still apply Lemmas 1 and 2 to express the problem in terms of

consumption. The optimization problem for the choice of the allocation now
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becomes

Program II: max
fX2<k+g

kX
i=1

�ini

�
u(xi)�

zi
si

�
; (22)

subject to

zi � 0; i = 1; � � � ; k;
0 � x1 � x2 � � � � � xk;

and zi de�ned by (9).
The necessary conditions for this problem can be found by forming the La-

grangean

L =
kX
i=1

�
�ini

�
u(xi)�

zi
si

�
+ �izi + �i(xi � xi�1)

�
; (23)

where x0 := 0: The �rst-order conditions for the choice of the consumption
levels are

@L
@xj

= �jnju
0(xj)�

kX
i=1

�ini
si

@zi
@xj

+
kX
i=1

�i
@zi
@xj

+�j��j+1 = 0; j = 1; :::; k; (24)

�i > 0 if zi = 0; �1 > 0 if x1 = 0; �j > 0 if xj = xj�1; j = 2; � � � ; k; (25)
and �k+1 := 0 as a notational convenience.
Equation (24) can be rearranged as

�jnju
0(xj) =

kX
i=1

�
�ini
si

� �i
�
@zi
@xj

� �j + �j+1 (26)

Using (9) in (26) we obtain the following set of equations for the xis, �is and
�is:

u0(xj)

"
�jnj �

1

N

kX
i=1

�
�ini
si

� �i
�
(ai;j+1sj+1 � ai;jsj)

#

=
1

N

kX
i=1

�
�ini
si

� �i
�
� �j + �j+1; j = 1; � � � ; k; (27)

and

�i > 0 if zi = 0; �1 > 0 if x1 = 0; �j > 0 if xj = xj�1; j = 2; � � � ; k: (28)

Using the notation introduced earlier, the necessary condition can be rewrit-
ten as

u0(xj)

"
�j +

kX
i=1

~�i[ai;j+1sj+1 � ai;jsj ]
#
= �nj �

kX
i=1

~�i � �j + �j+1; (29)
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with ~� � �=N . Hence,

u0(xj) =
�̂j

�̂j
; j = 1; :::; k; (30)

where

�̂j = �nj �
kX
i=1

~�i � �j + �j+1; �̂j = �j +
kX
i=1

~�i[ai;j+1sj+1 � aijsj ]:

The necessary conditions (30), alongside the complementary slackness condi-
tions (28) and the de�nition of the income allocation (9), form the complete set
of conditions describing the optimal consumption allocation.
When none of the constraints is binding we obtain the interior no-bunching

solution,

u0(x̂j) =
�nj
�j

; j = 1; � � � ; k: (31)

This corresponds to the solution of Program I�, but only if at the optimum
all income levels are non-negative. The important point to note is that there
is nothing in the model which relates the allocation fx̂g satisfying (31) to the
non-negativity of the solution of (9). Moreover, note that the structure of the
vector f�1; :::; �kg reveals nothing about the nature of the solution. If any of the
income levels are constrained at zero, so at least one �i > 0, then nothing can
be inferred from (30) about the structure of bunching at the optimum. Hence
the characterizations of bunching in Section 3 do not apply when a binding
non-negativity constraint is added.
We now focus on the case where the non-negativity constraints on income

are binding. The optimization problem can be solved in two equivalent ways.
The �rst approach is to directly solve the system of equations (26), the comple-
mentary slackness conditions and the de�nition of the income allocation. This
is what is implemented in the numerical section.
There is an alternative statement of the optimization program that draws a

closer link with the solution of Section 3. To introduce this, de�ne

�j;t := �jnj �
1

N

kX
i=t+1

ai;j+1sj+1 � ai;jsj
si

�ini; j = 1; � � � ; k; (32)

and

�t =
1

N

kX
i=t+1

�ini
si
: (33)

Also, let the function x = � (xt+1; :::; xk) be de�ned implicitly by

0 =
1

N

24 tX
j=1

njx++
kX

j=t+1

njst+1u(x) +
kX

j=t+1

(njxj + [ai;j+1sj+1 � aijsj ]u(xj))

35 :
(34)

The alternative optimization program is described in the following theorem.
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Theorem 1 If allocation fẑ; x̂g, with

ẑi = 0 for i = 1; ::; t and ẑi > 0 for i = t+ 1; :::; k; (35)

is optimal for Program II, then fẑ; x̂g is optimal for Program II�de�ned by

Program II�: max
fxt+1;:::;xkg

kX
i=1

�
�i;tu(xi)��tnixi

�
; (36)

subject to

xi = � (xt+1; :::; xk) ; i = 1; :::; t;

0 � x1 = x2 = � � � = xt < xt+1 � xt+2 � � � � � xk:

The �rst-order conditions for Program II�are given by

�j;tu
0(xj)��tnj+�j�vj+1+

tX
i=1

�
�i;tu

0(xi)��tni + �i � vi+1
� @�
@xj

= 0; (37)

for j = t+1; :::; k: Each of these conditions involves the term @�=@xj which cap-
tures the extent to which the consumption levels of the constrained consumers
must be adjusted to maintain their incomes at zero.
The value of this characterization of the optimum is two-fold. First it shows

that the values of �j do not characterize the solution. This emphasizes why
the analysis of bunching with negative incomes does not extend. Second it
shows that it is the value of �j;t in conjunction with the @�=@xj that matters.
No simple statements can be made to link the structure of the consumption
allocation with the �j :
Although Program II�has the same solution as Program II there is an im-

portant distinction. For Program II�it must be known in advance which of the
zjs will be zero. Therefore it can only be used to �nd the solution in an itera-
tive manner. That is, use �j �rst to �nd if solution with non-negative incomes
exists. If it does not, then use �j;1: If this does not generate a non-negative set
of incomes - it will guarantee z1 = 0 but not necessarily z2; ::: - then try �j;2:
All �j;t generating non-negative solutions must then be contrasted to �nd that
which generates the highest welfare level.

5 Implementation

We have already noted on several occasions that the tax function is closely
dependent upon the structure of an economy described in the vector E. To use
the model to obtain an insight into what can be viewed as the typical pattern
of the tax function we employ a Monte Carlo analysis. This involves making a
repeated random draw from a set of possible economies and solving Program II
for each draw. The pattern of results can then be analyzed for regularities in
the pattern of behavior.
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More speci�cally, we are able to determine the proportion of cases in which
the non-negative income constraint is binding and the proportion in which
bunching occurs. These values illustrate the extent to which allowing negative
incomes is a harmless simpli�cation. In fact, it will be seen that the proportion
of cases in which the non-negative income constraint binds can be above 80%.
These results, though, remain incidental to the major objective.
The major objective is to try and understand the qualitative properties of the

optimal tax function in terms of progressiveness. How we do this is as follows.
The major qualitative property of the tax function is whether the marginal (or,
equally, the average) rate of tax increases as we progress from one skill level to
the next. We know that this cannot be true for all skill distributions since the
results in (Diamond 1998) and (Myles 2000) provide skill distributions where
the marginal rate falls. It may still be true, though, that these cases are in the
minority amongst the set of economies. Following this reasoning, the value that
interests us is the proportion of economies in which the marginal (or average)
tax rate is greater for skill level j + 1 than it is for skill level j. If, for instance,
we �nd that this is true in 80% of economies we can argue that marginal rate
progressiveness is a typical property of the optimal tax function.
The method employed in the Monte Carlo analysis is to specify a permissible

skill interval S := [s`; su] and the number of skill levels, k. We then make a
random selection using a uniform distribution of k skill levels from S. Two
di¤erent methods are then employed to determine the number of consumers
with each skill level. The �rst method is to �x a total potential population, P:
For each skill level, si, the number of consumers with that skill, ni; is selected
by making a random draw from a uniform distribution over [1; P=k]: Because
each ni is an independent draw, this method places no a priori structure on the
relation between the numbers with di¤erent skills.
The second method places more structure upon the ni. Three di¤erent

structures are used. The simplest is to assume that the population is the same
for all skill levels, so for all i = 1; :::; k; ni = P=k: The next method is to assume
that the population for each skill is determined by a log-normal distribution,
with the mean and variance chosen to match that of the uniform distribution
over S. Then if f(si) is the probability density at skill si; ni is given by ni =
f(si)P: Hence this constructs a discrete approximation to the log-normal. The
�nal method is to replace the log-normal distribution by a �2 distribution, with
the degrees of freedom chosen to equate the mean of the distribution with the
mean of the uniform distribution.
The �rst set of results describe the incidence of zero incomes and of bunching

of the lowest-skill consumers. Table 3 reports results for the utility functions
U = ln(x) � ` and U = x1=2 � ` for the four di¤erent methods of selecting the
values of n. In both cases the log-normal distribution has the lowest proportion
of zero incomes and bunching. The non-negativity constraint on the income of
the lowest skill type is binding in a majority of cases, with the proportion rising
above 95% for the uniform selection case. The table also shows that there is a
great frequency of bunching of consumption at the lower end. The frequency
with which zero incomes arise demonstrates that allowing negative incomes will
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generate an incorrect optimal allocation in the majority of cases. The results
for other combinations of parameter values are similar.

Distribution n = P=k U(1; P=k) �2 Log-normal
z1 = 0 0.860 0.803 0.793 0.660
x2 = x1 0.788 0.785 0.652 0.432

Table 3: Incidence of bunching at lower end: logarithmic utility
k = 10, sl = 1, su = 10, P = 10000, ] sim. = 1000

Distribution n = P=k U(1; P=k) �2 Log-normal
z1 = 0 0.950 0.957 0.901 0.781
x2 = x1 0.874 0.883 0.777 0.517

Table 4: Incidence of bunching at lower end: square root utility
k = 10, sl = 1, su = 10, P = 10000, ] sim. = 1000

The results of implementing the model for the marginal tax rate and the
average tax rate are displayed in Figures 5 to 12. These �gures present the
proportion of economies sampled for which the tax rate increases at each level
of skill. The interpretation of a high proportion at skill level i is that the tax rate
(either MTR or ATR) increases for most economies between skill level i and
skill level i+1. So for Figure 5 the marginal tax rate is higher for consumers with
skill level 4 than for consumers with skill level 3 in just over 80% of economies
with square root utility. It should be noted that the proportion of increases of
MTR at skill level 9 is always zero since the MTR is non-negative, must be
zero for skill level 10 (the highest skill) and skill level 10 is never bunched with
skill level 9.
The �gures for the MTR show a good consensus between the di¤erent spec-

i�cations. The proportion of increases is close to 1 at low skill levels, so as we
move up the skill distribution from the lower end the MTR will increase for the
average case. However, the proportion of increases declines monotonically with
the level of skill. Decreases in the marginal rate become predominant above the
mean level of skill, although the possibility of increases remains signi�cant for
all but skill level 9. Although the interpretation is di¤erent, the picture pro-
vided by these results is very similar to that of other computations of optimal
tax rates - especially those in the original paper of (Mirrlees 1971). It is possible
to select economies where the MTR behaves in a di¤erent way, but these will
be in a distinct minority. For example, the Diamond case of a U-shaped tax
structure (5 decreases ofMTR followed by 3 increases) occurs in 1.47�10�6 per
cent of economies for square root utility and n = P=k:
The behavior of the ATR is more surprising than that of the MTR. In all

cases, the proportion of increases �rst rises with skill and then falls. On average,
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Figure 5: Increases in MTR for n = P=k
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Figure 6: Increases in MTR for n � U(1; P=k)

20



0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Position in Skill Distribution

Pr
op

or
tio

n 
of

 In
cr

ea
se

s

Square Root Utility Logarithmic Utility

Figure 7: Increases in MTR for n � Log � normal
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Figure 8: Increases in MTR for n � �2
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the ATR must be highest at mean levels of skill. Towards the upper end of
the skill distribution the ATR falls in a very high proportion of economies.
This result is described as surprising since it is in contrast to the previous
simulations in which the ATR increased throughout the skill distribution. This
�nding illustrates how previous simulations based on a single speci�cation of
the economy can fail to provide the �typical�picture.
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Figure 9: Increases in ATR for n = P=k
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Figure 10: Increases in ATR for n � U(1; P=k)

6 Conclusions

Ever since the publication of Mirrlees�initial work on optimal income taxation it
has been apparent that numerical analysis is necessary to supplement the limited
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Figure 11: Increases in ATR for n � Log � normal
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Figure 12: Increases in ATR for n � �2
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theoretical results. The primary di¢ culty with the use of numerical methods is
typically the limited number of model speci�cations that can be tested. This
makes it di¢ cult to distinguish the properties of a numerical solution that are
general from those which are speci�c. It is clear that the structure of the optimal
income tax function is dependent upon the distribution of skill in the economy.
Hence, the fact that existing simulations have focussed upon the log-normal
distribution is a major limitation.
The quasi-linear model apparently o¤ers a route out of these limitations. Al-

though it restricts the structure of preferences, the quasi-linear model simpli�es
the characterization of the optimal allocation. This is particularly true if there
is no bunching of consumers. In such cases, the marginal tax rate is independent
of the utility of consumption and is determined entirely by the skill distribution
and the social welfare weights. This seems to promise a framework in which the
link between the skill distribution and the optimal tax function can be explicitly
investigated. Unfortunately, this promise is not realized: the assumptions sup-
porting the analysis are excessively restrictive and very few economies satisfy
the no-bunching condition.
To implement the quasi-linear model we have extended previous work in

order to characterize the optimal allocation under a set of less restrictive as-
sumptions. In particular, we have removed the assumption of a lower bound on
the utility of zero consumption and have removed that assumption that labor
incomes can be negative. Using our characterization of the optimum we have
conducted a Monte Carlo analysis. A random process has been used to select
economies and the optimal income tax calculated. We have then studied the
frequency with which alternative patterns of marginal and average tax rates
arise. By doing so, we aimed to reveal which properties occur with a high fre-
quency. We are not aware of such methodology having been previously applied
to a problem in tax theory.
The results demonstrate that although the model is capable of generating a

variety of qualitative patterns of marginal tax rates, there is a good consensus
between alternative speci�cations of the average structure of the tax function.
This average structure is characterized by a monotonic reduction in the propor-
tion of economies for which the marginal rate of tax rises as the level of skill
increases. Hence on average the picture emerges of a marginal rate of tax which
declines with skill.
The behavior of the average rate of tax is di¤erent. At low levels of skill,

the proportion of increases is increasing in skill until it reaches a maximum
around the mean of the skill distribution. Decreases in the average rate of tax
then occur for the majority of economies. This reveals the most common tax
function to be one where the average rate of tax initially increases and then
falls. The observation that the average rate of tax may fall at the upper end of
the skill distribution is not a result that has previously been observed.
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7 Appendix

Proof of Lemma 2
The �rst part of the result follows directly from using (6). Utility is strictly
increasing in x and skill is non-negative. Therefore, if the xis form a monotonic
sequence, so must the zis. The second part of the result is a standard application
of agent monotonicity.

Proof of Lemma 3

(i) Assume that �1
n1
< �2

n2
< : : : < �k

nk
and �2 > 0.Using u00 < 0; the fact that

�2
n2
< : : : < �k

nk
implies there exists a strictly increasing sequence of xjs that

solve
�j
nj
u0(xj)�� = 0; j = 2; :::; k: (38)

Moreover, since �2 > 0 it follows from Assumption 3 that x2 > 0: Finally, since
�1
n1
< �2

n2
it must be the case that x2 > x1 � 0:

(ii) Assume that there is no bunching so xj+1 > xj ; j = 1; :::; k � 1 and x1 �
0. The consumption allocation must satisfy the necessary conditions for the
program

�1
n1
u0(x1)��+

�1
n1

= 0; �1x1 = 0; �1 � 0; (39)

�j
nj
u0(xj)�� = 0; j = 2; :::; k: (40)

Since u00 < 0, it follows that
�j+1
nj+1

>
�j
nj
: Furthermore, since x2 > x1 � 0; �2 > 0:

Proof of Proposition 1
It follows from the Lemma 3 that if there is no bunching then �1

n1
< �2

n2
< : : : <

�k
nk
: These inequalities and the assumption that �1 > 0 imply �j = 0 8 j. The

necessary conditions (16) then reduces to

�j
nj
u0(xj)�� = 0; j = 1; :::; k: (41)

Substituting from this condition into (4), the marginal tax rate at skill level j
can be derived as

MTRj = 1�
�j

�njsj
: (42)
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Proof of Lemma 4
If xi = 0 for i = 1; :::; j the allocation must solve

�1u
0(0)� n1�+ �1 � �2 = 0; (43)

�iu
0(0)� ni�+ �i � �i+1 = 0; i = 2; :::; j � 1; (44)

�ju
0(0)� nj�+ �j = 0; (45)

with �i > 0 for i = 1; :::; j: Solving (43) to (45)

�i =

jX
`=i

[ni�� �iu0(0)] : (46)

Clearly, �i > 0 if
�1
n1
< 0; :::;

�j
nj
< 0; hence these will be bunched.

But j + 1 cannot be bunched given the assumption on u0(0) since �j+1 =�
nj+1�� �j+1u0(0)

�
> 0 would imply �j+1 � 0.

Proof of Proposition 2
Under Assumption 1, limxi!0

1
u0(xi)si

= 0; so limxi!0MTRi = 1:

Proof of Lemma 5
Consumer j+m+1 is bunched with j; :::; j+m if and only if there is a solution
of the form f~x > 0; �j+1 > 0; :::; �j+m+1 > 0; �j+m+2 � 0g to the system

�ju
0(~x)� nj�� �j+1 = 0; (47)

�j+`u
0(~x)� nj+`�+ �j+` � �j+`+1 = 0; ` = 1; :::;m (48)

�j+m+1u
0(~x)� nj+m+1�+ �j+m+1 � �j+m+2 = 0 (49)

Here it is assumed that consumer j is not bunched with consumer j�1:. Solving
the equations

�j+m+1 = �j+m+2 +
�nj+m+1Pm
t=0 �j+t

"
mX
t=0

�j+t �
�j+m+1
nj+m+1

mX
t=0

nj+t

#
: (50)

Hence
�j+m+1
nj+m+1

�
Pm

t=0 �j+tPm
t=0 nj+t

(51)

is a su¢ cient condition for �j+m+1 � 0. However, it is not a necessary condition:
it is possible that �j+m+1 > 0 when (51) does not hold, provided that �j+m+2 is
strictly positive and large enough. In other words, when condition (51) does not
hold either (i) consumer j +m+ 1 is not bunched with consumers j; :::; j +m,
or (ii) consumer j+m+1 is bunched with consumers j; :::; j+m and j+m+2
(and, perhaps, j +m+ 3; :::).
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Proof of Proposition 3
The allocation for bunched consumers is de�ned by the solution to (47) to (49).
Summing these conditions the optimal consumption level, �x; must satisfy

j+m+1X
i=j

�iu
0(�x)�

j+m+1X
i=j

ni� = 0: (52)

The tax rate can then be calculated as

MTRi = 1�
Pj+m

i=j �i

si�
Pj+m

i=j ni
: (53)

Proof of Theorem 1
Substitute the constraints ẑi = 0 for i = 1; ::; t in the objective function (22)
and take into account that (i) the system of incentive compatibility constraints
plus the resource constraints now has k equations for k�t variables zt+1; � � � ; zk
and (ii) the incentive compatibility constraints (6) together with the condition
(35) of the theorem imply x1 = � � � = xt < xt+1. This imposes t restrictions on
x1; � � � ; xk. Without loss of generality we may assume x1; :::; xt to be a function
of xt+1; � � � ; xk.
The derivatives of the resulting Lagrangean with respect to xj ; j = t+1; :::; k;

are:

@L
@xj

� �jnju
0(xj)�

kX
r=t+1

�rnr
sr

@zr
@xj

+ �j � vj+1

+

"
tX
i=1

 
�iniu

0(xi)�
kX

r=t+1

�rnr
sr

@zr
@xi

+ �i � vi+1

!
@xi
@xj

#
= 0:

Hence, the solution satis�es

�jnju
0(xj) =

kX
r=t+1

�rnr
sr

@zr
@xj

+ �j � vj+1

�
tX
i=1

 
�iniu

0(xi)�
kX

r=t+1

�rnr
sr

@zr
@xi

+ �i � �i+1

!
@xi
@xj

(54)

with x1 = � � � = xt = �(xt+1; � � � ; xk). Now we will show that (54) can also be
obtained as a solution of P1 under (35).
For this we rewrite the necessary conditions (24) of P1 as
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(55)
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for i = 1; :::; k. Next, we take (55) for i = 1; � � � ; t and multiply each of these t
equations by

@xi
@xj

for j = t+1; � � � ; k. This results in t(k�t) equations. Now we

group these equations by j having therefore a group of t equations, i = 1; � � � ; t,
for each j = t+ 1; � � � ; k. Next, we sum up left-hand sides and right-hand sides
of t equations in each group:
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Changing the order of double summation we obtain the following for the right-
hand side of the last equation:
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where the last equality follows from (35). Hence, from the �rst t equations from
the solution (55) of P1 under (35) we obtain
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for j = t + 1; � � � k, with xi = �(xt+1; � � � ; xk) for i = 1; � � � ; t. Finally, we
substitute the above in the last (k � t) equations from the solution (55) of P1
to obtain
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kX
i=t+1

�ini
si

@zi
@xj

� �j + �j+1 (56)

which is exactly the same as (54).
The proof is completed by observing that forming a Lagrangean from (36)

and the constraints gives the necessary conditions

�j;tu
0(xj)��tnj+�j�vj+1+

tX
i=1

�
�i;tu

0(xi)��tni + �i � vi+1
� @�
@xj

= 0: (57)

Using (32) and (33) shows that (56) and (54) are identical.
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