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Following the 1999 Israeli elections, the winning candidate’s (Ehud Barak’s) party was

fined 3.2 million dollars for violating Israel’s campaign financing laws by exceeding the

spending cap imposed and raising 1.2 million dollars illegally (see Time Europe, 2000).

While adhering to the strict NCAA recruiting regulations, the University of Oregon spent

3 million dollars to make their football locker room the “best anywhere, including the

NFL” (Lexington Herald Leader, 2003). When asked about the previous salary cap in the

UK Football league, players said that “it [the cap] was so artificial that clubs paid money

in brown paper envelopes.” (BBC2, Newsnight 2002).

In all these cases, there officially existed a rigid spending cap. However, they show

that even though a cap exists: The cap might not be easily enforced. When enforced, the

penalty may just be financial rather than a change in outcome. The cap may be enforced

and adhered to, but there may also be alternate perhaps less effective (hence more costly)

means of spending. We also see that the flexible nature of the cap is often built into the

rules by examining the salary caps of the four major US sports leagues where the caps are

routinely exceeded. In baseball and basketball, surpassing the cap invokes a pure financial

penalty, called a luxury tax, which is proportional to the excess. In football, while the

cap is stated in terms of salaries, many teams use signing bonuses as a way to circumvent

it. In ice hockey, there is a dual cap system, where the luxury tax is invoked on salaries

falling between the two caps and signing bonuses are an allowed method to exceed the
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upper cap.

Previous literature analyzed the imposition of caps in contests reaching the conclusion

that caps potentially can paradoxically lead to increased spending. Yeon-Koo Che and

Ian L. Gale (1998) analyze a complete information asymmetric environment and show

that even with linear costs the paradox may occur. Arieh Gavious, Benny Moldovanu

and Aner Sela (2003) study a symmetric, incomplete information environment and find

for the case of convex costs, the paradox occurs.

In both of these papers in contrast to the above examples, the caps were rigid (fully

enforced). Instead, we analyze environments where caps can be exceeded but at a higher

cost (either punishments or other less efficient means of spending). Todd R. Kaplan,

Israel Luski, Aner Sela and David Wettstein (2002) and Todd R. Kaplan, Israel Luski

and David Wettstein (2003) study the effects of an increase in the cost function in an

incomplete and complete information all-pay auction, respectively, and find that such an

increase always leads to a decrease in bids.

In this comment, we examine the original Che and Gale model for the case of non-

rigid caps and show the existence of a cap will indeed serve to reduce spending. We

then proceed to discuss the welfare effects and policy implications of caps. We start by

introducing the model in the next section.
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I The Model

As with Che and Gale (1998, henceforth CG), we assume that there are two bidders:

bidder 1 with value v1 and bidder 2 with value v2 where v1 ≥ v2. The cost of bidding x

includes the money and effort needed to generate the bid as well as the cost associated

with the risk of punishment. We denote this expenditure (cost) as c(x) and assume it is

the same for each bidder, strictly increasing, continuous with c(0) = 0. Note that this

includes the linear case analyzed by CG where c(x) = x. The highest bidder wins the prize

while all the bidders pay their bids (an all-pay auction). Similar to CG, we introduce a

cap on (monetary) bidding. Unlike CG, we assume that it is possible to bid above the

cap, but at some additional cost (either increased risk of punishment or greater effort).

The effective cost of bidding with a cap is denoted by c(x) where c(x) ≥ c(x) and the

assumptions on c(x) are the same as the assumptions on c(x).

Plausible explanations for why a bidder can potentially bid beyond a cap are as fol-

lows. One possibility is that the punishment mechanism is not foolproof and monetary

expenditures are not perfectly observable, so (small) expenditures above the cap may

go unpunished. Furthermore, the penalty for exceeding the cap may be a fine that is a

continuous function of the excess monetary expenditure.

Finally, the bidding could be multi-dimensional. In addition to the monetary aspect,

there could also be a non-pecuniary aspect such as effort. Money m and effort e spent are

aggregated into a single score w(m, e), where the winner is the individual with the highest

score. The imposition of a cap increases the effective cost of generating the score. 1 The
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placement of the cap on money could shift expense from money into effort distorting the

optimal composition of the bid.

We wish to emphasize that with one-dimensional bidding, x represents monetary ex-

penditure; with multi-dimensions, it represents the score that is a combination of mone-

tary spending and effort. We now proceed to analyze the equilibrium behavior.

II Equilibrium Bidding

The equilibrium behavior entails mixed-strategies over the same support that can be

described by cumulative distributions F1 and F2 for bidders 1 and 2, respectively.
2 The

following theorem fully characterizes equilibrium bidding and outcomes.

Theorem 1 Given any strictly increasing and continuous cost function c, with c(0) = 0,

the equilibrium mixed-strategies of the two bidders are given by the following cumulative

distribution functions: F1(x) =
c(x)
v2

; F2(x) =
v1−v2+c(x)

v1
.

Proof. Each bidder must be indifferent over the support of his strategy. The equilib-

rium payoff for bidder 1 cannot fall below v1−v2, since he can bid an x such that c(x) = v2

and win with certainty. The bidders cannot both have atoms at the same point since an

infinitesimal increase in bid will cause a discrete jump in the expected reward which leads

to a discrete jump in the expected payoff due to the continuity of the cost function. This

implies at least one bidder that bids the lowest possible equilibrium bid will have zero

equilibrium payoff (there would be a zero probability of winning for a bidder not placing
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an atom). Since bidder 1 has positive payoff, this can only be bidder 2. Hence, bidder 2

has zero payoff. This then implies that bidder 1’s payoff cannot exceed v1 − v2 since it

would imply bidder 1 is bidding below v2 and then bidder 2 can profitably undercut him.

Thus, bidder 1’s expected payoff is v1 − v2 and equals his probability of winning F2(x)

times v1 minus his cost as reflected by:

F2(x)v1 − c(x) = v1 − v2

Similarly, using bidder 2’s expected payoff equation, we obtain

F1(x)v2 − c(x) = 0

Together this yields,

F1(x) =
c(x)

v2

F2(x) =
v1 − v2 + c(x)

v1

The straightforward derivation of the equilibrium bidding functions and their “simple”

behavior is the consequence of assuming a continuous cost function following the impo-

sition of the bid. In the CG model, the infinite cost jump allows for the existence of an

atom at the cap. This creates technical difficulties such as a more elaborate equilibrium

behavior and the possibility of non-uniqueness.

Corollary 1 The expected individual expenditure (and hence the expected aggregate ex-

penditure) as well as the probability of either bidder winning is invariant to changes in

the cost function.
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Proof. The expected individual costs are E[c(x)] =
∫
c
−1(v2)

0
c(x)dF1 =

v2

2
and

E[c(x)] =
∫
c
−1(v2)

0
c(x)dF2 =

v
2

2

2v1
for bidders 1 and 2, respectively. The probability of

bidder 1 winning is
∫
F2dF1 = 1−

v2

2v1
.

Even though increasing the cost function does not change expected expenditures, it

does change expected bids, as the following Corollary shows.

Corollary 2 The bidding without a cap first-order stochastically dominates bidding with

a cap; hence, the imposition of a cap reduces the expected bids.

Proof. We denote the equilibrium cumulative distributions for the case with the

caps by F 1 and F 2. We then obtain the following equilibrium distributions.

F 1(x) =
c(x)

v2

F 2(x) =
v1 − v2 + c(x)

v1

Since c(x) ≥ c(x), we must have F 1(x) ≥ F1(x) and F 2(x) ≥ F2(x). Hence, the imposition

of a cap in our environment reduces the expected bids.

III Welfare Implications

The imposition of the caps has different welfare implications for the following three groups:

the participants (bidders), the recipients of the bids and other members of society. As

Corollary 1 shows, the welfare of the participants remains unchanged.

The recipients of the monetary bids would be worse off. Even in the multidimensional

case, the other less-efficient dimensions are less desirable to the recipient; otherwise they
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would be the more-efficient means without the cap (the NCAA football player would

prefer a monetary payment rather than use of a new gym).

The welfare consequences for other members of society are determined solely by the

reallocation of the costs of bidding. Unlike CG, the bidders’ winning probabilities are

unchanged (hence, it does not matter whether or not participants’ values for the “prize”

are aligned with other members of society). The shifting of costs affects welfare am-

biguously. If all such expenditure is wasteful (as one may argue in political campaigns),

then there is no change. If part of the expenditure is collected in a fine, then these fines

may be used to finance more productive activities than the bidding activities. However,

if the bidding activities are valued and punishment is non-pecuniary (such as banning a

team from future competition), then caps shifting expenditure into punishment will be

detrimental. Also note, in the case of multi-dimensional bids, the less efficient bidding

activity may be more socially desirable. For other members of society it might be better

to bribe student athletes with new gyms rather than with money.

IV Conclusion

Rigid bid caps are not always fully enforced in models of political competition, sports and

professional recruiting. Instead, mitigating the effects of the cap is possible but costly.

We find that under such an assumption, contrary to previous literature, the imposition

of a cap will always decrease monetary spending while total expenditure stays the same.
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1* Kaplan: Department of Economics, University of Exeter, Exeter, EX4 4PU, UK, email:

Dr@ToddKaplan.com; Wettstein: Department of Economics Ben-Gurion University of the Negev,

Monaster Center for Economic Research, Beer-Sheva 84105, Israel, email: wettstn@bgu.ac.il. . We

are grateful to two anonymous referees for several comments and suggestions.

1Denote c(m, e) as the cost of spending m with effort e. The bidders want to minimize this cost

for achieving a given bid (score) x. Their effective cost c(x) is then

c(x) = min
m,e

c(m, e) s.t. w(m, e) = x

One can impose caps on money, but not on effort or score. The effective cost c(x) under a

monetary cap m is then

c(x) = min
m,e

c(m, e) s.t. w(m, e) = x and m ≤ m

We thus have c(x) ≥ c(x).

2See Kaplan et al. (2003), Appendix A, for a detailed proof that a pure-strategy equilibrium

cannot exist.
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