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Abstract

Two versions of a fractionally cointegrating vector error correction model (FVECM) are
presented. In the case of regular cointegration, linear combinations of fractionally integrated
variables are integrated to lower order. Generalized cointegration is de�ned as the case where
the cointegrating variables may be fractional di¤erences of the observed series. The concepts
are applied to a model of poll data on approval of the performance of prime ministers and
governments in the UK.

1 Introduction

A recurring issue in the study of democratic government is the relationship between the governing
party and its leader, and the interactions between voter approval of party policies and leadership.
Charisma of the leadership, or lack of it, is often believed to play a signi�cant role in shaping
the view of government performance held by uncommitted voters in particular. A number of
questions present themselves for analysis. For example, do popular policies re�ect in the leader�s
rating? Can a popular leader generate support for his/her government despite unpopular policies?
Or, is there a two-way interaction between the perceptions of the leader and the government?
Also, how do leaders in recent history rate in the charisma stakes, measured by the gap between
personal support and government support?

There now exist long runs of monthly opinion poll data for the UK with which an objective
answer to these questions might be attempted. In particular, we have Gallup and MORI polls,
together covering the period since September 1960 to the present, which report the percentage
of positive responses by voters to the questions, �Do you approve the performance of the Prime
Minister?�and �Do you approve the government�s record?�We refer to these series in the sequel
as PM and Gov.

However, the statistical analysis of these series is not a trivial issue. Analysis by the present
authors of the closely related monthly poll data on voting intentions (Byers, Davidson and Peel
1997, 2000, 2002, henceforth referred to as BDP) shows that these latter series appear fractionally
integrated, with an integration parameter, d, in the neighbourhood of 0.75. They are covariance
nonstationary, but mean-reverting and therefore not random walks. We show in the next section
that very similar models provide a parsimonious description of PM and Gov, with similar values
of d. These facts pose a problem for conventional time series methods. The nonstationarity

�Corresponding author. Address: School of Business and Economics, University of Exeter, Exeter EX4 4PU.
Email: James.Davidson@exeter.ac.uk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12824391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


invalidates a conventional regression or simple VAR analysis, based on correlations. However, the
alternative strategy of a conventional cointegrating VAR is invalidated by the fact that simple
di¤erencing of the data will result in over-di¤erencing. The concept of cointegration between
fractionally integrated series cannot be formulated in the usual way. However, we show in this
paper that a fractionally cointegrating VAR model can be used to analyse these series, and yield
evidence on the issues listed above.

The fractional integration model has been quite widely employed by political scientists as a
way of capturing the characteristics of series such as opinion polls and other indices of political
interactions. In addition to our own work cited above and the related work of Box-Ste¤ensmeier
and Smith (1996), see for example Clarke and Lebo (2003) which analyses UK approval series
related to our own, and Lebo and Moore (2003) which analyses indices of foreign policy inter-
actions in a similar manner. These inferential procedures involve fractionally di¤erencing series
to I(0) and running regressions in the di¤erences, also including putative cointegrating residuals
as explanatory variables. Box-Ste¤ensmeier et al. (2004) is another study in this vein, studying
the persistence of the �gender gap� in partisanship as a cointegrating residual. However, these
studies do not attempt a true fractional multivariate analysis. A study closer in spirit to our
own is Dueker and Startz (1998), which models US and Canadian bond rates using a bivariate
ARFIMA process. We comment further on this work below.

The paper is organized as follows. Section 2 reviews the cointegration concepts we propose
to employ, and distinguishes between the cases of regular and generalized cointegration. Section
3 then sets out the bivariate model of leader and government approval, discusses the data set,
and carefully considers the treatment of data features such as break points. Section 3 reports the
results, both for our complete data period covering the periods of o¢ ce of eight di¤erent prime
minsters, and also for the longest unbroken prime-ministerial regime, that of Margaret Thatcher.
Section 5 reports tests for the existence of cointegration, and also of �full� cointegration (such
that the cointegrating residuals are I(0)) using bootstrap methods developed by the �rst author
in previous work, and Section 6 concludes the paper. Some background information on fractional
di¤erencing is contained in the Appendix.

2 Fractional Cointegration

One of the di¢ culties with modelling relationships between fractional series is that the order of
integration is a real number, and once this number is allowed to be di¤erent from unity, there
may be no strong reason from economic or behavioural considerations to require it to be the
same for all series. This poses a di¢ culty in view of the requirement that cointegrating equations
balance. Thus, if x1t � I(d1) and x2t � I(d2), these variables can only cointegrate by the accepted
de�nition, that a linear combination exists integrated to lower order, if d1 = d2.

With a view to developing a formal (not behavioural) approach to this issue, we consider two
alternative models (or classes of model). They are, respectively, the regular fractional cointegra-
tion model

[B(L)�(L)��(L)�0L](xt +�Dt) = ut (2.1)

and the generalized fractional cointegration model

[B(L)�(L)���(L)0L](xt +�Dt) = ut: (2.2)

These can be seen as generalizations of the model proposed by Granger (1986) who, however,
had integer orders of integration in mind. We de�ne the components of these expressions before
discussing them further. In each case, xt (N � 1) is the vector of observed variables. Dt (S � 1)
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is a vector of exogenous variables, typically dummies, and � (N � S) a matrix of coe¢ cients.
For convenience in what follows we write

wt = xt +�Dt (2.3)

so that the existence of possible exogenous factors can be left implicit. ut (N�1) will typically be
assumed to be a martingale di¤erence process. B(L) (N �N) is an optional matrix polynomial
with roots outside the unit circle to represent short run e¤ects. Next,

�(L) = diagf(1� L)d1 ; : : : ; (1� L)dN g (2.4)

is the vector fractional di¤erencing operator where d1; � � � ; dN are nonnegative parameters (not
necessarily distinct). The Appendix contains some additional details on the practical implemen-
tation of the di¤erencing operator (1� L)d.

�(L) and � (resp. � and �(L)) are matrices of dimension N �R. The special lag polynomial
matrices de�ned for these models take the respective forms �(L) = f�ji(L)g and �(L) = f�ji(L)g
where

�ji(L) = �ji(1� L)dj�bji (2.5)

�ji(L) = �ji(1� L)dj�bji (2.6)

where d1; � � � ; dN are as in (2.4) and b11; � � � ; bNR are additional parameters, not necessarily
distinct, and the constant matrices � = f�jig and � = f�jig are in each case of rank R.

First consider (2.1). The conventional cointegrating VAR similar to Johansen (1988, 1991)
is obtained when d1 = � � � = dN = b11 = � � � = bNR = 1. Instead, we shall assume 1

2 < dj <
3
2

and 0 � bji � dj . The basic principle here is that for a set of fractionally integrated variables
x 1 � I(d1); � � � ; xN � I(dN ), possibly integrated to di¤erent orders di, there exist R independent
linear combinations of the data, �0wt, that are integrated to lower orders than their constituent
series. If

�0iwt � I(dj � bji) (2.7)

the ith error correction term can drive the equation for xjt � I(dj), satisfying the requirement
that the equation balances, with both sides I(0). Note that dj 6= dk for j 6= k is permissible,
provided dj�bji = dk�bki. Also, the cointegrating residuals are allowed to exhibit long memory.
There is no requirement that bji = dj , which case we refer to as �full cointegration�. In the
presence of exclusion restrictions on the � coe¢ cients, even bji = bjl is inessential. Long-memory
(dj > bji) and short-memory (dj = bjl) cointegrating relations, containing di¤erent variables,
could in principle coexist in the same equation. One restriction that must be observed is that
the two largest dj values in a cointegrating relation must match. If the highest integration order
is unique, this variable clearly cannot cointegrate with anything else, and the corresponding row
of � must be 0. However, if d1 = d2 > d3 (say), the third variable can quite feasibly appear in
a cointegrating relation whose residual may be I(d3), but may equally well be I(d) for d < d3,
since the third variable can (conceivably) cointegrate with an I(d3) combination of variables 1
and 2.

Next, consider (2.2). This represents in a slightly more general form of what has been de-
scribed in previous work (Davidson 2004b) as generalized cointegration. Here the equation for
variable j is driven by one or more I(0) linear combinations of fractional di¤erences

(1� L)d1�b1ix1;t�1; : : : ; (1� L)dN�bNixN;t�1, i = 1; :::; R:

In this case, while the observed series themselves are not (necessarily) cointegrated, fractional
di¤erences of them may be. This device allow variables integrated to di¤erent orders to be
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cointegrated, and does not require restrictions on �. This notion of generalized cointegration is
not one that has been widely entertained from a modelling perspective in the literature to date,
but it can be thought of as generalizing the multicointegration framework, in which (say) the
di¤erences of an I(2) variable are cointegrated with an I(1) variable (see Granger and Lee 1989).
Clearly, if dj � bji is the same for each j, then we are not able to distinguish the two cases, and
we treat the model as of class (2.1) by default.

Our models may be compared with the bivariate setup of Dueker and Startz (1998). Their
approach di¤ers from ours, in that they construct a bivariate ARFIMA process, or in other
words, a vector-ARMA in which the variables are respectively the dth fractional di¤erence of the
US bond rate, and the d� bth fractional di¤erence of a linear combination of the two series, for
d � b > 0. Here, d, b and the cointegrating coe¢ cient are of course treated as additional unknown
parameters in constructing the Gaussian likelihood function. Their model is therefore, in e¤ect,
a reparameterization of our regular cointegration model, although ours admits somewhat more
generality in allowing for cross-equation dynamics, but also has the advantage of generalizing
the conventional vector-error correction setup of Johansen (1988). This permits direct tests of
hypotheses such as Granger noncausality, for example.

Nonetheless, we need to emphasize that so far our setup is purely formal, with no consid-
eration of the economic or behavioural context of these models. We should of course point out
that models (2.1) and (2.2) can be speci�ed on a computer to simulate systems having all the
integration/cointegration characteristics we have described. From this point of view, they have
validity as possible descriptions of data. However we should also recognise a major di¢ culty with
permitting fractional processes in a behavioural modelling framework. Most models of dynamic
interactions in the economic sphere are conceived as linear or nonlinear di¤erence equations of
�nite order. This is true of costly adjustment, rational expectations, and any other explicitly
dynamic economic mechanism. The only model in popular use in which lags of in�nite order
play an essential role is the unit root model. This can be thought of as embodying a concept
of stock accumulation. An increment of physical capital, or human capital, or population, has a
permanent e¤ect on the system. However, this is a special case in which the weights are equal
for all lags. Fractional processes, having declining but non-summable lag weights, have been
successfully introduced into economic models only through aggregation over agents. The best
known contribution here is Granger (1980), although Robinson (1978) gave a similar result inde-
pendently. In these models, the micro-processes describing individual behaviour can still be cast
into the conventional �nite di¤erence equation framework. Long memory may nonetheless arise
through aggregation of the responses of heterogeneous agents.

An application of the Granger approach can be found in BDP, where the authors conceive
of opinion polls as an aggregate of heterogeneously distributed binary responses. By the law of
large numbers, this aggregate is distributed similarly to the aggregate of the conditional expected
responses (probabilities of answer �Yes�) which can be modelled as evolving through time in dif-
ferent ways in response to new information. Voters are often thought of as either �committed�
or ��oating�, where the former vote by conviction, and the latter according to perceived perfor-
mance. These propensities can be modelled in the former case by unit root processes (probability
of �Yes� changing only in response to new information) and in the latter case by stationary
autoregressive processes (probability of �Yes�moves away from the mean of 0.5 in response to
new information, but otherwise reverts to it.) By combining these di¤erent cases in suitable
proportions, represented by a Beta distribution of autoregressive coe¢ cients on the unit interval,
BDP apply Granger�s result to show that the aggregate should behave like a nonstationary long
memory process.

We assume implicitly in this paper that the approval series under study are generated in the
same kind of way. We emphasize this in order to clarify the role of the cointegrating FVECM
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model in this application. In econometric research there is frequently an ambiguity, intended or
otherwise, in the assumed role of the model equations. Sometimes they are taken explicitly to
represent the behaviour of �representative agents�, although the di¢ culties inherent in modelling
the aggregation process, especially when micro-behaviour is heterogeneous, tend to be overlooked.
More often, nothing at all is said about aggregation, and the behavioural basis of the model �tted
to macroeconomic data is left unspeci�ed. Some readers may well impose a representative agent
story of their own on the estimates, others may treat the equations as merely descriptive.

It therefore behoves us to say explicitly that our FVECM is intended to be descriptive of
the relationship between the aggregate processes, and there is no suggestion that it describes
the decisions of individual agents. The hypothesis to be studied here is that there is a long-run
relationship between approval of the government and approval of the leader. If this relationship
is broadly invariant across voters, it will be re�ected in the co-movement of the aggregates, and
we hypothesize that this aggregate relationship can be adequately described by a FVECM. This
structure will enable us to test the leading hypotheses of interest, such as: is there partial or
full cointegration, or even generalized cointegration? Does one measure Granger-cause the other,
or are they interdependent? Which Prime Ministers have been the more idiosyncratic? And so
forth.

3 The Approval Model

The approval series PM and Gov span the period September 1960�May 2004 (525 monthly ob-
servations)1. Following the BDP analysis they are analysed in �log-odds�form, as

xt = log
Xt

100�Xt

where Xt denotes the reported percentage of positive responses in each month. This maps the
data points from [0,100] to the whole real line, and renders a nonstationary representation with
in�nite variance more credible, although in practice it has little e¤ect on the results unless the
series approach close to 0 or 1.

Let

wjt = xjt �
8X
k=1

�kDkt; j = 1; 2 (3.1)

where the D1t; : : : D8t are 0-1 dummy variables to represent the periods of o¢ ce of the eight Prime
Ministers who have served over the sample period: Harold Macmillan, Lord Home, Harold Wil-
son, Edward Heath, James Callaghan, Margaret Thatcher, John Major and Tony Blair. Omitting
possible vector-autoregressive terms for clarity (and also because they prove insigni�cant in prac-
tice) the models to be estimated take one of the following forms: either the regular cointegration
form

(1� L)d1w1t = �1(1� L)d1�b1(w1;t�1 � �1w2;t�1) + u1t
(1� L)d1w2t = �2(1� L)d1�b1(w1;t�1 � �1w2;t�1) + u2t

(3.2)

or the generalized cointegration form,

(1� L)d1w1t = �1((1� L)d1�b1w1;t�1 � �1(1� L)d2�b2w2;t�1) + u1t
(1� L)d2w1t = �2((1� L)d1�b1w1;t�1 � �1(1� L)d2�b2w2;t�1) + u2t:

(3.3)

1The data are from Gallup up to March 2001, and from MORI thereafter.
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Figure 1: The approval series, showing regime means

For reasons to be discussed, it is assumed in formulating the likelihood function that (u1t; u2t)0 =
ut is independently distributed as t(�;�), or in other words that

f(ut) =
�((� + 1)=2)

�(�=2)
p
�(� � 2)j�j

 
1 +

u0t�
�1ut

(� � 2)

!�(�+1)=2
: (3.4)

In Figure 1 the approval series (in log-odds form) are superimposed on the �tted values of a
regression on the dummies, representing the average approval shown the leader and government
over each episode.

A natural objection to this time series modelling approach is that the support for one prime
minister is not comparable with that for his/her successor or predecessor, and therefore to treat
PM and Gov as a single contiguous time series is not legitimate. Large jumps do indeed occur at
the dates when personnel change, most notably in May 1997 when Tony Blair took over from John
Major. While there are obvious di¢ culties in conducting the analysis on a set of disconnected
short series, this critique is strictly correct, and ideally we should like to observe a single long
run of one leader and party. Indeed, in the next section we do �t the model to the single longest
leadership regime in the sample, that of Margaret Thatcher. However, the leadership regimes are
consecutive, and the political and economic fortunes of successive governments are related by the
progress of historical events. Combining the regimes in a suitable manner can make use of this
extra information. Moreover, note that the object of the analysis is not to explain the popularity
of leaders as such, but to model the relationship between leaders and governments in the public
perception. There are grounds to argue that the dynamics of this latter relation should have a
fundamental character, independent of individuals and regimes once the special characteristics of
each has been accounted for.

However, the �splice points� between government regimes still present a special problem.
These naturally feature as outlying disturbances, if otherwise unaccounted for. It�s important to
note that jumps in popularity are associated with major events as well as changes of personnel.
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Sample Sept. 1960 - May 2004
Log-likelihood 1141
Schwarz SC 1063
Hannan-Quinn SC 1095
Akaike SC 1116
Error Correlation 0.807p
Student0s t DF 3.177 (0.29)

�1 (Eql. Relation) -1.189 (0.122)
LM Statistic, equal ds �2(2) = 0:736

Table 1: System Results - Regular Cointegration

Two notable instances are in May-June 1982, coinciding with the Falklands war, and Septem-
ber 1992, when Britain was forced out of the ERM. Since the dates are known, some system of
additional dummy variables o¤ers a possible solution, to the splice point problem, but one that
complicates the model excessively. However, a more elegant solution is simply to model the shock
distribution as fat-tailed. By maximizing the likelihood function derived from the Student�s t dis-
tribution, instead of the Gaussian, we can e¤ectively limit the in�uence of outlying observations.
The likelihood based on (3.4) gives relatively small weight to outliers, and bases the parameter
�t mainly on the body of the distribution. This has an e¤ect similar to censoring the transition
observations, while not discounting them altogether.

A second objection to be considered is that switches of regime of a certain frequency are well-
known to create spurious long memory (Diebold and Inoue 2001). We should therefore entertain
the possibility that the series are generated as a succession of stationary short-memory episodes,
with occasional shifts of mean. The answer to this objection is two-fold. First, the fractional
integration parameters are estimated after inserting regime dummies to pick up shifts of mean,
and the nonstationary character of the series remains strongly evident. Second, these estimates
are very similar to those obtained by BDP, modelling support for individual parties over much
the same period, after allowing for the e¤ect of the election cycle by a system of dummies. That
swings of party support are a long memory phenomenon is something that has been attested in
a range of di¤erent studies of di¤ering democratic countries; see Box-Ste¤ensmieir and Smith
(1996), BDP (1997, 2000) and Dolado et al. (2003), inter alia.

4 Results

Two estimated models of the bivariate process are reported, respectively of type (2.1) and type
(2.2). The full results, except for the shift dummy coe¢ cients, are shown, respectively, in Tables 1
and 2, and Tables 3 and 4. In each case, the �rst table shows the system-wide statistics, including
the equilibrium relation, and the second, the equation-by-equation details. The residuals are
plotted in Figure 2 and the residuals from the equilibrium relation in Figure 3. 2

In the regular cointegration model, since there are just two variables in the system their orders
of integration must be equal. Accordingly, this restriction is imposed in the estimation. However,
this implies that the orders of integration of the error correction terms must also match to ensure
cointegration, so this restriction is also imposed. In the generalized cointegration case there is no
requirement for any of the integration orders to match across variables. Therefore, no restrictions
are imposed in this case and the model has two extra free parameters. The models are of course

2Estimations were performed using the Ox package Time Series Modelling Version 4. See Davidson (2005) and
Doornik (1999).
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PM Equation Gov Equation
d1 0.908 (0.033) *
b1 0.542 (0.179) *
�1 -0.152 (0.124) 0.201 (0.085)
� 0.149 (0.005) 0.158 (0.006)
R2 0.886 0.9105

Jarque-Bera 341 31
Box-Pierce(12) 8.508 12.92
Box-Pierce2(12) 7.545 17.07

Table 2: Equation Results, Regular Cointegration (except Dummies)

Sample Sept. 1960 - May 2004
Log-likelihood 1142
Schwarz SC 1057
Hannan-Quinn SC 1092
Akaike SC 1115
Error Correlation 0.808p
Student0s t DF 3.172 (0.297)

�1 (Eql. Relation) -1.151 (0.94)
b1 (PM) 0.532 (0.331)
b2 (Gov) 0.560 (0.156)

Table 3: System Results - Generalized Cointegration

PM Equation Gov Equation
d 0.902 (0.141) 0.916 (0.145)
�1 -0.170 (0.124) .200 (0.117)
� 0.149 (0.005) 0.158 (0.006)
R2 0.886 0.910

Jarque-Bera 343 31
Box-Pierce(12) 8.21 13.35
Box-Pierce2(12) 7.59 17.07

Table 4: Equation Results, Generalized Cointegration (except Dummies)
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PM Equation Gov Equation Equilibrium Relation
Macmillan (Conservative) 1.0192(0.045) 0.4468 (0.096) 0.48796
Home (Conservative) 1.0674 (0.043) 0.6758 (0.115) 0.26391
Heath (Conservative) 0.3532 (0.204) 0.0755 (0.169) 0.26346
Thatcher (Conservative) 1.7868 (0.093) 1.2373 (0.229) 0.31573
Major (Conservative) 2.7205 (0.111) 1.5379 (0.236) 0.89209
Wilson (Labour) 1.1814 (0.074) 0.6015 (0.176) 0.46626
Callaghan (Labour) 1.63119 (0.093) 0.97093 (0.191) 0.47685
Blair (Labour) 5.1146 (0.216) 3.9721 (0.387) 0.39216

Table 5: UK Prime Ministers: Regime Intercepts (Regular Cointegration

identical if the orders of integration are the same. The LM statistic for the equality restrictions
shown in Table 1 gives good grounds for thinking this to be the case, and the model selection
criteria also favour the more restrictive model. In most respects the estimates are very close, as
would be expected.

To interpret these results we assume that cointegration exists, in the sense that b1 = b2 > 0,
and either �1 < 0, or �2 > 0, or both. However, note that we cannot straightforwardly test
the hypothesis that �1 = �2 = 0 due to the so-called �Davis problem�(Davis 1977). Under the
null hypothesis, b1 is unidenti�ed. Therefore, we postpone the issue of testing the existence of
cointegration until the next section, and here simply assume (justi�ably as we show) that it does,
in other words, assume that �1 < 0 and/or �2 > 0. In fact, both of these conditions appear to
apply, with the error correction coe¢ cients having similar absolute magnitude. The estimated
b1 is signi�cantly positive, but also signi�cantly smaller than the estimated d1. In other words,
there does not appear to be full cointegration, in the sense that the cointegrating residuals are
I(0). These residuals are plotted in Figure 3. Fitting an ARFIMA(p; d; q) model3 to this series
yields d = 0:55. We observe the phenomenon of a cointegrating vector that is nonstationary or
nearly so, while integrated to a lower order than its constituents. Also note that the estimated
degrees of freedom for the Student�s t distribution are low (equalling the square of the �tted
parameter, around 13.7) which indicates that the transition periods giving rise to large residuals
(see Figure 2) are given relatively small weight in �tting the parameters.

Next, we ask what the model implies about the relationship between the perceptions of
government and leadership during the forty year span covered by the sample. The intercept
shifts for each leader�s period of tenure are estimated for each equation, and Table 5 shows the
point estimates from the regular cointegration model. The statistics of greatest interest are the
implicit shifts in the cointegrating vector, �1j � �1�2j for j = 1; : : : ; 8 with �1 = 1:18, shown in
the third column of the table. Observe that most prime ministers rate higher on average than the
governments over which they preside, providing a measure of the charisma factor. However note
(as a matter of interest primarily to students of British political history) that Edward Heath (who
signed the Treaty of Rome in 1973, and subsequently fought and lost a disastrous battle with the
trades unions) ranks lowest in charisma. By contrast, John Major�s government never recovered
from the disastrous fall-out from the ERM in 1993, but Major was, interestingly, noticeably more
popular than the government he led. Tony Blair and Mrs Thatcher, both often regarded as high
on charisma, both have a middling ranking. It is notable that the extremes, high and low, were
both cases of governments that came to a bad end, losing the subsequent election. Disagreements
over policy may be the decisive factor in both damaging governments, and driving wedges between
government and leader.

3The best model, selected by the Schwarz criterion, was ARFIMA(0,d,0).
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Figure 2: Residuals, regular cointegration model

Figure 3: Equilibrium Relation, regular cointegration model

Sample May. 1979 - November 1990
Log-likelihood 370
Schwarz SC 343
Hannan-Quinn SC 353
Akaike SC 359
Error Correlation 0.881p
Student0s t DF 3.87 (0.97)

�1 (Eql. Relation) -1.191 (0.206)
LM Statistic, equal ds �2(2) = 1:069

Table 6: System Results (Regular Cointegration) -Thatcher subperiod
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PM Equation Gov Equation
Intercept -0.033 (0.173) -0.310 (0.114)
d1 0.751 (0.108) *
b1 0.627 (0.099) *
�1 -0.391 (0.174) -0.095 (0.577)
� 0.131 (0.009) 0.147 (0.011)
R2 0.803 0.748

Jarque-Bera 1.23 0.761
Box-Pierce(12) 5.86 5.39
Box-Pierce2(12) 14.96 6.16

Table 7: Equation Results (Regular Cointegration) - Thatcher subperiod

Finally, we report estimates for the subperiod May 1979 �November 1990, corresponding to
the leadership of Margaret Thatcher - the longest continuous leadership regime in the sample (139
months). These results (the regular cointegration model, except that the dummies are replaced
by a simple intercept) are shown in Tables 6 and 7. Note that these have been computed without
using presample data to form lags, so the data relate solely to the period indicated. The results
and goodness of �t are generally similar to the full sample, supporting the view that combining
the regimes is broadly legitimate. There are also di¤erences suggesting that further modelling of
the regimes could be desirable, although the shortage of observations could make this di¢ cult in
practice. While the smaller estimated d might be accounted for by the smaller sample, the main
di¤erences are the fuller cointegration, and the fact that the error correction coe¢ cient is larger
in the PM equation while e¤ectively vanishing in the Gov equation. By this account, approval of
Thatcher�s government re�ects on her, but her personal support does not drive the view of her
government. This would make sense.if the gap between leader and party is accounted for by the
charisma factor.

5 Testing Cointegration and Noncointegration

As remarked above, there is a problem in testing cointegration by testing the signi�cance of the
equilibrium relation as a driving component of the fractional system. Two parameters in each
equation have to be di¤erent from zero, and the integration parameters are unidenti�ed when
the error correction loadings coe¢ cients �j are zero, under one form of the null hypothesis. It is
true that �1 = �2 = 0 is not a prerequisite for non-cointegration, which follows from b1 = b2 = 0
alone. However, taking the computed standard errors at face value, the EC coe¢ cients are not
well very determined, so we need a di¤erent approach to testing the non-cointegration hypothesis.

Conventional non-cointegration tests such as the Dickey-Fuller will not serve, because their
null distributions are subject to the restriction d1 = 1. However, an alternative is provided by
the residual-based bootstrap tests developed in Davidson (2002, 2004a, 2004b). The procedure
adopted in these tests is to compare a test statistic based on least squares residuals with its null
distribution under the hypothesis that the series in question are non-cointegrated. Tests for the
null hypothesis that cointegration exists are also derived. In either case, the null distribution
may feature short-run dependence of the I(0) fractional di¤erences, and the dummy variables can
be included in the test regression. These di¤erent data features are modelled in the Monte Carlo
simulation of the tests, which also entails estimating the d of the simulated series by Whittle ML
for each replication, so as to mimic the true null distribution as closely as possible.

An important feature of the implementation of these tests is that only the normalized variable
of the putative cointegrating set is resampled, the remainder being held �xed at their sample
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values. This approach reduces computational cost and the number of parameters needing to be
estimated, and also limits the hazards of mis-speci�cation. However, to be able to condition on
jointly determined variables, it is necessary to augment the lags used in the VAR modelling of
the di¤erences with a number of leads, to allow for the possibility of Granger causality of the
conditioning variables by the conditioned variables. This is similar to the approach of Saikkonen�s
(1991) estimator of cointegrating vectors. As discussed in Davidson (2004a), the number of
leads required in fractionally integrated models should generally exceed the number of lags, to
ensure a correctly sized test. However, by suppressing the leads in the bootstrap simulations, the
procedure also provides a test of the stronger joint hypothesis, of noncointegration and Granger
noncausality of the conditioning variables by the normalized variable. We call these hypotheses
the �weak�null and �semi-weak�null, respectively. The term �strong null� is reserved for the
hypothesis that there is both noncointegration and zero correlation with the fractional di¤erences;
in e¤ect, that the series are totally independent. To ensure the tests have power, it is important
not to decide the order of leads and lags by considerations of sample �t. As with any test
whose performance is dependent on unknown bandwith-type settings, the important consideration
should be to determine the sensitivity of the outcome to di¤erent choices.

To test the hypothesis of noncointegration two statistics are considered, the Durbin-Watson
statistic (equivalent from the bootstrap perspective to the unaugmented Dickey-Fuller) and the
usual F statistic for signi�cance of the cointegrating variables. Neither of these statistics is
asymptotically pivotal, which explains why the latter test has not been entertained previously
in a cointegration context. However, the properties of the F test complement those of the DW,
and using them together provides added sensitivity in the detection of cointegration. The fact
that these statistics are not asymptotically pivotal means that the simple bootstrap does not
supply asymptotic re�nements. This defect can be overcome by use of the double bootstrap, as
detailed in Davidson (2004a), but that paper warns of a trade-o¤ between errors of estimation
and speci�cation, so it should not be assumed that the double bootstrap results are more reliable;
rather, taking all results together provides a check on robustness.

There is a similar implementation of tests for the null hypothesis of full cointegration. Re-
call that this is the hypothesis of an I(0) linear combination of the test variables. These are
implemented by a bootstrap version of the Shin (1994) test, based in turn on the KPSS test
of stationarity (Kwiatkowski et al., 1992). Similarly to the noncointegration tests, a challenge
in implementation is to strike a balance between capturing the null distribution accurately, and
avoidance of over�tting that would reduce power. In this case, the main requirement is to impose
a stable autoregressive root on the simulation model for the cointegrating residuals, according
to the requirements of the null hypothesis. This can be done either by simply projecting the
cointegrating vector onto leads and lags of the I(0) fractional di¤erences of the data, referred to
as the �I(0) regression�, or solving the implicit cointegrating ECM to yield a generating equa-
tion that can be restricted to stability. The restriction imposed to enforce the null is that the
autoregressive root is set to the smaller of its estimated value and 0.5.

Table 8 shows the results for tests of noncointegration, based on 1000 bootstrap replications.
The tests require dj values for each variable in the set to use for di¤erencing the data, and these
have been taken from the best ARFIMA(p; d; q) models of the series after projecting them onto
the regime dummies (in other words, embodying the restriction of the null hypothesis). By the
Schwarz criterion, the best choice is p = q = 0; and the associated d1 estimates are 0.909 for PM
and 0.865 for Gov. In the generalized cointegration case, the variable PM has been fractionally
di¤erenced by the factor 0.044 so that the two series are eligible for cointegration.

Table 9 shows the results of testing the null hypothesis of cointegration.
The tables show the computed bootstrap p-values, or in other words, the positions of the

actual statistics in the bootstrap distributions. The striking feature of the results is that both
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F DW

Null Hypothesis Regular Double Regular Double
Regular (non-)cointegration:

I(d), weak null 0 0.11 0.005 0.005
I(d), semi-weak null 0 0.14 0.006 0.014

Generalized (non-)cointegration:
I(d), weak null 0 0.13 0.012 0.014
I(d), semi-weak null 0 0.12 0.006 0.01

Table 8: Noncointegration Tests: p-values

Solved ECM I(0) Regression

Null Hypothesis Regular Double Regular Double
Regular cointegration 0.001 0.007 0 0.002

Generalized cointegration 0 0.006 0 0.008

Table 9: Shin Test: p-values

null hypotheses are rejected. The F test results for the double bootstrap are equivocal, but
note that these are not necessarily more precise than the simple bootstrap, since speci�cation
error may play an o¤setting role.4 These results reinforce the conclusion formed form the system
analysis, that we have a case of partial but not full cointegration.

6 Conclusion

This paper proposes two variants of a vector error-correction model (VECM) for fractional
processes. These models allow the generation of series that are fractionally integrated to arbi-
trary orders and embodying a range of cointegrating relationships. The generalized cointegration
variant can be �tted unrestrictedly to an arbitrary set of fractional processes. A simple example
has been exhibited, using political opinion poll data for the UK, in which fractional cointegrating
relationships are estimated and tested.

Whether this type of model may prove more generally useful in macroeconometric modelling
is a question that has to be left for future research. One of the obvious di¢ culties is that most
such modelling has been founded, explicitly or implicitly, on the representative agent assump-
tion. The forms of the equations tend to be viewed as related, at some level, to individual
decision making. Economics has so far thrown up very few models of the fractional cointegrating
type, both because fractional integration is a relatively novel concept in economics and, perhaps
more importantly, because such models must involve in�nite-order di¤erence equations, and it
is di¢ cult to devise simple behavioural models with this property. However, if macroeconomic
relationships are conceived as being generated through aggregation over heterogeneous agents,
it is much easier to see how long memory can arise. In this context, the use of these models
to revisit some of the standard applications in the macroeconometric lexicon might well prove a
fruitful exercise.

4 In the Monte Carlo experiments reported in Davidson (2004a), in the absence of speci�cation error, the double
bootstrap rejected more frequently than the regular bootstrap,
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A Appendix: Fractional Di¤erencing

For �1
2 < d <

1
2 the fractional di¤erence operator is de�ned as.

(1� L)d =
1X
j=0

�jL
j (A-1)

with �0 = 1 and

�j =
�d�(j � d)

�(1� d)�(j + 1) ; j > 0:

For 1
2 < d < 3

2 , we interpret (1 � L)
d as (1 � L)(1 � L)d�1. In this case, as is well-known, the

series xt de�ned implicitly by
(1� L)dxt = ut � I(0) (A-2)

is nonstationary, with asymptotically in�nite variance. To specify its distribution, it is necessary
to specify a �nite starting date t = 0 such that

xt =
tX
s=1

ws

where the process ws � I(d � 1) is stationary. This straightforwardly generalizes the standard
I(1) model, conceived as being the simple integral of an I(0) stationary process. The theory
of weak convergence for functionals of processes de�ned by (A-2), where the limits involve the
fractional Brownian motion process de�ned by Mandelbrot and van Ness (1968), is treated in
Davidson and De Jong (2000).

Some authors have de�ned the nonstationary fractional process di¤erently, assuming that

(1� L)dxt = ut1(t � 1) (A-3)

for d > 1
2 where ut � I(0) and 1(:) denotes the indicator function of its argument. In other words,

the shocks are assumed to equal zero in the pre-observation period. This approach appears to
us somewhat arti�cial, in comparison. It is important to note that it gives rise to a di¤erent
asymptotic distribution theory, involving so-called �Type-2� fractional Brownian motion. (see
Marinucci and Robinson 1999).

Since these models involve an in�nite distributed lag, some scheme must be adopted for
computing them from �nite samples. One possibility is a truncation of �xed length J for every
data point (which involves sacri�cing the �rst J observations). Another is a moving truncation
of length t � 1, so that every data point is included. The latter scheme is adopted for all the
calculations in this paper.
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