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Abstract

This paper considers the impact of ambiguity in strategic situations. It extends the

earlier literature by allowing for optimistic responses to ambiguity. Ambiguity is modelled

by CEU preferences. We study comparative statics of changes in ambiguity-attitude in

games with strategic complements or substitutes. This gives a precise statement of the

impact of ambiguity on economic behaviour.
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1 INTRODUCTION

The main focus of this paper is on ambiguity, which describes situations where individuals

cannot or do not assign subjective probabilities to uncertain events. In Eichberger and Kelsey

(2002) we studied games of strategic complements or substitutes where players were ambiguity-

averse. In particular we showed that in games of strategic complements, the comparative statics

of ambiguity were predictable. In games of positive externalities and strategic complements an

increase in ambiguity-aversion has the e¤ect of decreasing equilibrium strategies. A possible

criticism of these results is that experimental evidence shows individuals are not uniformly

ambiguity-averse. While ambiguity-aversion is common, individuals do at times display am-

biguity preference. The present paper aims to study the case where individuals may express

ambiguity preference.

There is a substantial body of experimental evidence which suggests that people behave

di¤erently when probabilities are ambiguous see for instance Camerer and Weber (1992). The

importance of the distinction between risk and ambiguity is con�rmed by recent research, which

shows that di¤erent parts of the brain process ambiguity and probabilistic risk, see Camerer,

Lowenstein, and Prelec (2004). The majority of individuals respond by behaving cautiously

when there is ambiguity. Henceforth we shall refer to such cautious behaviour as pessimism.1

In experiments a minority of individuals behave in the opposite way which we shall refer to as

optimism. (See for instance Camerer and Weber (1992) or Cohen, Ja¤ray, and Said (1985).)

Moreover the same individual may be pessimistic in one situation and optimistic in another.

Models of the impact of ambiguity on individual decisions can be found in Gilboa and

Schmeidler (1989), Sarin and Wakker (1992) or Schmeidler (1989). A theory of games with

ambiguity has been proposed by Dow and Werlang (1994) and developed in Eichberger and

Kelsey (2000). In Eichberger and Kelsey (2002) we presented some results on the comparative

statics of ambiguity in games of strategic complements under the assumption of ambiguity-

aversion.2 Until now, this literature has usually assumed that players are uniformly averse to

ambiguity.3

1See Wakker (2001) who relates this pessimism to a generalised version of the Allais paradox.
2For some alternative approaches to modelling games with ambiguity see Lo (1999) and Marinacci (2000).
3One exception is Marinacci (2000), who assumes that players either display global ambiguity-aversion or global

ambiguity-preference. However the evidence shows that the same individual can express ambiguity-preference in
some situations and ambiguity-aversion in others. We consider such mixed ambiguity attitudes.
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The present paper aims to extend the previous literature on ambiguity and strategic in-

teraction by allowing for the possibility of optimism. We �nd that in games with strategic

complements and positive externalities, an increase in optimism has the e¤ect of increasing the

equilibrium strategy. If a given player is optimistic, (s)he places more weight on good outcomes

than an expected utility maximiser would. In this case, good outcomes would be perceived to be

situations where other players use high strategies. Strategic complementarity implies that over-

weighting high strategies will increase the given player�s incentive to play a higher strategy. In

games of strategic substitutes the e¤ect is reversed. An increase in ambiguity-aversion increases

the weight placed on low strategy pro�les of one�s opponents and hence increases the marginal

bene�t of increasing one�s own strategy. Consequently the strategies played in a symmetric

equilibrium increase.

Allowing for optimism is a useful extension since it allows us to model phenomena where

ambiguity-preference plays an important role in motivating behaviour. This might include

setting up businesses, speculative research and development and decisions to enter careers such

as acting or rock music where the returns are very uncertain.

If there are positive externalities between the players, then for the usual reasons, too few

positive externalities will be produced in Nash equilibrium. As a result the equilibrium will be

Pareto ine¢ cient. Thus an increase in equilibrium strategies caused by an increase in ambiguity

preference may result in an ex-post Pareto improvement.

One may also consider an ex-ante measure of welfare. Consider the case of ambiguity-

preference. In this case the utility increase will be higher, since not only will higher strategies

be played for any given state of nature but also ambiguity-preference causes people to place

greater weight on more favourable states of nature. However since this e¤ect is a comparison

between di¤erent preference relations, it is similar to an interpersonal comparison of utility.

Thus it is more controversial whether the second e¤ect should only be taken into account in a

welfare analysis.

Organisation of the Paper In section 2 we present our framework and de�nitions. In section

3 we introduce our solution concept and prove existence of equilibrium. In section 4 we derive

the comparative statics of changes of ambiguity-attitude in games of strategic complements or

substitutes. Concluding comments can be found in Section 5. Appendix A relates a number of

3



alternative notions of the support of a capacity and Appendix B contains the proofs of those

results not proved in the text.

2 MODELLING AMBIGUITY IN GAMES

This section introduces Choquet Expected Utility (henceforth CEU), which is the main theory

of ambiguity we shall use. First we shall present the framework and de�nitions.

2.1 Games with Aggregate Externalities

This paper focuses on ambiguity in games with aggregate externalities, (de�ned below). Con-

sider a game � = hN ; (Si) ; (ui) : 1 6 i 6 ni with �nite pure strategy sets Si for each player

and payo¤ functions ui (si; s�i). Player i has a �nite strategy set which, for convenience, we

identify with an interval of the integers, Si = fsi; si + 1; :::; �sig ; for i = 1; :::; n:4 The notation,

s�i; indicates a strategy combination for all players except i. The space of all strategy pro�les

for i�s opponents is denoted by S�i. The space of all strategy pro�les is denoted by S: Player i

has utility function ui : S ! R; for i = 1; :::; n:

De�nition 2.1 A game, �; has positive (resp. negative) aggregate externalities if ui (si; s�i) =

ui (si; fi (s�i)) ; for 1 6 i 6 n, where ui is increasing (resp. decreasing) in fi and fi : S�i ! R

is increasing in all arguments.

This is a separability assumption. It says that a player only cares about a one-dimensional

aggregate of his/her opponents�strategies. An example would be a situation of team production,

in which the utility of a given team member depends on his/her own labour input and the total

input supplied by all other members of the team.5

A game is symmetric if all players have the same strategy set and pay-o¤ function.

De�nition 2.2 Let, � = hN ; (Si) ; (ui) : 1 6 i 6 ni be a game with aggregate externalities. We

say that � is symmetric if Si = Sj ; 1 6 i; j 6 n;ui = u; fi = f for i = 1; :::; n:

Notation 2.1 Since S�i is �nite, we may enumerate the possible values of fi; f0i < ::: < fMi :

Since f is increasing f0i = f (0; :::; 0) and fMi = f (K1; :::;Kn) :

4 It would be straightforward to extend the results to a multi-dimnesional strategy space.
5For a more detailed analysis of the impact of ambiguity on team production see Kelsey and Spanjers (2004).
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Marginal bene�t without ambiguity is de�ned in the usual way.

De�nition 2.3 Let �i (si; s�i) = ui (si; s�i)�ui (si � 1; s�i) ; i.e. �i (si; s�i) denotes the mar-

ginal bene�t to individual i of increasing his/her action from si�1 to si when his/her opponents�

strategy pro�le is s�i: If fi (s�i) = f ri ; we shall write �i (si; f
r
i ) for �i (si; s�i) :

Thus in a game of strategic complements (resp. substitutes) a given player�s marginal bene�t

will increase (resp. decrease) when the aggregate of his/her opponents�strategy pro�le increases.

De�nition 2.4 A game, �, with aggregate externalities is a game of strategic substitutes (resp.

complements) if �i (si; f
r
i ) is a strictly decreasing (resp. increasing) function of r; for 1 6 i 6 n.

The following assumption will be a maintained hypothesis.

Assumption 2.1 All games, �, are assumed to be concave, by which we mean that for all

i; ui (si; s�i) is a strictly concave function of si.

2.2 Non-Additive Beliefs and Choquet Integrals

First we introduce the CEU model of ambiguity, which represents beliefs as capacities. A

capacity assigns non-additive weights to subsets of S�i. Formally, they are de�ned as follows.

De�nition 2.5 A capacity on S�i is a real-valued function � on the subsets of S�i such that

A � B ) � (A) 6 � (B) and � (?) = 0; � (S�i) = 1:

Thus a capacity is like a subjective probability except that it may be non-additive. The

simplest example of a capacity is the complete uncertainty capacity de�ned below.

De�nition 2.6 The complete uncertainty capacity, �0 on S�i is de�ned by �0 (A) = 0 for all

A $ S�i:

Intuitively �0 describes a situation where the decision maker knows which states are possible

but has no further information about their likelihood.

De�nition 2.7 Let � be a capacity on S�i: The dual capacity ~� is de�ned by ~� (A) = 1�� (:A) :

The capacity and the dual capacity encode the same information. If beliefs are represented

by a capacity � on S, the expected utility of the payo¤ obtained from a given act can be found

using the Choquet integral, which is de�ned below.
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Notation 2.2 Let � be a symmetric game with aggregate externalities we shall use Hr to

denote the event fs�i 2 S�i : f (s�i) > frg :

De�nition 2.8 Let � be a symmetric game with positive aggregate externalities. The Choquet

integral of ui (si; s�i) with respect to capacity �i on S�i is:

Vi (si) =

Z
ui (si; s�i) d�i = ui (si; fM ) �i (HM ) +

M�1X
r=0

ui (si; fr) [�i (Hr)� �i (Hr+1)] :

This is a special case of the Choquet integral, which applies in games of positive aggregate

externalities. For the general de�nition see Schmeidler (1989).

De�nition 2.9 A capacity is said to be convex if � (A [B) > � (A) + � (B)� � (A \B) :

Schmeidler (1989) argues that convex capacities represent ambiguity-aversion.6 More re-

cently Wakker (2001) has argued that convexity is implied by a generalised version of the Allais

paradox.

De�nition 2.10 Let � be a capacity on S�i: The core, C (�) ; is de�ned by

C (�) = fp 2 �(S�i) ;8A � S�i; p (A) > � (A)g :

The following result shows that for a convex capacity, the Choquet integral for a given act

a is equal to the minimum over the core of the expected value over f: Hence convex capacities

provide an attractive representation of pessimism. When a decision-maker does not know the

true probabilities (s)he considers a set of probabilities to be possible and evaluates any given

act by the least favourable of these probabilities.

Proposition 2.1 If � is an convex capacity on S�i; then
R
ad� = minp2C(�)Epa; where E

denotes the expected value of a with respect to the additive probability p:

2.3 JP-Capacities

Next we introduce a class of capacities which are useful for representing the impact of ambiguity

in games since they are capable of modelling both optimism and pessimism. Ja¤ray and Philippe

(1997) consider the following class of capacities.
6Alternative de�nitions of ambiguity-aversion have been proposed by Epstein (1999) and Ghirardato and

Marinacci (2002).
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De�nition 2.11 Say that a capacity � on S�i is a JP-capacity if there exists a convex capacity

� and � 2 [0; 1] ; such that � = ��+ (1� �) ~�, where ~� denotes the dual capacity of �:

This class of capacities allows preferences to be represented in both the multiple priors and

CEU forms. Perceived ambiguity is represented by the capacity �, while ambiguity attitude is

represented by �: Hence JP capacities allow a distinction between ambiguity and ambiguity-

attitude; which is formalised in the following de�nitions.

De�nition 2.12 Let � and � 0 be two capacities on S: We say that � is more ambiguity-averse

than � 0 if for all A � S; � (A) 6 � 0 (A) :7

The following result shows that for JP-capacities, an increase in � implies an increase in

ambiguity-aversion.

Proposition 2.2 Suppose that �̂ > ~� and � is concave then �̂ = �̂� + (1� �̂) ~� is more

ambiguity averse than ~� = ~��+ (1� ~�) ~�:

Proof. The result follows from noting that since � is convex for all A � S; � (A) 6 ~� (A) :

If � = ��+ (1� �) ~� is a JP capacity then

Z
fd� = � min

p2C(�)
Epf + (1� �) max

p2C(�)
Epf;

where C (�) is the core of �: This equation provides an intuitive representation of behaviour in

the presence of ambiguity. When faced with ambiguity, the decision-maker does not know the

true probability distribution (if this concept is meaningful). Instead (s)he considers a number of

probability distributions to be possible. If � = 0 the reaction is pessimistic since (s)he evaluates

any given act by the least favourable probability distribution. Similarly if � = 1 the reaction

to ambiguity is optimistic. In the general case, the decision-maker�s reaction to ambiguity is in

part pessimistic and in part optimistic.

7Theories of ambiguity-aversion have been proposed by Epstein (1999), Ghirardato and Marinacci (2002) and
Kelsey and Nandeibam (1996). Although these papers di¤er in a number of respects, they agree that this is an
appropriate de�nition of when one capacity is more ambiguity-averse than another. The present paper focuses
on the comparative statics of changes in ambiguity attitude. We are interested in when one set of preferences is
more ambiguity-averse than another, not the absolute de�nition of ambiguity-aversion. Controversies concerning
the appropriate de�nition of ambiguity-aversion have been concerned with the absolute de�nition not the relative
de�nition.
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A useful special case is the neo-additive capacity, de�ned below, which generates CEU

preferences that display both optimism and pessimism. They are the simplest class of capacities

with this property.

De�nition 2.13 Let �; � be real numbers such that 0 < � < 1; 0 < � < 1; de�ne a neo-additive-

capacity � by � (A) = � (1� �) + (1� �)� (A) ; ; $ A $ S:8

The neo-additive capacity describes a situation where the decision maker�s �beliefs�are rep-

resented by �: However (s)he has some doubts about these beliefs. The reaction to these doubts

is in part pessimistic and in part optimistic. These preferences maintain a separation between

ambiguity and ambiguity-attitude, which are measured by � and � respectively. The highest

possible level of ambiguity corresponds to � = 1; while � = 0 corresponding to no ambiguity.

Higher levels of � corresponding to more ambiguity-aversion. Purely ambiguity-loving prefer-

ences are given by � = 0; while the highest level of ambiguity-aversion occurs when � = 1:

Chateauneuf, Eichberger, and Grant (2005), show that the Choquet expected value of a real

valued function a : S�i ! R with respect to the neo-additive-capacity � is given by:

Z
ad� = �� min

s2S�i
a (s) + � (1� �) max

s2S�i
a (s) + (1� �) �E�a:

Thus the Choquet integral for a neo-additive capacity is a weighted averaged of the highest

payo¤, the lowest payo¤ and the expected payo¤. The response to ambiguity is partly optimistic

represented by the weight given to the best outcome and partly pessimistic. In Chateauneuf,

Eichberger, and Grant (2005) it is shown that CEU preferences with neo-additive capacities can

also be represented in the following form:

Z
ad� = (1� �)max

p2P
Epa+ �min

p2P
Epa;

where � = � (1� �)+(1� �)� is a neo-additive capacity, P = fp 2 �(S�i) : p � (1� �)�g and

a 2 A (S) : Thus P is the set of measures �centred�around a �xed � 2 �(S) :

Neo-additive capacities are restrictive since they only allow the best and worst outcome to be

over-weighted. It is more plausible that ambiguity causes a number of good and bad outcomes

8Neo-additive is an abbreviation for non-extremal outcome additive. Neo-additive capacities are axiomatised
in Chateauneuf, Eichberger, and Grant (2005).
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to be over-weighted. It does not seem unreasonable to assume that in most cases the worst

outcome is death. However people may also be concerned about other bad outcomes such as

losing large amounts of money. Similarly optimism will intuitively result in a number of good

outcomes being over-weighted.9 Hence for most of this paper we consider JP-capacities, which

represent behaviour in the presence of ambiguity as over-weighting a number of good and bad

outcomes.

3 EQUILIBRIUM

In this section we describe our solution concept and prove existence of equilibrium. First

we discuss the support of ambiguous beliefs, which is a key concept for de�ning equilibrium

in games. There have been a number of solution concepts for games with ambiguity, see for

instance Dow and Werlang (1994), Lo (1996) or Marinacci (2000). In all of these, the support of

a player�s beliefs is used to represent the set of strategies that (s)he believes his/her opponents

will play. An equilibrium is de�ned to occur when every pro�le of strategies in the support

consists only of best responses. The main di¤erence between the various solution concepts is

that they use di¤erent support notions. Thus the de�nition of support is important.

3.1 Support of Ambiguous Beliefs

The support of a capacity plays a crucial role our the de�nition of equilibrium in a game,

(and indeed in most other de�nitions of equilibrium). As we shall argue it is not possible to

apply support de�nitions from the previous literature unmodi�ed since many of them have

implicitly assumed ambiguity-aversion. For convex capacities most support notions coincide.

(See Appendix A for further discussion of the relation between di¤erent support notions.) We

restrict attention to preferences which can be represented in both the CEU and multiple priors

forms. Below we de�ne the support for a convex capacity.

De�nition 3.1 If � is a convex capacity on S�i; we de�ne the support of �; supp�; by

supp� =
\

p2C(�)
supp p:10

9One piece of evidence for this is that lotteries have more than one prize.
10This de�nition is essentially the same as the inner support as de�ned in Ryan (1997).
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We de�ne the support of a JP-capacity to be the support of the convex capacity on which

it is based.

De�nition 3.2 If � = ��+(1� �) ~� is a JP-capacity on S�i; we de�ne the support of �; supp �;

by supp �=supp�:

The support always exists but may possibly be empty. In the sequel we shall use capacities

to represent the beliefs of players in a game. If these capacities are equilibrium beliefs then we

shall interpret the support to be the set of strategies, which may be played in equilibrium. It

may seem that the possibility of empty support makes this interpretation di¢ cult. As we shall

demonstrate existence of equilibrium beliefs with a non-empty support, this potential problem

does not arise in practice. We shall now proceed to relate the support to the decision weights

in the Choquet integral.

De�nition 3.3 If � is a capacity on S�i; de�ne

B (�) = fs 2 S�i : 8A $ S�i; s =2 A; � (A [ s) > � (A)g :

The set B (�) consists of those states which always get positive weight in the Choquet

integral, no matter which act is being evaluated. To see, this, recall that the Choquet expected

utility of a given act, a; is a weighted sum of utilities. The weight assigned to strategy pro�le ~s

is � (fs : a (s) � a (~s)g [ f~sg)� � (s : a (s) � a (~s)) : These weights depend on the way in which

the act ranks the states. Since there are n! ways the states can be ranked, in general there are

n! pro�les of decision weights used in evaluating the Choquet integral with respect to a given

capacity. If 8A $ S; s =2 A; � (A [ ~s) > � (A) then the decision-weight on state ~s is positive no

matter how state ~s is ranked by act a: The state space can be partitioned into three sets, those

states which are given positive weight by all of the decision weights, those states given positive

weight by some sets of decision weights but not others and those states which are given weight

zero by all decision weights. Sarin and Wakker (1998) argue that the decision-maker�s beliefs

may be deduced from these decision weights. With this interpretation, B (�) is the set of states

in which the decision-maker �believes�in the strong sense that they always get positive weight

in the Choquet integral. Proposition 3.1 shows that the support consists of states in which the

decision-maker believes in this sense: Similarly the states which always get zero weight are those
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which the decision-maker believes to be impossible. The remaining states can be interpreted as

those which the decision-maker believes to be ambiguous. The weight they get in the Choquet

integral may or may not be positive depending on the context.11

Proposition 3.1 Let � be a JP-capacity then supp � � B (�) :

Proof. Since � is a JP-capacity we may write � = �� + (1� �) ~� for some convex capacity

�: Take ŝ 2 supp � and A $ S; ŝ =2 A: Let p̂ = argminp2C(�) p (A [ ŝ) : Because � is convex

� (A [ ŝ) � � (A) = p̂ (A [ ŝ) � � (A) = p̂ (A) � � (A) + p̂ (ŝ) > 0; since p̂ (A) > � (A) and

p̂ (ŝ) > 0 by Proposition A.1.

Let ~p = argminp2C(�) p (SnA) : Then ~� (A [ ŝ)�~� (A) = � (SnA)�� (Sn (A [ ŝ)) > ~p (SnA)�

~p (Sn (A [ ŝ)) = 1� ~p (A)� [1� ~p (A [ ŝ)] = ~p (A)+ ~p (ŝ)� ~p (A) > 0; since ~p (ŝ) > 0: Hence for

A $ S; s =2 A; � (A [ ~s) > � (A) :

The following example demonstrates that it is not possible to prove a converse to Proposition

3.1.

Example 1 Assume there are three states of nature, S = fs1; s2;s3g. Consider capacities �; �

de�ned on S in the table below:

? s1 s2 s3 s1s2 s1s3 s2s3 S

� 0 � 0 0 1
2 � 0 1

~� 0 1 1� � 1
2 1 1 1� � 1

� 0 1� � (1� �) (1� �) (1� �) 1
2 (1� �) 1� 1

2� 1� � (1� �) (1� �) (1� �) 1

where � = �� + (1� �) ~� and 0 < � < 1; 0 < � < 1
2�: Then supp � = fs1g and B (�) =

fs1; s2g ; supp� = fs1g ;B (�) = fs1g :

Proof. Since � is convex, it follows from Proposition A.1, that supp� = fs1g : By de�nition

supp � = supp�:

By Proposition 3.1, s1 2 B (�). We can show s2 2 B (�) ; since � (? [ s2) = 1� � > � (?) ;

� (s1 [ s2) = 1 � 1
2� > � (s1) = 1 + �� � �; � (s3 [ s2) = (1� �) (1� �) > � (s3) =

1
2 (1� �) ;

� (s1s3 [ s2) = 1 > � (s1s3) = 1 + �� � �: However s3 =2 B (�) ; since � (s1s3) = � (s1) :

11 In earlier drafts of this paper we have shown that similar results can be obtained if B (�) is used as the
support notion. This shows that our results are reasonably robust.
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Since � is a belief function, � is a JP capacity. Consider the capacity �� = ��+ (1� �) ~�;

where � is a convex capacity. Intuitively as � changes, ambiguity-attitude changes, while beliefs

and perceived ambiguity remain constant. If the B (�) is taken to represent beliefs, one has to

argue that the decision-maker�s beliefs change as his/her ambiguity-attitude changes. However

supp �� is independent of �: This suggests to us that supp � is a superior notion of support to

B (�) ; since it makes a clear distinction between ambiguity-attitude and beliefs. Indeed the fact

that supp � is the intersection of support of the probabilities in the core is quite intuitive.

3.2 De�nition of Equilibrium

We de�ne an equilibrium to be a situation where each player maximises his/her (Choquet)

expected utility given his/her beliefs. In addition beliefs have to be reasonable in the sense

that each player believes that his/her opponents play best responses. We interpret this require-

ment as implying the support of any given player�s beliefs should consist of best responses for

the other players. Let Ri(�i) = argmaxsi2Sif
R
ui (si; s�i) d�i (s�i)g denote the best response

correspondence of player i given beliefs �i:

De�nition 3.4 An n-tuple of capacities �� = h��1; ::::��ni is an equilibrium under ambiguity if:

8i;? 6= supp ��i � �
j 6=i
Rj(�

�
j ):

If 8i; k�i 2 supp ��i ; we say that k� = hk�1; ::::k�ni is an equilibrium strategy pro�le.

In equilibrium, the beliefs of player i are represented by a capacity ��i , whose support consists

of strategies that are best responses for his/her opponents. A player�s evaluation of a particular

strategy may, in part, depend on strategies of his/her opponents which do not lie in the support.

We interpret these as events a player views as unlikely but which cannot be ruled out. This

may re�ect some doubts (s)he may have about the rationality of the opponents or whether (s)he

correctly understands the structure of the game.

De�nition 3.5 Let � be a game and let �̂ = h�̂1; :::; �̂ni be an equilibrium of �; if 8i; supp �̂i

contains a single strategy pro�le we say that it is pure, otherwise we say that it is mixed.

Players choose pure strategies and do not randomise. Hence we are not able to interpret a

mixed equilibrium as a randomisation. In a mixed equilibrium some player i say, will have two
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or more best responses. The support of other players�beliefs about i�s play, will contain some

or all of them. Thus an equilibrium, where the support contains multiple strategy pro�les, is

an equilibrium in beliefs rather than randomisations. If, in addition, it is required that beliefs

are additive and then a pure equilibrium is a Nash equilibrium.

3.3 Existence of Equilibrium

We shall con�ne attention to situations where beliefs may be represented by JP-capacities.

The reason for this is that this is a large class of capacities in which it is possible to specify

ambiguity and the ambiguity-attitude exogenously. This enables us to study the comparative

statics of changing ambiguity-attitude in games. The class of capacities, de�ned below, are a

set of candidate equilibria for games, which allow us to vary ambiguity and ambiguity-attitude

exogenously.

De�nition 3.6 (Constant Contamination CC) A capacity on S�i is said to display con-

stant contamination if it may be written in the form �i = �i (�i; �i; �i; �i) = �i�i (A) +

(1� �i) [�i�i (A) + (1� �i) ~�i (A)] ; where �i is an additive probability distribution and �i is

a convex capacity with supp�i = ;: If �~si denotes the probability distribution on S�i; which as-

signs probability 1 to ~s�i we shall write �~si = �i
�
�~si ; �i; �i; �i

�
: We shall suppress the arguments

(�i; �i; �i) when it is convenient.

Thus �i (�i; �i; �i; �i) describes a situation where player i �believes�that his/her opponents

will play the mixed or pure strategy pro�le described by �i but lacks con�dence in this belief.

The CC-capacity has a separation between beliefs represented by �; ambiguity represented by

� and � and ambiguity attitude represented by �. The situation where i believes that his/her

opponents will play the pure strategy pro�le ~s is described by the capacity �~si . The parameter

� determines the weight the individual gives to ambiguity. Lower values of � correspond to

more ambiguity hence � may be interpreted as a measure of con�dence in the decision-maker�s

probabilistic belief �: The capacity � determines which strategy pro�les the player regards as

ambiguous. CC-capacities are a special case of JP-capacities. The following result �nds the

support of a CC capacity.

Proposition 3.2 Let � = �� (A) + (1� �) [�� (A) + (1� �) �̂ (A)] be a CC capacity. Then

supp � = supp�:
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Proof. Let � = �� (A) + (1� �)� (A) : Then by Lemma B.2, � = �� + (1� �) �̂ is a JP

capacity. By de�nition supp � = supp�: By Lemma B.2; supp� = supp�:

Remark 1 If �0 denotes the complete uncertainty capacity, then a neo-additive capacity may

be written in the form � = �� (A) + (1� �) [��0 (A) + (1� �) ~�0 (A)] : Proposition B.2 implies

that supp � = supp�: Recall we interpret a neo additive capacity as describing a situation where

the decision-maker�s beliefs are represented by the additive probability distribution �; however

(s)he may lack con�dence in this belief. Given this, it seems intuitive that the support of the

neo-additive capacity should coincide with the support of �: This provides an argument in favour

of our de�nition of support, since it gives the intuitively correct result for neo-additive capacities.

In game theory it is common to assume that each player believes that his/her opponents

act independently. This can be achieved if we assume that the capacity � is an independent

product.12

We commence the analysis of equilibria with ambiguity by de�ning the marginal bene�t

under ambiguity.

De�nition 3.7 Marginal Bene�t Suppose that player i has beliefs described by a capacity

�i on S�i. De�ne

MBi (si; �) =

Z
ui (si; s�i) d�i(s�i)�

Z
ui (si � 1; s�i) d�i(s�i):

We interpret MBi (si; �) as player i�s perceived marginal bene�t from increasing his/her

strategy from si� 1 to si; given that (s)he has beliefs represented by the capacity �. In general

this will be di¤erent to the marginal bene�t without ambiguity from De�nition 2.3.

The following result demonstrates existence of equilibrium. We take the ambiguity repre-

sented by �i and �i, and ambiguity-attitude represented by �i as given. In games of aggregate

externalities with strategic complementarity we are able to demonstrate the existence of pure

equilibria.

Theorem 3.1 Let � be a game of positive aggregate externalities with strategic complements.

Then for any given n-tuples � = h�1 ; :::; �ni ; � = h�1 ; :::; �ni and � =


�
1
; :::; �n

�
, � has a pure

equilibrium in CC capacities.
12Technically we need to assume that � is a Möbius independent product of belief functions de�ned on the

marginals. For a de�nition of the Möbius independent product and further discussion see Ghirardato (1997).

14



3.4 Symmetric Games

In symmetric games we can strengthen the previous result by proving existence of symmetric

equilibrium. For this, we require that the strategy sets and payo¤ functions be symmetric.

Moreover we need to ensure that players perceive ambiguity in a symmetric way. This is

captured by the following de�nition.

Notation 3.1 Let  : f1; :::; ng ni ! f1; :::; ng ni be a permutation. Then  induces a map

~ : S�i ! S�i by ~ (hs1; :::; sni) =


s (1); :::; s (n)

�
:

De�nition 3.8 A capacity � on S�i is said to be anonymous if for any permutation  :

f1; :::; ng ni! f1; :::; ng ni and all A � S�i; �
�
~ (A)

�
= � (A) :13

De�nition 3.9 De�ne � : f1; :::; ng ni! f1; :::; ng nj by � (j) = i and � (k) = k; k 6=; j: Capaci-

ties �i on S�i and on S�j are said to be similar if for all A � S�i; �j (� (A)) = �i (A) :

De�nition 3.10 Let � be a game and let �� = h��1; :::; ��ni be an equilibrium of �: The pro�le

of capacities, �� is said to be a symmetric equilibrium; if for all i; j; ��i is similar to �
�
j :

In a symmetric equilibrium, all players have the same best responses and have correspond-

ingly similar beliefs about what their opponents will do. The next result demonstrates the

existence of symmetric equilibria in symmetric games. Compared to Theorem 3.1 it relaxes

the assumption of strategic complementarity. However the cost of this is we are only able to

demonstrate the existence of mixed equilibria.

Theorem 3.2 (Existence of symmetric equilibrium) Let � be a symmetric game, then

for any given numbers �; �; 0 6 �; � 6 1 and any anonymous capacity � with supp� = 0, � has

a symmetric equilibrium �i = � (�; �; �; �) in CC capacities.

4 COMPARATIVE STATICS

In this section we investigate the comparative statics of changes in ambiguity-attitude on equi-

librium.
13We refer to such capacities as anonymous rather than symmetric, since the term symmetric is commonly

used to denote capacities which satisfy � (A) + � (:A) = 1; see Gilboa (1989).
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4.1 Strategic Complements

For games of positive aggregate externalities with strategic complements, an increase in ambiguity-

aversion increases equilibrium strategies. Intuitively if a given player becomes more ambiguity-

averse (s)he will place more weight on outcomes which are perceived as bad. If there are positive

externalities, a bad outcome would be when an opponent plays a low strategy. In the presence

of strategic complementarity if a given player increases the decision weight on low strategies of

his/her opponents this will reduce his/her incentive to play a high strategy.

The following theorem is our comparative result on games with strategic complementarity.

It shows that an increase in pessimism will reduce the equilibrium strategies in games with

positive aggregate externalities and strategic complements. If there are multiple equilibria, the

strategies played in the highest and lowest equilibria will decrease. For this result we assume

that the ambiguity-attitude of one player changes, the ambiguity-attitudes of other players and

the perceived ambiguity measured by � and � are held constant.

Theorem 4.1 Let � be a game of positive aggregate externalities with strategic complements.

Assume that players�beliefs may be represented by CC capacities �i (�i; �i; �i; �i) : Let k
0 (resp.

�k0) denote the lowest (resp. highest) equilibrium strategy pro�le when the degree of ambiguity-

aversion is �� =


��
1
; :::; ��n

�
: Let k� (resp. �k�) denote the lowest (resp. highest) equilibrium

strategy pro�le when the degree of ambiguity-aversion is �0 =


�0
1
; :::; �0n

�
: If �� > �0; then

k0 > k� and �k0 > �k�:

Proof. Assume �rst that �� and �0 only di¤er in one component, i.e. 9i;8j 6= i; ��j = �0j : By

Lemma B.4, 8i;MBi
�
si; �

~s
i (�

0
i; �i; �i)

�
< 0 for �k0 < ~s 6 m�: By Lemma B.5, 8i;MBi

�
si; �

~s
i (�

0
i; �i; �i)

�
>

MBi
�
si; �

~s
i (�

�
i ; �i; �i)

�
: Hence 8i;MBi

�
si; �

~s
i (�

�
i ; �i; �i)

�
< 0; for �k0 < ~s 6 m�: However,

MBi
�
si; �

~s
i (�

�
i ; �i; �i)

�
> 0 is a necessary condition for there to be a equilibrium in which s

is the equilibrium strategy. This implies �k� 6 �k0: A similar argument applies to the smallest

equilibrium.

The general result follows by repeated application of the result where �� and �0 only di¤er

in one component.

Remark 2 The comparative statics are reversed in games of negative aggregate externalities,

for further details see Eichberger and Kelsey (2002).
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4.2 Strategic Complementarity and Multiple Equilibria

Strategic Complementarity can give rise to multiple Nash equilibria. Under some assumptions

we can show if there are multiple equilibria without ambiguity, if there is su¢ cient optimism

(resp. pessimism) equilibrium will be unique and will correspond to the highest (resp. lowest)

equilibrium without ambiguity. Thus ambiguity has a double e¤ect. Below we propose a

measure of how ambiguous a capacity is.

De�nition 4.1 The minimal degree of ambiguity of capacity � is de�ned by:

� (�) = 1�min
A�S

(� (A) + � (:A)) :

The next result shows that if players are su¢ ciently optimistic, equilibrium is unique and

is higher than the highest equilibrium without ambiguity. To prove this we need the following

assumption.

Assumption 4.1 For 1 6 i 6 n; ui (si; �s�i) has a unique maximiser, i.e.��argmaxsi2Si ui (si; �s�i)�� = 1 :
This assumption is required for technical reasons. If the strategy space were continuous it

would be implied by our other assumptions. It says that the gaps in the discrete strategy space

do not fall in the wrong place. The following result is a corollary of Theorem 4.1 and Lemma

B.7.

Proposition 4.1 Consider a game of positive aggregate externalities with strategic comple-

ments which satis�es Assumption 4.1. There exist �� and �� such that if the minimal degree of

ambiguity is � (�i) > �� and �i > ��, (resp. 6 �) for 1 6 i 6 n; equilibrium is unique and is

larger (resp. smaller) than the largest (resp. smallest) equilibrium without ambiguity.

In a game with strategic complements with multiple Nash equilibria, increasing ambiguity

causes the multiplicity of equilibria to disappear while increasing ambiguity-aversion causes the

equilibrium strategies to decrease. Thus ambiguity and ambiguity-attitude have distinct e¤ects.

Combined with su¢ cient optimism, ambiguity can cause the economy to move to a higher level

equilibrium.
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4.3 Strategic Substitutes

Next we study games with strategic substitutes. For this section, we shall assume that all games

are symmetric, since there are no general comparative statics results for non-symmetric games

with strategic substitutes. However it is possible to obtain a result for symmetric equilibria of

symmetric games. The next result shows that in games with strategic substitutes and positive

externalities, increasing ambiguity-aversion raises the strategy played in symmetric equilibrium.

Proposition 4.2 Consider a game of positive aggregate externalities with strategic substi-

tutes. Let �� = � (�; �; �; ��) (resp. �̂ = � (�; �; �; �̂)) be a symmetric equilibrium in CC-capacities

in which �k (resp. k̂) is the highest strategy played and �̀ (resp. ^̀) is the lowest strategy played.

Then �̂ > �� implies k̂ > �k and ^̀> �̀:14

With positive externalities, an increase in ambiguity-aversion increases the weight on lower

strategies of the opponent. In a game of strategic substitutes this will increase the perceived

marginal bene�t of a given player�s own action and hence (s)he will have a higher best response

to any given strategy pro�le of his/her opponents. As a result the strategy played in a symmetric

equilibrium will increase.

5 CONCLUSION

Compared to our previous work, e.g. Eichberger and Kelsey (2002), this paper makes a number

of innovations. One of the most important are that we allow for optimistic responses to ambi-

guity. Much of the innovation in the present paper involves developing techniques for modelling

optimistic responses to ambiguity. New de�nitions of support and measures of ambiguity-

attitude were needed. This has enabled us to make a clear distinction between ambiguity and

ambiguity attitude. In our previous research Eichberger and Kelsey (2002) both ambiguity and

ambiguity-attitude were varied simultaneously in our comparative static exercises. (It is hard

to avoid this in a model which assumes ambiguity-aversion.) Moreover we have extended the

previous results to a larger class of games since Eichberger and Kelsey (2002) restricted atten-

tion to symmetric equilibria of symmetric games, these assumptions have been relaxed apart

from in the section on strategic substitutes. Possible applications of these results would include

14Since we are not able to prove existence of a pure equilibrium, the equilibrium strategies are not necessarily
unique hence we need to consider the highest and lowest equilibrium strategies.
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oligopoly models, public goods and environmental models. Applications of our comparative sta-

tics results can be found in Eichberger and Kelsey (2002) and Eichberger, Kelsey, and Schipper

(2005).

It is possible, in principle, to extend our results to extensive form games. However this will

pose some new technical problems. Since players will receive new information during the course

of play, it will be necessary to model how information is updated. Some possible updating rules

are discussed in Eichberger, Grant, and Kelsey (2005).

APPENDIX

A ALTERNATIVE NOTIONS OF SUPPORT

In this appendix we discuss some alternative notions of support which have been proposed. We

show that most of them coincide for the important case of convex capacities. Dow and Werlang

(1994) de�ne the support of a capacity to be a minimal set whose complement has capacity 0.

De�nition A.1 The DW-support of capacity �; suppDW � is a set E � S�i; such that � (S�inE) =

0 and � (F ) > 0, for all F such that S�inE $ F .

This de�nition has the advantage that suppDW � always exists, however it may not be

unique. In contrast, Marinacci (2000) de�nes the support of a capacity � to be the set of states

with positive capacity.

De�nition A.2 The M-support of capacity �; is de�ned by suppM � = fs 2 S�i : � (s) > 0g :

When it exists suppM � is always unique. However there are capacities for which it does not

exist, for example the complete uncertainty capacity, (see de�nition 2.6).

It is di¢ cult to apply De�nitions A.1 and A.2 when decision makers may be ambiguity-loving.

For capacities which are not necessarily ambiguity-averse, it is quite possible that all states will

get positive capacity. As an example consider a neo-additive capacity � = � (1� �) + (1� �)�.

Then if � > 0; suppDW � = suppM � = S:

The following results formally demonstrate the relationships between the various support

notions.
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Lemma A.1 If � is a capacity then suppM � � suppDW �.

Proof. Let ~s 2 suppM � and suppose, if possible, ~s =2 suppDW �: Then � (Sn suppDW �) >

� (~s) > 0; which is a contradiction.

The following lemma shows that our de�nition of support coincides with the M-support for

a convex capacity.

Proposition A.1 If � is an convex capacity with support supp �; then supp � = suppM � =

B (�) :

Proof. Let ~s 2 suppM � and let � 2 C (�) :15 Then �(~s) � �(f~sg) > 0: Hence, suppM � �T
�2C(�)

supp� = supp �: On the other hand, suppose s 2
T

�2C(�)
supp�: Since � is convex, �(s) =

min
�2C(�)

�(s) > 0:16 Hence
T

�2C(�)
supp� � suppM �:

Suppose s 2 suppM �: Then �(s) > 0: For any A � S; s =2 A; by convexity of �; �(A [ s) �

�(A) + �(s) > �(A): Hence, s 2 B (�) : Conversely suppose s 2 B (�) ; then �(s) = �(? [ s) >

�(?) = 0: Hence, s 2 suppM �: Thus suppM � = B (�) : The result follows.

Even for a convex capacity, our support notion does not coincide with that of Dow and

Werlang. An example of this is the complete uncertainty capacity, �0; (see de�nition 2.6),

which has empty support but does have a non-unique DW-support.17

Lemma A.2 Let � be a capacity on S�i then suppDW � is unique if and only if suppM � is a

DW-support.

Proof. Suppose that suppDW � is unique. Let E be a DW-support: By Lemma A.1, suppM � �

E. Suppose, if possible, there exists ŝ 2 En suppM �; then �(ŝ) = 0: Hence, F := Snfŝg satis�es

�(SnF ) = 0: Let G be a minimal set such that G � F and �(SnG) = 0: Then, G 6= E is another

DW-support which contradicts uniqueness. Hence suppM � = suppDW �:

Now suppose suppM � is a DW-support. Let F be an arbitrary DW-support. By Lemma

A.1, suppM � � F: Thus by the minimality part of the de�nition of a DW-support, we must

have F = suppM �; which gives uniqueness. The result follows.

Thus for a convex capacity if the DW-support is unique, the various support notions coincide.

The following proposition summarises the above analysis.
15Recall C (�) denotes the core of the capacity �; see de�nition 2.10.
16Although C (�) is an in�nite set, the minimum must occur at one of the extremal points. The set of extremal

points of a core is �nite. Thus the minimum must be positive.
17 If s 2 S; then fsg is a DW-support of �0:
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Proposition A.2 For a convex capacity �

1. if suppDW is unique, then B (�) = suppM � = supp � = suppDW �;

2. otherwise, suppM � = B (�) = supp � � suppDW �:

Proof. Part 1 follows from Proposition A.1 and Lemma A.2. Part 2 follows from Propo-

sition A.1 and Lemma A.1.

Alternatively the support of a capacity could be de�ned to be the complement of the set

of states which are always given zero weight in the Choquet integral. Solution concepts for

games based on this notion of support have been studied by Dow and Werlang (1991) and Lo

(1996). They show that this de�nition of support does not result in a solution concept which

is signi�cantly di¤erent to Nash equilibrium. These conclusions seem incompatible with our

objective of modelling deviations from Nash equilibrium due to ambiguity.

B GAMES WITH AMBIGUITY

This appendix contains the proofs of our main results and some supporting results.

B.1 Existence

If player i has beliefs represented by the capacity �~si = �~si (�i; �i; �i) then intuitively (s)he

believes his/her opponents will play strategy pro�le ~s; however (s)he lacks con�dence in this

belief. The following lemma says that if a given player believes (in this sense) his/her opponents

will play a higher strategy pro�le then this will raise his/her marginal bene�t of increasing

his/her own strategy.

Lemma B.1 Let � be a game with positive aggregate externalities and strategic complements,

then if ŝ > ~s;8si 2 Si;MBi
�
si; �

ŝ
�
> MBi

�
si; �

~s
�
:

Proof. By Lemma B.3, MBi
�
si; �

ŝ
�
�MBi

�
si; �

~s
�
= � [�i (si; ŝ)��i (si; ~s)] > 0; by strategic

complementarity.

Lemma B.2 Let � be a convex capacity on S with supp� = ?. De�ne a capacity � on S by

� = �� + (1� �)� then:
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1. Core of � = f�� + (1� �) p : p 2 C (�)g ;

2. supp � = supp�;

3. ~� = �� (A) + (1� �) ~� (A) :

Proof. If p 2 C (�) then for all A � S; p (A) > � (A) ; hence �� (A) + (1� �) p (A) >

�� (A) + (1� �)� (A) ; which implies �� + (1� �) p 2 C (�) : Conversely suppose q 2 C (�) :

Then for all A � S; q > �� (A) + (1� �)� (A) hence 1
(1��) (q � �� (A)) > � (A) ; which implies

1
(1��) (q � �� (A)) 2 C (�) : Hence C (�) = f�� + (1� �) p : p 2 C (�)g :

It is clear that � is convex since a linear combination of convex capacities is convex.

Suppose that ŝ 2 supp�; then �� (ŝ) + (1� �) p (ŝ) > 0 for all p 2 C (�) ; which implies

ŝ 2 supp �: Conversely suppose that ~s 2 supp �. Then since supp� = ?; there exists q 2 C (�)

such that q (~s) = 0: Since ~s 2 supp �; �� (~s) + (1� �) q (~s) > 0; which implies � (~s) > 0 hence

~s 2 supp�: Thus supp � = supp�:

Part 3 follows directly from the de�nitions.

Proof of Theorem 3.1 The �rst order conditions for a pure equilibrium in which ŝ =

hŝ1 ; :::; ŝni is the equilibrium strategy may be expressed as MBi
�
ŝi; �

ŝ
�
> 0;MBi

�
ŝi + 1; �

ŝ
�
6

0; or MBi
�
ŝi; �

ŝ
�
< 0; and ŝi = 0:18

Let T =
�
s 2 S : 8i; either MBi

�
si; �

ŝ
�
> 0 or si = 0

	
: Note that T is non-empty, since

0 2 T . Let ~s be a maximal element of T : Then

8i;MBi
�
~si; �

~s
�
> 0 or ~si = 0: (1)

Let I = fi : ~si 6= Kig ; i.e. I denotes the set of individuals who are not playing their highest

strategy. If i 2 I; de�ne ~s+i = h~s�i; ~si + 1i : Then since ~s is maximal, 9j;MBj
�
~s+i; �~s

+i
�
< 0

and ~s+ij 6= 0: However by Lemma B.1, ~s+i > ~s implies that if j 6= i and ~sj 6= 0;MBj
�
~sj ; �

~s+i
�
>

0: Hence it is that case that 8i 2 I;MBi
�
~si + 1; �

~s+i
�
< 0: By Lemma B.1,

8i 2 I;MBi
�
~si + 1; �

~s
�
< 0: (2)

18Recall �~si = �i
�
�~si ; �i; �i; �i

�
; where �~si denotes the probability distribution on S�i; which assigns probability

1 to ~s�i:
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Equations (1) and (2) imply �~s is a pure equilibrium, in which all play ~s and beliefs are repre-

sented by CC capacities with degrees of ambiguity-aversion h�1 ; :::; �ni.19

Theorem 3.2 Let � be a symmetric game, then for any given numbers �; �; 0 6 �; � 6 1

and any anonymous capacity �, � has a symmetric equilibrium �i = �i (�i; �i; �i; �i) in CC

capacities.

Proof of Theorem 3.2 De�ne 	(si; s�i) = u (si; s�i) + (1� �)�
R
u (si; s�i) d�

+(1� �) (1� �)
R
u (si; s�i) d~�, for 1 6 i 6 n. Consider the symmetric game (without ambi-

guity) �0 = hN; (Si) (ui) : 1 6 i 6 ni; where the players have strategy sets f0; 1; :::;m�g and

player i�s utility function is 	. Since the sum of concave functions is concave, 	 is concave in si:

Hence the game �0 has a symmetric Nash equilibrium, in which players independently choose

a strategy according to the probability distribution ��i on Si; (see Moulin (1986) p. 115). Let

���i denote probability distribution on S�i; which is the independent product of the marginals,

��j ; j 6= i:

De�ne by ��(A) = ����i (A) + (1� �) [�� (A) + (1� �) ~� (A)] : We assert that the pro�le of

CC capacities �� = h��1; :::; ��ni is a symmetric equilibrium of �. Consider player i. Suppose

that strategy ŝi is in the support of ��: Then by Lemma 3.2, �� (ŝi) > 0. Thus strategy ŝi is

given positive probability in the Nash equilibrium of the game �0. This implies, E��	(ŝi; ŝ�i) >

E��	(ŝi; ŝ�i), for ŝi 2 Si; where the expectation is over ŝ�i:

Expanding,
R
	i (ŝi; s�i) d�� (s�i) = �

R
u (ŝi; s�i) d�� (s�i) + (1� �)�

R
u (ŝi; s�i) d�

+ (1� �) (1� �)
R
u (ŝi; s�i) d~� > �

R
u (si; s�i) d�� (s�i) + (1� �)�

R
u (si; s�i) d�

+(1� �) (1� �)
R
u (si; s�i) d~�; for si 2 Si: This is equivalent to

R
u (ŝi; s�i) d��(s��is�i) >R

u (si; s�i) d��(s�i), which establishes that ŝi is a best response for player i; given that his/her

beliefs can be represented by capacity ��. It follows that �� is a symmetric equilibrium with

ambiguity.

B.2 Strategic Complements

Notation B.1 For given �i; �i; �i and �i; de�ne &r (�i) = �i [�i(Hr)� �i(Hr+1)]+(1� �i)�i (:Hr+1)

� (1� �i)�i (:Hr) ; for 1 6 r 6 M � 1; &M (�i) = (1� �i) + �i� (HM ) � (1� �i)�i (:HM ) ;

cr (�i) = �i [�i(Hr)� �i(Hr+1)] + (1� �i) &r (�) ; for1 6 r 6M � 1 and cM (�i) = �i� (HM ) +

(1� �i) &M (�i) :
19The strategy of proof is similar to that of Tarski�s �xed point theorem, see Tarski (1955).
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Thus the cr�s are the decision weights in the Choquet integral with respect to a CC capacity.

Lemma B.3 Let � be a game with positive aggregate externalities and let the beliefs of player

i be represented by the CC capacity �i = �i�i + (1� �i) [�i�+ (1� �i) ~�i] on S�i, then

MBi(si; �i) =
MX
r=0

�i (si; f
r
i ) cr (�i)

= �i� (HM )�i (si; fM ) +
MX
r=0

�i (si; f
r
i ) �i [�i(Hr)� �i(Hr+1)] + (1� �i)

MX
r=0

�i (si; f
r
i ) &r (�i) :

(3)

Proof. Consider player i. Then

Z
ui (si; s�i) d�i(s�i) = ui (si; fM ) �i (HM ) +

M�1X
r=0

ui (si; fr) [�i(Hr)� �i(Hr+1)] :

Similarly

Z
ui (si � 1; s�i) d�i(s�i) = ui (si � 1; fM ) �i (HM ) +

M�1X
r=0

ui (si � 1; fr) [�i(Hr)� �i(Hr+1)] :

By taking the di¤erence of these two expressions we obtain: MBi (si; �i) = �i (si; fM ) �i (HM )+PM�1
r=0 �i (si; fr) [�i(Hr)� �i(Hr+1)] : If we substitute �i(Hr) = �i�i(Hr) + (1� �i)�i�i(Hr) +

(1� �i) (1� �i) ~�i(Hr), we obtain:

MBi (si; �i) = �i (si; fM ) �i�i (HM ) + �i (si; fM ) (1� �i) f[�i�i (HM ) + (1� �i) ~�i (HM )]g

+
M�1X
r=0

�i (si; fr) �i [�i(Hr)� �i(Hr+1)] +
M�1X
r=0

�i (si; fr) (1� �i) [�i�i(Hr) + (1� �i) ~�i(Hr)]

�
M�1X
r=0

�i (si; fr) (1� �i) [�ii�i(Hr+1) + (1� �i) ~�i(Hr+1)]

= �i (si; fM ) f�i�i (HM ) + (1� �i) [�i�i (HM ) + (1� �i)� (1� �i)�i (:HM )]g

+

M�1X
r=0

�i (si; fr) f�i [�i(Hr)� �i(Hr+1)] + (1� �i) [�i�i(Hr) + (1� �i) [1� �i (:Hr)]]

� (1� �i) [�i�i(Hr+1) + (1� �i) [1� �i (:Hr+1)]]g:
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Hence

MBi (si; �i) = �i (si; fM ) f�i�i (HM ) + (1� �i) &M (�i)g

+
M�1X
r=0

�i (si; fr) f�i [�(Hr)� �(Hr+1)] + (1� �i) &r (�i)g

from which, the result follows.

Lemma B.4 Let � be a game with positive aggregate externalities. Then for any given n-

tuples �; � and �, suppose that MBi
�
~si; �

~s
i

�
> 0 for 1 6 i 6 n:20 Then there exists ŝ > �s such

that there is a pure equilibrium in CC capacities �� = �~s = �
�
�~s; �; �; �

�
in which ŝ is the

equilibrium strategy.

Proof. Suppose �rst thatMBi
�
s0i; �

s0
i

�
> 0; for all s0 > �s; then there is a corner equilibrium; in

which player i playsKi, for 1 6 i 6 n. Otherwise, letK =
n
s 2 S : s > �s;8i;MBi

�
s0i; �

s0i
i

�
> 0

o
:

Let ~k be a maximal element of K; (maximal elements exist since the space of all strategy pro�les

is �nite).

Then we may show that ~k is an equilibrium strategy pro�le when beliefs are � k̂: The proof

can be completed in a similar way to the last part of the proof of Theorem 3.1.

The next result shows that if individual i�s ambiguity-aversion increases then his/her per-

ceived marginal bene�t falls. This is the key step for establishing our comparative static results.

Lemma B.5 Let � be a game with positive aggregate externalities and strategic complements.

Assume ��i > �0i; then MBi
�
si; �

~s
i (�

0
i; �i; �i)

�
> MBi

�
si; �

~s
i (�

�
i ; �i; �i)

�
:

Proof. Note that
PM

r=t &r (�) = [��i (HM )� (1� �)�i (:HM )]+
PM�1

r=t [��i(Hr)� ��i(Hr+1)]

+
PM�1

r=t (1� �) [�i (:Hr+1)� �i (:Hr)] = (1� �) + ��i (Ht)� (1� �)�i (:Ht) : Hence

MX
r=t

&r (�) = � [�i (Ht) + �i (:Ht)� 1] + 1� �i (:Ht) : (4)

20Recall if, ~s 2 S is a given strategy pro�le �~si is the probability distribution on S�i; which assigns probability
1 to ~s�i then �~si = �

~s
i (�i; �i; �i) = �i�

~s
i + (1� �i) [�i�i + (1� �i) ~�i] :
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Since �i is strictly sub-additive,
PM

r=t &r (�
0
i) >

PM
r=t &r (�

�
i ) ; hence the &r (�

0
i)�s �rst order

stochastically dominate the &r (��i )�s. Since �i (s; fr) is strictly increasing in r;

MX
r=0

&r
�
�0i
�
�i (s; f

r
i ) <

MX
r=0

&r (�
�
i )�i (s; f

r
i ) : (5)

The result follows from equation (3).

Lemma B.6 Let � be a game with positive aggregate externalities. Consider a given player, i

say. Let s0 > s00 > s000; be three possible strategies for player i: Suppose that with beliefs over

S�i given by �; s0 is indi¤erent to s000, then s00 is strictly preferred to s0.

Proof. Playing strategy si yields (Choquet) expected utility: Vi(si) =
R
u (si; s�i) d�(s�i):

There exists � such that s00 = �s0 + (1� �) s000. Since s0 and s000 are indi¤erent: Vi(s
0) =

�Vi(s
0) + (1� �)Vi(s000) = �

R
ui (s

0; s�i) d�(s�i) + (1� �)
R
ui (s

000; s�i) d�(s�i)

=
R
[�ui (s

0; s�i) + (1� �)ui (s000; s�i)] d�(s�i)21<
R
ui (s

00; s�i) d�(s�i) = V (s00), since ui is

strictly concave in si. The result follows.

Lemma B.7 Consider a game of positive aggregate externalities with strategic complements.

There exist �� and �� such that if the minimal degree of ambiguity is � (�i) > �� and �i > ��,

(resp. 6 �) then in any equilibrium �i = �i�i + ~�i~�i; supp �i � argmaxsi2Si ui (si; �s�i) ; (resp.

supp �i � argmaxsi2Si ui
�
si; s�i

�
):

Proof. Let s00i 2 argmaxsi2Si ui
�
si; s�i

�
) and let � = ui (s

00
i ; �s�i)�maxsi =2argmaxsi2Si ui(si;s�i) ui

�
si; s�i

�
:

By construction � > 0: Let �̂i = �i�i + ~�i~�i denote i�s equilibrium beliefs. If individual i plays

strategy s00i (s)he receives utility: ui (s
00
i ; fM ) �i (HM ) +

PM�1
r=0 ui (s

00
i ; fr) [�i(Hr)� �i(Hr+1)]

= ui (s
00
i ; fM ) (�i�i (HM ) + ~�i~�i (HM )) +

PM�1
r=0 ui (s

00
i ; fr)�i (�i (Hr)� �i (Hr+1))

+
PM�1

r=0 ui (s
00
i ; fr) ~�i [~�i (Hr)� ~�i (Hr+1)] : Since ~�i ! 0 as �i ! 1; the terms involving ~�i can

be neglected, hence this is approximately,

ui
�
s00i ; fM

�
�i�i (HM ) + �i

M�1X
r=0

ui
�
s00i ; fr

�
(�i (Hr)� �i (Hr+1))

= ui
�
s00i ; fM

�
�i�i (HM ) +

M�1X
r=0

ui
�
s00i ; fr

�
�i (�i (Hr)� �i (Hr+1)) :

21This step is valid since, if there are positive aggregate externalities u (s0; s�i) and u (s000; s�i) are comonotonic.
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Similarly, if individual i plays strategy s0i =2 argmaxsi2Si ui (si; �s�i) his her utility is approxi-

mately: V (s0i) = ui (s
0
i; fM )�i�i (HM ) +

PM�1
r=0 ui (s

0
i; fr)�i (�i (Hr)� �i (Hr+1)) :

If we de�ne dr = ui (s
00
i ; fr)�ui (s0i; fr), the extra utility i gets from playing strategy s00i rather

than s0i; is approximately: V (s
00
i )� V (s0i) = dM�i�i (HM ) +

PM�1
r=1 dr�i (�i (Hr)� �i (Hr+1))

= d0 (�i (H0)� �i (H1)) +
PM�1

r=1 dr�i (�i (Hr)� �i (Hr+1)) + dM��i (HM )

= d0 (1� �i (H1)) +
PM�1

r=1 dr�i (�i (Hr)� �i (Hr+1)) + dM�i�i (HM )

> d0 (1� �i (H1)) + dM�i (H1) > ��d0 + dM
�
1� ��

�
> ��� + dM

�
1� ��

�
> 0; provided �� is

su¢ ciently large.

The �rst inequality follows since strategic complementarity implies that dr is increasing in

r: It follows that for su¢ ciently large minimal degrees of ambiguity and large �i, individual i

will play a strategy from argmaxsi2Si ui
�
si; s�i

�
in equilibrium.

B.3 Strategic Substitutes

Notation B.2 If 1 6 k 6 m�, we shall use r (k) to denote that value of r which satis�es

fr(k) = f (k; :::; k) :

Proposition 4.2 Consider a game of positive aggregate externalities with strategic substi-

tutes. Let �� = � (�; �; �; ��) (resp. �̂ = � (�; �; �; �̂)) be a symmetric equilibrium in CC-capacities

in which �k (resp. k̂) is the highest strategy played and �̀ (resp. ^̀) is the lowest strategy played.

Then �̂ > �� implies k̂ > �k and ^̀6 �̀:

Proof of Proposition 4.2 Suppose if possible k̂ < �k; we shall show that this leads to a

contradiction.

Claim If we assume k̂ < �k; then �� (Ht) > �̂ (Ht) for 1 6 t 6M:

By Lemma B.6 the set of equilibrium strategies must be either
n
k̂
o
or
n
k̂; k̂ � 1

o
. This

implies that �̂(Ht) = 0; if t > r
�
k̂
�
; = 1 if r

�
k̂ � 1

�
6 t. Similarly ��(Ht) = 0; if t > r

�
�k
�
and

��(Ht) = 1 if r
�
�k � 1

�
> t. Since k̂ < �k; �k � 1 > k̂: Thus for t > r

�
k̂
�
; �� (Ht) > �̂ (Ht) = 0; if

r
�
�k � 1

�
> t, �� (Ht) = 1 > �̂ (Ht) ; which establishes the claim.

By Lemma B.3, we may write MB(��; k) =
PM

r=0�(si; fr) cr (��) and MB(�̂; k)

=
PM

r=0�(si; fr) cr (�̂) : Since � is convex, �(Ht) + � (:Ht) 6 1; hence as �̂ > ��;
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�̂ [�(Ht) + � (:Ht)� 1] 6 �� [�(Ht) + � (:Ht)� 1] : By equation (4),

MX
r=t

cr (�) = �� (HM ) +

M�1X
r=t

� [�(Hr)� �(Hr+1)] + (1� �)
MX
r=t

&r (�)

= ��(Ht) + (1� �) f� [�i (Ht) + �i (:Ht)� 1] + 1� �i (:Ht)g :

Hence the cr (��)�s �rst order stochastically dominate the cr (�̂)�s. Since �(si; fr) is strictly

decreasing in r; �rst order stochastic dominance implies MB(��; k) < MB(�̂; k) for all k:

A necessary condition for k̂ to be an equilibrium action with beliefs �̂ is 0 > MB
�
k̂ � 1; �̂

�
:

Hence by concavity 0 > MB
�
�k; �̂

�
> MB

�
�k; ��

�
. However, a necessary condition for �k (resp.

�k; �k + 1) to be an equilibrium contribution level (resp. levels) with beliefs ��; is MB
�
�k; ��

�
> 0,

(resp. MB
�
�k; ��

�
= MB

�
�k + 1; ��

�
= 0). This contradiction establishes that k̂ 6 �k. A similar

argument applies to the lowest equilibrium strategy.
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