Re: Davidson and de Jong (2000) Theorem 3.1. The uniform
integrability of Y3, in (B.33).

It has been pointed out by a reader that a step in the proof of Theorem 3.1 of Davidson and de
Jong (2000) is obscure. This note seeks to expand and clarify the reasoning at this step. The
first thing to point out is that there is unfortunately a typographic error in the published form
of (B.33). an(&,& +0) should read an (&, €'). Since the definition only makes sense if £ < &'+ 4,
the need for a correction here is evident.

The issue is to establish the uniform integrability of the sequence {Y1,} defined in (B.33),
which is merely asserted in the published proof. Begin by fixing n, and noticing that
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According to equation (3.2) of the paper, the weights a,:(&, &) in T} consist of partial sums of the
fractional lag coefficients b;, for j running from a maximum of [n€] — [n¢'], down to 0. Arguing
as in (B.32) of the paper, also note that
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Consider the majorant terms in (2), starting with 77. There are three points to note. First, since
¢ and § are fixed, Corollary 16.14 of Davidson (1994) applies to the case
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Second, in view of Assumption 1(b) of the paper, Corollary 16.14 continues to hold under arbitrary
permutations of the weights in (3). These quantities correspond to the mixingale constants ¢,
specified in the Corollary, and their ordering is irrelevant. Letting p([n&'] +1),...,p([n(& + 9)])
denote a permutation of the integers [n&'| +1,...,[n(& +9)], an (&' +6,¢) in (3) can be replaced
by @pp(t) (€' +6,¢) as the weight on u; without affecting the implicit application of Corollary
16.14. Third, the sequence of weights appearing in T (&,£’) in (2) corresponds to one of these
permutations, because for any £ in the relevant range,
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(That is to say, the sets in question contain the partial sums of the b; from 0 up to the indicated
limits, by (3.2) of the paper.)

Next, letting T7,(&, &) denote the partial sum corresponding to (3) under permutation p, note
that there exists a p such that
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To see this, consider any case p where the weights in Tl*p match those of 77 up to time [n&*],
where £* is the value of ¢ defined by the sup for 77 on the left. We get equality in the case where
&* defines the sup on the right-hand side also, and can do no worse by letting £ vary on the right.
Now let n increase, and while the sets of permutations p with n observations (call these py,)
also increases, this just corresponds to all the different ways of ordering the sets {c,1,t = 1,...,n}
specified in Corollary 16.14, for n = 1,2,3,... As noted, since {u;} has uniformly bounded -
norms, the corollary holds uniformly with respect to these orderings. Therefore, we can construct
the random sequence
max sup |T%, (&&)|v,"(¢,6), n>1 (6)
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of which the nth term dominates supg.e g5 |T1(&,&)|v;, (€, 0) according to (5). Each term
of sequence (6) is drawn from a uniformly integrable sequence, and hence it is itself uniformly
integrable.
Next consider T5. The number of terms in this sum is fixed for fixed n. All we have to observe
is that
[ng']
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is uniformly integrable in the usual way. For the case d > 0, note that 0 < an¢(£,€") < ant(€'+6,¢)
for ¢ <€ < +6, for all =N, <t < [n€’]. For the case d < 0 all the weights in T are negative,
so consider instead the case of —T5.
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