
Re: Davidson and de Jong (2000) Theorem 3.1. The uniform
integrability of Y1n in (B.33).

It has been pointed out by a reader that a step in the proof of Theorem 3.1 of Davidson and de
Jong (2000) is obscure. This note seeks to expand and clarify the reasoning at this step. The
�rst thing to point out is that there is unfortunately a typographic error in the published form
of (B.33). ant(�; �0 + �) should read ant(�; �0). Since the de�nition only makes sense if � � �0 + �,
the need for a correction here is evident.

The issue is to establish the uniform integrability of the sequence fY1ng de�ned in (B.33),
which is merely asserted in the published proof. Begin by �xing n, and noticing that
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According to equation (3.2) of the paper, the weights ant(�; �0) in T1 consist of partial sums of the
fractional lag coe¢ cients bj , for j running from a maximum of [n�] � [n�0], down to 0. Arguing
as in (B.32) of the paper, also note that
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Consider the majorant terms in (2), starting with T1. There are three points to note. First, since
�0 and � are �xed, Corollary 16.14 of Davidson (1994) applies to the case
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Second, in view of Assumption 1(b) of the paper, Corollary 16.14 continues to hold under arbitrary
permutations of the weights in (3). These quantities correspond to the mixingale constants cnt
speci�ed in the Corollary, and their ordering is irrelevant. Letting p([n�0] + 1); : : : ; p([n(�0 + �)])
denote a permutation of the integers [n�0]+1; : : : ; [n(�0+ �)], ant(�0+ �; �0) in (3) can be replaced
by anp(t)(�

0 + �; �0) as the weight on ut without a¤ecting the implicit application of Corollary
16.14. Third, the sequence of weights appearing in T1(�; �0) in (2) corresponds to one of these
permutations, because for any � in the relevant range,�
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(That is to say, the sets in question contain the partial sums of the bj from 0 up to the indicated
limits, by (3.2) of the paper.)

Next, letting T �1p(�; �
0) denote the partial sum corresponding to (3) under permutation p, note

that there exists a p such that
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To see this, consider any case p where the weights in T �1p match those of T1 up to time [n�
�],

where �� is the value of � de�ned by the sup for T1 on the left. We get equality in the case where
�� de�nes the sup on the right-hand side also, and can do no worse by letting � vary on the right.

Now let n increase, and while the sets of permutations p with n observations (call these pn)
also increases, this just corresponds to all the di¤erent ways of ordering the sets fcnt; t = 1; : : : ; ng
speci�ed in Corollary 16.14, for n = 1; 2; 3; : : : As noted, since futg has uniformly bounded r-
norms, the corollary holds uniformly with respect to these orderings. Therefore, we can construct
the random sequence
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of which the nth term dominates sup�:���0<� jT1(�; �0)j��1n (�0; �) according to (5). Each term
of sequence (6) is drawn from a uniformly integrable sequence, and hence it is itself uniformly
integrable.

Next consider T2. The number of terms in this sum is �xed for �xed n. All we have to observe
is that
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is uniformly integrable in the usual way. For the case d > 0, note that 0 � ant(�; �0) � ant(�0+�; �0)
for �0 � � � �0 + �, for all �Nn � t � [n�0]. For the case d < 0 all the weights in T2 are negative,
so consider instead the case of �T2.
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