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Abstract

We study asymmetric second-price auctions under incomplete information. The bidders

have potentially different, commonly-known, valuations for the object and private informa-

tion about their entry costs. The seller, however, does not benefit from these entry costs.

We calculate the equilibrium strategies of the bidders and analyze the optimal design for the

seller in this environment.

Keywords: Asymmetric auctions, Entry costs.

JEL classification: D44, O31, O32

∗Department of Economics, University of Exeter, UK.
†Department of Economics, Ben-Gurion University, Israel.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12824379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

In auctions with entry costs, each bidder can enter the auction only if he pays an entry cost.

The seller, however, does not benefit from the bidders’ entry costs (as opposed to entry fees).

This cost of entering is spent regardless of whether a bidder wins and is independent of his bid.

It reflects both an opportunity cost of the time of participating and the cost of the effort needed

to learn the rules and prepare a strategy. For large auctions (such as spectrum auctions) it also

represents the cost of raising the necessary credit to participate. The usual assumption on entry

costs are that they common knowledge and identical (for example, see Samuelson, 1985; McAfee

& McMillan, 1987; Engelbrecht-Wiggans, 1993; Levin & Smith, 1994; Tan & Yilankaya, 2005).

We instead assume that the bidders’ entry costs are private information. This is natural since

a bidder should have a much better idea about his own opportunity, learning, and fund raising

costs than about such costs of his opponents.

Another common assumption in the literature on auctions with entry costs is that bidders’

decisions on whether or not to enter the auction made before they learn their private information.

This timing assumption and the assumption that bidders are ex-ante symmetric causes the

expected profit of each bidder to be zero with all the social surplus going to the seller (as in

Levin and Smith, 1994). We depart also from the timing assumption by having a bidder’s

entry cost known to the bidder before making his entry decision.1Doing so best captures the

idea that entry costs are opportunity costs. Together our assumptions allow bidders to earn

strictly positive profits and causes the seller’s and the social planner’s problems to be no longer

identical. Finally, we allow ex-ante asymmetry among the bidders who have different valuations

for the objects. To aid tractibility we do this by assuming that bidders’ values are commonly

known ex-ante.

We find that our model has cutoff equilibria, where any bidder with an entry cost higher

than the cutoff for his valuation will stay out of the auction and any bidder with an entry cost

lower than the cutoff for his valuation will decide to participate in the auction. We show that

given these equilibrium strategies a bidder may wish to have a lower valuation for the object

1Samuelson (1985) and Menezes and Monterio (2000) consider a model with incomplete information where a

player first learns his private value for the object being sold and then decides to enter the auction. However,

contrary to our model, in their symmetric models all bidders have the same cost of entry which is common

knowledge.
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since, surprisingly, his expected payoff may decrease in his valuation. Moreover, the expected

payoff of a player may be lower than the expected payoff of his opponents with lower valuations.

We analyze the optimal entry (design) in our environment given that the number of bidders

(potential entrants) is exogenous. In the special case where bidders are symmetric, that is,

have the same value for the object, we find that the seller would like to reduce the number of

bidders that choose to enter from the equilibrium. While reducing the number that enter, the

seller collects more from those that decided to enter. In the case where bidders are asymmetric,

that is, have different values for the object, we show that, independent of the distribution of

the bidders’ entry costs and the bidders’ valuations for the object, the seller always wishes to

reduce participation of at least one type of bidders. Sometimes the seller may prefer a less

efficient situation2 where the optimal cutoff of bidders with the high valuation is always smaller

than the optimal cutoff of bidders with lower valuation, but if the numbers of bidders of each

type are identical, the seller prefers a higher cutoff for the bidders with a high valuation. In

the asymmetric case usually neither entry fees nor reserve prices are sufficient to implement the

optimal cutoffs for the seller, and therefore the seller should find alternative solutions. Only in

the symmetric case these two methods (reserve prices and entry fees) can implement the optimal

entry in the auction. This result, by the way, is in contrast to the models with common entry

costs in which entry fees are useful but reserve price may not be and thus they are not equivalent

tools (see, for example, McAfee & McMillan, 1987; and Levin & Smith, 1994).

Finally, we assume that the number of bidders is endogenous and address the question what

is the optimal number of bidders that maximizes the seller’s payoff or the social surplus. We

find that the answer to this question is quite ambiguous. We examine three different scenarios.

In one the seller’s payoff and the social surplus increase in the number of bidders. In another,

both decrease in the number of bidders. Surprisingly, in the last scenario, we find the seller’s

payoff and the social surplus may react in completely opposite ways whereas an increase in the

number of bidders yields an increase of the seller’s payoff but a decrease of the social surplus.

It is important to notice that in the symmetric model with private entry costs, the Revenue

Equivalence Theorem (see Myerson, 1981; and Riley & Samuelson, 1981) holds whether or not

bidders observe how many others have decided to enter before bidding in the auction (see Kaplan

2Gilbert and Klemperer (2000), for example, show that an auctioneer may wish to run an inefficient auction

to attract weaker bidders to enter the auction.
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and Zamir, 2002).3 This implies that our results for symmetric second-price auctions will hold

for instance if the auctions were first-price auctions and bidders were uninformed about who

entered the auction before bidding. However, in our asymmetric model there may be a difference

among the auctions, in particular, the first-price auction when the bidders are uninformed about

who enters may generate lower revenue than the revenue in our model of second-price auctions.

This shows us that there is room to study other auction forms in our asymmetric environment.

However, other asymmetric auction forms are not necessarily as easily solvable as asymmetric

second-price auctions.

The paper is organized as follows: In Section 2, we describe the general environment. We

calculate the equilibrium strategies and examine the bidders’ behavior in Section 3. Our analysis

of the optimal design in our environment carried out in Section 4. The effects of the number

of bidders on these auctions are analyzed in Section 5. Finally, we discuss future extensions in

Section 6.

2 The Model

Consider a second-price auction (see Vickrey, 1961) with n bidders competing for an indivisible

item. The bidder with the highest bid wins the item and pays the second-highest bid with ties

broken randomly. If there is no second-highest bid, then the price of the item is zero. Bidder

i’s valuation for the item, vi ≥ 0, is common knowledge. Participating in the auction generates

a fixed cost4 ci for bidder i which is private information and is drawn independently from the

cummulative distribution function F which is on the interval [a, b] where 0 ≤ a < min vi. We

assume that F is continuously differentiable with F (a) = 0 and is common knowledge.5 The

bidders’ entry costs are wasted in the sense that the seller does not benefit from these costs. We

assume that each bidder knows his entry cost and his value before he makes his decision. This

decision made by bidders can be split into two parts: whether to enter or stay out and what to

bid if entering. Denote by di(ci, vi) the entry decision (the probability of entering) if one has

3Levin and Smith (1996) show that for risk averse bidders, usually, but not always, the seller prefers the

first-price auction to the second price auction when there are entry costs.
4We assume that changing the mechanism will not change the fixed costs of entry. For instance, if the seller

made one of the buyers a take-it-or-leave-it offer, then that buyer will still be subject to the entry costs.
5To avoid a trivial solution assume that F (vi) > 0 (there is a chance that player i has a cost lower than vi).
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cost ci and value vi > 0, and bi(vi) be the bid if one indeed enters and has value vi.

3 Equilibrium

Once a bidder enters the auction, then we assume he plays his dominant strategy, that is to

bid his value. Given this, the interesting analysis of our model is examining the entry decisions

of the bidders. In our model there frequently are trivial equilibria strategies in which one

of the bidders decides to always participate independent of his entry cost, and all the other

bidders decide to stay out of the auction. In order to prevent such equilibrium strategies (when

n1, n2 > 1) we assume that bidders of the same type (same v) follow the same strategy. We say

that an equilibrium is type-symmetric if all bidders of the same type follow the same strategy.

Proposition 1 Consider an auction where n1 bidders have a valuation of v1 and n2 bidders

have a valuation of v2 for the item being sold, where v1 > v2. A type-symmetric equilibrium

exists and satisfies bi(vi) = vi and

di(c) =



















1 if ci ≤ c∗i

0 if ci > c∗i

where the equilibrium cutoffs c∗i , i = 1, 2 are given by6

c∗1 = (v1 − v2)(1 − F (c∗1))
n1−1 + v2(1 − F (c∗2))

n2(1 − F (c∗1))
n1−1 (1)

c∗2 = v2(1 − F (c∗1))
n1(1 − F (c∗2))

n2−1 (2)

In the symmetric case where v1 = v2 and n is the total number of bidders, the symmetric

equilibrium is given by bi(v) = v and

di(c) =



















1 if ci ≤ c∗

0 if ci > c∗

6Obviously, this equilibrium is for n1, n2 ≥ 1. If n1 ≥ 2, n2 ≥ 2 and a = 0, then any type-symmetric equilibrium

must be interior. If n1 = 1 or n2 = 1 the type-symmetric equilibrium can be non interior with c∗1 ≥ b, c∗2 ≤ a or

c∗2 ≥ b, a < c∗1 < b. (And for a > v1 − v2, non interior with c∗2 ≥ b, c∗1 ≤ a.) A cutoff ci > b implies that everyone

of type i would enter and a cutoff ci < a implies that everyone of type i stays out.
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where the equilibrium cutoff c∗ > 0 is the solution of7

c∗ = v(1 − F (c∗))n−1 (3)

The equilibrium described by Proposition 1 is such that any bidder with valuation vi and

an entry cost higher than the equilibrium cutoff c∗i will stay out of the auction and any bidder

with valuation vi and an entry cost lower than the equilibrium cutoff c∗i will participate in the

auction.

In the equilibrium a bidder has a positive payoff only if he is the only entrant. Thus, the

payoff of a bidder with valuation vi and entry cost c ≤ c∗i is c∗i − c. Thus, the expected payoff

of a bidder with value vi is
∫ c∗i

0
(c∗i − c)dF (c) (4)

The following example shows that type-symmetric equilibrium is not necessarily unique and

the difference among the equilibrium points is meaningful.8

Example 1 Consider an auction where n1 = 2, n2 = 1, v1 = 2.25, v2 = 2 and F is a uniform

distribution on [0, 1].

By (1) and (2) the equilibrium interior cutoffs are given by:

c∗1 = (2.25 − 2)(1 − c∗1) + 2(1 − c∗2)(1 − c∗1)

c∗2 = 2(1 − c∗1)
2

There are two solutions to this system of equations: 1. c∗1 = 0.34255 and c∗2 = 0.8644 2.

c∗1 = 0.62993 and c∗2 = 0.2739. Note that in the first solution the bidders exhibit paradoxical

behavior in the following sense. The equilibrium cutoff of the bidder with the low valuation v2

is higher than the equilibrium cutoff of the bidders with the higher valuation v1.
9 This results

in the expected payoff of the bidder with the low valuation v2 being larger than the expected

payoff of his opponents with the higher valuations v1.

7For the symmetric case, any symmetric equilibrium is interior.
8Note that for simplicity of exposition, in our examples, we will write the equilibrium cutoff equations, (1) and

(2), assuming there is an interior solution and then see if this is indeed the case.
9When v1 > 2v2, such a paradoxical equilibrium cannot exist. In a similar vein, there always exists an

equilibrium where the cutoff c1 is larger than the cutoff c2, but as the example shows it is not always unique.
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Corollary 1 A bidder with a relatively high valuation and low entry cost may decide to stay out

of the auction whereas a bidder with a relatively low valuation and high entry cost may decide

to participate in the auction.10

The intuition for why this is posible is that a bidder’s willingness to enter depends upon

his expected surplus of being in the auction. This surplus depends upon not only the bidder’s

valuation but who else decides to enter the auction. Hence, if high-bidders are less likely to

enter the auction, then it is indeed possible for low-value bidders to be more willing to enter

since they are more likely to be alone and reap all the profits. Another paradoxical behavior in

the asymmetric auctions is illustrated in the following example.

Example 2 Consider an auction where n1 = n2 = 1 and F is a uniform distribution on [1/2, 1].

Let v1 > v2 and v1, v2 are in (1/2, 1).

The only potential interior equilibrium is given by

c∗1 =
2v1(v1 + v2 − 1)

4(v1)2 − 1
and c∗2 =

4(v1)
2 − (v1 + v2)

4(v1)2 − 1

It is indeed interior when v2 < (4(v1)
2 − 1)/2v1 + 1 − v1 which is possible when v1 > .78.

Note that in this case c∗1 > c∗2. It is clear that c∗2 decreases with v2 and c∗1 increases with v2.

Furthermore, one can show that c∗2 increases with v1 and c∗1 decreases with v1.

Corollary 2 The expected payoff of a player may decrease in his valuation and increase in the

valuations of his opponents.

We gain intuition for why this may happen by comparing our model with private entry costs

to the model with commonly known entry costs. For example, consider the case of two bidders

with valuations v1 > v2 and entry costs of c1, c2. The valuations as well as the entry costs are

common knowledge. Then the auction reduces to the following 2x2 game:

Bidder 1

Bidder 2

In Out

In v1 − v2 − c1, − c2 v1 − c1, 0

Out 0, v2 − c2 0, 0

10Note that this result (or any) is not dependent on two bidders having the same value. In a three type model

where values are v1 = 2.25, v2 = 2.24, v3 = 2, there are still two possible interior equilibria: c∗1 = 0.34828,

c∗2 = 0.8762, c∗3 = 0.327774 and c∗1 = 0.635516, c∗2 = 0.629634, c∗3 = 0.269985.
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This game has two pure-strategy equilibrium points and one mixed-strategy equilibrium. The

pure-strategy equilibrium strategies are identical to those in our model in which, independent

of costs, one bidder decides to enter and the other bidder decides to stay out of the auction.

In the mixed-strategy equilibrium the probability that player 1 will participate is p1 = v2−c2
v2

and the probability that player 2 will participate is p2 = v1−c1
v2

. Note that the probabilities

that both bidders will participate at the auction increase in their opponents’ valuation, and the

probability that bidder 2 will participate even decreases in his own valuation. Hence, we can say

that the probabilities of participation in both models have almost the same properties. However,

while the expected payoff of the bidders in this 2x2 game is zero and, hence, independent on

the bidders’ valuations, in our model the expected payoff of each bidder is positive and may

decrease in his valuation as we can see in Example 2.

4 The Optimal Entry

We assume that the number of bidders is exogenous such that the seller cannot determine the

number of bidders and the bidders use type-symmetric equilibrium. However the seller can

change the entry decision of the players (the equilibrium cutoff) by imposing entry fees, reserve

prices, bid caps or other methods. In this section, we examine what the optimal level of entry

is in this environment. We do so under two conditions: the seller must treat all bidders equally

and that the equilibrium is type-symmetric equilibrium. Under these two conditions and the

additional assumption that any bidder considered in the mechanism must pay the entry cost,

we show in the appendix that the second-price auction with the optimal level of entry set is also

the optimal mechanism.

The seller’s expected surplus in the auction is the total surplus minus the bidders’ surplus.

The total surplus for the seller and the bidders together must equal the chance that at least

one bidder with value v1 enters times v1 plus the chance that no bidder with value v1 enters

and at least one bidder with value v2 enters time v2 minus the expected cost of entry for both

types of bidders. The chance that at least one bidder with value v1 enters is 1 − (1 − F (c∗1))
n1 ,

while the chance that no one with value v1 enters and at least one bidder with value v2 enters is

(1 − F (c∗1))
n1(1 − (1 − F (c∗2))

n2). The expected entry cost of a bidder with value vi is
∫ c∗i
0 cdF .

8



Hence, we can write the seller’s expected surplus as:

πs(c
∗
1, c

∗
2) = (1 − (1 − F (c∗1))

n1)v1 + (1 − F (c∗1))
n1(1 − (1 − F (c∗2))

n2)v2

−n1

∫ c∗
1

0
cdF − n2

∫ c∗
2

0
cdF − n1

∫ c∗
1

0
(c∗1 − c)dF − n2

∫ c∗
2

0
(c∗2 − c)dF (5)

= (1 − (1 − F (c∗1))
n1)v1 + (1 − F (c∗1))

n1(1 − (1 − F (c∗2))
n2)v2 − n2c

∗
2F (c∗2) − n1c

∗
1F (c∗1)

Consider now that the seller could influence the equilibrium cutoff. By using the above

expression, we show that the seller always wishes to decrease the equilibrium cutoff of at least

one type of bidders, namely, he wishes to reduce the participation of these bidders.

Proposition 2 For at least one type vi, the optimal cutoff cop
i for the revenue-maximizing seller

is smaller than the equilibrium cutoff c∗i , that is, either cop
1 < c∗1 or cop

2 < c∗2. However, for either

type it is possible that the optimal cutoff is larger (or smaller) than the equilibrium cutoff.11

Proof. For the first part, see the Appendix. For the second part, we can further examine

Example 1. Recall that in Example 1, n1 = 2, n2 = 1 , v1 = 2.25, v2 = 2 and F is a uniform

distribution on [0, 1]. It can be shown that the optimal cutoffs are cop
1 = .452, cop

2 = .3. Recall

that there were two equilibria: c∗1 = 0.343 and c∗2 = 0.864; c∗1 = 0.62993 and c∗2 = 0.2739. This

shows that the optimal cutoff cop
i can be either smaller or larger than the equilibrium cutoff c∗i .

⊡

A consequence of Proposition 2 is that the seller may wish to either decrease or increase the

equilibrium cutoff of either type of bidders. However, if the number of bidders from each type

is identical, the seller will always prefer participation of bidders with the higher type.

Proposition 3 If n1 = n2, then the optimal cutoff of the bidders with the high valuation cop
1 is

always larger than the optimal cutoff cop
2 of the bidders with the lower valuation.

Proof. See the Appendix.

On the other hand, if the number of bidders of each type is not identical, that is, n1 6= n2,

then the seller does not necessarily prefer participation of bidders with the higher type as we

can see in the following example.

11The optimal cutoff is optimal given the limitation of symmetry (all bidders should have identical strategies).

Any mechanism that induces behavior according to this optimal cutoff is an optimal mechanism (as shown in the

appendix).
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Example 3 Consider an auction where n1 = 2, n2 = 1, v1 = 1.5, v2 = 1.4 and F is a uniform

distribution on [.8, 1].

By (8) and (9) the optimal cutoffs are cop
1 = 0 and cop

2 = 1. That is, the seller would prefer

to get the bidder with the lower valuation v2 to always enter while leaving the bidders with the

higher valuation v1 to always stay out.

Finally, we can investigate the symmetric case by setting v1 = v2 and obtain:

Proposition 4 When v1 = v2, the optimal cutoff cop for the revenue-maximizing seller is strictly

positive and always smaller than the equilibrium cutoff c∗.

Proof. See the Appendix. ⊡

The relevant question now is: how can the seller implement the optimal entry? Can he

implement the optimal entry by entry fees or reserve prices? As we show below, the implemen-

tation of the optimal entry is quite simple in the symmetric case and much more difficult in the

asymmetric case.

Let us begin by examining the symmetric case (where v1 = v2), where we find that the

optimal critical entry cost can be obtained by imposing an entry fee or, alternatively, a reserve

price.

When the seller imposes an entry fee e, the symmetric equilibrium is given by bi(v) = v and

di(c) =



















1 if ci ≤ ce

0 if ci > ce

where the equilibrium cutoff ce is the solution of

ce + e = v(1 − F (ce))n−1 (6)

Now, if we set e = F (cop)
F ′(cop) , then the solution of (6) yields the optimal cutoff.12 It can be easily

verified that setting the optimal reserve price is an equivalent operations to setting an entry

fee in the symmetric setup, both of which yields the optimal entry in the auction. This result

12From the proof of Proposition 4 (see the Appendix), the optimal entry cost is such that F (cop) > 0. In

addition F ′(cop) > 0 since if F ′(cop) = 0 then dπs

dco
(cop) < 0 which would be a contradiction given our continuity

assumptions that implies dπs

dco
(cop) = 0.
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is in contrast to the models with common entry costs in which a reserve price and an entry fee

are not equivalent tools. For example, Levin and Smith (1994) showed that in a common value

auctions the seller should discourage entry by charging a positive entry fee, but no reserve price.

In contrast to symmetric auctions, in the asymmetric auctions the seller’s aim to obtain the

optimal entry costs (cop
1 , cop

2 ) is not simple. In these auctions using tools such as entry fees or

reserve prices are not always sufficient for the seller to reach this goal. Moreover, these tools are

not equivalent as they are in the symmetric auctions.

Example 4 Consider an auction where n1 = n2 = 1 , v1 = 1, v2 = 0.5 and F is a uniform

distribution on [0, 1].

The unique equilibrium is c∗1 = 1, c∗2 = 0. The optimal cutoffs obtained by the solution of

equations (8) and (9) are: cop
1 = 7

15 , cop
2 = 2

15 .

Therefore the aim of the seller is decreasing of the equilibrium cutoff of the bidder with the

high valuation and increasing of the equilibrium cutoff of the bidder with the low valuation.

If the seller imposes an entry fee e, the equilibrium cutoffs ce
i i = 1, 2 are given by

ce
1 + e = (v1 − v2) + v2(1 − F (ce

2)) = 0.5 + 0.5(1 − F (ce
2))

ce
2 + e = v2(1 − F (ce

1)) = 0.5(1 − F (ce
1))

If the entry fees are restricted to be the same, the solution of these equations yields c1 =

1 − 2/3e and c2 = −2/3e. Then, the seller cannot induce an interior solution with a uniform e.

Any positive e will result in c2 = 0 and c1 = 1− e. Any negative e will result in c1 = 1 and c2 =

−e. The negative e would not be profitable since it will only cause additional not useful entry.

With a positive e, the seller’s profit will be e(1− e) which reaches its maximum at e = 1/2 with

a profit of 1/4.

On the other hand, if the seller imposes a reserve price r (less than v2), then the equilibrium

cutoffs cr
i i = 1, 2 are given by

cr
1 = (v1 − v2) + (v2 − r)(1 − F (cr

2)) = 0.5 + (0.5 − r)(1 − cr
2)

cr
2 = (v2 − r)(1 − F (cr

1)) = (0.5 − r)(1 − cr
1)
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for every 0 < r < 0.5, by using a reserve price r, the equilibrium cutoff of the bidder with

the high valuation decreases and the equilibrium cutoff of the bidder with the low valuation

increases.

The solution to the above equations yields

c1 =
3 − 4r2

3 + 4r − 4r2

c2 =
2r − 4r2

3 + 4r − 4r2

and the seller’s profit is

πs(r) =
4r(3 − 2r2 − 4r3)

(3 − 4(r − 1)r)2

The maximum profit by using a reservation price is .252366 which although close is still

different than the optimal profit .26666. However, it is better than one can do with uniform

entry fees which yields a profit of .25.

Unlike in Levin and Smith (1994), the seller’s payoff is not equivalent to the social surplus.

This social surplus πss is the chance that someone enters and gets the object minus the expected

costs of all the entrants. Thus, the social surplus is given by:

πss = (c∗1, c
∗
2) = (1−(1−F (c∗1))

n1)v1+(1−F (c∗1))
n1(1−(1−(F (c∗2))

n2)v2−n2c
∗
2F (c∗2)−n1c

∗
1F (c∗1).

(7)

It can be easily verified that the first-order conditions of the social surplus are identical to

the equilibrium conditions. Therefore, in order to maximize the social surplus, we should not

use tools such as entry fees or reserve prices, instead we should just let the bidders to compete

without any interference.

5 The optimal number of bidders

So far we assumed that the number of potential bidders is exogenous. Suppose that the seller

can determine the number of bidders. We also assume that the bidders that are excluded will

not pay entry costs.13 Usually in auctions under incomplete information the optimal number of

13This is consistent with our vision that the seller cannot reduce the entry costs of the bidders. Here we picture

that the seller is simply able to send a message that the auction is closed at an early stage. This is consistent with

our entry cost assumption if this is done strictly at an ex-ante point and before any information is transmitted

to the seller.
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bidders is infinity. In our model the optimal number of bidders is more complex. In order to

demonstrate this point it is sufficient to consider the simpler case of symmetric auctions. The

following example consists of three cases and shows that an increase in the number of potential

bidders has an ambiguous effect both on the seller’s expected payoff and on the social surplus.

Example 5 Consider an auction where v1 = v2 = 1.

By (3), (5) and (7), the equilibrium cutoff, the seller’s payoff and the social surplus respec-

tively are given for three different cases as follows:

Case 1: The bidders’ entry costs are distributed according to a uniform distribution on

[0, 1].

number of bidders equilibrium cutoff seller’s payoff social surplus

2 0.5 0.25 0.5

3 0.381966 0.326238 0.545085

4 0.317672 0.379581 0.581412

5 0.275508 0.420873 0.610635

10 0.175699 0.546468 0.700819

1000 0.00524 0.9673 0.9810

In this case, an increase in the number of potential bidders yields an increase of both the

seller’s payoff and the social surplus.

Case 2: The bidders’ entry costs are distributed according to a uniform distribution on

[0.5, 0.75].

number of bidders equilibrium cutoff seller’s payoff social surplus

2 0.6 0.16 0.2

3 0.5625 0.15625 0.17969

4 0.5457 0.15501 0.17171

5 0.53608 0.15443 0.16745

10 0.51764 0.15368 0.1599

1000 0.50017 0.15335 0.15340

In this case, an increase in the number of potential bidders yields a decrease of both the

seller’s payoff and social surplus.

13



Case 3: The bidders’ entry costs are distributed according to a uniform distribution on

[0.5, 1].

number of bidders equilibrium cutoff seller’s payoff social surplus

2 0.66667 0.11111 0.16667

3 0.60961 0.12311 0.15915

4 0.58244 0.12947 0.15665

5 0.56626 0.13355 0.1555

10 0.5337 0.1426 0.15396

1000 0.5003 0.1533 0.1534

In this case, an increase in the number of bidders yields an increase of the seller’s payoff but

a decrease of the social surplus. In all three cases, as the number of potential entrants increase,

the seller captures more of the social surplus.

Bolton and Farrell (1990) use games of entry with private costs of entry to compare central-

ized to decentralized decision making. Centralization has the manager (seller) limit the potential

entrants by assignment. They find that depending upon the parameters either centralized deci-

sion making is superior by avoiding coordination costs or decentralized decision making is better

by providing entry-cost advantages. The previous example shows that this trade-off exists for

auctions with entry – while a seller could save on coordination costs by a centralized assignment

of participants, the seller would potentially lose out due to higher entry costs. In case one,

decentralization is superior while in case two, centralization is superior. In case three, central-

ization is superior for a seller concerned only with revenue, while decentralization is superior for

a seller concerned with efficiency (such as a government).

In Example 6 we showed that the seller’s payoff in equilibrium may either increase or decrease

in the number of bidders. The following example shows that the seller’s payoff with the optimal

cutoff (seller’s optimal payoff) may also decrease in the number of bidders. (While we will not

show it here, the seller’s optimal payoff may also increase in the number of bidders.)

Example 6 Consider an auction where v1 = v2 = 1 and F is a uniform distribution function

on [0.5, 0.75].

By (4) and (11) the seller’s optimal cutoff and the seller’s optimal payoff are as follows:
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number of bidders seller’s optimal cutoff seller’s optimal payoff

2 0.58333 0.16667

3 0.55481 0.15915

4 0.54122 0.15665

5 0.53313 0.15550

10 0.51685 0.15396

1000 0.500173 0.1534

Note that the seller’s optimal cutoff as well as the seller’s optimal payoff decrease in the

number of bidders. Thus, the optimal number of bidders for the seller in this example is 2.

6 Discussion

Our environments have the advantage that the introduction of asymmetry does not obstruct

solvability. While we looked at different values, future work could analyze asymmetric environ-

ments where the distributions of costs are asymmetric. In the pure symmetric environment, Gal,

Landsberger & Nemirovski (1999) and Landsberger & Tsierlson (2000) bridge the gap between

our work and that of Samuelson (1985), Elberfeld & Wolfstetter (1999), and Tan & Yilankaya

(2005) by investigating environments with two areas of private information: costs and values.

However, since no monotone equilibrium exists in their model, it is less tractable. Furthermore,

in contrast to our results, they show that it may be revenue-improving to have a negative entry

fee (reimburse some of the entry costs). Further work is needed to reconcile the two results.

In the realm of market entry games, our model fits in the class of one-shot games. There is

another class of multi-period games (Bolton & Farrell, 1990 and Levin & Peck, 2003). While

these capture the ability of firms to enter if a market is left empty, they lack the potential

sunk cost associated with such actions (as one would expect if entry decisions need to be made

in several periods in advance).14 One extreme of the multi-period models is to keep the time

element of the entry, but have entry decisions made completely in advance. In such a model

14Such a multi-period model (entry if the market is left empty) cannot be used to study auctions with sunk

entry costs since they will allow non-winning participants to avoid the entry cost. For example, the seller could

run a multi-period mechanism that imitates a Dutch auction, where each period he offers the item to a random

potential entrant and in case of non entry slightly lowers his price. This is not reasonable if, for instance, the

costs represent raising the necessary credit to participate.
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earlier entry costs more, but provides higher expected profits. These have been studied as all-

pay auctions by Kaplan et al. (2002) and Kaplan et al. (2003). There the coordination failure

is costly only to the loser and such a scenario best fits patent races and markets with strong

network externalities. This paper presents another extreme that de-emphasizes the time element

of entry and keeps the dual cost of coordination failure. This fits cases where entry decisions

must be made in far in advance, but there is not an overwhelming advantage to the first entrant.

All such models have their place and complement each other with this paper’s model being the

most tractable.

Finally, while we talk about entry costs in auctions, our results can be applied to the Bertrand

price competition with entry costs. Our results add to this literature, particularly in regards

to the first question (number of potential entrants). Lang and Rosenthal (1991) show that if

the number of entrants is unknown at the time of bidding but there is symmetry and complete

information about values and costs, then the total welfare (which equals the seller’s surplus)

decreases with the number of potential entrants. Elberfeld and Wolfstetter (1999) show that

when there is complete information about the symmetric entry costs and about the number

of entrants, but incomplete information about the values, then total welfare decreases in the

number of potential entrants.15 Thomas (2002), on the other hand, shows that with complete

information about entry costs and about the number of entrants, but with asymmetric entry

costs, the total welfare can increases in the number of potential entrants. Our results in this

paper show that all the situations described above are possible in one model.16 The Bertrand

setting can also make use of our optimal design analysis. Here the optimal design for the seller

is the same as an optimal design for a regulatory agencies with the consumer interest as the

objective. This may shed light on which policies may work best in price competitions like

Bertrand competition.

15Elberfeld and Wolfstetter also show that with a small amount of incomplete information about entry costs,

the result continues to hold.
16Samuelson (1985) finds similar results in a different model with complete information about entry costs, but

incomplete information about values.
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7 Appendix

7.1 Proof of Proposition 1

The standard result that bidding your value in a second-price auction is the weakly dominant

strategy (see Vickrey (1961)) holds in our asymmetric environment. (We will ignore other equi-

libria that aren’t trembling-hand perfect and therefore would not withstand some uncertainty

in the values.)

Given the equilibrium bid function, a bidder with a low valuation v2 will profit only when

he is in the auction alone. The probability of this is (1−F (c∗1))
n1(1−F (c∗2))

n2−1 which implies

equation (2). On the other hand, a bidder with a high valuation v1 will profit v1 when he

is in the auction alone and will profit the difference v1 − v2 when he is in the auction with

only bidders with valuations of v2. These happen with probability (1−F (c∗2))
n2(1−F (c∗1))

n1−1

and (1 − F (c∗1))
n1−1 which implies equation (1). The existence of the equilibrium is derived by

Brower’s Fixed Point Theorem. The RHS of equations (1) and (2) form a bounded function

from [0, v1]× [0, v2] to [0, v1]× [0, v2] that is continuous since F is continuous. Therefore, a fixed

point must exist. (Note that if cutoff c∗i of the fixed point is above b, then it would imply that

everyone with value vi enters. Likewise, if cutoff c∗i of the fixed point is below a, then it would

imply that everyone with value vi stays out)

In the following we show that if n1, n2 ≥ 2, and a = 0, then any fixed point is interior, that

is F (c∗1), F (c∗1) are from (0, 1).17 The RHS of equations (1) and (2) are decreasing in c∗1 and c∗2.

If F (c∗1) = 0, then the RHS of (1) is greater than or equal to v1 − v2 > 0– a contradiction. If

F (c∗1) = 1, then the RHS of (1) is zero – also a contradiction. Hence, 0 < F (c∗1) < 1. A similar

argument shows that 0 < F (c∗2) < 1 as well.

The symmetric case can be shown in a similar, but simpler manner. ⊡

7.2 Proof that the optimal cutoff is the optimal mechanism for the seller.

Here we show that an auction with an equilibrium with an optimal cutoff is the optimal mech-

anism for the seller. Since our participation costs are wasted, any bidder that agrees to partici-

pate in the mechanism must incur his costs. This eliminates the possibility of a mechanism that

queries the bidders about their costs before they are incurred. We also restrict mechanisms to

17We assume that F ′(a) > 0.
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being symmetric in regards to the individual bidders and assume that the equilibrium of such

mechanisms are also symmetric. (If this restriction were lifted it may be indeed possible for the

optimal mechanism to be asymmetric.)

If in equilibrium of the mechanism m, a bidder with cost c1 enters and receives expected

payoff m(c1), then a bidder with cost c2 < c1 would also have to enter in equilibrium since he

can always imitate a bidder with cost c1. This, as before, leads to cutoff strategies. Since at

the cutoff anyone above the cutoff can not pretend to have cost co, the expected profits of the

cutoff must be zero, m(co)−co = 0. Also, since any bidder with cost below co can always receive

payoff m(co) and the bidder with cutoff co can always pretend to have lower costs, the payoff to

entering must be m(co). Thus, the expected profits of a bidder entering with costs c must be

m(co) − c = co − c. Therefore, the expected profits of each bidder is the same as shown for the

auction and likewise, for the seller’s profits.

7.3 Proof of Proposition 2 (first part)

The derivative of the seller’s surplus with respect to the cutoff of bidders with value v1 is:

dπs

dco
1

= n1[(v1 − v2)(1 − F (co
1))

n1−1 + v2(1− F (co
1))

n1−1(1− F (c0
2))

n2 − co
1]F

′(co
1)− n1F (co

1) (8)

Substituting the equilibrium cutoff (1) in (8) yields

dπs

dco
1

(c∗1, c
∗
2) = −n1F (c∗1) < 0 (9)

Since the RHS of (8) is decreasing in both co
1 and co

2, we obtain that for any c1 ≥ c∗1 and c2 ≥

c∗2, the expression dπs

dco
1

(c1, c2) < 0.

Likewise,

dπs

dco
2

= n2(v2(1 − F (co
1))

n1(1 − F (c0
2))

n2−1 − co
2)F

′(co
2) − n2F (co

2) (10)

Substituting the equilibrium entry cost (2) in (9) yields

dπs

dco
2

(c∗1, c
∗
2) = −n2F (c∗2) < 0

Since the RHS of (10) is decreasing in both co
1 and co

2, then we obtain that for any c1 ≥ c∗1

and c2 ≥ c∗2, the expression dπs

dco
2

(c1, c2) < 0. Thus, πs(c1, c2) < πs(c
∗
1, c

∗
2) for all c1 ≥ c∗1, c2 ≥ c∗2

with at least one strict inequality. This implies that it is better off to decrease at least one of

the equilibrium cutoffs c∗1, c
∗
2, and particularly, these equilibrium cutoffs are not optimal. ⊡
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7.4 Proof of Proposition 3

Assume that cop
1 < cop

2 . Let us compare the sellers profits using the optimal cutoffs to the sellers

profits reversing the optimal cutoffs, i.e. using cop
2 for the cutoff for a bidder with value v1 and vice

versa. The advantage of the optimal cutoffs to this new set of cutoffs is πs(c
op
1 , cop

2 )−πs(c
op
2 , cop

1 ).

Since n1 = n2, we have πs(c
op
1 , cop

2 )−πs(c
op
2 , cop

1 ) = −(v1−v2)((1−F (cop
1 ))n1−(1−F (cop

2 ))n1) < 0.

This is a contradiction to the optimality of the cutoffs and therefore the optimal cutoffs must

satisfy cop
1 > cop

2 . ⊡

7.5 Proof of Proposition 4

The derivative of the seller’s profit with respect to co yields:

dπs

dco
(cop) = n[v(1 − F (cop))n−1 − cop]F ′(cop) − nF (cop) (11)

Substituting the equilibrium entry cost c∗ (3) in (11) yields that

dπs

dco
(c∗) = −nF (c∗) < 0

Furthermore, v(1−F (cop))n−1−cop is decreasing in cop. Also, −nF (cop) is decreasing. Therefore,

for any c > c∗ the dπs

dco (c) < 0 as well. Thus, the optimal critical entry cost cop is always smaller

than the equilibrium critical entry cost c∗.

Note, the optimal critical entry cost is strictly positive (with strictly positive entry F (cop) >

0). We can see this since the profits for no entry is zero. Thus, we need to only show that there

is a possibility for the seller to make a profit. Our assumption that F (v) > 0 and continuity of

F imply that there exists a c′ such that v(1 − F (c′))n−1 − c′ > 0 and F (c′) > 0. If the seller set

an additional entry fee e = v(1 − F (c′))n−1 − c′, all bidders with c < c′ will enter. Hence, the

seller would make profit of at least F (c′) · e > 0. ⊡
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