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Abstract

This paper analyses a class of nonlinear time series models exhibiting long memory. These
processes exhibit short memory �uctuations around a local mean (regime) which switches
randomly such that the durations of the regimes follow a power law. We show that if a
large number of independent copies of such a process are aggregated, the resulting processes
are Gaussian, have a linear representation, and converge after normalisation to fractional
Brownian motion. Alternatively, an aggregation scheme with Gaussian common components
can yield the same result. However, a non-aggregated regime process is shown to converge
to a Levy motion with in�nite variance, suitably normalised, emphasising the fact that time
aggregation alone fails to yield a FCLT. Two cases arise, a stationary case in which the partial
sums of the process converge, and a nonstationary case in which the process itself converges,
the Hurst coe¢ cient falling in the ranges ( 12 ; 1) and (0;

1
2 ) respectively. We comment on the

relevance of our results to the interpretation of the long memory phenomenon, and also report
some simulations aimed to throw light on the problem of discriminating between the models
in practice.
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1 Introduction

Autoregressive unit roots are a popular feature of econometric models, not least thanks to the
attractive feature that stationarity can be induced by either di¤erencing or forming cointegrating
linear combinations of economic time series. However, an often remarked drawback with this
approach is that many important series do not seem to fall, logically or empirically, into either
of the I(0) (stationary) or I(1) (di¤erence stationary) categories. Their movements may appear
mean reverting, for example, yet too persistent to be explained by a stationary, short-memory
process. The fractionally integrated class of long memory models provide a seemingly attractive
alternative, in which the I(1)/I(0) dichotomy is replaced by a continuum of persistence properties.
In this class, a time series xt has the representation (1 � L)dxt = ut for �1

2 < d < 1
2 where ut

is a stationary, weakly dependent, zero mean process. See Granger and Joyeux (1980), Hosking
(1981) and Beran (1994) among other well-known references on these models. As detailed in
Davidson (2002b), cointegration theory can be adapted straightforwardly to this set-up. Davidson
and deJong (2000) show that the normalized partial sums of such series converge to fractional
Brownian motion (fBM) under quite general conditions .

However, this approach has its own drawback, that fractional integration cannot be modelled
by di¤erence equations of �nite order. Thinking of a time series model as describing a represen-
tative agent�s actions, incorporating hypothesised behavioural features such as adjustment lags
and rational expectations, it is natural to see this behaviour as conditioned on the �recent past�,
represented by at most a �nite number of autoregressive lags. Unless a unit root is involved, all
such models exhibit exponentially short memory. It is impossible to generate hyperbolic memory
decay from �nite order di¤erence equations. Long memory models necessarily involve the in�nite
history of the observed process, and devising economic models with this structure is, for obvious
reasons, a lot harder than constructing �nite order models. A series can, of course, be modelled
to have long memory characteristics through an error correction model driven by exogenous long
memory; but �nding a plausible route to endogenous long memory is di¢ cult.

The attempts to devise such mechanisms in the literature have abandoned the representative-
agent dynamic framework in favour of some form of cross-sectional aggregation. Since macroeco-
nomic time series are not in fact generated by the behaviour of a �ctional representative agent,
but represent the net e¤ect of many heterogeneous agents interacting, cross-sectional aggregation
is a plausible modelling framework, although it poses some severe conceptual di¢ culties. The
best known example is due to Granger (1980) who, exploiting concepts developed independently
by Robinson (1978), pointed out that summing a collection of low-order ARMA processes yields
an ARMA process of higher order and, eventually, of in�nite order. By arranging for the largest
autoregressive roots of the micro-processes to be drawn from a Beta distribution with a concen-
tration of mass close to 1, Granger showed that the resulting moving average coe¢ cients decline
hyperbolically, and hence can be closely approximated by a fractional-integration process. This
approach has been used by, among others, Ding and Granger (1996) to model conditional het-
eroscedasticity in �nancial time series, and Byers, Davidson and Peel (1997, 2000, 2002) to model
the dynamics of opinion polling.

More recent contributions have focused on the aggregation of nonlinear processes. Taqqu,
Willinger and Sherman (1997), Parke (1999) and Mikosch et. al. (2002) propose similar models,
involving the aggregation of persistent shocks whose durations follow a power law distribution.
For example, in the context of modelling ethernet tra¢ c, Taqqu et al. aggregate binary processes
switching between 0 and 1 where the switch-times are distributed according to a power law.
They invoke the central limit theorem �sideways�to establish Gaussianity of the �nite dimensional
distributions, and then show that the power law entails the inter-temporal covariance structure
of fBM, so that (in a continuous-time framework) this distribution must describe the aggregate
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process.
Parke�s (1999) error duration (ED) model considers the cumulation of a sequence of random

variables that switch to 0 after a random delay that again follows a power law. Thus, were the
delays of in�nite extent the process would be a random walk, and if of zero extent, an i.i.d.
process. Controlling the probability of decay allows the model to capture persistence anywhere
between these extremes. Parke shows that the ED process has the same covariance structure as
the fractionally integrated linear process, and does not consider the question of convergence to
fBM. This is an issue we consider in the sequel.

Diebold and Inoue (2000) are concerned with the issue of confusing fractionally integrated
processes with processes that are stationary and short memory, but exhibit periodic �regime
shifts�, i.e., random changes in the series mean. They show that if such switches occur with a low
probability related to sample size (T ), then the variance of the partial sums will be related to
sample size in just the same way as a fractionally integrated process. Thus, the variance of the
partial sums of an I(0) process increase by de�nition at the rate T , whereas that of a fractional
long memory (I(d)) process increase at the rate T 1+2d. Diebold and Inoue show that exactly the
same behaviour is observed if an independent process is added to a random variable that changes
value with a particular low probability. If this probability is p = O(T 2d�2) for 0 < d < 1, then
the variance of the partial sums grows like T 1+2d. Hence, it is argued, such a process might
be mistaken for a fractionally integrated process in a given sample. We also comment on this
conclusion in the sequel.

The paper is structured as follows. Section 2 describes a class of nonlinear models based on
random switches of regime (local mean) with durations following a power law. We establish the
basic property of the processes, that the autocorrelations also follow a power law, and describe
a simple mechanism for contingent regime shifts which preserves this property. Section 3 then
considers processes formed by the cross-sectional aggregation of regime-switching models. Two
aggregation schemes are described, one with independent micro-units (Section 3.1) and one where
the micro-processes are driven in part by common components (Section 3.2). Section 4 then
develops the properties of the aggregate processes, showing that under either model they have
a linear representation in the limit, and deriving an invariance principle. It is also shown that
di¤erent limit processes arise without aggregation. Section 5 extends the analysis to the case of
nonstationary processes, in which the mean length of a regime is in�nite, although it is shown
that the di¤erence processes can be analysed after a rescaling modi�cation. Section 6 relates our
�ndings to the cited literature on these models, and Section 7 reports some simulations of tests
of linearity in an ARFIMA framework. Section 8 contains some concluding remarks, commenting
on the possible extension to include deterministic components. Section 9 collects the proofs of
the main results.

2 A Stochastic Regimes Model

The building blocks of the models we consider in this paper are processes having the form

Xt = mt + "t (2.1)

where "t is a stationary, short-memory �I(0)�process with zero mean,1 and

mt = kj ; Sj�1 < t � Sj

1We de�ne an I(0) process as one whose normalised partial sums converge weakly to regular Brownian motion.
See Davidson (2002a) for further details.
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where fSj ;�1 < j <1g is a strictly increasing, integer-valued random sequence, and fkj ;�1 <
j < 1g is a real zero-mean random sequence, representing the conditional mean of the process
during regime j. The duration of the jth regime is the integer-valued random variable

� j = Sj � Sj�1:

The basic assumption is that the tail probabilities of the � j follow a power law. A similar
model, although omitting our �noise� component "t, has been investigated by Liu (2000). An
interesting feature of the model is that the power law can allow relatively long-lasting regimes
to arise. Although these are relatively rare events measured in "regime time", they account, by
construction, for a signi�cant proportion of calendar time. In other words, the typical observed
characteristic of such a series is a �bunching� of regime changes in calendar time, periods of
frequent switching interspersed with periods with periods of quiescence.

The full set of assumptions to be maintained in the sequel are as follows. These are intended
to cover as many alternatives as possible, while keeping the proofs of the important properties
reasonably compact. They can certainly be extended in various directions to encompass special
cases without altering the basic characteristics we are interested in. We will make use of the
symbol ' as follows: an ' bn for bn > 0 if janj=bn ! C for some unspeci�ed 0 < C <1. This is
equivalent to an s Cbn, where an s bn is used to mean janj=bn ! 1.

Assumption 1 (a) The bivariate process fkj ; � jg1�1 is strictly stationary.

(b) P (�0 = c) ' c�1��L(c) as c ! 1, 1 < � < 2, where L(:) is slowly varying at 1 and 9
� > 0 such that L(c)= log� c! 0. 2

(c) E(k0) = 0, E(k20) = �
2
k <1, E(k0ks) � 0 for s � 0, and

P1
s=0E(k0ks) <1:

(d) Let T denote the �-�eld generated by f� j ;�1 < j <1g. There exists a constant 0 < B <
1 such that for s � 0,

BE(k0ks) � E(k0ksjT ) � B�1E(k0ks) a.s. (2.2)

(e) f"tg1�1 is strictly stationary with E("0) = 0 and E("20) = �2",
P1
s=0E("0"h) < 1, and

E(m0"h) = E("0mh) = 0 for all h � 0.

Assumption 1(b) implies the key power law property

P (�0 > c) ' c��L(c):

Note that the expected duration of a regime is given under Assumption 1(b) as

E(�0) =
1X
c=1

cP (�0 = c) <1: (2.3)

In the sequel, we shall need to calculate the probability that a randomly chosen observation falls
in a regime of duration c. De�ning J(t) = minfj; t � Sjg, in other words the index of the regime
prevailing at calendar date t, observe that for c � 1,

P (SJ(t) � SJ(t)�1 = c) =
cP (�0 = c)

E(�0)
: (2.4)

2 In the sequel, the symbol L is used for a generic slowly varying component. For example, if L satis�es the
indicated restrictions then so does L2, which might be represented by writing L2 = L.
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Assumption 1(c) controls the dependence of successive regimes in a fairly natural manner.
All the restrictions hold if the regimes are serially independent, for example, and also if they
are connected by a �rst-order autoregressive process. They can certainly be relaxed in particular
cases, where more speci�c restrictions can be invoked, but to cover all these cases would complicate
the arguments excessively.

Assumption 1(d) controls the dependence between the fkjg and f� jg processes by extending
the restrictions of part (c) to the conditional distributions. These are essentially mild constraints
to ensure that the parameter � is relevant to the memory of the process in the manner to be
shown subsequently.

Assumption 1(e) describes the noise process and is likewise mainly simplifying, to rule out
awkward cases, and might be relaxed at the cost of more speci�c restrictions on the behaviour
of the noise process. The main problem here is that "tmt+h = "tmt so long as t + h falls in the
current regime, so that summability restrictions on these covariances are tricky to handle.

Under these assumptions, with 1 < � < 2, the process is covariance stationary (and hence
strictly stationary) and long memory. The following theorem is similar to one obtained indepen-
dently by Liu (2000). However, we extend Liu�s result by allowing dependence both over time
and between the various stochastic components.

Theorem 2.1 Under Assumption 1, if 
h = E(X0Xh) then 
h > 0 for all h and 
h ' h1��L(h).

A fairly wide class of data generation processes are covered by Assumption 1. In the simplest
case, the pair kj ; � j are drawn at time Sj�1, and are then conditionally �xed for the duration of
the jth regime. However, it is more realistic to suppose that switching times can depend on the
current state of the process, and the following example shows how this might happen.

Let a random drawing at time Sj�1 give, not � j , but a conditional Bernoulli distribution
governing the switch date, under which the mean time-to-switch follows the power law. At each
date t, an independent binary random variable with values �switch�and �don�t switch�is drawn.
Let pj denote the switch probability in regime j, so that the probability of a switch after exactly
m periods is (1� pj)m�1pj . Therefore

P (m � x) = pj
1X
m=x

(1� pj)m�1 = (1� pj)x�1 (2.5)

and the mean of the distribution is

�j = pj

1X
m=0

m(1� pj)m�1 =
1

pj
� 1

so pj = 1=(�j + 1): Regimes must run for at least one period, so �j � 1. In the simplest case,
this parameter might be drawn from the power law distribution with density

f(�) = ���1��: (2.6)

Note that this integrates to 1 over [1;1), and P (� > x) = x�� for x � 1, as required.

Theorem 2.2 Let � j be the number of periods until switching of a regime driven by �j, a drawing
from the distribution in (2.6). Then, P (� j > c) ' c��.

With this set-up, it is more accurate to write the duration as � jt, a random variable evolving
according to the rule: � j;t+1 = � jt + 1 with probability 1 � pj , and � j;t+1 = � j+1;t+1 = 0;
otherwise. Note that Assumption 1 allows the independent Bernoulli random variable at date t
to be dependent on the innovations of the noise process "t, and hence a shock hitting the system
can precipitate a change of regime. Only the probability of this occurrence (which can be related
to the size of shock needed to precipitate the switch) is �xed at time Sj�1.
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3 Two Models of Cross-Sectional Aggregation

Our interest in these stochastic regimes processes is their relationship with the phenomena of
long memory and fractional integration. We assume that such processes govern the behaviour
of agents in the economy at the micro level, but that what is observed is the aggregate of their
activities. This cross-sectional aggregation is a crucial feature of the analysis. We consider two
contrasting models of aggregation, which yield essentially the same distributional result, although
from very di¤erent premises.

3.1 Independent Aggregation

Our �rst approach follows essentially that of Taqqu et. al. (1997). Consider the normalised
aggregate process

FMt =M�1=2
MX
i=1

X
(i)
t

where X(1)
t ; : : : ; X

(M)
t are independent copies of Xt. Note that

E(FMt F
M
t+h) = 
h

follows directly from the independence, where 
h is de�ned in Theorem 2.1. Let fFtg1�1 denote
the limiting random process as M !1, de�ned by the relation

(FMt1 ; : : : ; F
M
tK
)
d! (Ft1 ; : : : ; FtK ) (3.1)

where t1; : : : ; tK is any �nite collection of time coordinates and �d!�denotes weak convergence.
Under the assumptions, note that the limit in (3.1) is multivariate Gaussian, with covariance
matrix having elements 
jtj�tkj for 1 � j; k � K. The extension to the in�nite-dimensional
process fFtg1�1, stationary and Gaussian with autocovariance sequence f
h; h � 0g, is assured
by the Kolmogorov consistency theorem (e.g. Davidson (1994) Th. 12.4). Note that allowing
the micro-processes to have heterogeneous distributions, subject to the Lindeberg condition, is
an easy extension that we avoid only for the sake of simplicity of exposition.

3.2 Common Components

In this model, we dispense with the assumption that the micro-processes are independent, but
impose Gaussianity instead of deriving it. The model of the ith micro-process is

X
(i)
t = m

(i)
t + Et + "

(i)
t

m
(i)
t = K

S
(i)
J(t;i)�1

+ k
(i)
J(t;i)

where S(i)j is the date of switch j by individual i, and J(t; i) = minfj : t � S(i)j g. Here, Kt and
Et are stationary processes representing �macro� in�uences that are common to all the �micro�
processes. In other words, at switch date S(i)j , the ith regime mean is equated with the current

value of the common regime process at that date, plus the idiosyncratic component k(i)j . The

regime durations � (i)j are strictly idiosyncratic, however. Formally, we assume the following:

Assumption 2 (a) The bivariate process fKt; Etg1�1 is stationary and Gaussian.

(b) E(K0) = 0, E(K2
0 ) <1, E(K0Kh) � 0 for h � 0, and

P1
h=0E(K0Kh) <1:
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(c) E(E0) = 0, E(E20) <1,
P1
s=0E(E0Eh) <1, and E(K0Eh) = E(E0Kh) = 0 for all h � 0.

Regarded in isolation, note that any one of the individual processes X(i)
t , subject to the

common components satisfying Assumption 2 and the idiosyncratic ones Assumption 1, itself
satis�es Assumption 1. It could not be distinguished from the purely independent case. However,
the mechanism of aggregation is quite di¤erent.

Note that K
S
(i)
J(t;i)�1

is discretely drawn from the set fKt�1;Kt�2;Kt�3; : : :g with probabilities
governed by the power law distribution with parameter �. De�ne a random variable

1
(i)
t (r) =

8<: 1; S
(i)
J(t;i)�1 = t� r

0; otherwise;

the indicator of the event that the ith process underwent its most recent switch of regime at time
t� r. Noting that

X
(i)
t =

1X
r=1

1
(i)
t (r)Kt�r + k

(i)
J(t;i) + Et + "

(i)
t ; (3.2)

de�ne FMt = M�1PM
i=1X

(i)
t . Since the switch times are distributed independently in the pop-

ulation, a straightforward application of the law of large numbers (e.g. Khinchine�s Theorem)
yields

FMt
pr! Ft =

1X
r=1

P (r)Kt�r + Et (3.3)

where �
pr!�denotes convergence in probability, and

P (r) = E(1
(i)
t (r))

=
1X
c=r

P (1
(i)
t (r) = 1jP (SJ(t;i) � SJ(t;i)�1 = c)P (SJ(t;i) � SJ(t;i)�1 = c)

=
1

E(�0)

1X
c=r

P (�0 = c) = O(r
��L(r)) (3.4)

Here the third equality makes use of (2.4) together with the fact that date t has an equal chance
1=c of falling anywhere in a regime of length c. It can be veri�ed that

P1
r=1 P (r) = 1 as required.

As in the independent case, we may extend from the �nite-dimensional limit distributions implied
by (3.3) to a limit stochastic process fFtg.

Note the two important di¤erences from the purely independent case, however. The limit is
normalized by M�1, not M�1=2, and it does not depend on the idiosyncratic components at all,
since these average out to zero. Because of these di¤ering convergence rates, it appears di¢ cult
to build a model in which the limit depends on both �macro�and �micro�components. Also, be
careful to note that the conclusion

plimM�1
MX
i=1

1
(i)
t (r) = P (r)

for any t, on which (3.3) depends, rules out a common component in the regimes processes � (i)j .
These must be purely idiosyncratic. It is not hard to see that any tendency for regime switches
to be co-ordinated in the population will lead to �jumps�of the aggregate at the preferred dates,
which would rule out time-invariance of the coe¢ cients in (3.3).

We show directly that the aggregate model inherits the covariance structure of the micro
processes, as follows.

6



Theorem 3.1 Let Assumption 2 hold for the common components and Assumption 1 for the
idiosyncratic components, which are also distributed independently of each other and of the com-
mon components. If 
h = E(F0Fh) then 
h > 0 for all h and 
h ' h1��L(h).

4 Representation and Invariance Principle

Let H = (3��)=2 for 1 < � < 2, corresponding to Hurst�s coe¢ cient, so that the bounding cases
� = 2 and � = 1 correspond to H = 1

2 and H = 1 respectively. We next show that the aggregate
process has the variance characteristics associated with long memory increments. Let

�2T =
TX
g=1

TX
h=1


jg�hj = E

� TX
t=1

F 2t

�

and note from Theorem 2.1 that the sequence f
hg is positive and monotone, and 
h ' h2H�2L(h).
It follows directly that, for any �xed g,

PT
h=1 
jg�hj = O(T

2H�1L(T )). Hence

�2T = O(T
2HL(T )):

In view of the stationarity, we can assume the existence of a �nite positive constant

�2 = lim
T!1

(T 2HL(T ))�1�2T :

The sequence fFtg is strictly stationary with �nite variance 
0, and purely nondeterministic,
by construction. The Wold (1938) decomposition theorem (see e.g. Davidson (2000) Theorem
5.2.1) therefore implies the form

Ft =

1X
j=0

�j�t�j (4.1)

where the sequence f�tg is stationary and uncorrelated with variance �2� = 
0=
P1
j=0 �

2
j . How-

ever, fFtg is Gaussian, either by the CLT in the independent aggregation case or, in the common
components model, because under Assumption 2, Ft in (3.3) is a linear function of Gaussian
processes Et;Kt;Kt�1;Kt�2 : : : with �xed summable coe¢ cients. According to the Wold con-
struction, the residuals �t are arbitrarily well approximated by �nite linear combinations of the
observed process. They are therefore themselves Gaussian, and, being uncorrelated, are indepen-
dently and identically distributed. The conclusion may be stated formally as follows.

Theorem 4.1 Under either Assumption 1 in the independent aggregation case, or Assumption
2 in the common components case, the limiting aggregate process fFt;�1 < t < 1g has repre-
sentation (4.1) where

P1
j=0 �

2
j <1 and �t s NI(0; 
0=

P1
j=0 �

2
j ).

This shows that linearity need not be an intrinsic feature of the data generation process, in
order for linear models to be useful for modelling purposes. As we show in Section 7, the
ARFIMA(p; d; q) model could provide a good approximation in many cases, with d = H � 1

2 .
The next step is to establish the invariance principle. Write

ZMT (�) = �
�1
T

[T�]X
t=1

FMt ; 0 � � � 1 (4.2)

where [x] denotes the largest integer not exceeding x.
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Theorem 4.2 ZMT
d! �BH as M;T !1 (sequentially), where BH denotes fractional Brownian

motion of type 13 with parameter H.

The expression �M;T ! 1 (sequentially)�means that M must be taken to the limit for each
t = 1; : : : ; T , with T �xed, and the limit of this procedure is taken with respect to T . It is
clear that this is the case relevant to the present context, but note that the limit with respect to
T;M ! 1 (sequentially) may be di¤erent, as may any scheme of joint convergence by setting
(say) M = M(T ) for some monotone increasing function. The next theorem in this section
illustrates the importance of the distinction. See Phillips and Moon (1999) for a discussion of
the relationships between sequential and joint convergence (weakly, or in probability) for double-
indexed samples.

It may be the case (and this assertion is explored in the simulations reported in Section 7) that
quite a low value of M is su¢ cient to yield an adequate linear approximation. However, the next
result demonstrates that the the invariance properties obtained in Theorem 4.2 are not obtained
without cross-sectional aggregation. In other words, the usual argument from time aggregation
fails. We introduce the following extra assumptions.

Assumption 3 (a) The sequence f(kj ; � j); �1 < j <1g is i.i.d.

(b)
Z
f�j�cg

P (��1k jkj j > c=� j j� j)dF (� j) = o(c��):

Then, we have the following result.

Theorem 4.3 Let XT (�) = (T 1=�L(T ))�1
P[T�]
t=1 Xt, 0 � � � 1, where Xt is de�ned in (2.1). If

Assumptions 1 and 3 hold then XT
d! ��, where �� is stable Levy motion with stability parameter

�

Since 1=� < H in the range 1 < � < 2, note the implication of this result, that with M = 1 the
process de�ned in (4.2) converges to zero, albeit slowly because (3��)=2 and 1=� are quite close
over most of the range (1; 2). Of course, this fact points to the inappropriateness of normalising
by the variance of the process, which is diverging as T ! 1: Also, since the increments of the
limit process have no variance, note how reversing the order of M and T in Theorem 4.2 cannot
yield a Gaussian limit in this case.

A related analysis has been given independently by Mikosch et. al. (2002). These authors
consider an independent aggregation model similar to Taqqu et al. (1997), in the context of
modelling network tra¢ c. They show that whether the limit in their model is Gaussian or Levy
can be related to what, in our context, would be the relative rates of simultaneous increase of M
and T . However, as just noted, such potentially interesting considerations are not really germane
to the present analysis. Our two counting processes are strictly sequential, relating in the �rst
case to the underlying data generation process, and in the second to the mode of its observation.

Assumption 3(a) is imposed just for simplicity. Results for dependent regimes are certainly
available, but the additional complications with the proof go beyond the scope of the present
paper, where the aim is simply to exhibit a counter-example to the Gaussian case. Assumption
3(b) is a natural extension of Assumption 1(d), and ensures that kj does not itself contribute
to the tail behaviour of the random variables kj� j that feature in the proof, in such a way that
� does not de�ne the relevant power law. Again, this is just for simplicity. It will certainly be
satis�ed if the conditional probability declines exponentially with c, for example.

3See Robinson and Marinucci (1999), and also Davidson and de Jong (2000) for details.
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5 The Nonstationary Case

In this section, we consider how the regimes model can be extended to the nonstationary case
0 < � < 1.4 As noted, the expected regime duration is in�nite in this case according to (2.3),
and the calculations in Theorem 2.1 demonstrate that the process is not covariance stationary.
However, consider the di¤erences �Xt = �mt +�"t, where

�mt =

(
�kJ(t); t = SJ(t)�1 + 1

0; otherwise.

where �kJ(t) = kJ(t) � kJ(t)�1. In other words, the process is nonzero at date t only if t falls in
regime J(t), and t � 1 in regime J(t) � 1. However, there is now a further di¢ culty. Assume
temporarily, for simplicity, that � j and kj are independent. It then follows from (2.4) that

E(�m2
t ) = E(�k

2
J(t)1ft=SJ(t)�1+1g) =

E(�k20)

E(�0)
= 0:

This is a somewhat paradoxical fact, since the probability of a regime switch occurring at date
t is of course not zero. However, very long regimes arise with high enough probability that the
set of switch dates has probability measure zero. This technical drawback prevents a covariance
analysis comparable to Theorem 2.1 being performed in this case.

However, we can construct a model not subject to this di¢ culty. Consider the �nite sequence
mt, t = 1; :::; T where m0 = kJ(0). Assuming the usual stationary distribution for fkj ; � jg, the
expected duration of a realized regime, bounded at most by dates 0 and T , is

ET (�0) =

TX
c=1

cP (�0 = c) + T

1X
c=T+1

P (�0 = c) = O(T
1��) (5.1)

and (still assuming kj and � j independent of each other)

E(�m2
t ) =

E(�k20)

ET (�0)
= O(T��1):

Therefore consider the triangular array

XTt = mTt + "t; t = 1; : : : ; T; T � 1 (5.2)

where mTt = ET (�0)
1=2kJ(t). Note that the di¤erence process is covariance stationary by con-

struction, and the mean process now nondegenerate. We derive its properties under the following
assumption.

Assumption 4 (a) Assumptions 1(a), (c), (d) and (e) hold.

(b) P (�0 = c) ' c�1��L(c) as c ! 1, 0 < � < 1, where L(:) is slowly varying at 1 and 9
� > 0 such that L(c)= log� c! 0.

(c) E(k0ks) � E(k0ks+1) for s � 0.

4The boundary case � = 1 is also nonstationary, but requires special treatment and is not considered here. Note
that is corresponds to the case d = 0:5 in the fractionally integrated model.
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(d) For s � 0,

B[E(k0ks)� E(k0ks+1)] � E(k0ksjT )� E(k0ks+1jT )
� B�1[E(k0ks)� E(k0ks+1)] a.s. (5.3)

(e) E("0"h) � E("0"h+1) for h � 0.

Theorem 5.1 Under Assumption 4 , 
�h = E(�XTt�XT;t+h) is independent of T and t, and

�h < 0 for h � 1, 
�h ' h�1��L(h), and 
�0 + 2

Ps
h=1 


�
h = O(s

��L(s)).

Hence, consider the cross-sectional aggregation of independent micro-processes with this form.
With T �xed, it is clear that if

�FMTt =M
�1=2

MX
i=1

�X
(i)
Tt

then
(�FMTt1 ; : : : ;�F

M
TtK

)
d! (�FTt1 ; : : : ;�FTtK )

where the limit is Gaussian with covariances 
�jtj�tkj, having the special sign and summability

properties speci�ed in Theorem 5.1. Although�mTt 6= 0 only with probability ofO(T��1), taking
M to the limit with T �xed ensures that each data point has a Gaussian weak limit with �xed
variance, so that the sequence f�FT1; : : : ;�FTT g is stationary and Gaussian. If T is now allowed
to increase without limit, provided the convergences inM and T are strictly sequential, the same
conclusion applies, so that previous arguments allow the extension to f�Ftg1�1, stationary and
Gaussian with autocovariance sequence f
h; h � 0g. While �Ft might be thought of as the weak
limit of the sequence f�FTt; T � tg, since its distribution is invariant with respect to T , this is
a case of convergence only in the trivial sense.

The common components model su¤ers from the analogous di¢ culty that E(1(i)t (r)) = 0
from (3.4). A slightly di¤erent modi�cation is required here. We do not need an explicit array
structure, but assume the processes start at time t = 0, with 1(i)1 (1) = 1. In other words, all the
regimes are initialised with K0, at date t = 1. Then consider the process

X
(i)
t =

tX
r=1

1
(i)
t (r)

Kt�r + k
(i)
J(t;i)

Pt(1)
+ Et + "

(i)
t (5.4)

where

Pt(r) = E(1
(i)
t (r)) =

P1
c=r P (�0 = c)

Et(�0)
= O(t��1):

and Et(�0) is de�ned as in (5.1), but with t replacing T . Now, letting �FMt =M�1PM
i=1�X

(i)
t ,

it follows from previous arguments that, under the usual assumption of independent � (i)j ,

�FMt
pr! �Ft = Kt�1 +

tX
r=2

�
Pt(r)

Pt(1)
� Pt�1(r � 1)

Pt�1(1)

�
Kt�r +�Et

The obvious modi�cation of Theorem 3.1 is now the following.

Theorem 5.2 Let Assumption 2 hold for the common components and Assumption 4 for the
idiosyncratic components, which are also distributed independently of each other and of the com-
mon components. Then E(�Ft�Ft+h) = 
�h + O(t

��) for h � 0, where 
�h < 0 for h � 1,

�h ' h�1��L(h) and 
�0 + 2

P1
h=1 


�
h = 0.
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In either model, we can now reprise the analysis of Section 4. The chief di¤erence is that
�Ft rather than Ft is treated as the increment process, since of course Ft turns out to be
nonstationary. The Hurst coe¢ cient is H = (1� �)=2, lying beween 0 and 1

2 , so that this is the
so-called �anti-persistent�case. We show the following.

Theorem 5.3 �2T =
PT
g=1

PT
h=1 


�
jg�hj = O(T

2HL(T )):

Theorem 5.4 Under Assumption 4 in the independent aggregation case, plus Assumption 2 in
the common components case, the representation

�Ft =

1X
j=0

�j�t�j (5.5)

holds where
P1
j=0 �

2
j <1, �t s NI(0; 
�0 =

P1
j=0 �

2
j ) and

P1
j=0 �j = 0.

Theorem 5.5 Letting ZMT (�) = ��1T F
M
[T�] for 0 � � � 1, ZMT

d! �BH as M;T ! 1 (sequen-
tially), where BH denotes fractional Brownian motion of Type 1 with parameter H.

While the features of these models have been contrived to achieve the limit result, rather
than to be realistic, their essential message is that for cross-sectional aggregation to preserve
covariance structure, it is necessary for the noise to be smaller than the mean process by an order
of magnitude. Apart from this consideration, the rescaling is really no more than a choice of units
of measurement. Note that the date t = 0 does not have to be the �rst observation in a sample,
but can be moved as far back in the pre-sample period as desired, so that the nonstationary
features of the �start-up�period need not be an issue. However, we do need to be reassured that
the cross-sectional CLT can �work�in this case, and some intuition can be provided as follows.
The probability that �mTt 6= 0 in (5.2) is only O(T��1), and while the units of measurement
have been scaled up by an equivalent factor to keep the variance positive, we should not expect
this array to be uniformly integrable with respect to T . However, if we chooseM = T 2��, then in
each time period, the aggregate process is the sum of at least T nonzero components on average,
and there is no problem about taking T to the limit. In practice though, rather than linking the
rates, as is possible, we simply make the convergence strictly sequential.

Finally, note that a result corresponding to Theorem 4.3 is not expected. We have noted the
absence of uniform integrability of the rescaled di¤erence process, which casts doubt on whether
a weak limit can exist in this case. This is an issue going beyond the scope of the present paper,
but it o¤ers an interesting problem for future research.

6 Discussion

The results of this paper point to three main conclusions. First, a fairly general class of nonlinear
processes can exhibit the covariance structure associated with long memory. Second, there exists
a sub-class of nonlinear processes, characterised by cross-sectional aggregation, that are observa-
tionally equivalent to fractionally integrated processes. Speci�cally, their normalised partial sums
converge to fBM, and they have a Wold linear representation, with independent Gaussian incre-
ments. Third, there exist counter-examples demonstrating the necessity of the aggregation to
obtain the last result, in which the limit of the normalised partial sums is demonstrably di¤erent
from fBM.

These considerations serve to emphasise the fact that the autocovariance structure is only
part of the characterisation of a fractionally integrated process. The error duration (ED) model
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proposed by Parke provides a useful illustration. This has the form (in Parke�s notation)

yt =

tX
s=�1

gs;t"s (6.1)

where gs;t is the indicator of the period running from s to time t = s+ ns. The random variable
ns is a stochastic duration obeying a power law similar to our � j , and "s is analogous to our kj .
Our noise term "t is set to 0 here. With these de�nitions, the ED model can be accommodated
in our independent aggregation framework by allowing M to depend on t.

Consider the stationary ED model, such that 1 < � < 2 where � denotes the power law
parameter, as above. The number of nonzero terms in the sum at date t, Mt say, must settle
down to a stationary integer random sequence. Since a new component starts up every period,

E(Mt) =
1X
c=1

cP (ns = c) <1

corresponding to the Parke (1999) parameter �. In many cases, the �birth�of a nonzero term
will be matched by the �death�of another, and then the situation is observationally equivalent
to a switch of regime in a single process. In case there is no match of a birth or death, this
can be treated as a component either leaving or joining the aggregate, although it might also be
rationalised, in our set-up, by having kj = 0 with positive probability.

It is now possible to see the sense in which the stationary ED process can be treated as frac-
tionally integrated. When � is close to 2, E(Mt) is correspondingly small, while as � approaches
1, it tends to 1. Suppose, to take a concrete example, that

P (ns = c) =
c���1

� (1 + �)
: (6.2)

where �(�) denotes the Riemann zeta function. In this case

E(Mt) =
1

� (1 + �)

1X
c=1

c�� =
� (�)

� (1 + �)
:

Illustrative values are �(1:5)=�(2:5) = 1:947, �(1:1)=�(2:1) = 6:784, and �(1:01)=�(2:01) = 61:49.
In other words, only for the case where � is very close to the nonstationary case of unity (corre-
sponding to the I(d) process with d close to 0.5) is the number of terms in the aggregate large.
Clearly, the central limit theorem cannot be invoked to justify Gaussianity in this process. While
it may be that the shocks "t themselves are Gaussian, yt is the sum of a randomly varying num-
ber of independent terms, and therefore its marginal distribution would be mixed Gaussian in
that case. From this point of view, we must be careful to distinguish between the stationary
ED process and the fractionally integrated process. In particular, the partial sums of the former
process do not converge to fBM, in general.

In the nonstationary case of (6.1) the number of terms in the sum increases with time, and
the conventional argument from time aggregation appears to imply a Gaussian limit. In view
of the covariance structure demonstrated in Parke (1999), this suggests possible convergence to
fBM with 1

2 < d < 1. However, the proof of this conjecture would require a di¤erent approach to
that adopted for Theorem 4.2. Note that even with Gaussian shocks, a linear representation of
the form (5.5) does not hold for the di¤erence process; this is

�yt = "t �
t�1X
s=�1

�gs;t"s
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where the number of nonzero terms for s < t is a random variable with mean falling between
zero and 1.

Unlike the ED model, the models constructed by Diebold and Inoue (2001) are explicitly
�false�, in the sense that they de�ne stochastic arrays in which the incidence of regime shifting is
linked to sample size. In all of their cases, allowing the sample size to increase su¢ ciently would
reveal that the processes are nonlinear random walks, having the covariance characteristics of an
I(1) process. The message of these authors is that modellers face a hazard of mis-identi�cation,
because the incidence of structural change is adventitiously linked to the length of available series.

However, like Parke (1999), they focus wholly on the issue of the autocovariance structure.
This, as we have shown, is only one de�ning characteristic of a fractionally integrated process,
and we have highlighted the existence of a linear representation as another. The nature of
the connection between these features can be clari�ed informally by �discretizing�the fBM. Let
X(�), 0 � � � 1, be fBM with Hurst parameter H and, for convenience, normalised such that
EX(1)2 = 1. Fix a �nite integer n � 1 and consider the sequence

xnt = (2n)
2H(X((t+ 1)=2n+ 1

2)�X(t=2n+
1
2)); t = �n; : : : ; (n� 1): (6.3)

Then note that xnt s N(0; 1) by construction, and also, as would be expected,

Theorem 6.1 E(xntxn;t+h) ' h2H�2.

Taking n large, let an approximate Wold decomposition, truncated at n lags, be applied to
the sequence xn1; : : : ; xnn. In view of the Gaussianity, the shock process in this decomposition
is independently distributed, and in view of the autocovariance structure, it can also be seen
that the linear representation approximates to the fractional integration model. What this shows
is that if a partial sum process converges to fBM, then under some degree of time aggregation
(averaging successive blocks of observations of length [T �] for 0 < � < 1, say) the time-aggregated
sequence (with [T 1��] + 1 terms) should possess an increasingly exact linear representation, as
T increases. We suggest the value of this remark is to show that, even if we do not postulate
that the process in question is exactly linear in the sense of Theorem 4.1, there always exists a
natural approach to distinguishing processes having fBM as their weak limit from alternatives.
This is by tests of linearity.

7 Testing Linearity

In this section we attempt to quantify the practical role of our result, as an approximation
theorem, by means of a small simulation experiment. A test of linearity is applied to generated
models in the �aggregate-of-independent-regimes�class. If the approximation is good with even a
smallM then arguably the result is more tolerant of failure of the assumptions, but this behaviour
will clearly depend on the value of �, among other factors. We don�t consider the common
components model here, but since it is the independence of switch dates that delivers the crucial
aggegation property in each case, the experiment should have quite general implications

For practical purposes we have to limit consideration to a class of linear parametric models
with the right covariance structure, and the ARFIMA(p; d; q) class is the natural choice for this
purpose. It is true that the class of models in our null hypothesis is larger than the ARFIMA
class, but there are reasonable grounds to think that the ARFIMA class can approximate any
linear process with the requisite properties pretty well. This is not a Monte Carlo study, since
there is no special interest in determining the distribution of the estimators. The approximating
ARFIMA models are simply �tted to large samples, of 20,000 data points each, so that the
parameter estimates can be regarded as close to their probability limits. To simplify the model
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selection process, the class of models considered is restricted to the ARFIMA(p; d; 0), and p was
chosen to optimise the value of the consistent Schwarz (1978) criterion. For the selected equation,
test statistics for model adequacy were recorded.

Our chosen diagnostic test for nonlinearity is the McLeod-Li (1983) portmanteau test, cor-
responding to the Box-Pierce statistic computed for the squared residuals. Although there are
several possible tests for linearity, this one is appropriate since correlation in the squares is a
natural dummy alternative hypothesis. Forcing a linear representation onto a process exhibiting
periodic jumps in the local mean is likely to induce conditional heteroscedasticity, in the form
of runs of larger than average residuals in the neighbourhood of the jumps. There is therefore
hope that this test should be relatively powerful against the alternatives of interest. The Brock-
Dechert-Scheinkman test of residual independence (Brock et al. 1996) was also considered, but
in preliminary experiments this proved to have rather low power by comparison.

The model simulated is the Bernoulli-switching model described in Section 2, with the condi-
tional mean duration generated from (2.6). The processes �j , and kj s N(0; 1) and "t s N(0; �2")
are mutually and serially independent in all cases. Experiments were conducted for � = 1:5 and
� = 0:5, representing the stationary and nonstationary cases respectively, and for �2" = 0:2 and
�2" = 0:5. Within these four cases, a range of values of M were examined. The models were
estimated by the Whittle quasi-maximum likelihood procedure, based on the periodogram of the
series. The following statistics are reported in the tables: the estimate of d; the value of p, se-
lected by the Schwarz criterion; the largest AR root; and the residual Box Pierce and McLeod-Li
statistics, computed with 25 lags in each case.

The �true�values of the fractional integration parameter d should be 1��=2 = 0:25 in Tables
1 and 2 and ��=2 = �0:25 in Tables 3 and 4. It is evident that there is a fairly constant
asymptotic bias away from zero, in all these estimates, that varies only slightly with M . There
is no obvious explanation for this, but it is plausibly related to the technical misspeci�cation
of the model.5 Also note the much larger number of autoregressive terms needed to achieve an
adequate representation in Tables 3 and 4. These latter models are �tted to the di¤erences of
the (nonstationary) generated series, and all the AR coe¢ cients are negative, without exception.

In a sample of 20,000, the diagnostic statistics should have their asymptotic distributions
when the null of independence is true � �2(25 � p) for the Box-Pierce and �2(25) for the
McLeod-Li � and in the latter case, should reject with probability of, e¤ectively, unity if the
linear approximation is inadequate. The 5% critical value for the �2(25) is 37, and on this basis,
the evidence indicates that quite a low value of M is adequate for the linear approximation, in
three out of the four cases considered. As has been pointed out in Section 5, in the nonstationary
case the noise will tend to dominate the regimes processes in the aggregate unless it is an order
of magnitude smaller in variance. The results of Table 4 might be accounted for by this fact,
although the estimates of d are, interestingly, quite similar to those obtained in Table 3 with
much less noise. The poor approximations evident in Table 3 are explained by the fact, also
pointed out in Section 5, that M needs to be greater than O(T ) in magnitude to ensure a good
approximation, while there is no such limitation in the stationary case.

8 Concluding Remarks

In this paper we have re-considered the problem of distinguishing the phenomenon of fractional
integration from classes of nonlinear long memory process. We emphasize that the correlation
structure of the process is not the only relevant information contained in the data, and draw
attention to the distinction between processes that have a linear representation and those that

5A couple of the samples have been re-estimated by conditional least squares, with nearly identical results.
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do not. Linear long memory processes (or their partial sums, in the stationary case) converge
to fractional Brownian motion under quite general conditions, but we show that a nonlinear
process may have a non-Gaussian limit. Processes generated by cross-sectional aggregation may
be linearised by virtue of their Gaussianity. Simulation experiments show that quite a modest
degree of aggregation may be su¢ cient for a good linear approximation.

One simpli�cation of the analysis has been to allow only purely nondeterministic processes
with zero-mean increments, and we conclude by commenting brie�y on the relaxation of this
assumption. Note �rst that in the common components model, there is no di¢ culty about
letting the process Kt have a non-zero mean. Assumption 2 must hold for the mean deviations in
this case. Without going into details, we simply observe that the partial sum process for the case
1 < � < 2 should converge to a fBM with deterministic drift. However, inducing a drift in the
independent aggegation model is more problematic. A constant �(i) may added to the regimes
process, so that E(X(i)

t ) = �
(i), but these �micro-means�need to be �small�on average, to avoid

the mean of the aggregate process diverging under the normalization appropriate to the CLT.
That is, we should need

M�1=2
MX
i=1

�(i) ! �; j�j <1:

Subject to this somewhat arti�cial requirement, however, a deterministic drift in the aggregate
partial-sum process is a possibility.

9 Proofs

9.1 Proof of Theorem 2.1

By Assumption 1(e),

h = E(mtmt+h) + E("t"t+h):

We show that the �rst term satis�es the stated power law. The theorem will then follow because
the second term forms a summable sequence, also by Assumption 1(e).

First, write

mt =
1X

j=�1
kj1(Sj�1;Sj ](t): (9.1)

Note that by Assumptions 1(c) and 1(d), and the law of iterated expectations,

E(mtmt+h) =

1X
i=�1

1X
j=�1

E[kikj1(Si�1;Si](t)1(Sj�1;Sj ](t+ h)]

=
1X

i=J(t)

E[kJ(t)ki1(Si�1;Si](t+ h)]

=

1X
i=J(t)

E[1(Si�1;Si](t+ h)E(kJ(t)kijT )]

2 [B;B�1]E�(mtmt+h) (9.2)

where J(t) is de�ned following (2.3), the notation x 2 [B;B�1]y denotes that By � x � B�1y
and we also de�ne

E�(mtmt+h) =

1X
i=J(t)

E(kJ(t)ki)P (Si�1 < t+ h � Si) � 0: (9.3)
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The second equality of (9.2) uses the fact that 1(SJ(t)�1;SJ(t)](t) = 1 by construction.
For the leading term of (9.2) i = J(t), we show that

P (t+ h � SJ(t)) =
1X
c=1

maxf0; (1� h=c)g c

E(�0)
P (�0 = c)

'
1X

c=h+1

(1� h=c)c��L(c)

' h1��L(h) (9.4)

where E(�0) is de�ned in (2.3). The equality here combines (2.4) with the fact that (by sta-
tionarity) the position of t in regime J(t) is uniformly distributed with probabilities 1=�J(t), and
hence

P (t+ h � SJ(t)jSJ(t) � SJ(t)�1 = c) = maxf0; (1� h=c)g:
Note that for every " > 0, some � > 0, and h large enough,

h1���" '
1X

c=h+1

c���" <
1X

c=h+1

c��L(c) <
1X

c=h+1

c�� log� c ' h1�� log� h: (9.5)

It follows that there exists a slowly varying function L(h), satisfying Assumption 1(b), such that
the equivalence in (9.4) holds.

Next, consider the case i = J(t) + 1 in (9.2). Note that

P (SJ(t) < t+ h � SJ(t)+1) = P (t+ h � SJ(t)+1)� P (t+ h � SJ(t)) (9.6)

where by analogy with (9.4),

P (t+ h � SJ(t)+1) =
1X

c=h+1

maxf0; (1� h=c)g c

2E(�0)
P (�0 + �1 = c) (9.7)

and

P (�0 + �1 = c) =

c�1X
j=1

P (�1 = c� �0j�0 = j)P (�0 = j)

'
c�1X
j=1

(c� j)�1��j�1��L(c� j)L(j)

' c�1��L(c) (9.8)

using standard summability arguments (see e.g. Davidson and de Jong (2000) Lemma A.1).
Hence, substituting into (9.7) yields similarly to (9.4)

P (t+ h � SJ(t)+1) ' h1��L(h):

In other words, the two terms on the right-hand side of (9.6) have the same order of magnitude,
so that their di¤erence has this order of magnitude at most. The same argument can be applied,
recursively, for each i = 2; 3; : : : : It follows that

E�(mtmt+h) ' h1��L(h):

and the same property extends to E(mtmt+h), by assumption.
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9.2 Proof of Theorem 2.2

The required probability is given, from (2.5) and (2.6), by

P (� j > c) = �

Z 1

1

�
�

�+ 1

�c�1
��1��d�: (9.9)

Note that for � > c� 1,

Lc �
�

�

�+ 1

�c�1
� Uc (9.10)

where Lc and Uc can be made arbitrarily close to e�1 and 1, respectively, by taking c large
enough. Also, simple calculus shows that

max
1��<1

�
�

�+ 1

�c�1
��1�� =

�
1� 1 + �

c� 1

�c�1� c� 1
1 + �

� 1
��1��

t e�1��(1 + �)1+�c�1��

where the approximation improves as c increases. Therefore, de�ning

A1(c) = �

Z c

1

�
�

�+ 1

�c�1
��1��d�

A2(c) = �

Z 1

c

�
�

�+ 1

�c�1
��1��d�

such that P (� j � c) = A1 +A2, note that for c large enough,

A1(c) � e�1��(1 + �)1+�c��

and also, using (9.10) with c large enough,

e�1c�� � A2(c) � c��:

Hence,
e�1 � c�[A1(c) +A2(c)] � 1 + e�1��(1 + �)1+�

uniformly in c. We can conclude that c�[A1(c)+A2(c)]! C for some constant C in the speci�ed
interval, and the theorem follows.

9.3 Proof of Theorem 3.1


h = E

� 1X
r=1

P (r)(Kt�r � �) + Et
�� 1X

r=1

P (r)(Kt+h�r � �) + Et+h
�

= E(E0Eh) + E(K
2
0 )

1X
v=1

P (v)P (h+ v)

+
1X
u=1

E(K0Ku)

� 1X
v=max(1;1+u�h)

P (v)P (h+ v � u) +
1X
v=1

P (v)P (h+ v + u)

�
(9.11)

These terms are all positive on the assumptions, and summability of fE(K0Ku); u � 0g means
that


h = O

� 1X
v=h

P (v)

�
= O(h1��L(h)):
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9.4 Proof of Theorem 4.2

From Theorem 5.3 we can deduce that for � > 0,

E(ZMT (� + �)� ZMT (�))2 ! �2H (9.12)

as M;T ! 1 (sequentially), which is the covariance structure of fractional Brownian motion.
In view of the Gaussianity of the �nite dimensional distributions already established under the
limit with respect to M , it remains only to establish the tightness of the sequence of measures
with respect to T: For example, Theorem 15.6 of Billingsley (1968), cites a su¢ cient condition of
the form

EjFT (t1 � t)j
 jFT (t� t2)j
 � jt2 � t1j2H (9.13)

for all t1 � t � t2; all 0 � t1 < t2 � 1, 
 � 0 and H > 1
2 , plus right-continuity at t = 1 with

probability 1. It easy to show that a process satisfying (9.12) also satis�es (9.13) with 
 = 1:

9.5 Proof of Theorem 4.3

Assume without loss of generality that S0 = 0. Since � j is the duration of regime j,

[T 1=�L(T )]�1
[T�]X
t=1

Xt = [T
1=�L(T )]�1

�J([T�])�1X
j=1

kj� j

+ kJ([T�])([T�]� SJ([T�])�1) +
[T�]X
t=1

"t

�

= �k[J(T )
1=�L(J(T ))]�1

J([T�])�1X
j=1

Uj + op(1)

where J(T ) is de�ned following (2.3) and

Uj = E(� j)
�1=�kj� j

�k

noting that, since T =
PJ(T )
j=1 � j where � j is an i.i.d. and integrable random variable,

J(T )1=�L(T )

T 1=�L(J(T ))

pr! E(� j)
�1=�:

Further note that Uj is an i.i.d., zero-mean random variable. By Assumption 3(b)

P (jkj j� j > c) =
Z
f�j>cg

P (��1k jkj j > c=� j j� j)dF (� j) + o(c
��):

Also note that

C1P (� j > c) �
Z
f�j>cg

P (��1k jkj j > c=� j j� j)dF (� j) � P (� j > c)

where C1 is an almost sure lower bound of P (��1k jkj j > 1j� j), and C1 > 0 since a random variable
with unit variance must have positive probability mass above 1. Hence

P (jUj j > c) ' P (� j > c) ' c��L(c):
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Let FU denote the c.d.f. of Uj . Since E(kj) = 0 and � j > 0, both tails of the distribution obey
the power law such that

1� FU (c) ' c��L(�); FU (�c) ' c��L(�):

Thus, we have
1� FU (�c)
1� FU (c)

! ���;
FU (��c)
FU (�c)

! ���:

According to (e.g.) Theorem 9.34 of Breiman (1968), this condition is necessary and su¢ cient
for FU to lie in the domain of attraction of a stable law with parameter �: In other words,

a�1J(T )

�J([T�])�1X
j=1

Uj � bJ(T )
�

d! ��(�)

where
nP (Uj > anc)! c�� as n!1 (9.14)

and bT ! 0: Note that setting an = n1=�L(n) for a suitably chosen slowly varying function L
solves (9.14) (see Davis (1983), or e.g. Feller (1966) Sections 9.6 and 17.5). Finally, the theorem
follows by application of (e.g.) Embrechts et al. (1997) Theorem 2.4.10.

9.6 Proof of Theorem 5.1

In the following let T be �nite, but large enough to allow consideration of h < T as large as
desired. De�ning the T -measurable random variable Q(t; u) =

Pu�1
s=0 �J(t)+s, note that

P (Q(t; u) = h) ' h�1��L(h)

for any t and u > 0, following from arguments in the proof of Theorem 2.1. Next note that

�mTt�mT;t+h =

8>><>>:
ET (�0)�k

2
J(t) t = SJ(t)�1 + 1; h = 0

ET (�0)�kJ(t)�kJ(t)+u; t = SJ(t)�1 + 1; h = Q(t; u)

0; otherwise.

Applying arguments similar to those in the proof of Theorem 2.1, it follows using Assumption
1(d) that

E(�m2
Tt) 2 [B;B�1]E(�k20) (9.15)

and

E(�mTt�mT;t+h) 2 [B;B�1]
1X
u=1

E(�k0�ku)P (Q(0; u) = h)

' h�1��L(h): (9.16)

from Assumption 4(b). It follows from the fact that f� jg has a stationary distribution that the
sequence de�ned by (9.15) and (9.16) is independent of t and T .

Therefore, consider

�h = E(�mTt�mTt+h) + E(�"t�"t+h) (9.17)
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where the cross-products vanish by Assumption 4(e). The assumption further ensuresthe second
right-hand side term is of smaller order in h than the �rst one. Under stationarity and Assumption
4,

E(�k0�ku) = 2[E(k0ku)� E(k0ku�1)]

E(�"0�"u) = 2[E("0"u)� E("0"u�1)]

)(
< 0; u = 1

� 0; u � 2:
(9.18)

These results therefore show that 
�h < 0 for h > 0, and also that 

�
h ' h�1��L(h). Next, note

that for any covariance stationary random sequence xt,

E(�x2t ) + 2E(�xt�xt�1) + � � �+ 2E(�xt�xt�h) = E(xt � xt�1)(xt + xt�1 � 2xt�h�1)
= 2[E(xtxt+h)� E(xtxt+h+1)]: (9.19)

Therefore, in view of (9.15), (9.16) and the assumptions, and since (9.19) also applies to "t, we
conclude from (9.17) and (9.18) that


�0 + 2
sX
h=1


�h = O(s
��L(s)):

9.7 Proof of Theorem 5.2

Note �rst that we can write

�Ft = Kt�1 +
t�1X
r=1

�trKt�r�1 +�Et

where

��tr =
Pt�1(r)

Pt�1(1)
� Pt(r + 1)

Pt(1)

=
P (�0 = r)Pt
c=1 P (�0 = c)

� P (�0 = t)
Pr�1
c=1 P (�0 = c)Pt�1

c=1 P (�0 = c)
Pt
c=1 P (�0 = c)

= P (�0 = r) +O(t
��L(r)):

Letting �F �t = Kt�1+
P1
r=1 P (�0 = r)Kt�r�1+�Et, note that �F

�
t is stationary and E(�Ft�

�F �t )
2 = O(t��), so we do the calculations for �F �t . To �x ideas, consider initially the case of

Kt serially uncorrelated. In this case, substituting into the formula in (9.11), replacing P (1) by
1 and P (v + 1) by �P (�0 = v) for 1 � v < t, and 0 otherwise, yields


�0 = E(�E
2
0) + E(K

2
0 )

�
1 +

1X
v=1

P (�0 = v)
2

�


�h = E(�E0�Eh) + E(K
2
0 )

�
�P (�0 = h) +

1X
v=1

P (�0 = v)P (�0 = h+ v)

�
; h � 1:

Verify �rst that these terms are O(h�1��), and second that they are negative for h � 1, which
in respect of E(�E0�Eh) follows from (9.18) and Assumption 2(c). Third, observe that

1 +

1X
v=1

P (�0 = v)
2 + 2

1X
h=1

�
�P (�0 = h) +

1X
v=1

P (�0 = v)P (�0 = h+ v)

�
:
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=

� 1X
v=t+1

P (�0 = v)

�2
= 0:

These results, together with (9.19) in respect of the terms in E(�E0�Eh), imply, as required,


�0 + 2
1X
h=1


�0 = 0:

To extend these results to the case of serially correlated Kt, consider (9.11) again, and note that
for any sequence P (v), and all u > 0,

1X
v=max(1;1+u)

P (v)P (v � u) +
1X
v=1

P (v)P (v + u)

+2

1X
h=1

� 1X
v=max(1;1+u�h)

P (v)P (h+ v � u) +
1X
v=1

P (v)P (h+ v + u)

�

= 2

� 1X
v=1

P (v)

�2
:

9.8 Proof of Theorem 5.3

Theorem 5.1 establishes that, for any �xed g,
P1
h=�1 


�
jg�hj = 0. Hence, 0 � 


�
h ' h2H�2L(h)

implies that

TX
h=�T


�jg�hj = �
��T�1X
h=�1

+
1X

h=T+1

�

�jg�hj '

1X
h=T+1

h2H�2L(h) ' T 2H�1L(T )

where the �nal rate of convergence follows, under Assumption 4(b), by an argument analogous
to (9.5):

9.9 Proof of Theorem 5.4

The linear structure with independent increments follows from Wold�s Theorem and the Gaus-
sianity, exactly as for the case 1 < � < 2, and it remains to establish the summation properties
of the coe¢ cients. Note that FT =

PT
s=1�Fs =

PT
t=�1 aTt�t where

aTt =

8<:
PT�t
j=0 �j ; t > 0PT�t
j=1�t �j ; t � 0:

: (9.20)

Hence

E(F 2T ) = �
2
�

TX
t=�1

a2Tt = �
2
�

0X
t=�1

� T�tX
j=1�t

�j

�2
+ �2�

TX
t=1

�T�tX
j=0

�j

�2
: (9.21)

However, we also know from Theorem 5.3 that

E(F 2T ) = O(T
1��L(T )):

Considering the second block of terms on the right-hand side of (9.21), it is clear we have a
contradiction unless the sequence of squared sums is o(1) as T !1, for any �xed t.
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9.10 Proof of Theorem 5.5

We can deduce (9.12) in this case from Theorem 5.3, and since the �nite dimensional distributions
are known it remains, as in the case 1 < � < 2, to establish the tightness. However, it can be
seen that Billingsley�s (1968) Theorem 15.6 will not serve in this case since H < 1

2 : However,
Theorem 3.1 of Davidson and de Jong (2000) (henceforth DdJ) can be substituted (and in fact,
provides an alternative proof for Theorem 4.2).

By Theorem 5.4, the process has a linear representation asM !1 with T �xed. Speci�cally,
adapting the notation of Lemma 3.1 of DdJ, let

aTt(� + �; �) =

(
�
P1
j=[T (�+�)]+1�t �j ; t > [T�]P1

j=[T�]+1�t �j �
P1
j=[T (�+�)]+1�t �j ; t � [T�]

such that aTt de�ned in (9.20) becomes aTt(1; 0). Then, holding T �xed we can write

ZMT (� + �)� ZMT (�)
d! ��1T

[T (�+�)]X
t=�1

aTt(� + �; �)�t as M !1:

In view of Theorem 5.3, we have shown that

�2T = �
2
�

TX
t=�1

aTt(1; 0)
2 = O(T 2HL(T ))

and hence,

��2T �
2
�

[T (�+�)]X
t=�1

aTt(� + �; �)
2 ! �2H as T !1: (9.22)

We have therefore established conditions su¢ cient for Theorem 3.1 of DdJ. This result uses
the linearity of the fractionally integrated process to establish the uniform tightness, and the
conditions are easily established because here the increment process f�tg is i.i.d., so that DdJ�s
Lemma 3.2 holds trivially. The properties required to be satis�ed by the moving average co-
e¢ cients are those leading to condition (B.36) of DdJ, which corresponds here to (9.22). This
completes the proof.

9.11 Proof of Theorem 6.1

It follows from the properties of fBM (see e.g. Davidson and de Jong (2000) equations (2.8)-(2.9))
that for 0 � � < 1 and 0 < � < 1� �,

E(X(�)X(� + �)) = 1
2

�
�2H + (� + �)2H � �2H

�
: (9.23)

Therefore, for 0 � � � 1� � � �,

E(X(� + �)�X(�))(X(� + � + �)�X(� + �))
= 1

2

�
(� + �)2H � 2(�)2H + (� � �)2H

�
Putting � = 1=2n and � = h=2n for integer h � 1, and substituting from (6.3), we therefore have

E(xntxn;t+h) = (2n)
2HE(X((t+ h+ 1)=2n)�X((t+ h)=2n))(X((t+ 1)=2n)�X(t=2n))

= 1
2

�
(1=2n+ h=2n)2H + (h=2n� 1=2n)2H � 2(h=2n)2H

�
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= 1
2h
2H
�
(1 + 1=h)2H + (1� 1=h)2H � 2

�
t (H � 1

2)h
2H�2

where the approximation is obtained from Taylor�s expansions to second order of the �rst two
terms around 1, and improves as h increases.
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M 100 20 10 5 1

d 0:31 0:31 0:31 0:30 0:28
p 2 2 2 2 2

�max 0:37 0:38 0:39 0:42 0:42
B-P(25) 28 15 18 16 11
M-L(25) 29 45 115 222 1027

Table 1: � = 1:5, �2� = 0:2

M 100 20 10 5 1

d 0:30 0:29 0:28 0:28 0:21
p 2 2 2 2 3

�max 0:31 0:32 0:35 0:37 0:49
B-P(25) 16 22 24 17 25
M-L(25) 20 36 38 64 994

Table 2: � = 1:5, �2� = 0:5

M 1000 100 20 10 5

d �0:33 �0:32 �0:34 �0:30 �0:33
p 4 5 4 4 4

�max 0:50 0:53 0:45 0:43 0:44
B-P(25) 10 10 25 29 24
M-L(25) 137 428 1104 2240 2844

Table 3: � = 0:5, �2� = 0:2

M 1000 100 20 10 5

d �0:38 �0:39 �0:36 �0:41 �0:42
p 9 9 9 8 9

�max 0:71 0:70 0:72 0:67 0:71
B-P(25) 39 10 59 16 51
M-L(25) 30 8 36 101 239

Table 4: � = 0:5, �2� = 0:5
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