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Abstract:
We consider Breitung’s (2002) statistic ξn which provides a nonparametric
test of the I(1) hypothesis. If ξ denotes the limit in distribution of ξn as
n → ∞, we prove (Theorem 1) that 0 ≤ ξ ≤ 1/π2, a result that holds under
any assumption on the underlying random variables. The result is a special
case of a more general result (Theorem 3), which we prove using the so-called
“cotangent trick” associated with Cauchy’s residue theorem.
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1 Introduction

Let x1, x2, . . . , xn represent an arbitrary sequence of random variables, and
let x̄n denote the sample mean. We consider

ξn :=

∑n
t=1

(

∑t
j=1(xj − x̄n)

)2

n2
∑n

t=1(xt − x̄n)2
,

which is the statistic for Breitung’s (2002) nonparametric test of the I(1)
hypothesis. Let ξ denote the limit in distribution of ξn as n → ∞. We wish
to prove the following theorem.

Theorem 1. ξ is supported on the interval [0, 1/π2].

This result holds under any assumption on x1, . . . , xn whatsoever. It is triv-
ially true when the process is I(0) because then, as Breitung shows, the
distribution is degenerate at 0. In fact, it can be shown that the same holds
for a covariance stationary I(d) process when |d| < 1/2. Under Breitung’s
null hypothesis, where xt is an I(1) process subject to the usual regularity
conditions, ξ would correspond to the functional

∫ 1

0

(

∫ t

0
Wdr − t

∫ 1

0
Wdr

)2

dt

∫ 1

0
W 2dt −

(

∫ 1

0
Wdt

)2 ,

where W denotes standard Brownian motion. However, the theorem also
holds when xt is I(d), for any finite d. Some simulations are shown in Fig-
ure 1, for cases with 1 ≤ d ≤ 2.

FIGURE 1

It will be convenient to write ξn in a different form. Let x := (x1, x2, . . . , xn)′

and define the n × n lower triangular “cumulation” matrix

C :=











1 0 . . . 0
1 1 . . . 0
...

...
...

1 1 . . . 1











,

as in Tanaka (1996, Equation 1.3). Then,

ξn =
x′MC ′CMx

n2x′Mx
,
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where M := In − (1/n)ıı′, and ı := (1, 1, . . . , 1)′. Let A := (1/n)C and let
Q be an n × (n − 1) matrix containing the eigenvectors associated with the
n − 1 unit eigenvalues of M , so that M = QQ′. Letting y := Q′x we have

ξn =
x′MA′AMx

x′Mx
=

y′Q′A′AQy

y′y
,

so that

ξn ≤ λmax(Q
′A′AQ) = λmax(AQQ′A′) = λmax(AMA′).

Hence, the theorem is true if and only if

λmax(AMA′) → 1

π2
as n → ∞.

The plan of this paper is as follows. In Section 2 we study the eigenvalues
of the matrix AMA′, and show that these can be found as the solutions of a
particular equation (Theorem 2). In Section 3 we prove a generalization of
Theorem 1, which states that, for any fixed j, the j-th largest eigenvalue µj

of AMA′ converges to 1/(j2π2) (Theorem 3). The proof uses the so-called
“cotangent trick” associated with Cauchy’s residue theorem. In Section 4
we discuss the speed of convergence and the behavior of the whole set of
eigenvalues when n is large. Two appendices accompany this paper. In
Appendix A we discuss the determinant of the matrix V − ωω′ where V
is positive semidefinite and ω is a vector. In Appendix B we explain the
cotangent trick.

2 The eigenvalues of AMA′

Before proving the theorem we investigate what can be said about the eigen-
values of AMA′. We know that the matrix A′A is positive definite and that
its eigenvalues are given by λ1 > λ2 > · · · > λn > 0, where

λj =
1

4n2 sin2(αj)
, αj :=

2j − 1

2n + 1
· π

2
, j = 1, . . . , n. (1)

These eigenvalues were first obtained by Rutherford (1946), see also Tanaka
(1996, Equation (1.4)). The eigenvalues used in Dickey and Fuller (1979) are
the same, but presented in a different form. Since the sine-function is mono-
tonic on the interval (0, π/2), the matrix A′A has no multiple eigenvalues.

The matrix AMA′ is positive semidefinite and has rank n − 1. Its ij-th
element is given by

(AMA′)ij =
1

n2

(

min(i, j) − ij

n

)

,
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By Theorem 11.11 of Magnus and Neudecker (1988, p. 210) we know that its
eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 satisfy

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

For fixed j and large n we may use the approximation sin(αj) ≈ αj , giving
the bounds

1

j2π2
· (2j)2

(2j + 1)2
≤ µj ≤

1

j2π2
· (2j)2

(2j − 1)2
. (2)

These bounds are, however, not sharp. For example, when j = 1, we find
4/(9π2) ≤ µ1 ≤ 4/π2 as n → ∞ which is not very precise. On the other
hand, the inequality

1

4n2
+

j2π2

4n2(2n + 1)2
≤ µn−j ≤

1

4n2
+

(j + 1)2π2

4n2(2n + 1)2
(3)

is precise and useful; see Section 4.
Since none of the eigenvalues of AMA′ can be eigenvalues of A′A, the

eigenvalue µj of AMA′ is found as the unique solution of

ı′(In − µj(A
′A)−1)−1ı = n, λj+1 ≤ µj ≤ λj; (4)

see Lemma A3 in the Appendix A.
The eigenvectors of A′A are also known (Dickey and Fuller, 1979). Let

sj be the normalized eigenvector associated with λj. The i-th element of sj

is given by

sij =
2√

2n + 1
cos

π(2i − 1)(2j − 1)

4n + 2
, i = 1, . . . , n. (5)

If we define S := (s1, s2, . . . , sn), then S ′A′AS = Λ := diag(λ1, λ2, . . . , λn).
Letting q := S ′ı, with components q1, . . . , qn, we obtain, after some trigono-
metric simplifications,

qj =

n
∑

i=1

sij =
2√

2n + 1

n
∑

i=1

cos((2i − 1)αj)

=
1√

2n + 1
(−1)j−1 cot(αj),

which implies that
q2
j

n
=

4n2λj − 1

n(2n + 1)
. (6)
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Note that ı′(In − µj(A
′A)−1)−1ı = n if and only if q′(In − µjΛ

−1)−1q = n.
The eigenvalues µ1, . . . , µn of AMA′ are thus found as the n solutions of

n
∑

j=1

(

q2
j

n
· λj

λj − µ

)

= 1. (7)

But since

q2
j

n
· λj

λj − µ
=

4n2λj − 1

n(2n + 1)
· λj

λj − µ

=
4n

2n + 1

(

λj + (µ − 1

4n2
)

λj

λj − µ

)

,

and
∑

j λj = tr(A′A) = (n + 1)/(2n), we have proved

Theorem 2. The nonzero (positive) eigenvalues µ1 > · · · > µn−1 of AMA′

are the n − 1 solutions of the equation

n
n
∑

j=1

1

gn(j) − 1/µ
=

µn2

4µn2 − 1
,

where
gn(j) := 4n2 sin2(αj).

3 Generalization and proof of Theorem 1

To prove Theorem 1 we need to demonstrate that Theorem 2 holds asymp-
totically for µ = 1/π2, that is, that

n

n
∑

j=1

1

gn(j) − π2
→ 1

4

as n → ∞. We shall prove a more general result, namely that Theorem 2
holds asymptotically for µ = 1/(k2π2). This implies that the k-th largest
eigenvalue µk of AMA′ converges to 1/(k2π2) as n → ∞. Theorem 1 is the
special case when k = 1.

Theorem 3. Let k be a fixed positive integer, and let

Sk(n) :=

n
∑

j=1

1

gn(j) − k2π2
.
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Then we have

nSk(n) → 1

4
as n → ∞.

Proof. The proof is based on Cauchy’s residue theorem (see Appendix B),
and consists of applying the so-called cotangent trick. This trick allows us
to compute Sk(n) in almost closed form. Let

gn(z) := 4n2 sin2

(

2z − 1

2n + 1
· π

2

)

, f(z) :=
1

gn(z) − k2π2
,

where we have suppressed the dependency of f on n. We will apply the
theory of Appendix B to the function f(z) on a rectangle Γn, with sides
parallel to the real and imaginary axes, its vertical sides being intervals on
the two lines L0 := {x = 1/2} and Ln := {x = n + 1/2}, respectively. It
turns out that the integral over Γn is of the order o(1/n) as n → ∞. Thus the
Sk(n) will appear as a (finite) sum of residues plus a term of order o(1/n).

Recall that 2i sin(z) = eiz − e−iz, so that | sin(x + iy)| ≈ 2e|y| for |y|
large. Taking orientation into account, it then follows from Remark B1 in
Appendix B that we can shift the horizontal sides of our rectangle to ∞.
Defining F (z) := π cot(πz)f(z), this gives

∫

Γn

F (z) dz =

∫

Ln

F (z) dz −
∫

L0

F (z) dz.

On Ln we have z = n + 1/2 + iy, so that cot(πz) = − tan(iπy), which is
bounded by one in absolute value. Also,

gn(n + 1/2 + iy) = 4n2 sin2

(

2n + 2iy

2n + 1
· π

2

)

= 4n2 cos2

(−1 + 2iy

2n + 1
· π

2

)

. (8)

We now show that n
∫

Ln

F (z) → 0 as n → ∞. Using the fact that cot(πz) =
− tan(iπy) and (8), we substitute y = ns/π and obtain

n

∫

Ln

F (z) dz = n

∫ ∞

−∞

−π tan(iπy)

4n2 cos2
((

−1
2n+1

+ 2iy
2n+1

)

π
2

)

− k2π2
i dy

=

∫ ∞

−∞

− tan(ins)

4 cos2
(

−π
2(2n+1)

+ ins
2n+1

)

−
(

kπ
n

)2
i ds.
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Lebesgue’s dominated convergence theorem applies so that we may inter-
change limit and integral. Thus,

lim
n→∞

n

∫

Ln

F (z) dz =

∫ ∞

−∞

sgn(s)

4 cos2(is/2)
ds = 0,

using the fact that limn→∞−i tan(ins) = sgn(s), the sign of s. Similarly, the
integral over L0 is o(1/n).

It remains to compute the residues of F at the singular points that come
from f , that is, at the zeros of gn(z) − k2π2 that are located inside Γn. We
write

gn(z) − k2π2 =

(

2n sin

(

2z − 1

2n + 1
· π

2

)

+ kπ

)(

2n sin

(

2z − 1

2n + 1
· π

2

)

− kπ

)

.

The zeros of this equation are solutions of

2z − 1

2n + 1
· π

2
= ± arcsin(kπ/2n),

which we rewrite as

z =
1

2
± 2n + 1

π
arcsin(kπ/2n) ≈ 1

2
± k(2n + 1)

2n
mod (2n + 1).

Of these solutions only the one close to 1/2 + k is inside Γn. We compute
the residue at the solution z1 ≈ 1/2 + k, using Remark B2, l’Hôpital’s rule,
and the fact that 2n sin

(

2z1−1
2n+1

· π
2

)

= kπ. This gives

Res(F, z1) = lim
z→z1

z − z1

2n sin
(

2z−1
2n+1

· π
2

)

− kπ
· π cot(πz)

2n sin
(

2z−1
2n+1

· π
2

)

+ kπ

=
1

2n π
2n+1

cos
(

2z1−1
2n+1

· π
2

) · π cot(πz1)

2n sin
(

2z1−1
2n+1

· π
2

)

+ kπ

=
1

2nπ
2n+1

√

1 −
(

kπ
2n

)2
· π cot(πz1)

2kπ
.

Hence the limit becomes

lim
n→∞

nRes(F, z1) = lim
n→∞

n
cot(πz1)

2kπ

= lim
n→∞

−n tan((2n + 1) arcsin(kπ/(2n)))

2kπ
= −1/4.

Then, using (13), we conclude that limn→∞ nSk(n) = 1/4, and this completes
the proof of Theorem 3. �
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4 Further discussion

In fact we can say a little more. Theorem 3 tells us that the j-th largest
eigenvalue µj of AMA′ converges to 1/(j2π2) as n → ∞. But it does not tell
us how fast this convergence takes place, nor does it tell us what happens
to the whole set of eigenvalues. Further analysis, not provided here, shows
that, for n ≥ 4,

µj =
1

j2π2
+

cj

n2π2
(j = 1, . . . , n − 1), (9)

where, for each given n, cj is a slowly increasing function of j bounded by
c ≤ cj ≤ c, with

c := lim
n→∞

n2
(

π2µ1 − 1
)

=
π2

12
≈ 0.8225

and

c := lim
n→∞

n2π2µn−1 − 1 =
π2

4
− 1 ≈ 1.4674,

and satisfying (1/n)
∑

j cj → 1. In particular,

max
1≤j≤n−1

∣

∣µj −
1

j2π2

∣

∣ ≤ 1

n2
· π2 − 4

4π2
≈ 0.1487

n2
.

Hence we may say that “the set of eigenvalues {µj} of AMA′ converges
to the set {µ∗

j},” where µ∗
j = 1/(j2π2) for j = 1, . . . , n − 1 and µ∗

n = 0.
Some caution is however required in interpreting this phrase. For fixed j it
means that µj approaches 1/(j2π2). But for j dependent on n, it only means
that the difference approaches zero. Thus, µn−j ≈ 1/(4n2) (see (3)), while
µ∗

n−j = 1/((n − j)2π2) ≈ 1/(n2π2). Their difference is of order O(1/n2), but
µn−j is better approximated by 1/(4n2) than by µ∗

n−j.
We note that our findings agree with the facts that

n
∑

j=1

µj = tr(AMA′) =
n2 − 1

6n2
=

1

6
+ O(

1

n2
)

and
n
∑

j=1

µ2
j = tr(AMA′)2 =

(n2 − 1)(2n2 + 7)

180n4
=

1

90
+

1

36n2
+ O(

1

n4
),

while we also know that
n
∑

j=1

1

j2
=

π2

6
− 1

n
+ O(

1

n2
),

n
∑

j=1

1

j4
=

π4

90
+ O(

1

n3
).
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Hence we obtain

n

(

n
∑

j=1

µj −
n
∑

j=1

1

j2π2

)

=
1

π2
+ O(

1

n
)

and

n2

(

n
∑

j=1

µ2
j −

n
∑

j=1

1

j4π4

)

=
1

36
+ O(

1

n
).

We conclude by noting that Theorem 1 also provides an asymptotic bound
for various statistics related to ξn. Suppose first that M is replaced by
MZ , the projection matrix orthogonal to some collection of nonstochastic
regressors Z, including the intercept. The obvious example is the inclusion
of the linear trend. Since MZ = MMZM , Theorem 11.11 of Magnus and
Neudecker (1988) may be redeployed to show that the ordered eigenvalues
of AMZA′ are bounded by the corresponding eigenvalues of AMA′. On the
other hand, if M is replaced by I so that we consider the version of ξn

obtained from non-centred data, the exact bound for the ratio x′A′Ax/x′x is
provided, directly from (1), by the case j = 1 of the limits

λj →
1

π2(j − 1
2
)2

.

As Breitung (2002) points out, ξn corresponds to n−1 times the so-called
KPSS statistic of Kwiatkowski et al. (1992), except that the kernel estimator
of the long-run variance in the denominator of the latter statistic is replaced
by the simple variance of the sample. A recently proposed variant of the
KPSS test is the V/S test of Giraitis et al. (2003), in which the the numera-
tor of the ratio is expressed in mean deviation form. The corresponding mod-
ification of Breitung’s statistic takes the form ξ∗n = x′MA′MAMx/x′Mx. If
ξ∗n →d ξ∗, observe that when, in particular, x is an I(1) vector,

ξ∗ =

∫ 1

0

(

∫ t

0
W dr − t

∫ 1

0
W dr

)2

dt −
[

∫ 1

0

(

∫ t

0
W dr − t

∫ 1

0
W dr

)

dt
]2

∫ 1

0
W 2 dt −

(

∫ 1

0
W dt

)2 .

In view of the general inequality 0 ≤ ξ∗n ≤ ξn we are able to say that Theo-
rem 1 also applies to ξ∗.
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Appendix A: The matrix V − ωω′

We consider a positive semidefinite n × n matrix V , and an n × 1 vector ω.

Lemma A1. We have

|V − ωω′| =











|V |(1 − ω′V −1ω) if rk(V ) = n;

−(ω′x)2 · p(V ) if rk(V ) = n − 1, V x = 0, x′x = 1;

0 if rk(V ) ≤ n − 2,

where p(V ) denotes the product of the nonzero eigenvalues of V .
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Proof. We prove the lemma first for a diagonal n × n matrix Λ with non-
negative diagonal elements, and an n × 1 vector a.
(i) If all diagonal elements of Λ are nonzero (hence positive), then

|Λ − aa′| = |Λ1/2(In − Λ−1/2aa′Λ−1/2)Λ1/2| = |Λ|(1 − a′Λ−1a).

(ii) If one of the diagonal elements of Λ is zero (say, the n-th), then we
partition

Λ =

(

Λ1 0
0 0

)

, a =

(

a1

a2

)

.

If a2 6= 0, then

|Λ − aa′| =

∣

∣

∣

∣

Λ1 − a1a
′
1 −a2a1

−a2a
′
1 −a2

2

∣

∣

∣

∣

= −a2
2|Λ1|,

see Exercise 5.30(b) in Abadir and Magnus (2005). The result remains true
when a2 = 0, because both sides of the equality are then zero.
(iii) If two or more diagonal elements of Λ are zero, then

rk(Λ − aa′) ≤ rk(Λ) + rk(aa′) ≤ (n − 2) + 1 = n − 1,

and hence |Λ − aa′| = 0.
In the general case, we diagonalize V as S ′V S = Λ and define a := S ′ω.

The results (i) and (iii) follow immediately. For (ii) we partition S = (S1, x),
so that ω′x = a′S ′x = a′

1S
′
1x + a2x

′x = a2. �

Lemma A2. |V − ωω′| = 0 if and only if










rk(V ) = n, ω′V −1ω = 1;

rk(V ) = n − 1, ω′x = 0, V x = 0;

rk(V ) ≤ n − 2.

Proof. This follows directly from Lemma A1. �

Lemma A3. Let C be a nonsingular n×n matrix, and let M := In−(1/n)ıı′.
Then, µ is an eigenvalue of CMC ′ if and only if










µ is not an eigenvalue of CC ′, ı′(In − µ(C ′C)−1)−1ı = n;

µ is a simple eigenvalue of CC ′ with associated eigenvector x, ı′C ′x = 0;

µ is a multiple eigenvalue of CC ′.

Proof. The eigenvalues of CMC ′ are given by
∣

∣

∣

∣

CC ′ − µIn − 1

n
Cıı′C ′

∣

∣

∣

∣

= 0.

Let V =: CC ′ − µIn and ω := Cı/
√

n, and apply Lemma A2. �
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Appendix B: Cauchy’s residue theorem and

the cotangent trick

In this appendix we state some results from complex function theory that are
required in the proof of Theorem 3; see Conway (1978). Our proof depends
heavily on the “cotangent trick.” Although this trick is “well-known,” it is
not easy to find a good reference for it. (Conway (1978) has an exercise
on page 122.) Hence it will prove useful to state this trick explicitly. Our
starting point is

Theorem B1 (Cauchy’s residue theorem). Let f be a function defined
on a domain D and its boundary Γ. Assume that f is holomorphic (that is,
complex differentiable) except for a finite set of singular points a1, . . . , ak in
D. Then,

1

2πi

∫

Γ

f(z) dz =

k
∑

h=1

Res(f, ah), (10)

where Res(f, a) denotes the residue of f at an isolated singularity a, and is
defined as

Res(f, a) := lim
ǫ→0

1

2πi

∫

|z−a|=ǫ

f(z) dz.

We note that, for ǫ sufficiently small, the integral above becomes indepen-
dent of ǫ. Moreover, one can show that f may be developed into a convergent
series near a:

f(z) =
∞
∑

l=−∞

cl(z − a)l, (11)

so that Res(f, a) = c−1.

Remark B1. If there are no singularities inside the boundary Γ, then the
integral in (10) equals zero. This allows for changing the path of integration
without altering the value of the integral as long as we do not “cross” any
singularities.

Remark B2. It follows from (11) that if f has a singular point at a and
if L := limz→a f(z)(z − a) exists, then Res(f, a) = L.

The cotangent trick is based on the following expansion:

π cot(πz) =

n
∑

j=−n

1

z − j
+ gn(z) =

∞
∑

j=−∞

1

z − j
.

13



Here gn is a holomorphic function on C except for singularities at ±(n +
1),±(n+2), . . . . (The last equality should be treated with care, because the
sum is only conditionally convergent.)

Now, if f is a holomorphic function with singularities at a1, . . . , ak, say all
less than n and none of which are integers, and if we let F (z) := π cot(πz)f(z),
then by Theorem B1,

1

2πi

∫

Γn

F (z) dz =
∑

a∈A

Res(F, a), (12)

where Γn is a square in C with vertices (±(n + 1/2),±(n + 1/2)i), and A is
the set of singularities of F inside the square Γn. Since the residue Res(F, j)
at an integer j equals f(j), we can rewrite (12) as

n
∑

j=−n

f(j) =
1

2πi

∫

Γn

F (z) dz −
k
∑

h=1

Res(F, ah). (13)

This is the cotangent trick. Observing that the cotangent is uniformly
bounded on the squares Γn, one can often show that the integral in (13)
tends to zero as n → ∞. For suitable f with finitely many singularities one
can then compute the limit of the left hand sum in (13).
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Figure 1. Kernel density plots of Breitung’s statistic computed from one
million replications of I(d) series (n = 1000).
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