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Abstract

Often an organization or government must allocate goods without collecting payment in

return. This may pose a di¢cult problem either when agents receiving those goods have

private information in regards to their values or needs or when discriminating among agents

using known di¤erences is not a viable option. In this paper, we �nd an optimal mecha-

nism to allocate goods when the designer is benevolent. While the designer cannot charge

agents, he can receive a costly but wasteful signal from them. We �nd conditions for which

ignoring these costly signals by giving agents equal share (or using lotteries if the goods are

indivisible) is optimal. In other cases, those that send the highest signal should receive the

goods; however, we then show that there exist cases where more complicated mechanisms

are superior. Finally, we show that the optimal mechanism is independent of the scarcity of

the goods being allocated.



1 Introduction

One of the basic problems in economics is how to allocate scarce resources or goods. One

of the fundamental di¢culties aicting such allocation is private information: knowing who

desires the goods the most. While markets work well with such allocation, the market is not

always a feasible or desired mechanism for allocation. In case of kidneys it may be unethical

to have a market, while in case of sports or concert tickets it may be undesirable to sell the

tickets to the highest bidder.1 Finally, with the allocation of charitable goods, it is not only

undesirable to collect payment in return but those needing it the most are also the least able

to pay for it.2 Hence, we often see markets being replaced with other mechanisms.

One method used is instead of goods being allocated to the person who is willing to pay

the most; they are allocated to who is willing to work the hardest to get them. Sport and

concert tickets are given, often using �rst-come �rst-serve mechanism, that is, whoever is

willing to wait the longest before the promoters start selling, gets the right to buy tickets.

Allocation of research funds by agencies like National Science Foundation in USA and Eco-

nomic and Social Science Research Council in UK to various universities and individuals are

done based on research proposals (where a well-crafted proposal has a higher chance of being

funded). A common feature in these examples is that in order to convey their valuation,

individuals must incur a socially wasteful cost. As with waiting overnight in a long line,

generally at least part of this e¤ort is socially wasted.3

Another mechanism that is common with charity, but, surprisingly, also prevalent else-

where, is to allocate evenly or randomly using a lottery (among those appearing identical

when classi�ed according to public information).4 Often baseball playo¤ tickets are o¤ered

1See Roth et al. (2004) and Roth (2007) for a description of the current method used to allocate kidneys
and the perceived ethical di¢culties (repugnance) of moving to a market-based system for organ donation
and other potentially distasteful transactions. With tickets, there is sometimes a desire for a wider audience.
Indeed, the Metropolitan Opera in New York received a several million dollar grant to widen audience by
selling prime orchestra tickets for $20 each, 10 percent of their usual price (USA Today, October 5, 2006).

2Che and Gale (2006) provide further examples of non-market allocation caused by wealth constrained
agents.

3Without grant money at stake, most researchers would not start a project by writing a detailed, polished
research proposal. This indicates at least some of the e¤ort is wasted (used ine¢ciently).

4To avoid confusion, we call a lottery as a mechanism that randomly allocates an object or objects. Unless
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via a lottery.5 Likewise, NCAA College bowl tickets have a lottery amongst only the season

ticket holders. Research funds are often handed evenly amongst certain groups or individu-

als. For example, most universities hand out �xed research grants to all new sta¤. Allocating

goods equally (ex-ante) has the disadvantage of ignoring any private information, but has

the advantage of saving the potential recipients� e¤ort.

In this paper, we �nd the optimal mechanism to allocate homogeneous, not-necessarily-

divisible goods when the bids made by the agents competing for the goods are socially

wasted. Initially, we maximize the social surplus (ex-ante optimality) when values and costs

of signalling is private information. We �nd the necessary and su¢cient conditions for when

allocating the goods randomly is optimal. In addition, we �nd the necessary and su¢cient

conditions for when distributing the objects to those who work the hardest (a contest)

is optimal. We also �nd cases when other mechanisms can be optimal, such as using a

contest but randomly allocating the objects amongst any that meet a certain threshold of

e¤ort (a contest with a bid cap). One interesting result of our paper is that an optimal

mechanism does not depend upon scarcity of the goods being allocated. We also show that

our results extend to where a designer may favor one type over another (other interim e¢cient

allocations).

The intuition that drives our results are that using signals increases the probability that

the good will be allocated to the person who values it the most; however, this naturally also

increases the costs due to signals being wasted. Which mechanism is optimal depends upon

this trade-o¤ determined by the distribution of values and signalling costs.

There are many papers examining contests or lotteries, but as opposed to this paper, most

study the case where a seller wishes to maximize revenue. Amongst these, Moldovanu and

Sela (2001) study the best way to split prize money in a contest, and Gavious, Moldovanu

mentioned otherwise, everyone is given an equal chance. Note this usage of lottery distinguishes it from a
rae in that in a rae chances are sold.

5More precisely, the price is set below the market clearing price. Since the demand exceeds supply,
a lottery was used to determine who has the right to buy tickets. Among the baseball teams that have
used a lottery system was 2006 New York Mets, 2007 Cleveland Indians, 2008 Chicago Cubs, and the 2009
Philadelphia Phillies (see Mucha, 2009).
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and Sela (2002) analyze contests, where depending on the nature of the cost function bid

caps may be more pro�table or not. Also, Goeree et al. (2005) rank lotteries and contests in

fund raising mechanisms and Fullerton and McAfee (1999) model research tournaments and

show that it is optimal to limit the number of participants to two.

One paper that does examine allocation with a benevolent designer and thus close in spirit

to our paper is Che and Gale (2009). They �nd that when agents have wealth constraints

in a pure market, those that value goods the most cannot necessarily a¤ord them. Hence,

sometimes a random allocation can be superior.6 Again with a benevolent designer, Hoppe,

Moldovanu and Sela (2009), compare match making between two groups (such as men with

women) by pairing those displaying the highest costly signal to that of random matching.

Hartline and Roughgarden (2008) study the bene�t of wasteful signalling in a computer

science application. Finally, Condorelli (2009) and Yoon (2009) both study a similar design

problem to that in this paper but under di¤erent assumptions.7

In the next section we discuss the allocation problem and convert it into a mechanism

design problem in Section 3. In Section 4, we present the results of our analysis. Finally, in

Section 5, we make our �nal remarks and present our conclusions.

2 Allocation Problem

The designer�s problem is to allocateM homogeneous, not-necessarily-divisible goods among

N agents where M < N . The designer is benevolent and wishes to maximize the social

surplus. Each agent i has a privately known type �i 2 [0; 1] that is drawn independently
6Another path to solving the allocation problem is by using psuedo-market systems where exogenously

given points are substituted for money. These are used in the allocation of both interviews and courses for
MBA students (see Brams and Taylor, 1996; Brams and Kilgour, 2001; Sönmez and Ünver, 2005). However,
to work, these require more than one type of objects to be allocated (for an alternative use of points) and
may be costly to implement.

7More speci�cally, Condorelli (2009) unlike this paper assumes all agents have the same signalling costs
(as with Hartline and Roughgarden, 2008), but allows ex-ante asymmetry between agents. Yoon (2009)
restricts design to a mechanism where the probability of an agent receiving an object depends only his rank
among the order of signals, but allows a proportion of the signal to have public bene�t. In our framework,
in some cases the optimal mechanism is not one of those considered by Yoon.
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from cumulative distribution F . Agent i has value v(�i) for at most one object, where v(�i)

is strictly positive for �i > 0; continuous and twice di¤erentiable. (If goods are divisible, the

value to agent i is minfqi; 1g � v(�i) where qi � 0 is the fraction of good agent i receives.)

Each agent i is able to send a costly signal xi 2 R+ to the designer. The cost to the

agent of sending signal xi depends upon his type and equals c(xi) � g(�i) � 0, where c(xi) is
weakly positive, continuous and strictly increasing while g(�i) is strictly positive for �i < 1,

continuous and twice di¤erentiable. The function g(�i) captures how the agent�s type a¤ects

the cost of signalling. So if for instance g(�i) = �
�1
i , then the higher the type of the agent,

the less costly it is for him to send a high signal. Likewise, if g(�i) = �i + 1, then the

higher the type of the agent, the more costly it is for him to send a high signal. When g(�i)

depends upon �i; the designer is able to see the signal xi, but does not know the agent�s cost

of sending the signal. For instance, if the signal is standing in line xi hours, the designer is

able to see how long the agent stands in line, but is unable to determine the (opportunity)

cost to the agent.

Following Milgrom (2004, page 111), without loss of generality we can rewrite our problem

using the uniform distribution on [0; 1] in place of F .8 Finally, we assume that v(�i)=g(�i) is

weakly increasing for 0 < �i < 1.9 This can be interpreted as higher the type, the higher the

maximal willingness to send a signal for the object.10 This is equivalent to the assumption

that v0(�i)=v(�i) � g0(�i)=g(�i) for 0 < �i < 1. This condition assures that if an agent of

type �i is willing to send signal x to have a certain chance of receiving the object then all

agents with types e�i � �i will also be willing to send that signal for the same chance (single
crossing).11 We also assume that v; g are analytic.

8By having � drawn from an arbitrary distribution with v and g functions of �; we have a extra degree of
freedom. By assuming a uniform distribution, we eliminate this extra degree of freedom and gain simplicity
of the expressions in the paper. Also by doing so, we are able to continue to treat v(�) and g(�) even-handedly
(not write one in terms of the other).

9This is fairly innocuous since we can always reorder v and g to obtain continuous functions that do
satisfy this condition (and approximate them using twice di¤erentiable functions).
10The maximal willingness m is such that v(�) � g(�)m = 0 or m = v(�)=g(�). Note m is in terms of

cost, that is, one would be willing to send a signal x in order to receive the object if c(x) � m: With this
interpretation it is again clear one can reorder types to have v=g weakly increasing.
11Let us call the chance of receiving the object W (we make use of this notation later in the paper). An

agent of type �i will be willing to send a signal x to receive the object with that chance would so if the
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After the agents send costly signals, the designer receives these signals (x1; : : : ; xN) and

uses them to allocate the M goods by rule a : RN+ ! [0; 1]N where
P

i ai(x1; : : : ; xN) � M
guarantees feasibility. (Note that ai indicates the probability that agent i receives the good

when the goods are indivisible and the fraction of the good received.)12 Denote A as the set

of feasible allocation rules. Given allocation rule a, the agents form a Bayes-Nash equilibrium

by choosing a strategy xi(�i; a) to maximize their expected surplus given the strategies of

other agents. The designer�s problem is to choose rule a to maximize the equilibrium social

surplus of the agents given the future Bayes-Nash equilibria of the agents, that is, the designer

solves

max
a2A

X

i

E[v(�i) � ai(x1(�1; a); : : : ; xN(�N ; a))� c(xi(�i; a)) � g(�i)]:

3 Mechanism Design Problem

For simplicity of analysis we will invoke the revelation principle and look at direct mecha-

nisms where each agent i sends a costless (but not necessarily truthful) signal e�i.13 Given
the set of signals fe�1; : : : ;e�Ng, the mechanism gives an object to agent i with probability

Wi(e�1; : : : ;e�i; : : : ;e�N). (Under divisibility, this will represent the fraction good that agent i
receives.)14 Likewise, the mechanism charges agent i an amount ei(e�i). Note that this charge
depends only on e�i. Feasibility requires

X
i
Wi(e�1; : : : ;e�N) �M: Although the agent incurs

a cost ei(e�i) � g(�i), the designer does not receive any bene�t from the signal e�i; that is, the
cost actually incurred by the agent is wasted. The mechanism is truthful if it is incentive

compatible (IC) to report truthfully and individually rational (IR) to participate. Once we

expected payo¤ W � v(�i)� c(x) � g(�i) � 0: The derivative of this payo¤ w.r.t. �i is W � v0(�i)� c(x) � g0(�i):
From the inequality (and that v is strictly positive) we have W � c(x) � g(�i)=v(�i): This shows that the
derivative is larger than c(x)[(g(�i)=v(�i)) � v0(�i)� g0(�i)] of which in turn is larger than zero.
12Note that there is free disposal. Also, we consider giving an agent more than measure one of the good

the equivalent to giving the agent measure one and disposing of the excess.
13Note that there is no bene�t to having a sequential mechanism such as in Crémer et al. (2009) since all

parties know their private information initally.
14A lottery would allocate objects with probability Wi(e�1; : : : ;e�N ) = M=N . A contest with M = 1

would allocate objects according to Wi(e�1; : : : ;e�N ) equals 0 if e�i < maxfe�1; : : : ;e�Ng or equals 1=# if e�i =
maxfe�1; : : : ;e�Ng where # is the number of j where e�j = maxfe�1; : : : ;e�Ng:
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solve for the optimal direct mechanism, then we can implement the solution by choosing

an appropriate allocation rule, that is by setting ai(x) = Wi(e
�1
1 (c(x1)); : : : ; e

�1
N (c(xN))), we

have c(xi(�i; a)) = ei(�i): Notice that this can be implemented since ei(�i) does not depend

upon �j (j 6= i).
Now by limiting ourselves to symmetric mechanisms, we can denote W (e�i) as the prob-

ability of agent i receiving an object with message e�i when everyone else reports truthfully
and e(e�i) as the expected cost given that everyone else reports truthfully.15 ;16 For simplicity
of notation, we drop the i subscript. Both W (e�) and e(e�) are assumed to be increasing
in e�. Now an agent of type � reporting e� (with all others reporting truthfully) has payo¤
�(�;e�) def= W (e�)v(�)�e(e�)�g(�). The agent solvesmaxe� �(�;e�) which in a truthful mechanism
should equal �(�; �).

The designer chooses W (e�) and e(e�) to maximize N � E[�(�; �)] = N � E[W (�) � v(�) �
e(�) � g(�)] subject to W (�) being consistent with feasibility, IC (�(�; �) � �(�;e�)) and IR
(�(�; �) � 0). Before getting to our results, in the following lemma we simplify the designer�s
problem by eliminating from the problem, the IC and IR constraints as well as the choice of

e(�):

Lemma 1 The designer�s problem reduces to choosingW (�) that is increasing and consistent

with feasibility in such a way to maximize the social surplus given by

N

Z 1

0

W (�)

�
v(�)

g(�)

�0�Z 1

�

g(�̂)d�̂

�
d� +N W (0)

v(0)

g(0)

Z 1

0

g(�)d� �N W (1)`1; (1)

where `1 = lim�!1

n
v(�)
g(�)

R 1
�
g(�̂)d�̂ � v(�) (1� �)

o
.

Proof. See the Appendix.

15Note it is not optimal to restrict the number of participants as opposed to other environments where the
designer values the signals such as Fullerton and McAfee (1999), indicative that our symmetric assumption
is not crucial.
16Note that in order to be able to determine the allocation rule, we would need to decompose W (�) into

Wi(e�1; : : : ;e�N ): This is not a problem since any mechanism described byW (�) that is feasible with increasing
W (�) can be decomposed into a mechanism Wi(e�1; : : : ;e�N ) that is symmetric and satis�es monotonicity:
if e�i > e�0i then Wi(e�1; : : : ;e�i; : : : ;e�N ) � Wi(e�1; : : : ;e�

0

i; : : : ;
e�N ). Likewise, any mechanism that satis�es

monotonicity and symmetry has an increasing W (�):
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Notice that as one may expect increasing v(�) to � � v(�) increases surplus by factor �:
Also, somewhat less obvious, increasing g(�) to � � g(�) does not alter the surplus. This is
for the same reason that our cost function, c(x); does not appear in the surplus. Namely,

if agents have proportionately lower waiting costs, they will simply dissipate the gains by

proportionately increasing the cost of e¤ort.

We can interpret the designer�s problem of Lemma (1) in terms of virtual surplus.17 The

designer wishes to maximize the expected virtual surplus of someone receiving a good, that

is, the expected value of W (�) times the virtual surplus of type �. Actually, while this

terminology is su¢cient for standard mechanism design problems, we need to expand the

terminology into two types of virtual surplus. The expression s(�)
def
=
�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
is

the marginal virtual surplus for � 2 (0; 1). There are also what can be thought of as �xed
virtual surpluses at the end points of 0 and 1. Denote these as S0

def
= v(0)

g(0)

R 1
0
g(e�)de� and

S1
def
= �`1. The expression for social surplus in (1) now becomes:

N

�Z 1

0

W (�)s(�)d� +W (0)S0 +W (1)S1

�

4 Results

4.1 Optimal Mechanism

We now use the simpli�ed designer�s problem to solve for an optimal mechanism in a manner

similar to Myerson (1981).18 Using the notation of the previous section, we now denote the

cumulative virtual surplus as

17Virtual surplus is the surplus generated by giving the object to someone of type � taking into account the
full cost this has on incentives. Namely, the cost to designer of keeping the other (higher) types truthtelling
rather than pretending to be a lower type. For use of virtual surplus in the more standard mechanism design
framework, see Fudenberg and Tirole, 1991, page 266.
18There is a unique ex-ante optimal allocation if the set f� 2 [0; 1]j d

�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
=d� = 0g has

measure 0.
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z(�)
def
=

8
>>><
>>>:

0 if � = 0;

S0 +
R �
0
s(e�)de� if � < 1;

S0 +
R 1
0
s(e�)de� + S1 if � = 1:

The expression z(�)=� is the average virtual surplus of all types from 0 to �: Note that

Myerson does not have the �xed virtual surplus (and of course the marginal virtual surplus

is a di¤erent expression) but a similar technique does indeed work.

While this is non-standard, one can understand this better by using the analogy of a cost

function c(y) where c0(y) is the marginal cost, c(y)=y is the average cost, and limy&0 c(y) the

�xed cost.19

Let C(�) be the convex envelope of z(�), that is, C(�) = Conv(z(�)) where

Conv(z(�)) = inf
r;�1;�2

rz(�1) + (1� r)z(�2)

s.t. r; �1; �2 2 [0; 1] and r�1 + (1� r)�2 = �:

Since C is convex, C 00 � 0.

Proposition 1 An optimal mechanism has the following allocation: the interval [0; 1] can

be divided into regions where on each region either C 00(�) > 0 (a contest) or C 00(�) = 0 (a

lottery). While the signals are sent simultaneously, goods are allocated sequentially after

(truthful) signals are sent in the following steps:

(a) If the highest type falls within a contest region, then the agent of that type receives the

good.

(b) Otherwise, there is a lottery among all agents whose types fall within that region.

(c) The agent receiving the good is then removed and the process is repeated with the remaining

agents until all goods have been allocated.20 ;21

19We may have lim�%1 z(�) > or < z (1). This has no parallel with cost functions but becomes important
with monotonicity of the probability of receiving an object.
20Note that by removing an agent each time an object is allocated, we may move from one region to

another. This occurs if there are no remaining agents with types in the original region.
21When `1 < 0; we de�ne � = 1 as a contest region.
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Proof. See the Appendix.

The required monotonicity of the W (�) function causes the allocation to be in regions

of contests and lotteries. If a designer needing to allocate one object between two agents

receives signals of �1 and �2; where �1 > �2, then the designer can either give the object

to the player with �1 or randomly allocate the object between both players. If the designer

receives signals b�1 and �2; where �1 > b�1 > �2 and would choose a lottery between �1 and

�2, then he should also choose a lottery between b�1 and �2: If the designer receives signals
bb�1 and �2; where bb�1 > �1 > �2 and would choose �1 over �2, then he should also bb�1 over �2:
(We explain this further in the examples).

In order to see why the convex envelope C yields the optimal allocation, start with
allocating objects according to the highest type. Take the graph of z(�): If there is a region,

[�1, �2]; that is concave (decreasing slope) on [�1, �2]; then allocating this by the highest type

would not yield the highest revenue since one would more likely be giving it to someone with

a lower virtual surplus (lower slope of z). Replacing this with a lottery on [�1, �2] will yield

higher surplus.22 The average virtual surplus in that region is (z(�2)� z(�1)) = (�2 � �1) :
This is equal to the slope of the line from (�1; z(�1)) to (�2; z(�2)) on the graph of z(�). We

can thus replace the region with a new z(�) equal to the old z(�) except with a line between

those points. Now, it is worthwhile to expand any regions by including the type at �2 to the

lottery on [�1; �2] if slope of z(�2) at �2 is smaller than the slope of the line from (�1; z(�1))

to (�2; z(�2)). Thus, the region should be expanded until the average virtual surplus in the

lottery region stops decreasing. Graphically, this is until the line from (�1; z(�1)) to the end

of the lottery stops decreasing in slope.23 By repeating this process, we arrive at the convex

22If f1 (the probability of receiving an object) is strictly increasing and f2 (the virtual surplus) is strictly

decreasing, then
R �2
�1
f1(�)f2(�)d� <

R �2
�1

f1(�)d�

�2��1

R �2
�1
f2(�)d�. (Note the LHS is the expected virtual surplus

when using a contest in the region and the RHS is the expected virtual surplus when using a lottery in the

region.) This inequality holds since �
def
=

R �2
�1

f1(�)d�

�2��1
is the average of f1 on [�1; �2]: The inequality now

becomes
R �2
�1
(f1(�)� �) f2(�)d� < 0: De�ne �� such that � = f1(��):We now have

R �2
�1
(f1(�)� �) f2(�)d� =R ��

�1
(f1(�)� �) f2(�)d� +

R �2
��
(f1(�)� �) f2(�)d� <

R ��
�1
(f1(�)� �) f2(��)d� +

R �2
��
(f1(�)� �) f2(��)d� = 0:

23The beginning � = 0, can be thought of as a degenerate lottery region. If v(0)
g(0)

R 1
0
g(e�)de� > 0, then there

is the equivalent of a �xed cost and average virtual surplus would always initially be decreasing resulting in
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envelope C which generates the optimal allocation.
Again returning to our analogy of a cost function, one can understand the above intuition

by using a graph of c(y) with a �xed cost (assume c00(y) > 0). For instance, c(y) = 1 + y2.

At what point on the graph does average cost in stop decreasing? The average cost is simply

c(y)=y and is represented by the slope of the line from the origin to the point (y; c(y)): It

stops decreasing when this line is tangent to c(y) (where average cost equals marginal cost).

Beyond this point, marginal cost is above average cost and below this line marginal cost is

below average cost. Basically, at each point �, the designer is choosing between the marginal

z and average z over a region leading up to �. So the designer chooses a contest when z0(�)

is larger than the average z(�) in any the region directly below it and if not the designer

wants to choose a lottery.

Now making use of Proposition 1, we �nd which mechanisms will result in the optimal

allocation.

4.2 When a Lottery is Optimal

We now with help of Proposition 1, we can specify necessary and su¢cient conditions for a

lottery to be optimal.

Proposition 2 A lottery is an optimal mechanism if and only if for all �, the average virtual

surplus up to � is greater than the (overall) average virtual surplus, that is, z(�)=� � z(1)

for all �:

Proof. The mechanism presented in Proposition 1 will be a lottery if and only if C 00(�) = 0
for all �: Graphically, this means that z(�) must be above the line from (0; z(0)) to (1; z(1)).

This will cause the convex envelope to be obtained from this line, that is, C(�) = (1� �) z(0)+
�z(1) = �z(1) and hence C 00(�) = 0: Thus, a lottery is optimal if and only if z(�) � C(�) =
�z(1):

a region of a lottery starting at 0 to be part of the optimal allocation.
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Example 1 When N = 2, M = 1; which has higher surplus: (a) holding one lottery or (b)

holding a lottery among types below a �� and a lottery among types above a ��?

Before doing the calculations, let us explain how such a mechanism would work in prac-

tice. While a designer does not know the types of the agents, he can design a mechanism that

allocates based upon types (by using the signals). The above scheme can be implemented

by having a minimum signal. Any object is �rst allocated randomly to any agent sending

that minimum signal or higher. Objects left over (if any) are randomly allocated to the

remaining agents. For instance, Duke basketball tickets are randomly allocated by having

students expend e¤ort in waiting over several weeks (see Ariely, 2008, for a description of

the mechanism). Tickets are randomly allocated among students in front of a certain point

in line. Only agents with types above a certain value will be willing to send a signal above

the minimal signal.

Now let us look at the speci�c calculation. The overall lottery yields higher surplus over

the two lotteries if and only if z(1) � ��2
�
z(��)
��

�
+(1���2)

�
z(1)�z(��)
1���

�
= (1+��)z(1)�z(��);

yielding z(��) � ��z(1). We see this in agreement with Proposition 2. �
While it is useful to have necessary and su¢cient conditions for a lottery to be optimal,

we �nd it also useful to examine particular su¢cient conditions as well.

Proposition 3 (i) If
�
v(�)
g(�)

�00
� 0, then a lottery is optimal.

(ii) If v(1) is bounded and g(1) > 0, then there exists an � > 0 where for the same g and a

di¤erent bv(�); where bv(�) def= v(�) + �g(�); a lottery will be the optimal mechanism.24

Proof. First, we prove (i). If
�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
is weakly decreasing and `1 � 0, then

a lottery is an optimal mechanism. Begin by looking at the �rst part of the expression

in Lemma 1. Since the part inside the integral (not considering W (�)) is decreasing, the

integral is maximized with a lottery (�at W (�)). Now notice that the second part of the

expression in Lemma 1 is maximized by maximizing W (0); this happens also with a lottery

24It is also possible to show that if (1� �)v0(�) is decreasing in � and g0(�) � 0; then a lottery is socially
optimal.
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(since W must be weakly increasing). Finally, since `1 � 0; the third part is maximized by
minimizing W (1), which also happens with a lottery.

Now notice that

d[

��
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

��

d�
=

�
v(�)

g(�)

�00�Z 1

�

g(�̂)d�̂

�
�
�
v(�)

g(�)

�0
g(�):

By the mean value theorem, we have

�
v(�)

g(�)

�00
(1� �) g(��(�))�

�
v(�)

g(�)

�0
g(�)

where ��(�) is between � and 1. If
�
v(�)
g(�)

�00
� 0, then this expression is negative. If

�
v(�)
g(�)

�00
�

0; then v(1)
g(1)

is bounded. If v(1) is also bounded, then `1 = 0: If v(1) is unbounded, then for
v(1)
g(1)

to be bounded we must have g(�) increasing as � approaches 1. If so, by the mean value

theorem, v(�)
g(�)

R 1
�
g(�̂)d�̂ � v(�) (1� �) � 0 and hence `1 � 0.

The proof of part (ii) is in the Appendix.

Note that part (i) that a lottery is optimal if v=g is weakly concave. From the surplus,

slope of v=g does not a¤ect the decision upon which mechanism to employ. However, if this

slope is increasing, it becomes increasingly expensive in terms of value for the high types

to signal. In this case, the messages made by the higher-value agents are too costly for

the society to waste and therefore it is better to run a lottery, that is, allocate the good

randomly.25 While the proof of part (ii) is not particularly straightforward, the intuition of

the result is clear. Since bv(�)=g(�) = v(�)=g(�) + �; a larger � makes the di¤erent types

relatively close in terms of v(�)=g(�). Hence, when the di¤erences between types become

relatively smaller, that is, a larger part of the value is common, a lottery would be the optimal

mechanism. We now see that the su¢cient conditions can be useful in �nding examples where

25With possibility of costless messages, a lottery is only the unique optimal mechanism among monotonic
mechanisms (as described in footnote 16). For instance, when N = 2, M = 1, one can ask players to send a
costless signal si of their types. If si > sj then only if si � sj < 0:5, the mechanism would allocate it to i.
If players truth tell, the expected probability of winning will be the same. Monotonicity is violated since if
s2 = 0:8; player 1 wins with a signal of s1 = 0:1, but loses with a signal of s1 = 0:4:
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a lottery is optimal.

Example 2 N = 2, M = 1; v(�) = �; and g(�) = 1:

In this case,
�
v(�)
g(�)

�00
= 0. Thus, the social planner does better by running a lottery, with

surplus
R 1
0
(1� �) d� = 1

2
, than a contest, with surplus 2

R 1
0
(1 � �)�d� = 1

3
, (or any other

mechanism). �

This contrasts with a mechanism that maximizes revenue when payments can be collected.

Namely, types � < 1
2
are excluded and the agent with the highest � (� 1

2
) receives the object.

Example 3 v(�) = ( � � + c)� and g(�) = ( � � + c)� where �; c;  > 0 and 0 < �� � � 1:

In this case,
�
v(�)
g(�)

�00
= 2(� � �)(� � � � 1) ( � � + c)����2 � 0. Hence, a lottery is

socially optimal. �

This is a generalization of the previous example.26 Notice that a lottery can be optimal

when g0(�) < 0 or g0(�) > 0.

4.3 When a Contest is Optimal

We can also use Proposition 1 to specify the necessary and su¢cient conditions for a contest

to be optimal.27

Proposition 4 A contest is an optimal mechanism if and only if s(�) is weakly increasing,

S0 = 0 and S1 � 0:
26When c = 0; a lottery is still socially optimal even though our assumption that g(0) > 0 is violated.

This is because lim�&0
v(�)
g(�) = 0:

27Such conditions would require that the designer would allocate to the objects to the agent with the
highest type. In the standard auction framework, �rst-price, second-price and all-pay auctions would all
achieve this with the same expected payments for each agent of a particular type. However, a �rst-price or
second-price auction would �rst require a signal to be sent and then payment to be paid. In our model, this
would require both a costless initial signal and a wasteful payment to be made after the allocation decision
has been decided. It seems to us that a contest is a more viable mechanism both politically and for credible
commitment reasons. For instance, if we have agents write down how long they would be willing to wait in
line for an object and then choose the agent willing to wait the longest to receive the object. There would be
pressure to not actually have the agent waste his time waiting for the speci�ed time. A contest (or regions
with contests) solves this issue.
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Proof. This follows from Proposition 1. A contest is optimal only if C 00(�) > 0 for all
�: This will happen only if C(�) = z(�) for all �: If C(�) = z(�) for all �; then a contest

is optimal (since in the regions where C 00(�) = 0 and C(�) = z(�), the designer would be

indi¤erent to a contest and a lottery). We have C(�) = z(�) if and only if S0 = 0; z00(�) � 0,
and S1 � 0: Well, z00(�) � 0 if and only if s(�) is weakly increasing.
The conditions in the Proposition ensure that replacing a region with a lottery (as dis-

cussed in section 4.1) is never bene�cial.

Corollary 1 For a contest to be optimal, we must have

(i)
�
v(�)
g(�)

�00
� 0 for all �,

(ii) v(0)=g(0) = 0,

(iii) and either v(1) unbounded or g(1) = 0:

Proof. From Proposition 4, s(�) must be weakly increasing and S0 = 0 for a contest

to be optimal (we do not make use of the condition S1 � 0). We prove the Corollary by

showing: (i) is necessary for s(�) to be weakly increasing, (ii) is necessary to have S0 = 0,

and (iii) is necessary for s(�) to be increasing near 1.

From the proof of Proposition 2 (i), we have

s0(�) =

d[

��
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

��

d�
=

�
v(�)

g(�)

�00
(1� �) g(��(�))�

�
v(�)

g(�)

�0
g(�):

This is positive only if
�
v(�)
g(�)

�00
� 0 everywhere. Since S0

�
= v(0)

g(0)

R 1
0
g(�)d�

�
equals 0 only if

v(0)=g(0) = 0 (since
R 1
0
g(�)d� > 0 as g(�) is strictly positive for � < 1).

From the proof of Proposition 2 (ii), if v(1) is bounded and g(1) > 0, then lim�!1

�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
=

0: This shows that
�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
cannot be weakly increasing.

Note that the conditions in Corollary 1 are somewhat di¢cult to be satis�ed, thus (pure)

contests may be used somewhat rarely; even so, we now provide two numerical examples

where a contest is the best way to allocate a good. In the �rst case, v is unbounded. In the

second case, g(1) = 0.
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Example 4 N = 2, M = 1, v(�) = 2
(1��)0:5

� 2; and g(�) = 1.

Notice that
�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
= 1

(1��)0:5
is increasing on [0; 1] and `1 = 0 (since g is

constant). Surplus from a pure contest is 2
R 1
0

1
(1��)0:5

�d� = 22
3
and is more than that from a

lottery
R 1
0

1
(1��)0:5

d� = 2. Here, the contest does best. �

Example 5 N = 2, M = 1; v(�) = �; and g(�) = (1� �)2:

Here
�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
= (1 + �) 1

3
which is increasing in �; v(0) = 0 and `1 = 0: �

Remark 1 The optimal mechanism depends upon v and g, not just v=g.

We see this by means of the following example which has the same v=g ratio as the

previous example but instead of a contest being optimal, a lottery is optimal.

Example 6 N = 2, M = 1; v(�) = �(1� �); and g(�) = (1� �)3:

Here,
R �
0

�
v(e�)
g(e�)

�0 �R 1
e� g(�̂)d�̂

�
de� =

R �
0

�
1� e�2

�
1
4
de� = �

4
� �3

12
: Since v(0) = 0; v(0)

g(0)

R 1
0
g(�̂)d�̂ =

0. The expected surplus of running a lottery is
R 1
0
�(1� �)d� = 1

6
: Since �

4
� �3

12
� 1

6
� for all

� 2 [0; 1]; a lottery is optimal. �

4.4 When More Complicated Mechanisms Are Optimal

There are still possibilities under Proposition 1 when neither a lottery nor contest is optimal.

Remark 2 Under certain conditions, a more complicated mechanism can be optimal such

as

(i) a contest with a bid cap,

(ii) a lottery among low types but a contest for high types,

(iii) several regions where each region is of contest or lottery.

We illustrate the variety of possible mechanisms by means of examples. In example 7,

we show that a contest with bid caps can be optimal, while in example 8 we indicate that a
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lottery, when all values are low, followed by a contest for higher values is optimal. Finally,

in example 9, we show that a contest followed by a lottery and then again followed by a

contest is the optimal mechanism. Note that in all the examples the main intuition for the

use of a particular mechanism, is if the virtual surplus increases or falls. If the virtual surplus

increases then it means that e¢ciency increases with a non-cooperative bidding mechanism

while if the surplus falls a random allocation is better.

Example 7 N = 2; M = 1; v(�) = �2

2
and g(�) = 1:

Notice here that
�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
= � (1� �) increases and then decreases in �. Con-

sider the following allocation where �1 and �2 denote the types of the agents. If �1; �2 � ��;
then the good is allocated randomly, otherwise whoever has the higher � gets the good.

Under such an allocation rule, the probability of winning with � � �� is P
def
= (1 + ��)=2.

(There is a �� chance the other agent has a value below ��. In this case, one wins. There is a

1��� chance the other agent has a value above ��. In this case, one wins half the time.) Un-
der such an allocation, the social surplus is N

R ��
0
W (�) [� (1� �)] d�+N

R 1
��

�
(1� �) �P

�
d�:

Surplus is then 2
R ��
0
(1� �)�2d�+2

R 1
��
(1� �)� (1+��)

2
d� = 1

6
��� 1

2
��2+ 1

2
��3� 1

6
��4+ 1

6
which

achieves its maximum of 0:18425 at �� = 1=4:28 Such an allocation results from running a

contest with an appropriate bid cap that induces all agents with values above �� to bid at

the bid cap (resulting in a lottery among those agents).

Examine the thin line in Figure 1. This represents the virtual surplus of giving the object

to an agent of type �. For all �, it is also worthwhile to give the object than not to give

the object. Notice that for points to the right of the graph, such as � = 0:9 and � = 0:8;

one would prefer to give the object to the agent with lower �: However, with the restriction

that the probability must be increasing, the designer can at most keep the probability of

receiving the object the same (holding a lottery). While the surplus reaches the peak at

� = 0:5; we would still want to hold a lottery between someone with � = 0:5 and someone

with � = 0:4; since under the restriction that the probability of receiving the object must be

28The equivalent bid cap of x sets c(x) = 0:00716:
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increasing in signal, we must choose between either holding a lottery amongst someone with

� = 0:4 and all those with � � 0:5 or always giving the object to all those with � � 0:5 over
someone with � = 0:4:29 This leads us to the thick line in the graph. This line represents

the average virtual surplus of all �0 � �: The optimal mechanism will weigh this average

against the virtual surplus of �:When the surplus of � is higher, then � will be added to the

lottery. When the average above � is higher, then higher � will be preferred as in a contest.

The average surplus above � is
hR 1
�
b�(1� b�)db�

i
= (1� �) = 1

6
(1� �)(1 + 2�). This equals the

virtual surplus when 1
6
(1� ��)(1+2��) = ��(1� ��) or when �� = 1=4; con�rming the above.

Thus far, we have presented the mechanism in terms of �: Now, we demonstrate how this

would work in terms of bids x. To do so, we must �rst calculate the expected e¤ort an agent

of type � must expend in the optimal mechanism. The probability of getting an object with

type � < 1=4 is just the probability that the other agent has a lower type �: For � � 1=4 it is
the probability that the other agent has a type less than 1=4 plus half the chance otherwise,

totalling 5=8. Thus,

Wi(�) =

8
<
:
� if � < 1=4;

5
8
otherwise.

We can now substitute this into equation (4), yielding30

ei(�) =

Z �

0

W 0
i (�̂)

�̂
2

2
d�̂ =

8
<
:

�3

6
if � < 1=4;

( 14)
3

6
+ 3

8
� (

1
4)

2

2
= 11

768
otherwise.

(2)

Finally, c(x(�)) = ei(�): This implies that the bid cap x� will be set such that c(x�) =

ei(�
�) = 11

768
: If c is linear, this is the bid cap. Notice that this is incentive compatible since

the highest bid before the cap, lim�% 1
4
x(�) = lim�% 1

4
ei(�) =

( 14)
3

6
= 1

384
. The expected

29This is necessary to be consistent with monotonicity as describe in footnote 16. For instance, if we choose
someone with � = 0:5 over someone with � = 0:4 while choosing someone with � = 0:4 over someone with
� = 0:7; then W1(0:5; 0:4) > W1(0:7; 0:4).
30Note that over the discrete jump in Wi(�); we can use of a Dirac delta to obtain our results (the

increase in payments is the probability jump multiplied by �̂
2
=2 evaluated at the jump. Alternatively, one

can integrate by parts
R �
0
W 0
i (�̂)

�̂
2

2 d�̂ = Wi(�)
�2

2 �
R �
0
Wi(�̂)�̂d�̂: For � < 1=4, this is �3=6: For � � 1=4,

Wi(�)
�2

2 �
R �
0
Wi(�̂)�̂d�̂ =

5
8 � �

2

2 �
( 14 )

3

3 �
R �
1

4

5
8 �̂d�̂ =

11
768 .
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pro�t of an agent with � = 1=4 bidding 1
384

is 1
4

( 14)
2

2
� 1

384
= 1

192
; while bidding at the cap

of 11
768

yields 5
8

( 14)
2

2
� 11

768
= 1

192
: An agent with a higher �, gains more from winning, while

an agent with a lower � gains less from winning. Since bidding at the bid cap wins with

higher probability, all agents with � < 1=4 prefer bidding beneath the bid cap and agents

with � � 1=4 prefer bidding at the bid cap. �

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.05

0.10

0.15

0.20

0.25

theta

surplus

Figure 1: In example 7, the winner is by highest signal and after a threshold �� = 1=4, by

lottery. Thin line is virtual surplus and thick line is average virtual surplus above �.

Example 8 N = 2; M = 1; v(�) = 1

2
p
(1��)

+ � � 1
2
and g(�) = 1:

Here
�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
= (1 � �)

�
0:25

(1��)1:5
+ 1
�
: It �rst decreases until � = 0:75; and

then increases until � = 1. Consider the following allocation where �1 and �2 denote the

types of the agents. If �1; �2 � ��; then the good is allocated randomly, otherwise whichever
� is higher gets the good. Such an allocation results from running a contest with a minimum

bid and allocating the good randomly if no one meets the minimum bid. From this, the social

surplus is
R ��
0

h
(1� �)

�
0:25

(1��)1:5
+ 1
�
��
i
d� +N

R 1
��

h
(1� �)

�
0:25

(1��)1:5
+ 1
�
�
i
d�: We will now

see that this is the optimal mechanism.

In Figure 2, as before, the thin line in the graph represents the virtual surplus of giving

the object to an agent of type �. Again, for all �, it is also worthwhile to give the object than
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not to give the object. Notice that now for points to the left of the graph, such as � = 0:2

and � = 0:1; a designer prefers to give the object to the agent with lower �: Hence, under

the restriction that the probability of receiving the object must be increasing in signals, the

designer would choose a lottery for those points. While the surplus reaches the minimum

at � = 0:75; we would still want to hold a lottery beyond this point, for example between

someone with � = 0:75 and � = 0:8: This is for similar reasons to those in example 7.

Namely, since under the restriction that the probability must be increasing in signals, we

need to make the choice between holding a lottery amongst someone with � = 0:8 and all

those with � � 0:75 or always giving the object to someone with � = 0:8 over all those with
� � 0:75:31

This leads us to the thick line in the graph that represents the average virtual surplus of

all �0 � �: The optimal mechanism will weigh this average against the virtual surplus of �: If
the surplus of � is higher, then � will be preferred. When the average below � is higher, then

� will be added to the lottery. This crossing point is at �� = 0:9117: As in example 7, we can

use equation (4) to determine the minimum signal to be included in the contest. Since in

the lottery phase, when � < ��;W 0(�) = 0 we have e(�) =
R �
�
W 0(�̂)v(�̂)

g(�̂)
d�̂ = 0: Going from

the lottery to the contest, the jump in probability is ��=2: Thus, the jump in e¤ort must

be lim�&�� e(�) =
��

2
v(��)
g(��)

= ��

2

�
1

2
p
(1���)

+ ��
�
= 1:1826: This should equal the cost of the

signal for the agent with type ��, hence c(x(��)) = 1:1826: If c(x) = x2; then the minimum

bid should be
p
1:1826 = 1:0875: �

31 Otherwise, monotonicity from footnote 16 is broken. For instance, if we choose someone with � =
0:2 over someone with � = 0:8 while choosing someone with � = 0:8 over someone with � = 0:75; then
W1(0:2; 0:8) > W1(0:75; 0:8).
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.6

0.8

1.0

1.2

1.4

1.6

1.8

theta

surplus

Figure 2: In example 8, the winner is by lottery, and then by highest signal. Thin line is

virtual surplus and thick line is average virtual surplus above �:

Example 9 N = 2, M = 1; v(�) = 1
2(1��)0:5

+ 3
2
�2 � 1

2
and g(�) = 1:

Here
�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
= (1 � �)

�
0:25

(1��)1:5
+ 3�

�
. This �rst increases, then decreases,

and then again increases till � = 1. In this case, the following mechanism is optimal, where

the social planner �rst runs a contest then a lottery and then runs a contest for the high-

value agents. This yields the following allocation: �1 and �2 denote the types of the agents.

If �1; �2 are in [0:45; 0:91], then the good is allocated randomly. Otherwise, it is allocated to

the one with the highest �: Note that from � = 0:45 to � = 0:91 the social planner will run

a lottery and in the rest of the range a contest will be used. Therefore, the social surplus is

2

Z 0:45

0

�
(1� �)

�
0:25

(1� �)1:5 + 3�
�
�

�
d� +

Z 0:91

0:45

�
(1� �)

�
0:25

(1� �)1:5 + 3�
�
(0:91� 0:45)

�
d�

+2

Z 1

0:91

�
(1� �)

�
0:25

(1� �)1:5 + 3�
�
�

�
d�:

This is a combination of our two previous examples with the lottery range in the middle.

Denote the lottery range from �a to �b. We must compare the average virtual surplus of

those in the range to those out of the range. We would prefer a � in [�a,�b] to those below �a
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if the average surplus is higher than the surplus of all those below and prefer those above �b

if the average surplus is lower than the surplus of all these values. Since the virtual surplus

is increasing (and continuous) outside of this range, this can only happen if the average

virtual surplus is equal to the virtual surplus on both ends:
R �b
�a
s(�)d� = s(�a) = s(�b): We

see this in Figure 3. Again, the thin line is the virtual surplus. Here, the thick line helps

to demonstrate the range of types where a lottery should be used. With this line, both

endpoints have the same virtual surplus. This virtual surplus should also equal the average

virtual surplus in the range of the thick line. In order for this to happen, the area above it

and below the thin line and below it and above the thin line should cancel (be equal).

As with examples 7 and 8, we can determine the mechanism in regards to an auction.

The mechanism would combine a bid cap with a minimum bid but ironically with the bid

cap �rst. The cap will start with x and go to x: It is a cap in the sense that any bid between

x and x will count only as much as x. These can be determined in a similar way as in

examples 7 and 8. �

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.9

1.0

1.1

1.2

1.3

theta

Surplus

Figure 3: In example 9, the winner is by highest signal except for the interval

� 2 [0:45; 0:91] Thin line is virtual surplus and thick line is the interval [0:45; 0:91] : The
area below the thin line and above the thick line is equal to the area above the thin line

and below the thick line.
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We observe in numerous instances where goods are allocated by one of the more compli-

cated methods of examples 7 to 9, that is, a method beyond a straight lottery or contest. For

instance, the way example 7 could work in practice, is to allocate tickets for an event by hav-

ing a lottery for anyone that waits x hours for tickets and if there are tickets left after that,

allocate the tickets through lottery. Another illustration of this is the ticket distribution by

All England Tennis and Croquet Club for the Wimbledon tennis tournament. The club �rst

holds a lottery to allocate the tickets almost six months before the Wimbledon tournament

and then gives them away in �rst come �rst serve basis or person willing to stand longest in

the queue. (We presume that buying tickets six-months prior takes more e¤ort.) We see a

system like example 8 with the distribution of entries in the New York marathon.32 Those

that put in greater e¤ort can qualify automatically (by completing a number of sanctioned

races or making a qualifying time), remaining entries are distributed by a lottery system.

Finally, in example 9, we see where it is optimal to run a contest �rst, and then allocate

the good randomly and for the higher values again run a contest. One possible example of

this is admissions to top US universities among students with high test scores. Writing an

essay is part of the application. As most lecturers know, most essays are indistinguishable in

level. A few good ones stand out as well as a few bad ones. It is possible that an admissions

o¢cer would �rst admit the good essays and then randomly select among the middle pile.

If there are still slots left, the o¢cer may start to o¤er admissions to the top of the lower

group. Similarly, there are more students that apply to Oxford or Cambridge Universities

with the highest score on the admissions tests (three As in the A-level exams) than places.

To select students, interviews are held. We can interpret the interviews (where preparation

can help) as the socially wasteful but necessary to signal the type of the students.

32Some may be surprised to discover that the right to run in the major marathons needs to be rationed.
There are logistic limits to supply and demand for 26 miles of punishment is high. We also note that transfer
of numbered bibs is currently prohibited on both medical and fairness grounds (see Blecher, 2006 for details).
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4.5 Scarcity

An important question is whether scarcity of goods (the number of goods relative to the

number of agents) favors one mechanism over another. To answer this question, we must

�rst �nd a way to compare mechanisms across environments. We do so by the following

de�nition.

De�nition 1 Two mechanisms are said to be equivalent if their W functions have the same

regions where they are strictly increasing, that is, a mechanism characterized by Wa is equiv-

alent to one characterized by Wb if for all �2 > �1; we have Wa(�2) > Wa(�1)() Wb(�2) >

Wb(�1).

Intuitively, this de�nition says that two mechanisms are equivalent if for any set of types

both mechanisms allocate the good in a similar way. For example, if in mechanism a a

lottery is used among all types between 1=3 and 1=2, then if mechanism b is equivalent to

mechanism a, then in mechanism b a lottery must also be run among those types. We can

now use the above de�nition to show that an optimal mechanism does not depend upon the

scarcity of the good.

Proposition 5 For any mechanism that is optimal in environment (v; g;M;N) (and de-

scribed by Proposition 1) there is an equivalent mechanism that is an optimal mechanism in

environment (v; g;cM; bN). However, which of two equivalent non-optimal mechanisms yield
higher social surplus may depend upon M or N .

Proof. Denote Ca as the C function used to generate the mechanism (via Proposition 1)
for environment (v; g;M;N) resulting in the W function, Wa. Notice that Wa(�2) > Wa(�1)

if and only if Ca(�2) > Ca(�1). Now notice that C functions are independent of M or N

(they depend only on v and g). Hence, for environment (v; g;cM; bN) the C function would
equal Ca and hence theW function,Wb, would have the property thatWa(�2) > Wa(�1)()
Wb(�2) > Wb(�1).
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We will now show the second part of the proposition. We do so by means of an example

showing that in comparing two non-optimal mechanisms which is higher changes in either

M or N . More speci�cally, a lottery is optimal when M = 1 and N = 3; however, a contest

is optimal either when M = 2 and N = 3 or M = 1 and N = 2. The details are as

follows: g(�) = 1 and v(�) = ��; yielding virtual surplus of ��(1 � �): The social surplus
with a contest with one object,M = 1; is N

(N+�)(N+�+1)
. The surplus with a contest with two

objects,M = 2; is (3N+��3)N
(N+�)(N+�+1)(N+��1)

. The surplus with a lottery is M
(1+�)(2+�)

(independent

of N): Take � = 5=4. When we have N = 2 and M = 1, the surplus for the contest, 0.1447;

is greater than that of a lottery, 0.13675, however when N = 3 and M = 1; this is reversed,

with surplus from contest, 0.1344, which is now smaller than that of a lottery. Finally, when

we move to N = 3 and M = 2, the contest is again better than a lottery, with contest

surplus, 0.299, and lottery surplus, 0.273.

Taylor et al. (2003) and Koh et al. (2006) analyze allocation through lotteries and queues,

and �nd that lotteries are more e¢cient in comparison to waiting line auctions if the time

valuation are less varied and objects are scarce. This may be surprising compared to the

�rst part of the proposition, however the second part shows how our paper is consistent.

Namely, we show that the optimal mechanism is independent of scarcity, while earlier papers

compared only two di¤erent mechanisms.33

4.6 Other Interim-E¢cient Allocations

Up to this point, we have studied ex-ante Pareto-optimal allocations. In such a manner, the

designer treats every type with the same ex-ante weight. It is conceivable that the designer

may want to favor some types over others. For instance, a designer may wish to count higher

types more (they could be future donors) or lower types more (increasing future interest).

To include such a possibility, we need a set of weights � (�) such that
R 1
0
� (�) d� = 1 for

which the designer would maximize N �E[� (�) �(�; �)]: This leads to the set interim-e¢cient
33Other notable earlier papers on waiting-line auctions include Barzel (1974), Holt and Sherman (1982)

and Suen (1989).
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allocations (see Ledyard and Palfrey, 2007). Observe that for equal weights, � (�) = 1; we

have our original case of an ex-ante e¢cient allocation.

Proposition 6 A � (�) interim-e¢cient allocation for environment v(�) and g(�) is given

by Proposition 1 where C(�) is de�ned using bv(�) def= � (�) v(�) and bg(�) def= � (�) g(�) instead

of v(�) and g(�):

Proof. In order for this proposition to hold, we need to show two problems yield the

same solution: (A) choosing W (�) and e(�) to maximize N �E[� (�) �(�; �)] subject to W (�)
being consistent with feasibility, IC and IR constraints and (B) choosing W (�) and e(�) to
maximize N �E[b�(�; �)] (where b�(�; �) def= W (�) � bv(�)� e(�) � bg(�)) is subject to W (�) being
consistent with feasibility, IC and IR constraints (with bv(�) and bg(�)).
Notice that N �E[� (�) �(�; �)] = N �E[W (�) �� (�) v(�)�e(�) �� (�) g(�)] = N �E[b�(�; �)].

Thus, the objective function is the same. We now show that any allocation that satis�es IC

and IR constraints for bv(�) and bg(�) will also satisfy IC and IR constraints for v(�) and g(�)
and vice-versa.

De�ne b�(�;e�) def= W (e�) � bv(�) � e(e�) � bg(�): Now b�(�; �) � b�(�;e�) () �(�; �) � �(�;e�)
because b�(�;e�) = W (e�) � � (�) v(�) � e(e�) � � (�) g(�) = � (�) �(�;e�): Likewise, b�(�; �) � 0

() �(�; �) � 0. Feasibility is also the same. Since the objective and constraints are the

same, the solution must be the same. (Since bv(�)=bg(�) = v(�)=g(�); our assumption that

v=g is increasing is still su¢cient.)

As we see from the following Corollary, the Proposition expands our results.

Corollary 2 The results of sections 4.1 to 4.5 hold for bv(�) and bg(�) in place of v(�) and
g(�):

One result that may seem surprising is that if
�
v(�)
g(�)

�00
� 0, then a lottery is optimal for

any weighting of types. Intuitively, one may expect when higher types are weighted more,

then a lottery may not be optimal. However,
�
v(�)
g(�)

�00
� 0 is enough to ensure that the virtual

surplus is decreasing for any �(�), since d[
h
( v(�)g(�))

0

(
R 1
�
�(�̂)g(�̂)d�̂)

i

d�
=
�
v(�)
g(�)

�00 �R 1
�
�(�̂)g(�̂)d�̂

�
�

�
v(�)
g(�)

�0
�(�)g(�):
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5 Concluding remarks

This paper makes a contribution in the allocation of goods when signalling one�s desire for

the good is a wasteful activity. Under such conditions, there is a trade-o¤ between e¢cient

allocation and wasted resources. A mechanism such as a contest, which allocates by the

highest signal, will allocate goods to the people who value them the most but the act of

signalling will be wasteful. Allocating an equal share to everyone (or a random allocation

by a lottery) saves any waste from signalling, but leads to an ex-post ine¢cient allocation.

This analysis has many additional applications. Contests are also used to grant the

Olympic games, where the individual cities submit bids, and part of the bids are often

socially wasted. In the UK, governmental research funds are distributed through two main

channels: research councils or quality-related (QR) funding. Research councils allocate funds

to institutions by gathering private signals through research grant applications, for which the

paper work can be considered socially wasteful. QR funding allocates funds through publicly

available information such as publications, which presumably is less costly to gather (this

is done through the Research Assessment Exercise, RAE). Our analysis can help design an

appropriate mechanism. If the cost incurred by the institutions to make the case for grants

is too high, the government should favour QR funding. Policy research into which system is

best is an important area in which our paper contributes.

Our results also has implications for bidding rings (cartels) in auctions. In this literature,

McAfee and McMillan (1992) �nd an optimal mechanism for collusion that agrees with our

results. Namely, if the hazard rate is decreasing, bidders should participate in the auction

non-cooperatively; however, if the hazard rate is increasing, then bidders should bid the

reserve price whenever they value the object more than the reserve. In this application, the

cartel�s objective is congruent to that of our designer while the bids are analogous to our

wasteful signal. Hence, our results indicate that the McAfee and McMillan results apply more

generally.34 Moreover, a connection would show that in many cases the optimal collusive

34There is still the discrepancy of the all-pay nature of our signals versus the �rst-price payments in an
auction.
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policy would be something more complicated such as an increasing bid function that reaches

a peak or bidding the reserve price for low values and then jump to bidding higher values.

In another direction, our idea of having private opportunity costs (in addition to values) can

be applied to other applications where such costs have so far been assumed to be identical

(such as in scheduling of appointments, McAfee and Miller, 2009). Another area where our

analysis of non-market mechanisms may apply is club membership with limited vacancies

(see Hillman and Swan, 1983).

There are many possible changes to our basic model for which similar analysis could be

used. One change is to relax our key assumption of a wasteful signal to a partial wasteful

signals. For instance, an agent of type � sending a signal of x may have private value of

sending the signal of �c(x)g(�): This means the true waste is only (1� �)c(x)g(�); however,
as we saw that the cost function c(x) has no a¤ect on the optimal mechanism, this will

also have no a¤ect. If instead there were a public bene�t to such a signal, then the higher

the bene�t, the more likely the optimal mechanism would favour contests.35 We can also

partially relax the assumption on payments to the designer. The necessary element for our

analysis to apply is that there is a maximum price that the designer can charge and at this

price, there is an excess demand (as the case with playo¤ tickets). The timing of the signals

in our mechanism can also be changed while keeping the same nature of our results. For

instance, a war of attrition can be used to allocate goods in place of a contest. A war of

attrition with a time limit can be used in lieu of a contest with a bid cap.

While in this paper, we examined only the case where each agent has one of two possible

allocations: with an object or without an object, we can apply this in any case with two

possible outcomes. Think of the case where a course is o¤ered twice and students have to

decide which time they want to be scheduled for (with all students being assigned to one of

the two slots). If there is an excess demand for one of the time slots, then one can use our

analysis to determine how to allocate the slots to the students demanding the popular time

slot. (All students demanding the less popular slot will get it.)

35Yoon (2009) did such analysis under a more restrictive set of mechanisms (see footnote 7).
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A natural extension for our paper would be to consider several types of goods. Doing so

would make it possible to explore a link to papers on pseudo-markets (markets using points

rather than money), except we will optimize the method for obtaining points as a function

of e¤ort (better grades yield more points in course markets). An exogenous allocation of

points is similar to a lottery while points solely as a function of e¤ort is like a contest.

Fairness issues may also be considered in determining a mechanism. A lottery is ex-ante

(and interim) fair in that everyone has an equal chance of receiving the good, but ex-post,

those not allocated the good envy those allocated the good. The losers in a contest are

worse o¤ than those not given the good if a lottery were run in its place; however, the

losers in a contest envy the winners less than in a lottery (since in a contest the winners

pay more than the losers). Hence, which mechanism is deemed fairer could depend upon the

circumstances.36
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6 Appendix

6.1 Proof of Lemma 1

First, satisfying the �rst-order condition of the agents problem �e�(�; �) = 0; having �(0; 0) �
0 and limiting W (e�) and e(e�) to be increasing is su¢cient to satisfy incentive compatibility
and individual rationality, since the single-crossing property is satis�ed by our assumption

of v0(�)=v(�) > g0(�)=g(�). Second, we can also take advantage of the �rst-order condition

and use the envelope theorem to �nd the agents� surpluses. Let �(�)
def
= maxe� �(�;

e�): Now
by the envelope theorem, we have

�0(�) = ��(�; �) + �e�(�; �) = ��(�; �) = W (�)v
0(�)� e(�) � g0(�):

Therefore,

�(�) =

Z �

0

�0(�̂)d�̂ + �(0) =

Z �

0

h
W (�̂)v0(�̂)� e(�̂)g0(�̂)

i
d�̂ + �(0):
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As mentioned before, the designer cares only about the total expected utility of the agents

subject to feasibility (all collected e(�) are wasted) and has payo¤:

N � E[�(�; �)] = N

Z 1

0

�(�)d� = N

Z 1

0

Z �

0

h
W (�̂)v0(�̂)� e(�̂)g0(�̂)

i
d�̂d� +N�(0) = (3)

N

Z 1

0

[(1� �) (W (�)v0(�)� e(�)g0(�))] d� +N�(0).

(The last step is using integration by parts.)

Finally, we can eliminate e(�) from (3) since e(�) is dictated in the �rst-order condition

�e�(�; �) = 0 by W (�):

e0(�) = W 0(�)
v(�)

g(�)
:

Hence,

e(�) =

Z �

0

W 0(�̂)
v(�̂)

g(�̂)
d�̂ + e(0): (4)

(Note the designer would always want to set e(�) = 0:)37 Now by eliminating e(�); the

designer�s payo¤ now becomes

N

Z 1

0

"
(1� �)

 
W (�)v0(�)� g0(�)

Z �

0

W 0(�̂)
v(�̂)

g(�̂)
d�̂

!#
d� +N�(0):

Integrating by parts of the second expression yields:

N

Z 1

0

(1� �)W (�)v0(�)d� �N
Z 1

0

(1� �) g0(�)d�
Z 1

0

W 0(�̂)
v(�̂)

g(�̂)
d�̂ + (5)

N

Z 1

0

�
W 0(�)

v(�)

g(�)

Z �

0

�
1� �̂

�
g0(�̂)d�̂

�
d� +N�(0):

We can rewrite this as

N

Z 1

0

W (�)(1� �)v0(�)d� �N
Z 1

0

�
W 0(�)

v(�)

g(�)

�Z 1

�

(1� �̂)g0(�̂)d�̂
��
d� +N�(0): (6)

37While both W (�) and e(�) may have step increases, this can be technically solved by using Dirac delltas
and our results will hold. See how this technique is applied to example 7 in equation 2 .
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Again doing integration by parts yields

N

Z 1

0

W (�)

�
(1� �) v0(�) + d

�
v(�)

g(�)

�Z 1

�

�
1� �̂

�
g0(�̂)d�̂

���
d� +

N W (0)

�
v(0) +

v(0)

g(0)

�Z 1

0

�
1� �̂

�
g0(�̂)d�̂

��
�N W (1)`1

where `1 = lim�!1

n
v(�)
g(�)

�R 1
�
(1� �̂)g0(�̂)d�̂

�o
:

Substituting
�
v(�)
g(�)

�0 �R 1
�

�
1� �̂

�
g0(�̂)d�̂

�
�
�
v(�)
g(�)

�
(1� �) g0(�) for d

n
v(�)
g(�)

�R 1
�

�
1� �̂

�
g0(�̂)d�̂

�o

and then replacing
R 1
�

�
1� �̂

�
g0(�̂)d�̂ and

R 1
0

�
1� �̂

�
g0(�̂)d�̂ by �g(�)�g (�)+

R 1
�
g(�̂)d�̂ and

�g (0) +
R 1
0
g(�̂)d�̂, respectively, yields the lemma.

6.2 Proof of Proposition 1

The proof follows the method of Myerson (1981, section 6) with the necessary extension to

deal with z(�) and C(�) at the endpoints of 0 and 1. For notational simplicity, denote z0(0)
as lim�&0 z

0(�), z0(1) as lim�%1 z
0(�) and C 0(1) as lim�%1 C 0(�). We can rewrite the surplus

(divide by N) from Lemma 1 using z(�) and C(�) as follows.

Z 1

0

W (�)

�
v(�)

g(�)

�0�Z 1

�

g(�̂)d�̂

�
d� +W (0)

v(0)

g(0)

Z 1

0

g(�)d� �W (1)`1 =

Z 1

0

W (�)z0(�)d� +W (0)
v(0)

g(0)

Z 1

0

g(�)d� �W (1)maxf`1; 0g �W (1)minf`1; 0g =

Z 1

0

W (�)C 0(�)d� +
Z 1

0

W (�) (z0(�)� C 0(�)) d�+

W (0)
v(0)

g(0)

Z 1

0

g(�)d� �W (1)maxf`1; 0g �W (1)minf`1; 0g =

Z 1

0

W (�)C 0(�)d� �W (1)minf`1; 0g �
Z 1

0

W 0(�)(z(�)� C(�))d�: (7)
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Let us call the cW (�) resulting probability of receiving the object from the mechanism de-

scribed in the Proposition. We will �rst show that the last expression of (7) is maximized

by cW (�): Notice that since z(�) � C(�); for any weakly increasing W; we have

Z 1

0

W 0(�)(z(�)� C(�))d� � 0:

By integration by parts, this then implies

Z 1

0

W (�)(z0(�)� C 0(�))d� +W (0)v(0)
g(0)

Z 1

0

g(�)d� �W (1)maxf`1; 0g � 0:

Therefore, if we show that

Z 1

0

cW (�)(z0(�)� C 0(�))d� +cW (0)v(0)
g(0)

Z 1

0

g(�)d� �cW (1)maxf`1; 0g = 0; (8)

then we prove that the last expression of (7) is maximized by cW (�): Take �1 and �2 where
0 � �1 � �2 � 1, z(�1) = C(�1), and z(�2) = C(�2): If such a �1 and �2 exist, then we will show
that

R �2
�1
cW (�)(z0(�)�C 0(�))d� = 0. Take any [�01; �02] � [�1; �2], where z(�) = C(�) for all � 2

[�01; �
0
2]: Then, for all � 2 (�01; �02); we have z0(�) = C 0(�): Hence,

R �02
�01

cW (�)(z0(�)�C 0(�))d� = 0:
Now the remaining regions in [�01; �

0
2] � [�1; �2] have z(�) > C(�) for all � 2 (�01; �02): This

implies cW 0(�) = 0 within them since if z(�) > C(�); we have C 00(�) = 0 (implying a lottery
within that region). However, across these region

R �02
�01
(z0(�)� C 0(�)) d� = 0, since z and C

are equal at the endpoints. This implies
R �02
�01

cW (�)(z0(�) � C 0(�))d� = 0 and that overall
R �2
�1
cW (�)(z0(�)� C 0(�))d� = 0:
If there is no point � 2 (0; 1) where z(�) = C(�); then cW is a lottery and constant.

Equation (8) follows. We now know that equation (8) holds if there exists a particular �1 and

�2 that satis�es our original conditions 0 � �1 � �2 � 1, z(�1) = C(�1), and z(�2) = C(�2);
yet also satisfy

R �1
0
cW (�)(z0(�) � C 0(�))d� + cW (0)v(0)

g(0)

R 1
0
g(�)d� = 0 and

R 1
�2
cW (�)(z0(�) �

C 0(�))d� �cW (1)maxf`1; 0g = 0:
Now if v(0)

g(0)

R 1
0
g(�)d� = 0; then the �rst new condition is satis�ed since we can set �1 = 0:
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If v(0)
g(0)

R 1
0
g(�)d� > 0, then set �1 as minf� > 0jz(�) = C(�)g: Note that �1 > 0: For all

� 2 (0; �1); we have cW 0(�) = 0 since z(�) 6= C(�): Then, the �rst condition
R �1
0
cW (�)(z0(�)�

C 0(�))d� +cW (0)v(0)
g(0)

R 1
0
g(�)d� =

R �1
0
W 0(�)(z(�) � C(�))d� = 0 is satis�ed. If `1 � 0; then

we can set �2 = 1; and the second condition is satis�ed. If `1 > 0; then we can de�ne �2 as

maxf� > 0jz(�) = C(�)g and proceed in a similar manner.
Now we are left to show that the �rst two expressions of equation (8),

R 1
0
W (�)C 0(�)d��

W (1)minf`1; 0g; are also maximized by cW (�): Whenever C 0(�2) > C 0(�1); which can only
happen if �2 > �1; then at some point in between, C 00 > 0: This then implies that cW (�2)
is maximally higher than cW (�1): Finally, W (1)minf`1; 0g is weakly positive and maximized
by highest possible W (1) if strictly positive, which happens with cW (1).

6.3 Proof of Proposition 3 (ii)

We start by showing that if v(1) is bounded, then `1 � 0: Since v(1) is �nite, lim�!1(� �
1)v(�) = 0: Moreover, since v(�)

g(�)

R 1
�
g(�̂)d�̂ � 0; we have `1 � 0: This shows that the third

part of the expression in Lemma 1 is maximized with a lottery.

We now show that if v(1) is bounded and g(1) > 0; the lim�!1

�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
= 0.

By the mean value theorem, lim�!1

�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
= lim�!1

�
v(�)
g(�)

�0
(1� �) g(�): Since

our assumptions imply that
�
v(�)
g(�)

�0
> 0; a bounded v(1) implies that g is bounded from above.

Hence, we only need to show that lim�!1

�
v(�)
g(�)

�0
(1� �) = 0: Denote z(v=g) = ��1(v=g) and

x = v=g. Since v and g are analytic functions, z(x) is also an analytic function. We also

have z(x) strictly increasing on (x; x) with z(x) = 1. Since v(1) is bounded, g(1) > 0; it

must be that x is �nite. We will now show that

lim
x!x

1� z(x)
z0(x)

= 0:

The proof is by contradiction. Assume not. If so, for this limit to be strictly positive we
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must have limx!x z
0(x) = 0: By L�Hopital�s rule, we have

lim
x!x

1� z(x)
z0(x)

= lim
x!x

�z0(x)
z00(x)

> 0:

Hence, for the same reasons, we must have limx!x z
00(x) = 0: We can repeat this inde�-

nitely, we must have all derivatives equal 0 at x: Therefore, the Taylor series expansion z(x)

at x cannot be equal to the function in the neighborhood of x: This provides a contradiction

that z(x) is an analytic function. Notice that lim�!1 (1� �)
�
v(�)
g(�)

�0
= limx!x

1�z(x)
z0(x)

= 0:

Since lim�!1

�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
= 0, we must have a �0 < 1 such that

�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�

is decreasing for all � > �0. Hence, it would create the highest surplus if there was a lottery

starting weakly below �0 and including 1; that is, goods will be �rst given randomly to those

with types within this region. Since g(�) is bounded,
R 1
�
g(�̂)d�̂ is bounded. Since v(1) is

bounded, g(1) > 0; and
�
v(�)
g(�)

�0
> 0; we have v(�)

g(�)
bounded. Together these imply that

R �2
�1

�
v(�)
g(�)

�0 �R 1
�
g(�̂)d�̂

�
d� is bounded. This implies that the average virtual surplus in the

higher end lottery is bounded. Denote B as this bound. For any �00 < �0 that is not part of

this higher-end lottery. The average surplus of a region including �00 and going to the bottom

of the higher-end lottery is lower than the average surplus in the lottery. However, if we set

� > B=
R 1
0
g(�̂)d�̂; then for bv(�) = v(�) +�g(�) the average surplus including 0 and going to

the bottom end of the higher-end lottery must be higher than B. Hence, a lottery overall is

optimal.

Geometrically, the slope of z(�) is not only bounded, but �at as it nears 1. Increasing

v(�) to bv(�) simply shifts z(�) up by a constant. Since it is weakly increasing for all � < 1,
for a large enough shift we have C(�) simply be a line from z(0) to z(1) and hence a lottery

is an optimal mechanism.
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