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Abstract

Our objective is to assess whether dynamics hinder or assist co-ordination in a game with

strategic complementarities. We study two dynamic aspects: different agents make decisions

at different points in time; and extra information about a payoff-relevantstate of nature be-

comes available over time. We find that the dynamic resolution of information mattersmost for

uniqueness of equilibrium. This is demonstrated by showing that the condition for uniqueness

is weaker when learning occurs. We also analyse how successfully agents co-ordinate when

there is a unique equilibrium. Finally, we show that path dependence occurs: the order in which

signals arrive matters, as well as the total amount of information received.
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1 Introduction

Games with strategic complementarities have been the subject of much study in economics, for a

number of reasons. They have proved useful for the analysis of a variety of important economic

situations, such as currency attacks, financial contagion,bank runs, poverty traps and technology

choice with network externalities. In addition, these games provide a tractable environment in which

to understand further the role of common knowledge, information and beliefs in Bayesian games. A

central concern of this research has been the issue of equilibrium multiplicity. Games with strategic

complementarities typically have more than one equilibrium. When the multiple equilibria can be

Pareto ranked, this leads naturally to the question of whether the Pareto-preferred equilibrium will

in fact be played. Multiple equilibria also present familiar difficulties for an analyst who wishes to

predict the outcome of a particular game, or to conduct policy evaluation.

Most applied and theoretical studies have concentrated on one-shot, static games. (Exceptions

to this statement are reviewed below.) In this paper, we examine a dynamic game with strategic

complementarities. Two features make the game dynamic: first, different agents make decisions at

different points in time; secondly, extra information about a payoff-relevant state of nature becomes

available over time. Our objective is to assess whether these dynamic features hinder or assist the

co-ordination process. In particular, we ask whether equilibrium multiplicity is more or less likely

in a dynamic setting; and, when there is a unique equilibrium, how successfully agents co-ordinate

in that equilibrium.

We study a two-period game with one risk-less and one risky action. In the fully dynamic version

of the game, a mass one of agents acts in each of the periods. Agents who act in the first period

receive a noisy signal about an underlying state of nature that affects payoffs. Agents who act in the

second period observe not only the first period signal and howmany agents chose the risky action

in period 1; they observe also a second (noisy) signal about the state. If a sufficient mass of agents

across the two periods choose the risky action, then those who chose it receive an additional payoff

from successful co-ordination. Hence the two sets of agentsface different situations. Agents acting

in the first period do so with more limited information. The agents who act in the second period have

superior information, but face the irreversible decisionstaken by agents in the firs period.

Our results come in two parts. In the first part, we show how thetiming of decisions and in-

formation resolution affects the outcome of co-ordination. A key measure for the analysis is the

co-ordination effect—the effect that agents have on the probability of successful co-ordination. The

size of the co-ordination effect is critical. If it is large,and if all agents choose the risk-less (risky)

action, then there is a low (high) probability that co-ordination will be successful. This sensitiv-

ity of the final outcome to agents’ decisions leads naturallyto multiple equilibria. In contrast, if
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agents’ decisions have little effect on the probability of successful co-ordination, then a unique equi-

librium will result. In short, a necessary and sufficient condition for equilibrium uniqueness is that

co-ordination effects are small.

As a benchmark, we first consider a static version of the model: agents act simultaneously and all

information (signals about the state) are received before decisions are made. An intuitive property

holds: co-ordination effects are small when fundamental uncertainty (measured by the variance of

posterior beliefs about the state) is high. At extreme values of the underlying state, even co-ordinated

action by the agents cannot influence the probability of successful co-ordination—if the state is very

low, then there is little prospect of successful co-ordination; the converse holds if the state is high.

In these cases, then, agents’ payoffs are largely determined by the state of nature, co-ordination is

irrelevant, and there is a unique equilibrium. When the posterior variance is high, there is a high

probability that the underlying state takes an extreme value, and hence a high probability that co-

ordination is irrelevant. Hence high posterior variance (or ‘fundamental uncertainty’) leads to a

unique equilibrium. (A similar result has been pointed out in Morris and Shin (2005).)

This first step concentrates on conditions for equilibrium uniqueness and multiplicity. In this

sense, greater uncertainty assists co-ordination by ensuring a unique equilibrium. It also has impli-

cations for how successfully agents co-ordinate in equilibrium. We show that when signals about

the underlying state are sufficiently weak, greater uncertainty ensures a unique equilibrium with a

greater degree of co-ordination (and hence higher payoffs)than the Pareto-preferred outcome when

there are multiple equilibria. But when signals are sufficiently strong, the unique equilibrium has

lower co-ordination and payoffs than any outcome when thereare multiple equilibria. We also show

that greater heterogeneity (in agents’ idiosyncratic valuations) always assists co-ordination, by en-

suring a unique equilibrium with more co-ordination than the Pareto-preferred outcome when there

are multiple equilibria.

Next, we show that the co-ordination effect for first-moversis greater than for second movers.

This means that if there is a unique equilibrium strategy forearly movers, then there is a unique

equilibrium overall. Hence we concentrate on the co-ordination effect for early movers.

Finally, we show that what matters most is the dynamic resolution of information. To show this,

we consider two more versions of the model. In the second version, agents act sequentially (half of

them in the first period, half in the second), but all signals are received before the early movers make

their decisions. In the third, fully dynamic version, agents act sequentially and the two signals arrive

sequentially at the beginning of each period. In all three versions, there is a unique equilibrium if

fundamental uncertainty is sufficiently large. In the first two versions (i.e., the static and partially

dynamic cases), the critical value is equal—that is, spreading agents’ decisions over time makes no

difference to the condition for equilibrium uniqueness in this model. In contrast, the critical value is
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less in the third, fully dynamic version; and is smaller whenthe precision of the signals is high. In

short, dynamic learning about an unknown state helps to eliminate equilibrium multiplicity.

The importance of learning for equilibrium determination suggests a second set of results, which

we label path dependence. As the choices of early movers havean effect on late movers, signals

arriving in the first period have a greater effect on the equilibrium outcome. So, two models with the

same aggregate information (i.e., the signals in total convey the same information about the state)

can have quite different equilibrium paths when the signalsarrive in different orders.

We formalize this possibility in several different ways. Anincrease in the mass of agents mov-

ing in the first period shifts the distribution of agents moving in the second period in a first-order

stochastic dominance sense. A direct implication of this result is that an early signal has a bigger

effect on the equilibrium outcome than a late one. This raises the issue of distinguishing equilibrium

multiplicity from path dependence.

An early study of dynamic co-ordination games was provided by Farrell and Saloner (1985).

In a complete information model, they find that fully sequential adoption prevents co-ordination

failures, ensuring a unique, efficient (sub-game perfect) equilibrium. In the incomplete information

version of the game, neither efficiency nor uniqueness of equilibrium can be ensured.1 The game

that we study differs from the two games in Farrell and Saloner in a number of ways. We want to

examine the effects of learning; so we include, as well as incomplete information about the types

of players, uncertainty about an underlying state of naturethat decreases (through the sequential

arrival of informative signals) over time. Furthermore, inour model, a large number of agents

moves in each period; hence we study co-ordination both within and between groups. In contrast,

Farrell and Saloner concentrate on the between-groups problem. The between-group problem is, of

course, important; but we argue that within-group co-ordination is equally important, particularly in

applications, and merits study.

Two more recent papers that derive unique equilibria in dynamic games with strategic com-

plementarities are Burdzy, Frankel, and Pauzner (2001) and Herrendorf, Valentinyi, and Waldman

(2000). Both explicitly introduce heterogeneity among agents and show that sufficient heterogeneity

can ensure equilibrium uniqueness. (In Herrendorf, Valentinyi, and Waldman (2000), agents differ

in their productivity in the increasing returns-to-scale sector in the Matsuyama (1991) two-sector

model. In the same setting, Burdzy, Frankel, and Pauzner (2001) have agents who are different in

their ability to revise their strategies.) The focus of bothpapers is different from ours, and so neither

concentrate on the role of sequential actions and signals inensuring uniqueness of equilibrium.

A paper apparently close to this one is Dasgupta (forthcoming). His objectives are similar to

1The potential inefficiency of equilibrium is not surprising. Farrell and Saloner show that there is a unique symmetric

equilibrium, but cannot rule out the existence of asymmetric equilibria.
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ours: he aims to investigate how separating decisions over time, and the sequential arrival of infor-

mation, affect a co-ordination game. His set-up is, however, quite different. He bases his model

on a global game. Global games are games of incomplete information whose type space is deter-

mined by the players each observing a noisy signal of an underlying state; see Carlsson and van

Damme (1993), Morris and Shin (1998), and Morris and Shin (2005). Dasgupta looks at the equilib-

ria in monotone pure strategies that emerges as noise in his model becomes small. He considers the

uniqueness and efficiency of equilibrium in this limit. A complication of his model is that agents’

types are (unconditionally) correlated.2 As a result, he is not able to eliminate the possibility that

there are other, non-monotone equilibria. In contrast, in our model, agents’ types are independent;

an immediate implication is that any equilibrium must be in monotone pure strategies (see lemma

1). When we find a unique equilibrium in this paper, therefore,we can be sure that no other equi-

libria exist. We analyse the conditions under which there isa unique equilibrium. We find that we

require sufficiently noisy signals of the underlying state.The more homogeneous are the agents (this

case being the closest equivalent to Dasgupta’s limit case), the greater must be the noise to ensure

equilibrium uniqueness.

Path dependence arises also in the literature on herding. Since Banerjee (1992) and Bikhchan-

dani, Hirshleifer, and Welch (1992), numerous papers have shown that models in which there is se-

quential learning from other agents’ action choices produce an extreme form of path dependence. In

these models, the action choices of agents who make decisions after observing others’ choices may

depend entirely on those earlier choices i.e., later moversignore entirely their own private informa-

tion. The present paper identifies a different form of path dependence, which, unlike the informa-

tional externality in the herding literature, arises due tothe complementarity among choices. Since

there is no (relevant) private information in our model, there is no issue of information aggregation—

the crucial ingredient for path dependence in the herding literature. The path dependence in the

present paper follows because earlier choices change the payoff from the risky action choice.

The paper is organized as follows. In section 2, a simple two-period model is developed in

which agents’ payoffs are affected by the possibility of co-ordinated action with other agents, and

an unknown state of nature. (The model can be interpreted in terms of investors facing a risky

project; or a firm selling a durable good with uncertain demand.) Section 3 starts with a preliminary

analysis where the necessary and sufficient condition for equilibrium uniqueness is obtained in a

simplified, static model; following subsections extend theanalysis to the dynamic case, showing

that the dynamic setting provides a mechanism which facilitates co-ordination. Section 4 analyzes

the dependence of the equilibrium outcome on the order in which information about the state arrives.

2Each agent receives a noisy signal of the unknown state. Hence the agents’ types in the Bayesian game are correlated

by the common state on which their signals are based; although conditioned on the state, their types are independent.
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The final section concludes. The appendix contains the proofof lemma 2 and an extension to the

basic model to test the robustness of our conclusions.

2 Model

Let the state of the world be denotedθ ∈ R which is not observed by agents. All agents have a

common prior onθ which is normally distributed with meanµ0 and varianceσ2
0. In each period

t ∈ {1, 2}, a signalXt is drawn and observed by all agents.3 The signalXt in periodt is determined

by Xt = θ + ǫt; {ǫt}t∈{1,2} are drawn independently from the same normal distribution with zero

mean and varianceσ2
ǫ .

For convenience we collect the following standard results in Bayesian updating for normal dis-

tributions. After a signal drawX1 = x1, the agents’ posterior is normally distributed with mean

µ1 = (σ2
ǫ µ0 + σ2

0x1)/(σ
2
0 + σ2

ǫ ) and varianceσ2
1 = σ2

0σ
2
ǫ /(σ

2
0 + σ2

ǫ ). After signal drawsX1 = x1 and

X2 = x2, the agents’ posterior is normally distributed with meanµ2 = (σ2
ǫ µ0 + σ2

0(x1 + x2))/(σ
2
0 +

2σ2
ǫ ) and varianceσ2

2 = σ2
0σ

2
ǫ /(σ

2
0 + 2σ2

ǫ ).

In each period, there is a continuum of agents of total mass 1,represented by the unit interval

[0, 1], making the total population 2. Agents must choose an action, y, from a binary action space,

{0, 1}. Choosing action0 guarantees the agent zero payoff. On the other hand, the utility from

choosing action1 consists ofi) ζ, which is an idiosyncratic parameter in the agent’s utility,ii) the

cost of choosing the action, which is normalized to 1, andiii) γ, which is the extra payoff in the

event of co-ordination success. The first component,ζ, represents the heterogeneity among agents

and is assumed to be uniformly distributed on the interval[0, β], β > 0, throughout the population of

agents each period. The third component,γ > 0, represents the benefit of successful co-ordination.

The agent receives it if the sum of the random state,θ, and the numbers of agents choosing action

1 in periodst ∈ {1, 2}, is greater than some threshold; the size of the threshold matters little in the

subsequent analysis, so we set it equal to 1. Otherwise the agent receives zero from this component.

Hence choosing actiony = 1 yields the following utility:

Uζ(y = 1| θ, α1, α2) =

{

ζ − 1 + γ if θ + α1 + α2 ≥ 1,

ζ − 1 if θ + α1 + α2 < 1
(1)

whereαt is the mass of agents who choose action1 in periodt.

Givenαt representing the strategy choices of agents in periodt ∈ {1, 2}, the expected utility of

3We use the notational convention that a Roman alphabet denoting a random variable is written in upper-case and its

realization is written in lower-case.
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an agent who chooses actiony in periodt on receiving signalXt is:

E[Uζ(y| θ, α1, α2)|Xt] = [ζ − 1 + γ Pr(θ + α1 + α2 ≥ 1|Xt)]y. (2)

The timing of the game in each period is that all agents observe the same random signalXt, and

then choose an action simultaneously. The game is repeated twice with the signal and the choices of

the first period revealed to the agents before the second period decision. The information setsΩt for

all agents at timet are, therefore,Ω1 = {X1} andΩ2 = {X1, X2, α1}. Notice thatα2 andX2 are

both random variables in period 1. In period 2, the signalX2 as well as the first period signal,X1,

and fraction of agents choosing action 1 in the first period,α1, are revealed to the agents.

This model can be generated by a number of stories. For example, a firm operates with an

existing debt ofD which has to be serviced out of the firm’s profit at the end. If the profit is less than

debt service requirement, then the firm goes bankrupt. Profitis earned from selling to consumers;

in addition, random shocks affect the firms’ profit. Each consumer has unit demand, and gains

additional utility if the firm is not bankrupt at the end (thisutility may come from e.g., continued

availability of parts after purchase in the case of durable goods).4 Alternatively, consider a group of

investors deciding whether to invest in a safe project (action 0) or a risky project (action 1). The risky

project succeeds only if a critical mass of investors backs it and the underlying state is favourable.

Information about the state arrives over time and so investors have the chance of learning more about

the probability of success before acting.

2.1 Complete information benchmark

As a benchmark, first consider the complete information gamein which all agents observeθ (which

is therefore common knowledge), and choose an action simultaneously. A (pure) strategy for an

agent is mapping from its typeζ to an action. For extreme values ofθ, there is clearly a unique

equilibrium. Whenθ < −1, an agent chooses action 0 iff its typeζ < 1, otherwise it chooses action

1. (Obviously, ifβ < 1, then no agent chooses action 1 in this case.) In fact, this equilibrium exists

for all values ofθ ≤ (2 − β)/β. Whenθ > 1, an agent chooses action 0 iff its typeζ < 1 − γ,

otherwise it chooses action 1. (Obviously, ifγ > 1, then no agent chooses action 0 in this case.) In

fact, this equilibrium exists for all values ofθ ≥ (2 − β − 2γ)/β. We illustrate these equilibria in

figure 1, in which we assume thatβ > 1 > γ. In the figure,ζ∗ refers to the type that is indifferent

between actions 0 and 1.
4The model can be applied to various settings other than the case of durable goods. For instance, a factor supplier

might be concerned about the financial viability of a firm and willing to invest in the relationship only if the firm is likely

to survive. The investment decision of the factor supplier influences the firm’s production cost which in turn affects the

financial viability of the firm.
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12−β−2γ
β

2−β
β

Figure 1: Complete information equilibria

As the figure demonstrates, there are multiple equilibria inthe complete information game when

θ is in the interval[(2 − β − 2γ)/β, (2 − β)/β], if β > 1 andγ < 1. In the remainder of the paper,

we shall assume thatβ > 1 > γ. We note, however, that none of our arguments rely particularly

on these assumptions. They simplify the analysis, by reducing the number of cases that has to

be considered. With these parametric restrictions, there are positive masses of agents for whom it

is strictly dominant to choose action 0 and action 1. But our general results do not rely on this

simplification, and apply also when there are equilibria in which all agents choose either action 0 or

1. (We expand on this remark in section 3.1.)

2.2 Incomplete information game

When choosing an optimal strategy in the incomplete information game, agents rely on a posterior

obtained from the prior and the signal according to Bayes’ rule. We employ the concept of perfect

Bayesian equilibrium where each agent’s strategy maximizesits expected utility given the strategies

of all other agents and its Bayesian posterior.

Definition 1 The agents’ choicesy(ζ,Xt) and the beliefs on the strategy choice constitute a perfect

Bayesian equilibrium of the game if

1. for ζ ∈ [0, β], y(ζ, Ω1) = arg maxy E[Uζ(y|θ, α1, α2)|Ω1], and
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y(ζ, Ω2) = arg maxy E[Uζ(y|θ, α1, α2)|Ω2],

2. α1 =
∫ β

0
y(ζ, Ω1)

1
β

dζ andα2 =
∫ β

0
y(ζ, Ω2)

1
β

dζ.

Note that for givenXt = xt, α1 andα2, all agents withζ satisfying1 − γ Pr(θ + α1 + α2 ≥
1|Ωt) ≤ ζ ≤ β have non-negative expected utility from action 1 and so choose it.5 This observation

implies that

Lemma 1 The best response of an agent to any strategy profile played byits opponents is a mono-

tone pure strategy of the form:

y =







0 if ζ ≤ ζ∗,

1 if ζ > ζ∗.

Consequently,α1(x1) as a function of the first period signalx1 is determined by

α1(x1) =



















0 if 1 − γ Pr(θ + α2 ≥ 1|x1) ≥ β,

1 if 1 − γ Pr(θ + 1 + α2 ≥ 1|x1) ≤ 0,

β−1+γ Pr(θ+α1+α2≥1|x1)
β

∈ (0, 1) otherwise

and similarly forα2(x2). Hence we can identify the equilibrium with a functionαt(x) which maps

from the signal space to the unit interval[0, 1] according to these three cases. Note, however, that

since we assume thatβ > 1 > γ, we can rule out the equilibria corresponding toα = 0 andα = 1.

Hence equilibrium is given by the (implicit) solution to

α1(x1) =
β − 1 + γ Pr(θ + α1 + α2 ≥ 1|x1)

β
∈ (0, 1). (3)

Multiple equilibria exist if, for a realization of signal, there are multiple roots to the implicit equation

(3).

3 Uncertainty and Co-ordination

In the following we take three different information structures/choice orders to highlight the interac-

tion of the three factors for equilibrium determination.

5This follows from the fact that optimization requires choosing action 1 if and only if its payoff is positive.
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3.1 Simultaneous Information and Choice

We first analyze the benchmark case where two signals are received simultaneously and a mass 2

of agents with idiosyncratic valuationsζ distributed on[0, β] choose simultaneously. Hence the

information set of the agentsΩ1 = Ω2 = {X1, X2}. This case reduces the fully dynamic model,

which we shall study in section 3.3, to a static one. This benchmark will help us to identify the

separate effects of sequential choice and learning.

Given two independently drawn signalsx1 andx2, the agents’ common posterior on the state

is normally distributed with meanµ2 = (σ2
ǫ µ0 + σ2

0(x1 + x2))/(σ
2
0 + 2σ2

ǫ ) and varianceσ2
2 =

σ2
0σ

2/(σ2
0 + 2σ2

ǫ ). The expected utility of a type-ζ agent from choosing action 1 is therefore

E[Uζ(θ, α)] = ζ − 1 + γ Pr[θ + 2α ≥ 1|X1, X2].

(For comparison with later calculations,α is the fraction of a unit mass of agents choosing action

1 in each period, so that in total a mass2α chooses action 1.) Sinceθ is normally distributed with

meanµ2 and varianceσ2
2,

E[Uζ(θ, α)] = ζ − 1 + γ

(

1 − Φ

(

1 − 2α − µ2

σ2

))

,

whereΦ(·) is the standard normal distribution function.

Agents choose action 1 if and only if the expected net utilityfrom doing so is greater than zero.

In equilibrium, therefore,α is determined by

α =
β − 1 + γ

(

1 − Φ
(

1−2α−µ2

σ2

))

β
∈ (0, 1) (4)

(recalling thatβ > 1 > γ implies that there is no equilibrium withα = 0 or α = 1).

Proposition 1 There is a unique equilibrium in the simultaneous information/choice case if and

only if σ2 ≥ γ
β

√

2
π
.

Proof. Rearrange equation (4) to define the function

f(α|x) ≡ αβ − β + 1 − γ

(

1 − Φ

(

1 − 2α − µ2

σ2

))

. (5)

An equilibrium is given byf(α|x) = 0. A necessary and sufficient condition for there to be a unique

solution to this equation is that the functionf(α|x) is single-upward crossing inα. We show in this

proof that the necessary and sufficient condition is in fact that the functionf(α|x) is non-decreasing

in α for all α ∈ [0, 1].
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We start with the sufficient condition. Forf(α|x) to be single-upward crossing, it is clearly

sufficient thatf(α|x) is non-decreasing inα. Differentiation of the expression in equation (5) gives

df(α|x)

dα
= β − 2γ

σ2

φ

(

1 − 2α − µ2

σ2

)

.

Sinceφ(·) ≤ 1/
√

2π, f(α|x) is non-decreasing if

β − 2γ

σ2

1√
2π

≥ 0 (6)

which establishes the first part of the proposition.

To establish necessity, we find a particular signal realization for which multiple equilibria exist

if the condition of the proposition is violated. Consider thesignal realization̂x defined by

µ(x̂) , 1 − 2(β − 1) + γ

β
.

At this signal realization, equation (4) shows that

α =
β − 1 + γ/2

β

is an equilibrium. We now show that other equilibria exist when the condition in the proposition is

violated.

Clearly, the functionf(α|x) is continuous inα. Given thatf(0|x̂) < 0 andf(1|x̂) > 0, if

the derivative off(α|x̂) = 0 with respect toα is negative aroundα = β−1+γ/2
β

, then the equation

f(α|x̂) = 0 has at least two more roots sincef(α|x̂) is continuous inα and f(0|x̂) < 0 and

f(1|x̂) > 0. Taking the derivative off(α|x̂) with respect toα, we get

df(α| x̂)

dα
= β − 2γ

σ2

φ(0) = β − 2γ

σ2

√
2π

.

It follows that if the condition in the proposition is not satisfied i.e.,

β <
2γ

σ2

1√
2π

,

then there are multiple equilibria. The proof is complete.

The basic working of proposition 1 is illustrated in figure 2.The dotted line represents a case

in which there are multiple equilibria, marked by points at which the function crosses zero (in this

illustration, there are three equilibria). The solid line shows a case in which there is a unique equi-

librium. The two cases are distinguished by the slope of the functionf(α|x). In the former case,

f(α|x) is a non-monotonic function ofα, and has multiple crossing points. In the latter,f(α|x) is

single-upward crossing inα.
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α

f(α|x)

0
1

b b b b

Figure 2: Illustration of proposition 1

This observation also shows why the assumption thatβ > 1 > γ does not sacrifice generality.

With these parameter values, any equilibrium must be interior i.e., haveα ∈ (0, 1). If we allow

other parameter values, then there can be equilibria in which α = 0 or α = 1. The former occurs if

f(α = 0|x) ≥ β; the latter iff(α = 1|x) ≤ 0. Suppose that these equilibria are possible. It is still

the case that there is a unique equilibrium (which might involve eitherα = 0 or α = 1) iff f(α|x) is

non-decreasing inα.6

The mechanism which determines the equilibrium level ofα is central to the understanding of

the result. Given the signal realization, the strategy choice of agents is represented by the proportion

of agents who choose action 1, i.e.,α. The relationship between the equilibrium strategy and the

equilibrium proportion is the consistency condition that given theα implied by the strategy, agents do

not want to deviate from the strategy. The implicit functionin the last line of equation (3) represents

this consistency condition. There is a unique equilibrium when, for any signal realization, there is a

unique value ofα which satisfies the consistency condition.

Technically, we show that the implicit function inα that defines equilibrium is a contraction

6To see why this statement is true, consider first sufficiency.If f(α|x) is non-decreasing inα, then only three cases

are possible: (i)f(0|x) > 0 and sof(α|x) > 0 for all α ∈ [0, 1]; (ii) f(1|x) <) and sof(α|x) < 0 for all α ∈ [0, 1];

(iii) f(0|x) < 0 andf(1|x) > 0, so that there is a uniquêα ∈ (0, 1) such thatf(α̂|x) = 0. (With β > 1 > γ, only

case (iii) is possible.) In all three cases, there is a uniqueequilibrium, given byα = 0, α = 1 andα = α̂ respectively.

Necessity follows from observing (as in the proof of proposition 1) that iff(a|x) is non-monotonic, then there are signal

realisations such that there are multiple equilibria.
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mapping. Usually, this gives only a sufficient condition fora unique solution. But since the function

must be a contraction for all possible signal realizations,the contraction condition is both necessary

and sufficient. Intuitively, the contraction condition ensures that theco-ordination effectis small.

We define the co-ordination effect as

CE ≡ ∂ Pr[θ + 2α ≥ 1|x1, x2]

∂α

that is, the effect that agents have on the probability of successful co-ordination. If the co-ordination

effect is large, then if all agents choose action 0 (1), then there is a low (high) probability that co-

ordination will be successful i.e.,θ + 2α < (≥)1. This sensitivity of the final outcome to agents’

decisions leads naturally to multiple equilibria. In contrast, if agents’ decisions have little effect on

the probability of successful co-ordination, then a uniqueequilibrium will result.

The proposition also shows that the co-ordination effect issmall when fundamental uncertainty

(measured byσ2, the variance of the posterior) is high. This is quite intuitive; a similar observation

has been made by Morris and Shin (2005).7 At the extreme values of the underlying state, even

co-ordinated action by the agents cannot influence the probability of successful co-ordination. Ifθ

is very low, then there is little prospect of successful co-ordination; and conversely ifθ is high. In

these cases, then, co-ordination is irrelevant and there isa unique equilibrium. When the posterior

variance is high, there is a high probability that the underlying stateθ takes an extreme value. The

proposition makes this statement precise, showing that when the posterior variance exceeds a critical

value, the co-ordination effect is small and therefore equilibrium is unique.

The critical value ofσ2 depends on the degree of heterogeneity in agents’ idiosyncratic payoffs,

measured byβ, and the payoff from successful co-ordination,γ. The smaller is the degree of agent

heterogeneity, the greater is the critical level ofσ2 required for a unique equilibrium. In the limit,

asβ tends to zero, the heterogeneity between agents becomes negligible and payoffs are determined

almost entirely by co-ordination. Clearly in this case, the condition for equilibrium uniqueness

becomes very demanding.8 A similar intuition applies to the comparative static of thecritical value

with respect to the co-ordination parameter. Whenγ is very large, (successful) co-ordination is

critical for agents’ payoffs. In the limit, asγ tends to infinity, payoffs are determined entirely by

co-ordination; and again, the condition for equilibrium uniqueness becomes very demanding. In

fact, due to the functional form of agents’ payoffs, only theratio of the two payoff parametersβ and

7Morris and Shin deal with interaction games, which include global games. The result here is a special case of their

setting, in which there is zero correlation between agents’types.
8This observation highlights the difference between our model and a global game, as used by e.g., Dasgupta (forth-

coming). In a global game, a unique equilibrium is selected in the limit as agents become homogeneous (i.e., as their

private types become very highly, but not perfectly, correlated). In our model, the condition for a unique equilibrium

becomes harder to satisfy as agents’ types become homogeneous.

12



γ matters for the analysis, as the condition in Proposition 1 shows.

3.1.1 Hindering or assisting co-ordination?

Proposition 1 determines when there is a unique equilibriumin the co-ordination game. When

σ2 < γ
β

√

2
π
, there are multiple equilibria for certain signal realisations. Given those signals re-

alisations, an increase inσ2 (or equivalently a decrease inγ/β), so thatσ2 ≥ γ
β

√

2
π
, leads to a

unique equilibrium. Uncertainty, in this sense, assists co-ordination. But does uncertainty make

co-ordination more successful, in the sense of increasing the proportion of agents choosing action 1

in equilibrium? Since agents’ actions are strategic complements, multiple equilibria can be Pareto-

ranked; the equilibrium that involves the largestα (the smallest critical typeζ∗ that is indifferent

between actions 0 and 1) is Pareto-preferred. When there is a unique equilibrium, how does it relate

to the Pareto-preferred outcome with multiple equilibria?

Consider first a decrease in the ratioγ/β. It is straightforward to show that the value of the

functionf(α|x) is decreasing in this ratio. This is illustrated in figure 2: the non-monotonic function

with multiple equilibria (the dotted line) lies everywhereabove the non-decreasing function with a

unique equilibrium (the solid line). Consequently, the unique equilibrium involves anα which is

greater than theα in the Pareto-preferred outcome with multiple equilibria.The intuition for this is

straightforward. The ratioγ/β is low when there are large benefits from successful co-ordination,

or when the heterogeneity in agents’ idiosyncratic payoffs. In both cases, the mass of agents that

chooses 1 in the unique equilibrium is necessarily larger.

Now consider a mean-preserving spread in posteriors, by increasingσ2 while keepingµ2 con-

stant.9 The sign of the change in the value of the functionf(α|x) is equal to the sign of−(1− 2α−
µ2). So, for very strong signals (highx1 andx2, such thatµ2 > 1), the value off(α|x) increases

with an increase inσ2. For very low signals (such thatµ2 < −1), it decreases. Referring again to

figure 2, we see that the unique equilibrium in the first case involves anα which is lower than any

equilibriumα with multiple equilibria. In the second case, theα in a unique equilibrium is greater

than anyα with multiple equilibria. So, greater uncertainty increases the degree of equilibrium co-

ordination when signals indicate a low value ofθ, but decreases co-ordination when signals indicate

a highθ. This observation is a direct consequence of the effect of a mean-preserving spread on the

probability 1 − Φ((1 − 2α − µ2)/σ2) of successful co-ordination. An increase inσ2 places more

mass in the tails of the posterior distribution of beliefs about θ. With low signals, this increases the

probability of successful co-ordination; with high signals, it decreases it.

9In order to increaseσ2, eitherσ0 or σǫ must be increased. But note that this also increasesµ2. In this discussion,

we assume that any increase inσ2 is done in such a way thatµ2 is kept constant.
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We summarise this discussion in the following proposition.

Proposition 2 Consider signal realisations such that there are multiple equilibria whenσ2 < γ
β

√

2
π
.

Let αM be the lowestα ∈ (0, 1) occurring among the multiple equilibria; letαM be the highest

equilibriumα ∈ (0, 1).

1. Holdσ2 constant, and decreaseγ/β so thatσ2 ≥ γ
β

√

2
π
. In the unique equilibrium that results,

α > α.

2. Hold γ/β constant, and increaseσ2 so thatσ2 ≥ γ
β

√

2
π

(but µ2 is constant). In the unique

equilibrium that results, ifµ2 > 1, thenα < α; if µ2 < −1, thenα > αM .

Greater uncertainty can, therefore, both hinder and assistco-ordination. It always assists co-

ordination, in the sense that with sufficient uncertainty (σ2 sufficiently large), there is a unique equi-

librium. When signals are weak, it assists also by ensuring anequilibrium with a greater degree of

co-ordination (and hence higher payoffs) than the Pareto-preferred outcome when there are multiple

equilibria. But when signals are strong, the unique equilibrium has lower payoffs than any outcome

when there are multiple equilibria. Greater heterogeneity, in the sense of an increase in the ratio

γ/β, always assists co-ordination, in both senses.

3.2 Simultaneous Information and Sequential Choice

The next benchmark examined, before turning to the ‘fully’ sequential problem, is the one in which

a unit mass of agents choose in each of the two periods, with the same information: signalsX1 and

X2 drawn at the beginning of period 1 and observed by both sets ofagents. HenceΩ1 = {X1, X2}
andΩ2 = {X1, X2, α1} and the posterior on the state for both periods is normally distributed with

meanµ2 and varianceσ2
2.

We consider this case in order to uncouple the timing of decisions among agents from the timing

of resolution of information. This allows us to assess whether the importance of co-ordination

is reduced when agents move sequentially. The result in thissubsection indicates that this is not

the case, since the necessary and sufficient condition for unique determination of equilibrium is

identical to the static case of the previous subsection. In fact we obtain a stronger result than the

identical necessary and sufficient condition; the next proposition proves that the equilibrium under

simultaneous information and sequential choice is identical to that under simultaneous information

and choice.

Proposition 3 The equilibrium in the simultaneous information/sequential choice case is identical

to that in the simultaneous information and choice case.
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Proof. We first show that the equilibrium under this case is symmetric in the sense that the equilib-

rium value ofα1 andα2 are identical. Note that the equilibrium condition forα1 andα2 are given

as:

α1 =
β − 1 + γ

(

1 − Φ
(

1−α1−α2(α1)−µ2

σ2

))

β
. (7)

and

α2 =
β − 1 + γ

(

1 − Φ
(

1−α1−α2−µ2

σ2

))

β
. (8)

Suppose thatα1 andα2 are not identical. However the right hand sides of equations(7) and (8)

evaluated for givenα1 andα2 are identical. Hence they cannot be equal to differentα1 andα2.

The symmetry of the equilibriumα’s imply that the equilibrium condition is reduced to

α =
β − 1 + γ

(

1 − Φ
(

1−2α−µ2

σ2

))

β
. (9)

which is the equilibrium condition for simultaneous information and choice. The proof is complete.

The proof relies on the fact that the response functions forα1 andα2 are identical. The symmetry

of the equilibrium is more general than in the present model as demonstrated in Lee and Lee (2005),

which shows that the symmetry of equilibrium for games with symmetric and non-decreasing re-

sponse functions.

The proposition indicates that the case of simultaneous information and sequential choice is es-

sentially identical to that of simultaneous information and choice. Hence the necessary and sufficient

condition for a unique equilibrium is also identical, whichis stated in the following corollary without

proof.

Corollary 1 The sufficient and necessary condition for a unique equilibrium in the simultaneous

information/sequential choice case is the same as that in the simultaneous information and choice

case.

Those agents who move later observe the decision of early-movers, and so their co-ordination

effect is smaller (i.e.,CE1 ≥ CE2). Intuition based on this observation would suggest that co-

ordination should be easier with sequential action choices. But early movers, anticipating the choices

of late movers, face the same co-ordination difficulty sincethe effect of their decision is subsequently

amplified by those who move in the later stage. Hence sequential action choice alone does not make
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co-ordination easier in this model. This result appears to be quite robust. For example, we have

verified that it holds when there are different masses of agents moving in the two periods.10

The current case can be contrasted to the complete information model in Farrell and Saloner

(1985). In the latter, there is a unique subgame perfect equilibrium. In contrast, our analysis indi-

cates that sequential decision making does not help, relative to the static (i.e., simultaneous infor-

mation/choice) case, in ensuring a unique equilibrium. Thedifference can be understood by the fact

that our model has a continuum of agents; hence there is stilla co-ordination problem in each period.

3.3 Sequential Information and Choice

Finally, we analyze the fully dynamic case in which signals are revealed and choices are made

sequentially. We assume that each period,t ∈ {1, 2}, a signal is revealed to the agents who sub-

sequently choose their strategy conditional on the information. In the second period agents also

observe the decisions made in the first period before making their own choice. HenceΩ1 = {X1}
andΩ2 = {X1, X2, α1}.

The agents who move in the second period have the same information as the previous case of

simultaneous information/sequential choice. The first period problem is different, however. Previ-

ously, the fractionα2 of agents choosing action 1 in the second period was not subject to uncertainty

from a further signal draw (even if indeterminate due to multiplicity). Now, α2 is a random variable

from the perspective of period-1 agents since it will be determined conditional on the realization of

the signalX2.

In the first period, the agents’ common posterior onθ is normally distributed with meanµ1 =

(σ2
ǫ µ0 + σ2

0x1)/(σ
2
0 + σ2

ǫ ) and varianceσ2
1 = σ2

0σ
2
ǫ /(σ

2
0 + σ2

ǫ ). In the second period, the agents’

common posterior onθ is determined as in the previous subsection: it is normally distributed with

meanµ2 = (σ2
ǫ µ0 + σ2

0(x1 + x2))/(σ
2
0 + 2σ2

ǫ ) and varianceσ2
2 = σ2

0σ
2
ǫ /(σ

2
0 + 2σ2

ǫ ). In addition we

need information on how the second period signal,X2, and the fundamental,θ, are correlated: their

covariance is given byσ2
1 so that the correlation coefficient is computed asρ =

σ2
1

σ1

√
σ2
1+σ2

ǫ

.11

Proposition 4 Define

λ ≡ inf
τ

(

Pr(|Z| ≤ τ) + exp

[

− ρ2τ 2

2(1 − ρ2)

]

Pr(|Z| > τ)

)

whereZ is a standard normal random variable andρ is the correlation coefficient betweenθ and

10The proof of this statement is available on request.
11Since the random variable,X2, is a noisy signal of the fundamentalθ, the correlation coefficientρ takes values only

between0 and
√

2

2
. We will provide more discussion on this observation.
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X2. There is a unique equilibrium in the sequential information/choice case if

σ2 ≥
γ

β

(1 + λ)√
2π

where0 < λ < 1.

Proof. We start with the second period problem, which is identical to that for the simultaneous

information/sequential choice case considered in the previous subsection. We collect the main results

here for reference: the implicit equation definingα2 involves a non-decreasing function ofα2 if and

only if

β ≥ γ

σ2

φ

(

1 − α1 − α2 − µ2

σ2

)

(10)

whereα2 is determined by

α2 =
β − 1 + γ

(

1 − Φ
(

1−α1−α2−µ2

σ2

))

β
. (11)

Hence the necessary and sufficient condition for unique equilibrium in the second period isβ ≥
γ√
2π

1
σ2

.

The expected utility of a type-ζ agent in the first period is

ζ − 1 + γ Pr [θ + α1 + α̃2 ≥ 1|x1] ,

where the notatioñα2 emphasizes that it is a random variable. Those agents who make a decision in

the first period must compute the probability of an event which depends on the sum of two random

variables,θ andα2. Since the second period’s decision is made conditional onX2, α2 is a function

of the random variableX2.

Consider
d Pr[θ + α̃2 ≥ 1 − α1|x1]

dα1

where the left hand side of the inequality inside the probability contains only random variables while

the right hand side contains only parameters. First observethat θ andX2 = θ + ǫ2 are bivariate-

normally distributed random variables. Conditional on the observation ofx1, θ andX2 have the

same meanµ1 and they have variancesσ2
1 andσ2

1 + σ2
ǫ while their covariance is given byσ2

1 so that

the correlation coefficientρ =
σ2
1

σ1

√
σ2
1+σ2

ǫ

. Write

Pr[θ + α̃2(X2| α1) ≥ 1 − α1|x1] =
∫∞
−∞
∫∞
1−α1−α̃2(X2| α1)

φx1(θ,X2) dθ dX2

=
∫∞
−∞
∫∞

1−α1−α̃2(X̂2| α1)−µ1
σ1

φ(θ̂, X̂2) dθ̂ dX̂2 (12)
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whereφx1(θ,X2) on the first line is the bivariate normal distribution ofθ andX2 conditional on the

observation ofx1, while θ̂ = θ−µ1

σ1
andX̂2 = X2−µ1√

σ2
1+σ2

ǫ

so thatφ(θ̂, X̂2) on the second line is the

standard bivariate normal distribution.

Using equation (12), the derivative of the probability withrespect toα1 can be computed as

follows:

d

dα1

Pr[θ + α̃2(X2|α1) ≥ 1 − α1|x1] =

∫ ∞

−∞

d

dα1

∫ ∞

1−α1−α̃2(X̂2)−µ1
σ1

φ(θ̂, X̂2) dθ̂ dX̂2 (13)

Applying Leibniz’s rule, the derivative inside the outer integral is computed:

d

dα1

∫ ∞

1−α1−α̃2(X̂2|α1)−µ1
σ1

φ(θ̂, X̂2) dθ̂

=
1

σ1

(

1 +
dα̃2(X̂2|α1)

dα1

)

φ(
1 − α1 − α̃2(X̂2|α1) − µ1

σ1

, X̂2).

Sinceα2 is determined from the implicit equation (11), we can totally differentiate it to obtain

dα̃2(X̂2|α1)

dα1

=
γφ(.)

βσ2 − γφ(.)
≤

γ 1√
2π

βσ2 − γ 1√
2π

where the inequality follows from the fact thatφ(.) ≤ 1√
2π

.

Collecting these results and substituting them into (13) yields

d

dα1

Pr
[

θ + α̃2(X̂2| α1) ≥ 1−α1|x1

]

≤ 1

σ1

(

βσ2

βσ2 − γ 1√
2π

)

∫ ∞

−∞
φ

(

1−α1−α̃2(X̂2) − µ1

σ1

, X̂2

)

dX̂2. (14)

The integral on the last line of equation (14) is bounded above by λ√
2π
√

1−ρ2
for λ < 1 as shown

in the following lemma whose proof is provided in the appendix.

Lemma 2 Define

λ ≡ inf
τ

(

Pr(|Z| ≤ τ) + exp

[

− ρ2τ 2

2(1 − ρ2)

]

Pr(|Z| > τ)

)

whereZ is a standard normal random variable. For such aλ,

∫ ∞

−∞
φ

(

1−α1−α̃2(X̂2)

σ1

, X̂2

)

dX̂2 ≤
λ√

2π
√

1 − ρ2
.
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Lemma 2 implies that

d

dα1

Pr
[

θ + α̃2(X̂2| α1) ≥ 1−α1|x1

]

≤ (
1

σ1

βσ2

βσ2 − γ 1√
2π

)
λ√

2π
√

1 − ρ2
= (

1

σ2

βσ2

βσ2 − γ 1√
2π

)
λ√
2π

.

Therefore, there is a unique equilibrium if

β ≥ γ(
1

σ2

βσ2

βσ2 − γ 1√
2π

)
λ√
2π

which can be rewritten as

σ2 ≥
γ

β

(1 + λ)√
2π

.

The proof is complete.

There is a step in the proof that deserves further explanation. The agents who move in the

first period have to deal with two random variables: the second period signal, and the proportion

of agents who will choose action 1 in the second period. The former is a normal random variable

whose distribution is given. However the distribution of the second random variable is endogenously

determined as a function of the second period signal. We apply a transformation of random variable

technique to find a bound on the derivative ofα2 with respect toα1. This difficulty prevents us from

obtaining a necessary condition for uniqueness in this case; the proposition provides only a sufficient

condition.

The proposition indicates that there is a unique equilibrium in the sequential information/choice

case for a weaker condition on the three parameters than either of the previous two cases analysed.

The following corollary formalizes this observation. We omit the formal proof since it follows from

the fact thatλ ≤ 1.

Corollary 2 For anyβ andγ, there is a set non-emptyΣ2 of values ofσ2 (i.e.,σ0 andσǫ) for which

a unique equilibrium exists under sequential information/choice while there are multiple equilibria

under simultaneous information/choice or simultaneous information/sequential choice. The set is

defined by

Σ2 ≡ {σ2 |
γ

β

(1 + λ)√
2π

≤ σ2 ≤
γ

β

2√
2π

}.

The sufficient condition in proposition 4 relies on the parameter,λ. A close inspection ofλ

reveals that it is the best two-point approximation of the normal distribution.12 The approximation

assigns 1 to the normal density at the centre of the support, while any points at a distance greater

12λ is the minimum among all two-point approximations and in that sense it is the best approximation.
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Figure 3:λ andρ in sequential information/choice case

thanτ from the centre is given the value of the density atτ . Since the standard normal density is

symmetric around 0 and monotone decreasing as the distance increases, this approximation provides

an upper bound on the density. In the computation of the upperboundλ, the correlation coefficient

ρ plays a crucial role.

Since a closed form expression ofλ cannot be obtained, we compute it using a numerical method

to visualize the relation betweenρ andλ. Figure 313 shows thatλ is a monotone decreasing and con-

cave function ofρ. Notice that ifλ is close to 1, then the sufficient condition indicates littlerelaxation

in the uniqueness condition compared to the previous cases in which the signals arrive simultane-

ously. On the other hand, smallerλ implies that the uniqueness condition for the sequential model

is substantially weaker than that of the previous two cases.Hence whenθ andX2 are independent,

the sufficient condition is almost identical to the simultaneous information models; while when they

are correlated, the bound for the sufficient condition is weaker than that for the other two cases.

When θ and X2 are independent, the second period signal is not informative about the fun-

damental and hence the second choice is likely to be similar to the first period choice. To put it

differently, anX2 which is independent ofθ means that agents have similar information regard-

13Sinceρ ≤
√

2

2
, the figure is valid only up to

√
2

2
on the horizontal axis.
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less of when they move; and hence the informational environment is similar to the simultaneous

information/sequential choice model. We have found that the simultaneous information/sequential

choice model has an identical condition to the simultaneousinformation/choice model for unique-

ness. Hence the sufficient condition for the sequential information/choice model is similar to the

simultaneous information/choice model.

On the other hand, whenθ andX2 are strongly correlated (i.e.,ρ is close to
√

2
2

), the second

period signal is strongly informative of the fundamental. To see this, defineη ≡ σ2
0/σ

2
ǫ ; η measures

the relative precision of period 1 and period 2 signals, since

σ2
1

σ2
2

=
σ2

o + 2σ2
ǫ

σ2
o + σ2

ǫ

=
1 + 2η

1 + η
.

In the limit whenη = 0, the precisions of the signals in the two periods are equal; conversely, as

η → ∞, the period 2 signal is much more precise than the period 1 signal. Notice also that

ρ =

√

η

2η + 1
.

Whenη = 0, ρ = 0; and whenη → ∞, ρ →
√

2
2

. Now consider the limitσ0 → ∞ or σ2
ǫ →

0, in which η → ∞ andρ →
√

2
2

, the (relative) precision of the period 2 signal is much larger

than the precision of the period 1 signal.14 This in turn implies that the second period choice is

not (necessarily) similar to the first period choice. Hence the agents who move in the first period

have less of a co-ordination effect and the sufficient condition is weaker than for the simultaneous

information models.

In summary: in the simultaneous information/choice and simultaneous information/seq-uential

choice cases, the conditions for equilibrium uniqueness are identical. In the simultaneous informa-

tion/sequential choice model, a simple intuition (e.g., from a two-player game) suggests that the

co-ordination problem will be less, because half of the agents move after observing the choice of the

other half. However those agents who move in the first period fully anticipate the consequence of

their choice for those agents who move in the second period. As a result, the co-ordination effect

for period-1 agents is unchanged; and so is the necessary andsufficient condition for equilibrium

uniqueness. In contrast, the sequential information/choice case shows that gradual revelation of

information can have a significant effect on co-ordination,particularly when the precision of the

second period signal is high.

14Note that at the limitσǫ = 0, the signalsX1 andX2 are perfectly precise about the value ofθ. At the limit, therefore,

there is no difference between the signals arriving simultaneously or sequentially. Along the path to the limit, however,

the period 2 signal is relatively much more precise than the period 1 signal.
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4 Path Dependence

The mechanism behind equilibrium determination in the sequential information/choice case has an

interesting implication for the dynamic behavior of the model. The agents who move in the first

period have to make their choice with less information than those in the second period. On the

other hand, the first-period choices of agents are irreversible for later movers in the second period.

Multiple equilibria occur when agents have too much effect on the probability of successful co-

ordination. This observation implies that the first period agents effectively ‘select’ one of multiple

equilibria. Consequently, different sequences of signals lead to different equilibrium paths. Due

to the irreversibility of first period choices, the signal that arrives in the first period has a bigger

effect on the determination of the equilibrium path. We refer to this effect as path dependence. In

this section, we make this argument precise by establishinghow the equilibriumαt, t ∈ {1, 2}, are

affected by signal realisations.

We start by showing that our model exhibits a strong form of stochastic dominance on the equi-

librium αt. In the next proposition, we consider a fixed amount of information, and show that both

α1 andα2 are increasing functions of the first period signal.

Proposition 5 Givenx̃, consider signal draws such thatx1 + x2 = x̃. The equilibrium values ofα1

andα2 are increasing functions ofx1.

Proof. Consider two realizations of signal draws,x = (x1, x2) and x′ = (x′
1, x

′
2) for which

x1 + x2 = x′
1 + x′

2 = x̃. Moreover assume thatx1 ≥ x′
1. The first period agents’ choice satisfies

α1|x1 > α1|x′
1

since the posterior distribution in the first period has a higher mean when conditioned

onx1 than onx′
1.

Recall that the second period equilibrium is determined from

α2 =
β − 1 − γΦ(1−α1−α2−µ2

σ2
)

β
.

Notice that both sequences of signals produce the same mean since both sequences have the same

value for the sum of the signals. Moreoverα1|x1 > α1|x2 from above. We know thatα2 as a function

of α1 is increasing inα1. Sinceα2 depends onµ2, σ2, andα1 where the first two are identical for

both sequences and onlyα1 differs in the two sequences, it follows thatα2|x > α2|x′.

The implication of the proposition is seen clearly in the following example.

Example 1 Consider two realizations of signals of the same total information content but with re-

versed orders:x = (x1, x2) andx′ = (x2, x1) wherex1 > x2. Thenα1|x > α1|x′ andα2|x > α2|x′.

In the example, there are two sets of second-period agents, both with the same aggregate information

(and hence belief about the state of nature), but distinguished by observing different first-period

22



signals. Of the set that receives the higher first period signal, a greater proportion chooses action

1. In short, first-period signals have not only an informational effect, but also a real effect on the

equilibrium path.

In the next proposition, we explore further properties of the dynamic path to show the relative

importance of the first-period signal for the determinationof the equilibrium outcome.

Proposition 6 Suppose thatα2(x2) = α2(x
′
2) wherex2 > x′

2. Thenx1 < x′
1 and thusα1(x1) <

α1(x
′
1). Moreoverx1 + x2 > x′

1 + x′
2.

Proof. In order forα2(x2) = α2(x
′
2) for x2 ≥ x′

2, the equilibrium condition

α2 =
β − 1 + (1 − Φ(1−α1−α2−µ(x1,x2)

σ2
))

β
,

implies thatα1(x1) + µ(x1, x2) = α1(x
′
1) + µ(x′

1, x
′
2). It is easy to see thatx1 < x′

1 since otherwise

α1(x1) > α1(x
′
1) andµ(x1, x2) > µ(x′

1, x
′
2) so thatα1(x1) + µ(x1, x2) > α1(x

′
1) + µ(x′

1, x
′
2).

Hence suppose thatx1 < x′
1. Aiming at contradiction, suppose thatx1 +x2 ≤ x′

1 +x′
2. However

under this condition,α1(x1) < α1(x
′
1) andµ(x1, x2) < µ(x′

1, x
′
2) so thatα1(x1) + µ(x1, x2) <

α1(x
′
1) + µ(x′

1, x
′
2). Since this contradicts the hypothesis thatα2(x2) = α2(x

′
2), we have proved that

x1 + x2 > x′
1 + x′

2.

Suppose that a signal which is indicative of a low fundamental is received in the first period. The

proposition implies that to offset this early shock, it takes a larger shock in the opposite direction.

Hence the early signal has a bigger effect on the equilibriumoutcome than the late one. One impli-

cation of this observation is that a form of equilibrium multiplicity can occur, even if the sufficient

condition in proposition 4 is satisfied. The same overall information can lead to different equilib-

rium outcomes, distinguished by the order in which signals arrive. In cases where it is possible to

observe only an aggregate of information, and not the full sequence of signals, the effect is similar to

equilibrium multiplicity. The cause, however, is not the problem of co-ordination (that is eliminated

by proposition 4)—it is instead informational.

5 Summary and Conclusions

In this paper, we have investigated the importance of dynamics for equilibrium determination in

games with strategic complementarities. We have shown thatthe timing of information is crucial—

in our model, more important than the timing of actions. The importance of learning is seen in three

ways: first, in the effect that it has on the conditions for equilibrium uniqueness; secondly, in the

implications for equilibrium payoffs; and finally, in the way that equilibrium outcomes can display

path dependence.
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While we have shown these points in a very simple model, we think that they are robust to

a number of generalizations. For example, we use throughoutthe normal distribution to model

uncertainty. This allows us to have very tractable expressions for posteriors, and single parameters

to measure variance. But it seems unlikely that the normalityassumption is driving any of the main

results; and so more general distributions could be used, ifthe additional complexity is warranted.

We assume that an equal mass of agents move in each period; it is easy to show that this feature

could be replaced with arbitrary masses with no change in theresults.

The results of the paper underscore the importance of uncertainty for the determination of equi-

librium in economic problems in which co-ordination matters. For instance, the stability of a market

mechanism which is subject to uncertainty resolution and co-ordination externality may be affected

by how much information is released to the agents who move over time. The result has an implica-

tion for the policy suggestion by David (2001) that to avoid the danger of making a wrong decision,

agents should delay their decisions. According to the conditions for equilibrium uniqueness, a delay

in the decisions by agents may instead lead to equilibrium multiplicity. On the other hand, there

seems no way to rule out the realization of bad outcomes due topath dependence if the decision is

made with less than comprehensive information. Our resultsalso imply that any empirical assess-

ment of an economic event that involves co-ordination should pay attention to the dynamic nature of

the environment.

Appendix

Proof of Lemma 2

Proof. Sinceφ(θ̂, X̂2) is the standard bivariate normal distribution with covarianceρ, it holds that

φ(θ̂, X̂2) =
1

2π
√

1 − ρ2
exp

[

− 1

2(1 − ρ2)
(θ̂2 − 2ρθ̂X̂2 + X̂2

2
)

]

=
1√

2π
√

1 − ρ2
exp

[

− 1

2(1 − ρ2)
(ρX̂2 − θ̂)2

]

× 1√
2π

exp

[

−1

2
X̂2

2

]

=
1√

2π
√

1 − ρ2
exp

[

− 1

2(1 − ρ2)
(ρX̂2 − θ̂)2

]

φ(X̂2).

Then,
∫ ∞

−∞
φ(

1 − α1 − α̃2(X̂2) − µ1

σ1

, X̂2) dX̂2

=

∫ ∞

−∞

1√
2π
√

1 − ρ2
exp



− 1

2(1 − ρ2)

(

ρX̂2 −
1 − α1 − α̃2(X̂2) − µ1

σ1

)2


φ(X̂2) dX̂2. (15)
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Define

g(X̂2) = ρX̂2 −
1 − α1 − α̃2(X̂2) − µ1

σ1

and defineX̂∗
2 such thatg(X̂∗

2 ) = 0. Note thatα̃2(X̂2) is monotone increasing in̂X2 and hence

g(X̂2) is monotone increasing and there exists a uniqueX̂∗
2 .

Fix τ > 0 and define

f(X̂2) =







1 if X̂∗
2 − τ < X̂2 < X̂∗

2 + τ,

exp
[

− ρ2τ2

2(1−ρ2)

]

if X̂2 ≤ X̂∗
2 − τ or X̂2 ≥ X̂∗

2 + τ.

Then for allX̂2,

exp

[

− 1

2(1 − ρ2)

(

ρX̂2 −
1 − α1 − α̃2(X2) − µ1

σ1

)2
]

≤ f(X̂2)

since givenτ > 0, |g(X̂2)| ≥ ρτ for X̂2 such that|X̂2 − X̂∗
2 | ≥ τ while exp

[

− ρ2τ2

2(1−ρ2)

]

≤ 1 for X2

such that|X̂2 − X̂∗
2 | < τ . It follows that

∫ ∞

−∞
exp



− 1

2(1 − ρ2)

(

ρX̂2 −
1 − α1 − α̃2(X̂2) − µ1

σ1

)2


φ(X̂2) dX̂2

≤
∫ ∞

−∞
f(X̂2)φ(X̂2)dX̂2

= Pr(|Z| ≤ τ) + exp

[

− ρ2τ 2

2(1 − ρ2)

]

Pr(|Z| > τ)

< 1 (16)

whereZ in the third line of the equation is s standard normal random variable.

Defineλ as

λ ≡ inf
τ

Pr(|Z| ≤ τ) + exp

[

− ρ2τ 2

2(1 − ρ2)

]

Pr(|Z| > τ).

Then0 < λ < 1 and
∫ ∞

−∞
φ(

1 − α1 − α̃2(X̂2) − µ1

σ1

, X̂2)dX̂2 ≤
λ√

2π
√

1 − ρ2
.

The proof is complete.
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