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Abstract

Our objective is to assess whether dynamics hinder or assist co-ordiira@ogame with
strategic complementarities. We study two dynamic aspects: different agekesdeeisions
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comes available over time. We find that the dynamic resolution of information mattestsfor
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1 Introduction

Games with strategic complementarities have been the gulifjenuch study in economics, for a
number of reasons. They have proved useful for the analyssvariety of important economic
situations, such as currency attacks, financial contadiank runs, poverty traps and technology
choice with network externalities. In addition, these gamevide a tractable environment in which
to understand further the role of common knowledge, infaioneand beliefs in Bayesian games. A
central concern of this research has been the issue of @quili multiplicity. Games with strategic
complementarities typically have more than one equilibrilVhen the multiple equilibria can be
Pareto ranked, this leads naturally to the question of vérdtie Pareto-preferred equilibrium will
in fact be played. Multiple equilibria also present fanilghfficulties for an analyst who wishes to
predict the outcome of a particular game, or to conduct p@ai@luation.

Most applied and theoretical studies have concentratechershot, static games. (Exceptions
to this statement are reviewed below.) In this paper, we é@m dynamic game with strategic
complementarities. Two features make the game dynamit; different agents make decisions at
different points in time; secondly, extra information abayayoff-relevant state of nature becomes
available over time. Our objective is to assess whetheethdgaamic features hinder or assist the
co-ordination process. In particular, we ask whether deyuulm multiplicity is more or less likely
in a dynamic setting; and, when there is a unique equilibrinow successfully agents co-ordinate
in that equilibrium.

We study a two-period game with one risk-less and one riskgacin the fully dynamic version
of the game, a mass one of agents acts in each of the periodstsAgho act in the first period
receive a noisy signal about an underlying state of natwaesatfects payoffs. Agents who act in the
second period observe not only the first period signal and mewy agents chose the risky action
in period 1; they observe also a second (noisy) signal albheustate. If a sufficient mass of agents
across the two periods choose the risky action, then thoseciwbse it receive an additional payoff
from successful co-ordination. Hence the two sets of agantsdifferent situations. Agents acting
in the first period do so with more limited information. Thesags who act in the second period have
superior information, but face the irreversible decisitaken by agents in the firs period.

Our results come in two parts. In the first part, we show howtitnéng of decisions and in-
formation resolution affects the outcome of co-ordinatighkey measure for the analysis is the
co-ordination effeet-the effect that agents have on the probability of succéssfardination. The
size of the co-ordination effect is critical. If it is largand if all agents choose the risk-less (risky)
action, then there is a low (high) probability that co-oation will be successful. This sensitiv-
ity of the final outcome to agents’ decisions leads naturalynultiple equilibria. In contrast, if



agents’ decisions have little effect on the probabilitywésessful co-ordination, then a unique equi-
librium will result. In short, a necessary and sufficient dibion for equilibrium uniqueness is that
co-ordination effects are small.

As a benchmark, we first consider a static version of the madgnts act simultaneously and all
information (signals about the state) are received befeoestbns are made. An intuitive property
holds: co-ordination effects are small when fundamentakttainty (measured by the variance of
posterior beliefs about the state) is high. At extreme \&bf¢he underlying state, even co-ordinated
action by the agents cannot influence the probability of sssftl co-ordination—if the state is very
low, then there is little prospect of successful co-ordorgtthe converse holds if the state is high.
In these cases, then, agents’ payoffs are largely detednipehe state of nature, co-ordination is
irrelevant, and there is a unique equilibrium. When the pasteariance is high, there is a high
probability that the underlying state takes an extremeejadund hence a high probability that co-
ordination is irrelevant. Hence high posterior variance ‘flendamental uncertainty’) leads to a
unique equilibrium. (A similar result has been pointed outorris and Shin (2005).)

This first step concentrates on conditions for equilibriuniqueness and multiplicity. In this
sense, greater uncertainty assists co-ordination by iaigsairunique equilibrium. It also has impli-
cations for how successfully agents co-ordinate in equilih. We show that when signals about
the underlying state are sufficiently weak, greater uncegta&nsures a unique equilibrium with a
greater degree of co-ordination (and hence higher paythiés) the Pareto-preferred outcome when
there are multiple equilibria. But when signals are suffitieastrong, the unique equilibrium has
lower co-ordination and payoffs than any outcome when taszanultiple equilibria. We also show
that greater heterogeneity (in agents’ idiosyncratic atiuns) always assists co-ordination, by en-
suring a unique equilibrium with more co-ordination thaa Bareto-preferred outcome when there
are multiple equilibria.

Next, we show that the co-ordination effect for first-movisrgreater than for second movers.
This means that if there is a unique equilibrium strategydary movers, then there is a unique
equilibrium overall. Hence we concentrate on the co-ofitneeffect for early movers.

Finally, we show that what matters most is the dynamic regwiwf information. To show this,
we consider two more versions of the model. In the secondoreragents act sequentially (half of
them in the first period, half in the second), but all signa¢sraceived before the early movers make
their decisions. In the third, fully dynamic version, ageatt sequentially and the two signals arrive
sequentially at the beginning of each period. In all thresieas, there is a unique equilibrium if
fundamental uncertainty is sufficiently large. In the filgbtversions (i.e., the static and partially
dynamic cases), the critical value is equal—that is, spnggaigents’ decisions over time makes no
difference to the condition for equilibrium uniquenesshiistmodel. In contrast, the critical value is



less in the third, fully dynamic version; and is smaller wiilea precision of the signals is high. In
short, dynamic learning about an unknown state helps targite equilibrium multiplicity.

The importance of learning for equilibrium determinatiaggests a second set of results, which
we label path dependence. As the choices of early moversdraedfect on late movers, signals
arriving in the first period have a greater effect on the élgiiim outcome. So, two models with the
same aggregate information (i.e., the signals in total eprtkie same information about the state)
can have quite different equilibrium paths when the sigaaise in different orders.

We formalize this possibility in several different ways. Acrease in the mass of agents mov-
ing in the first period shifts the distribution of agents nmayin the second period in a first-order
stochastic dominance sense. A direct implication of thssilteis that an early signal has a bigger
effect on the equilibrium outcome than a late one. This &iilse issue of distinguishing equilibrium
multiplicity from path dependence.

An early study of dynamic co-ordination games was provided-arrell and Saloner (1985).
In a complete information model, they find that fully sequeinadoption prevents co-ordination
failures, ensuring a unique, efficient (sub-game perfeq)ldrium. In the incomplete information
version of the game, neither efficiency nor uniqueness oilibgjum can be ensuretl. The game
that we study differs from the two games in Farrell and Salome@ number of ways. We want to
examine the effects of learning; so we include, as well asmulete information about the types
of players, uncertainty about an underlying state of nathwa¢ decreases (through the sequential
arrival of informative signals) over time. Furthermore,aaor model, a large number of agents
moves in each period; hence we study co-ordination bothinvéhd between groups. In contrast,
Farrell and Saloner concentrate on the between-groupsgpnod he between-group problem is, of
course, important; but we argue that within-group co-axtlon is equally important, particularly in
applications, and merits study.

Two more recent papers that derive unique equilibria in dyinaggames with strategic com-
plementarities are Burdzy, Frankel, and Pauzner (2001) arcerdorf, Valentinyi, and Waldman
(2000). Both explicitly introduce heterogeneity among dgamd show that sufficient heterogeneity
can ensure equilibrium uniqueness. (In Herrendorf, Valgntand Waldman (2000), agents differ
in their productivity in the increasing returns-to-scaéeter in the Matsuyama (1991) two-sector
model. In the same setting, Burdzy, Frankel, and Pauznerlj2@de agents who are different in
their ability to revise their strategies.) The focus of bpépers is different from ours, and so neither
concentrate on the role of sequential actions and signa&ssaring uniqueness of equilibrium.

A paper apparently close to this one is Dasgupta (forthcgmiidis objectives are similar to

1The potential inefficiency of equilibrium is not surprisirféarrell and Saloner show that there is a unique symmetric
equilibrium, but cannot rule out the existence of asymmetquilibria.



ours: he aims to investigate how separating decisions ower, and the sequential arrival of infor-
mation, affect a co-ordination game. His set-up is, howegeite different. He bases his model
on a global game. Global games are games of incomplete iat@mmwhose type space is deter-
mined by the players each observing a noisy signal of an ndgrstate; see Carlsson and van
Damme (1993), Morris and Shin (1998), and Morris and Shi®f20Dasgupta looks at the equilib-
ria in monotone pure strategies that emerges as noise inddslrbecomes small. He considers the
uniqueness and efficiency of equilibrium in this limit. A cpheation of his model is that agents’
types are (unconditionally) correlatédAs a result, he is not able to eliminate the possibility that
there are other, non-monotone equilibria. In contrastunmodel, agents’ types are independent;
an immediate implication is that any equilibrium must be ionotone pure strategies (see lemma
1). When we find a unique equilibrium in this paper, therefare,can be sure that no other equi-
libria exist. We analyse the conditions under which thera isique equilibrium. We find that we
require sufficiently noisy signals of the underlying statee more homogeneous are the agents (this
case being the closest equivalent to Dasgupta’s limit cése)greater must be the noise to ensure
equilibrium uniqueness.

Path dependence arises also in the literature on herdimge Sanerjee (1992) and Bikhchan-
dani, Hirshleifer, and Welch (1992), numerous papers hhwoe/s that models in which there is se-
guential learning from other agents’ action choices predartextreme form of path dependence. In
these models, the action choices of agents who make degiafter observing others’ choices may
depend entirely on those earlier choices i.e., later mageiwe entirely their own private informa-
tion. The present paper identifies a different form of patpeshelence, which, unlike the informa-
tional externality in the herding literature, arises du¢ht® complementarity among choices. Since
there is no (relevant) private information in our model réhis no issue of information aggregation—
the crucial ingredient for path dependence in the herdirggaiure. The path dependence in the
present paper follows because earlier choices change yiodf ram the risky action choice.

The paper is organized as follows. In section 2, a simple gerded model is developed in
which agents’ payoffs are affected by the possibility ofardinated action with other agents, and
an unknown state of nature. (The model can be interpretedrinst of investors facing a risky
project; or a firm selling a durable good with uncertain dethpB8ection 3 starts with a preliminary
analysis where the necessary and sufficient condition failibBjum uniqueness is obtained in a
simplified, static model; following subsections extend #malysis to the dynamic case, showing
that the dynamic setting provides a mechanism which fatéig co-ordination. Section 4 analyzes
the dependence of the equilibrium outcome on the order ichlninformation about the state arrives.

2Each agent receives a noisy signal of the unknown state.d+tbe@gents’ types in the Bayesian game are correlated
by the common state on which their signals are based; althoogditioned on the state, their types are independent.



The final section concludes. The appendix contains the mbl#imma 2 and an extension to the
basic model to test the robustness of our conclusions.

2 Model

Let the state of the world be denotéde R which is not observed by agents. All agents have a
common prior or¥ which is normally distributed with mean, and variances?. In each period

t € {1,2}, a signalX; is drawn and observed by all ageAtEhe signalX; in periodt is determined

by X; = 0 + €, {e}eq1,2) are drawn independently from the same normal distributigh wero
mean and variance’.

For convenience we collect the following standard result8ayesian updating for normal dis-
tributions. After a signal drawk; = z;, the agents’ posterior is normally distributed with mean
py = (0o + 02x1) /(02 + 0?) and variance? = o202 /(02 + o2). After signal drawsX; = z; and
X, = my, the agents’ posterior is normally distributed with mean= (c2uo + o3 (21 + 12)) /(02 +
20?%) and variancers = o20? /(a2 + 202).

In each period, there is a continuum of agents of total massptesented by the unit interval
[0, 1], making the total population 2. Agents must choose an acgiofflom a binary action space,
{0,1}. Choosing actior) guarantees the agent zero payoff. On the other hand, tliy fitdm
choosing actionl consists ofi) ¢, which is an idiosyncratic parameter in the agent’s utilifythe
cost of choosing the action, which is normalized to 1, andy, which is the extra payoff in the
event of co-ordination success. The first compongntepresents the heterogeneity among agents
and is assumed to be uniformly distributed on the inteffzat], 5 > 0, throughout the population of
agents each period. The third component; 0, represents the benefit of successful co-ordination.
The agent receives it if the sum of the random stétend the numbers of agents choosing action
1 in periodst € {1, 2}, is greater than some threshold; the size of the threshotteradittle in the
subsequent analysis, so we set it equal to 1. Otherwise e sgreives zero from this component.
Hence choosing action = 1 yields the following utility:

(—1+~ if 04+a1+ay>1,

Uy =1]0,a1,a0) = 1
C(y ‘ ! 2> {C—l if 9—|—041—|—CY2<1 ()

whereq, is the mass of agents who choose action periodz.
Givenq, representing the strategy choices of agents in péeried 1, 2}, the expected utility of

3We use the notational convention that a Roman alphabetidgrmtandom variable is written in upper-case and its
realization is written in lower-case.



an agent who chooses actigiin period¢ on receiving signak is:
EUc(y| 0, a1, 02)|Xy] = [( = 1+ Pr(0 + a1 + az > 1|.X4)]y. (2)

The timing of the game in each period is that all agents olesttry same random sign&l, and
then choose an action simultaneously. The game is repesitazlwith the signal and the choices of
the first period revealed to the agents before the seconddogeicision. The information sef for
all agents at time are, therefore(; = {X;} andQ, = {X;, X3, a1 }. Notice thata, and X, are
both random variables in period 1. In period 2, the sighalas well as the first period signal;,,
and fraction of agents choosing action 1 in the first perigdare revealed to the agents.

This model can be generated by a number of stories. For erarapirm operates with an
existing debt ofD which has to be serviced out of the firm’s profit at the end. éfphofit is less than
debt service requirement, then the firm goes bankrupt. Rsafiarned from selling to consumers;
in addition, random shocks affect the firms’ profit. Each econer has unit demand, and gains
additional utility if the firm is not bankrupt at the end (thislity may come from e.g., continued
availability of parts after purchase in the case of durabledg)? Alternatively, consider a group of
investors deciding whether to invest in a safe projectdadd) or a risky project (action 1). The risky
project succeeds only if a critical mass of investors batksd the underlying state is favourable.
Information about the state arrives over time and so investave the chance of learning more about
the probability of success before acting.

2.1 Complete information benchmark

As a benchmark, first consider the complete information gamméhich all agents observe(which

is therefore common knowledge), and choose an action samediusly. A (pure) strategy for an
agent is mapping from its typé to an action. For extreme values @&fthere is clearly a unique
equilibrium. Whery < —1, an agent chooses action O iff its type< 1, otherwise it chooses action
1. (Obviously, if3 < 1, then no agent chooses action 1 in this case.) In fact, thisilegum exists

for all values off < (2 — 3)/5. When# > 1, an agent chooses action 0 iff its type< 1 — ~,
otherwise it chooses action 1. (Obviouslyyit- 1, then no agent chooses action 0 in this case.) In
fact, this equilibrium exists for all values éf> (2 — 5 — 2~)/3. We illustrate these equilibria in
figure' 1, in which we assume that> 1 > ~. In the figure (* refers to the type that is indifferent
between actions 0 and 1.

4The model can be applied to various settings other than the abdurable goods. For instance, a factor supplier
might be concerned about the financial viability of a firm arilimg to invest in the relationship only if the firm is likely
to survive. The investment decision of the factor suppliuences the firm’s production cost which in turn affects the
financial viability of the firm.
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Figure 1. Complete information equilibria

As the figure demonstrates, there are multiple equilibrthéncomplete information game when
g isin the interval (2 — 5 — 2v)/5,(2 — 3)/4], if 5 > 1 andy < 1. In the remainder of the paper,
we shall assume that > 1 > . We note, however, that none of our arguments rely partigula
on these assumptions. They simplify the analysis, by reduthe number of cases that has to
be considered. With these parametric restrictions, thexgasitive masses of agents for whom it
is strictly dominant to choose action 0 and action 1. But ouregal results do not rely on this
simplification, and apply also when there are equilibria lmch all agents choose either action 0 or
1. (We expand on this remark in section|3.1.)

2.2 Incomplete information game

When choosing an optimal strategy in the incomplete infolonagame, agents rely on a posterior
obtained from the prior and the signal according to Baye®.r\WlWe employ the concept of perfect
Bayesian equilibrium where each agent’s strategy maxinmigexpected utility given the strategies
of all other agents and its Bayesian posterior.

Definition 1 The agents’ choiceg(¢, X;) and the beliefs on the strategy choice constitute a perfect
Bayesian equilibrium of the game if

1. for¢ € [0, 8], y(¢, ) = argmax, E[U(y|0, a1, a2)| ], and
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y(¢, Q) = arg max, E[U(yl6, a1, az)[0),

2. ap = fO C Ql dC andas = fO C QQ dc.

Note that for givenX, = z;, a; andas, all agents with( satisfyingl — v Pr(6 + oy + ap >
1/1©;) < ¢ < 3 have non-negative expected utility from action 1 and so skdi3 This observation
implies that

Lemma 1 The best response of an agent to any strategy profile playés bpponents is a mono-
tone pure strategy of the form:

0 if ¢ <7,

1 if ¢ > ("

y:

Consequentlyy; (x;) as a function of the first period signa is determined by

0 if 1—7yPr(0+az > 1fz1) = B,
ar(r) =41 if 1—yPr(0+1+as>1|zy) <0,

B-14+7Pr(0+ar+as>lle) (0,1)

3 otherwise

and similarly foras(z2). Hence we can identify the equilibrium with a functiop(x) which maps
from the signal space to the unit interv@l 1] according to these three cases. Note, however, that
since we assume thgt> 1 > ~, we can rule out the equilibria correspondingite= 0 anda = 1.
Hence equilibrium is given by the (implicit) solution to

B—14+~Pr(0+ay +ay > 1|xy)
5}

Multiple equilibria exist if, for a realization of signaheére are multiple roots to the implicit equation

@)

€ (0,1). (3)

(03] (I’l) =

3 Uncertainty and Co-ordination

In the following we take three different information strucgs/choice orders to highlight the interac-
tion of the three factors for equilibrium determination.

5This follows from the fact that optimization requires chimgsaction 1 if and only if its payoff is positive.



3.1 Simultaneous Information and Choice

We first analyze the benchmark case where two signals areedcg&multaneously and a mass 2
of agents with idiosyncratic valuatiorisdistributed on[0, 3] choose simultaneously. Hence the
information set of the agent3; = Q, = {X;, X,}. This case reduces the fully dynamic model,
which we shall study in section 3.3, to a static one. This herark will help us to identify the
separate effects of sequential choice and learning.

Given two independently drawn signats andz,, the agents’ common posterior on the state
is normally distributed with meap, = (0210 + of(x1 + x2))/(05 + 207) and variancer; =
o2o? /(o2 + 20?). The expected utility of a typg-agent from choosing action 1 is therefore

E[Uc(8,a)] = ¢ — 1+ vPr[d + 2a > 1|.X;, X5].

(For comparison with later calculations,is the fraction of a unit mass of agents choosing action
1 in each period, so that in total a mass chooses action 1.) Sindeis normally distributed with
meany, and variance2,

E[U; (6, a)] :g—1+7(1—c1> (m))

)

where®(-) is the standard normal distribution function.
Agents choose action 1 if and only if the expected net utilityn doing so is greater than zero.
In equilibrium, thereforeq is determined by

-1+ (1 _ﬁq) (172:27“2)> e (0, 1)

(recalling thats > 1 > ~ implies that there is no equilibrium witlh = 0 or o = 1).

o =

(4)

Proposition 1 There is a unique equilibrium in the simultaneous informatchoice case if and

only ifa, > 2,/2.

Proof. Rearrange equation|(4) to define the function

f(ayx)zaﬂ—ﬁ+1—7(1—q>(1_20‘—_’”)>. 5)

02

An equilibrium is given byf(a|z) = 0. A necessary and sufficient condition for there to be a unique
solution to this equation is that the functigiin|x) is single-upward crossing in. We show in this
proof that the necessary and sufficient condition is in faat the functionf («/|z) is non-decreasing
inaforall a €0, 1].



We start with the sufficient condition. Fgf(«|z) to be single-upward crossing, it is clearly
sufficient thatf («|z) is non-decreasing in. Differentiation of the expression in equation (5) gives

siok) 2, (1=2 i)

do 09

Sinceg(-) < 1/v/2n, f(a|z) is non-decreasing if

2 1
5—0—2\/—2720 (6)

which establishes the first part of the proposition.
To establish necessity, we find a particular signal reatmafor which multiple equilibria exist
if the condition of the proposition is violated. Consider Hignal realizatiort: defined by
w@) 21— 2(8 — 1)+7'
g
At this signal realization, equation|(4) shows that

_B=1+9/2
=—3
is an equilibrium. We now show that other equilibria existemtthe condition in the proposition is
violated.
Clearly, the functionf(«|x) is continuous inw. Given thatf(0|z) < 0 and f(1|z) > 0, if
the derivative off (a|Z) = 0 with respect tax is negative around = 5‘17”/2, then the equation
f(alz) = 0 has at least two more roots singéx|z) is continuous ina and f(0|z) < 0 and

f(1]z) > 0. Taking the derivative of (a|Z) with respect tay, we get

df (o 2) 2 2y
T b= 0)=p o
It follows that if the condition in the proposition is not sdied i.e.,
2y 1
<
b 0227

then there are multiple equilibria. The proof is complese.

The basic working of proposition 1 is illustrated in figure Phe dotted line represents a case
in which there are multiple equilibria, marked by points dtietr the function crosses zero (in this
illustration, there are three equilibria). The solid lifews a case in which there is a unique equi-
librium. The two cases are distinguished by the slope of timetion f(«|z). In the former case,
f(«a|x) is a non-monotonic function af, and has multiple crossing points. In the lattgfy|z) is
single-upward crossing in.
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Figure 2: lllustration of proposition 1

This observation also shows why the assumption that 1 > ~ does not sacrifice generality.
With these parameter values, any equilibrium must be imtere., haven € (0,1). If we allow
other parameter values, then there can be equilibria infwhie- 0 or « = 1. The former occurs if
f(a = 0|x) > 3; the latter if f(« = 1|x) < 0. Suppose that these equilibria are possible. It is still
the case that there is a unique equilibrium (which mightlve@ithera = 0 or o = 1) iff f(alz) is
non-decreasing in.°

The mechanism which determines the equilibrium leveka$ central to the understanding of
the result. Given the signal realization, the strategy @hof agents is represented by the proportion
of agents who choose action 1, i.e., The relationship between the equilibrium strategy and the
equilibrium proportion is the consistency condition thizeg thea implied by the strategy, agents do
not want to deviate from the strategy. The implicit functinnhe last line of equation (3) represents
this consistency condition. There is a unique equilibriuhew, for any signal realization, there is a
unique value ofv which satisfies the consistency condition.

Technically, we show that the implicit function im that defines equilibrium is a contraction

To see why this statement is true, consider first sufficietficy(a|x) is non-decreasing in, then only three cases
are possible: (i)f(0|z) > 0 and sof (a|z) > 0 for all « € [0,1]; (i) f(1]z) <) and sof(a|z) < 0forall o € [0, 1];
(i) f(0]z) < 0 andf(1|z) > 0, so that there is a unique € (0,1) such thatf(&|z) = 0. (With 3 > 1 > ~, only
case (iii) is possible.) In all three cases, there is a uneguélibrium, given by = 0, o = 1 anda = & respectively.
Necessity follows from observing (as in the proof of protiosi1) that if f (a|z) is non-monotonic, then there are signal
realisations such that there are multiple equilibria.
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mapping. Usually, this gives only a sufficient condition founique solution. But since the function
must be a contraction for all possible signal realizatidims,contraction condition is both necessary
and sufficient. Intuitively, the contraction condition enss that theco-ordination effects small.
We define the co-ordination effect as

_ OPr[f 4 2a > 1|xq, xo]

CE 50

that is, the effect that agents have on the probability ofsssful co-ordination. If the co-ordination
effect is large, then if all agents choose action 0 (1), tiemet is a low (high) probability that co-

ordination will be successful i.ef,+ 2a < (>)1. This sensitivity of the final outcome to agents’
decisions leads naturally to multiple equilibria. In casty; if agents’ decisions have little effect on
the probability of successful co-ordination, then a uniggeilibrium will result.

The proposition also shows that the co-ordination effestmsll when fundamental uncertainty
(measured by, the variance of the posterior) is high. This is quite intit a similar observation
has been made by Morris and Shin (2005At the extreme values of the underlying state, even
co-ordinated action by the agents cannot influence the piittiyaof successful co-ordination. H
is very low, then there is little prospect of successful edhmation; and conversely # is high. In
these cases, then, co-ordination is irrelevant and thexairsque equilibrium. When the posterior
variance is high, there is a high probability that the unded stated takes an extreme value. The
proposition makes this statement precise, showing thabhwiesposterior variance exceeds a critical
value, the co-ordination effect is small and therefore ldapiiim is unique.

The critical value otr, depends on the degree of heterogeneity in agents’ idioafiagrayoffs,
measured by, and the payoff from successful co-ordination,The smaller is the degree of agent
heterogeneity, the greater is the critical levebgfrequired for a unique equilibrium. In the limit,
as/ tends to zero, the heterogeneity between agents becomeghbiegnd payoffs are determined
almost entirely by co-ordination. Clearly in this case, tladition for equilibrium uniqueness
becomes very demandifigA similar intuition applies to the comparative static of thrétical value
with respect to the co-ordination parameter. Wheis very large, (successful) co-ordination is
critical for agents’ payoffs. In the limit, ag tends to infinity, payoffs are determined entirely by
co-ordination; and again, the condition for equilibriumigueness becomes very demanding. In
fact, due to the functional form of agents’ payoffs, only th&o of the two payoff parametersand

’Morris and Shin deal with interaction games, which inclutidbgl games. The result here is a special case of their

setting, in which there is zero correlation between ageppss.
8This observation highlights the difference between our @hadd a global game, as used by e.g., Dasgupta (forth-

coming). In a global game, a unigue equilibrium is selectethé limit as agents become homogeneous (i.e., as their
private types become very highly, but not perfectly, cated). In our model, the condition for a unique equilibrium
becomes harder to satisfy as agents’ types become homageneo
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~ matters for the analysis, as the condition in Propositiohds.

3.1.1 Hindering or assisting co-ordination?

Proposition 1 determines when there is a unique equilibrimrthe co-ordination game. When
oy < %\/g there are multiple equilibria for certain signal realisas. Given those signals re-

alisations, an increase i, (or equivalently a decrease #y(3), so thato, > %\/g leads to a
unique equilibrium. Uncertainty, in this sense, assist®mbnation. But does uncertainty make
co-ordination more successful, in the sense of increabiagtoportion of agents choosing action 1
in equilibrium? Since agents’ actions are strategic complas, multiple equilibria can be Pareto-
ranked; the equilibrium that involves the larges{the smallest critical typé* that is indifferent
between actions 0 and 1) is Pareto-preferred. When therengaaiequilibrium, how does it relate
to the Pareto-preferred outcome with multiple equilibria?

Consider first a decrease in the ratip3. It is straightforward to show that the value of the
function f(«|x) is decreasing in this ratio. This is illustrated in figurel® hon-monotonic function
with multiple equilibria (the dotted line) lies everywheabove the non-decreasing function with a
unique equilibrium (the solid line). Consequently, the waaquilibrium involves amv which is
greater than the in the Pareto-preferred outcome with multiple equilibfide intuition for this is
straightforward. The ratig /3 is low when there are large benefits from successful co-atidin,
or when the heterogeneity in agents’ idiosyncratic payolifsboth cases, the mass of agents that
chooses 1 in the unique equilibrium is necessarily larger.

Now consider a mean-preserving spread in posteriors, bgastngo, while keepingus, con-
stant? The sign of the change in the value of the functjdn|z) is equal to the sign of (1 — 2a —
u2). So, for very strong signals (highy andxz., such thatu, > 1), the value off(a|z) increases
with an increase i,. For very low signals (such that, < —1), it decreases. Referring again to
figure 2, we see that the unique equilibrium in the first caselues ana which is lower than any
equilibrium o with multiple equilibria. In the second case, then a unique equilibrium is greater
than anya with multiple equilibria. So, greater uncertainty increashe degree of equilibrium co-
ordination when signals indicate a low valuefiobut decreases co-ordination when signals indicate
a highf. This observation is a direct consequence of the effect ofampreserving spread on the
probability 1 — ®((1 — 2a — ps)/09) of successful co-ordination. An increasedisn places more
mass in the tails of the posterior distribution of beliefeat®. With low signals, this increases the
probability of successful co-ordination; with high sigsiat decreases it.

%In order to increase, eithero, or o, must be increased. But note that this also increasesn this discussion,
we assume that any increasesinis done in such a way that is kept constant.
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We summarise this discussion in the following proposition.

Proposition 2 Consider signal realisations such that there are multipleioria wheno, < %\/g
Let a,, be the lowestv € (0,1) occurring among the multiple equilibria; let,, be the highest
equilibriuma € (0, 1).

1. Holdo, constant, and decreas€ s so thato, > %\/g In the unique equilibrium that results,

a > Q.

2. Hold~/g constant, and increase, so thato, > %\/g (but o is constant). In the unique
equilibrium that results, ifi; > 1, thena < q; if uy < —1, thena > a,,.

Greater uncertainty can, therefore, both hinder and assistdination. It always assists co-
ordination, in the sense that with sufficient uncertaintygufficiently large), there is a unique equi-
librium. When signals are weak, it assists also by ensuringaanlibrium with a greater degree of
co-ordination (and hence higher payoffs) than the Paretteped outcome when there are multiple
equilibria. But when signals are strong, the unique equuliarhas lower payoffs than any outcome
when there are multiple equilibria. Greater heterogeneityhe sense of an increase in the ratio
~/ 3, always assists co-ordination, in both senses.

3.2 Simultaneous Information and Sequential Choice

The next benchmark examined, before turning to the ‘fulggusential problem, is the one in which
a unit mass of agents choose in each of the two periods, weteame information: signals; and
X, drawn at the beginning of period 1 and observed by both setgerfits. Henc®, = {X;, X,}
and(, = {X;, X5, oy } and the posterior on the state for both periods is normaédifriduted with
meany, and variance?.

We consider this case in order to uncouple the timing of d@tssamong agents from the timing
of resolution of information. This allows us to assess whetime importance of co-ordination
is reduced when agents move sequentially. The result instiisection indicates that this is not
the case, since the necessary and sufficient condition figuardetermination of equilibrium is
identical to the static case of the previous subsectionadh e obtain a stronger result than the
identical necessary and sufficient condition; the next pstpn proves that the equilibrium under
simultaneous information and sequential choice is idahtathat under simultaneous information
and choice.

Proposition 3 The equilibrium in the simultaneous information/sequerthoice case is identical
to that in the simultaneous information and choice case.

14



Proof. We first show that the equilibrium under this case is symmatrihe sense that the equilib-
rium value ofa; anda, are identical. Note that the equilibrium condition for anda, are given

as:
" B—1+7~ (1 — <—1‘a1—a022(a1)—u2>) | -
B
and
Cm:ﬁ—1+v@—©(Lﬂf£ﬂ». @®

p
Suppose that; anda, are not identical. However the right hand sides of equat{@hand (8)

evaluated for givem; anda, are identical. Hence they cannot be equal to differgrandas.
The symmetry of the equilibriumy’s imply that the equilibrium condition is reduced to
B—1+~ (1 _ (—1*232*“2»

a= 3 . (9)

which is the equilibrium condition for simultaneous infation and choice. The proof is complete.

]

The proof relies on the fact that the response functionaf@nda, are identical. The symmetry
of the equilibrium is more general than in the present mosleleamonstrated in Lee and Lee (2005),
which shows that the symmetry of equilibrium for games wigimmetric and non-decreasing re-
sponse functions.

The proposition indicates that the case of simultaneousnmdtion and sequential choice is es-
sentially identical to that of simultaneous informatiomamoice. Hence the necessary and sufficient
condition for a unique equilibrium is also identical, whislstated in the following corollary without
proof.

Corollary 1 The sufficient and necessary condition for a unique equuifbrin the simultaneous
information/sequential choice case is the same as thatarstimultaneous information and choice
case.

Those agents who move later observe the decision of eanyerspand so their co-ordination
effect is smaller (i.e.CE; > CE,). Intuition based on this observation would suggest that co
ordination should be easier with sequential action choiBesearly movers, anticipating the choices
of late movers, face the same co-ordination difficulty sitheeeffect of their decision is subsequently
amplified by those who move in the later stage. Hence se@l@gation choice alone does not make
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co-ordination easier in this model. This result appearsetajlite robust. For example, we have
verified that it holds when there are different masses of sgaoving in the two period¥.

The current case can be contrasted to the complete inf@matbdel in Farrell and Saloner
(1985). In the latter, there is a unique subgame perfeclibquim. In contrast, our analysis indi-
cates that sequential decision making does not help, veladithe static (i.e., simultaneous infor-
mation/choice) case, in ensuring a unique equilibrium. difference can be understood by the fact
that our model has a continuum of agents; hence there ia stifordination problem in each period.

3.3 Sequential Information and Choice

Finally, we analyze the fully dynamic case in which signale eevealed and choices are made
sequentially. We assume that each period, {1,2}, a signal is revealed to the agents who sub-
sequently choose their strategy conditional on the inféiona In the second period agents also
observe the decisions made in the first period before makieig own choice. Henc®; = {X;}
andy = { X1, X5, a1 }.

The agents who move in the second period have the same irtffomas the previous case of
simultaneous information/sequential choice. The firsiqaeproblem is different, however. Previ-
ously, the fractiony, of agents choosing action 1 in the second period was notatbjencertainty
from a further signal draw (even if indeterminate due to mplidiity). Now, a- is a random variable
from the perspective of period-1 agents since it will be deieed conditional on the realization of
the signalXs.

In the first period, the agents’ common posterioréois normally distributed with meap, =
(0210 + o2x1) /(02 + 02) and variancer? = o20?/(03 + o2). In the second period, the agents’
common posterior oA is determined as in the previous subsection: it is norma#ifriduted with
meanu, = (o2 + o3 (z1 + x2)) /(03 + 20%) and variancers = o202 /(02 + 202). In addition we
need information on how the second period sigigl, and the fundamentat, are correlated: their
covariance is given by? so that the correlation coefficient is computechas g u

o1/ 02 +02

Proposition 4 Define

A= inf <Pr(|Z| < 7) + exp {—%} Pr(|Z| > 7))

where 7 is a standard normal random variable andis the correlation coefficient betweérand

10The proof of this statement is available on request.
1Since the random variablé&,, is a noisy signal of the fundamentglthe correlation coefficient takes values only

betweer) and\/g. We will provide more discussion on this observation.
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X5. There is a unique equilibrium in the sequential informatahoice case if

(1+A)
Vor

o9 >

@RI

where) < )\ < 1.

Proof. We start with the second period problem, which is identioahtat for the simultaneous
information/sequential choice case considered in thea@uewsubsection. We collect the main results
here for reference: the implicit equation definimginvolves a non-decreasing function®f if and
only if

521¢<1_61_O‘2_“2) (10)

02

whereas, is determined by

I

02

Qg = ﬁ (11)
Hence the necessary and sufficient condition for uniquelibguim in the second period i >
1
T

The expected utility of a typ€-agent in the first period is
(—1+~Pr[0+ oy +ay > 1aq],

where the notation, emphasizes that it is a random variable. Those agents whe and&cision in
the first period must compute the probability of an event Whiepends on the sum of two random
variablesf anda,. Since the second period’s decision is made conditional gru, is a function
of the random variables.

Consider
dPr[9 -+ 6&2 Z 1— CY1|.T1]

dOél
where the left hand side of the inequality inside the prdiigtmontains only random variables while

the right hand side contains only parameters. First obsbat®) and X, = 6 + ¢, are bivariate-
normally distributed random variables. Conditional on tlhseryvation ofr;, ¢ and X, have the
same meam; and they have variance$ ando? + o2 while their covariance is given by’ so that

. . B o2 .
the correlation coefficient = P vt Write
PI'[Q + dQ(X2| Oél) Z 1-— Oz1|(L'1] = f_oooo flojal—&g(X2| ar) ¢$1 (H,Xg) df dX2
= ffooo fff%—&z(xz\ a1)—p1 ¢(é7 XQ) dé dX2 (12)
o1

17



whereg,, (6, X5) on the first line is the bivariate normal distributionébénd X, conditional on the
observation ofr;, while § = 9;“ and X, = % SO thatqb(é,)Q) on the second line is the
standard bivariate normal distribution.

Using equation| (12), the derivative of the probability wittspect tan; can be computed as
follows:

d
_— >1—
dal PI‘[@ + OéQ(XQ‘OCl) 1 041‘1’1 / dal ﬁ o a2(X2) o (b((g XQ) d@ dX2 (13)

Applying Leibniz’s rule, the derivative inside the outetagral is computed:

Ll o(6, X») d

doy J1meq-da(Xsle)—m

71

= x <1 + d&2(X2|041)) ¢(1 —o 542(X2|041) - M1’X2)_

01 dOél 01

Sinceq;, is determined from the implicit equation (11), we can totdlifferentiate it to obtain

das(Xslor) _ y0()  _ Vm
doy Bos —¢(.) ~ Boz — 7\/%7

: : 1
where the inequality follows from the fact that.) < Nors

Collecting these results and substituting them into (13pgie

d .
—Pr 9+0~42(X2’ 041) Z 1—041’1'1:|

dOél
<L (—5"2 )/m(p(l‘“l‘@Q(X?) ““»@) 1%, (14)
50—2 —00 01

The integral on the last line of equation (14) is bounded akhyv— for A\ < 1 as shown

VN
in the following lemma whose proof is provided in the appe&ndi
Lemma 2 Define
p27_2
=i < S
A 113f (Pr(|Z| < T)+exp { 21— pz)} Pr(|Z| > 7'))

whereZ is a standard normal random variable. For sucha

o ]_—Oél—dQ(XQ) I
/_J)( 7 X)dXQ—mﬁ_
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Lemma 2 implies that

d L
dT.glPr 9+Oé2(X2| Oél> Z 1-0[1’.%‘1

1 Bos A 1 Bos ) A
Vor

<

N <U_1ﬁ02 - 7\/%)\/271'\/1 —p? B (0_2502 - 7\/%7
Therefore, there is a unique equilibrium if

l po ) A
o9 Boy — 7\/% V2T

B>

which can be rewritten as
(1+X)

N

022%

The proof is completen

There is a step in the proof that deserves further explamatithe agents who move in the
first period have to deal with two random variables: the sdqueriod signal, and the proportion
of agents who will choose action 1 in the second period. Thedo is a normal random variable
whose distribution is given. However the distribution of #econd random variable is endogenously
determined as a function of the second period signal. Weyaphnsformation of random variable
technique to find a bound on the derivativengfwith respect tay;. This difficulty prevents us from
obtaining a necessary condition for uniqueness in this, tasgroposition provides only a sufficient
condition.

The proposition indicates that there is a unique equilirin the sequential information/choice
case for a weaker condition on the three parameters thaer @tlthe previous two cases analysed.
The following corollary formalizes this observation. Weibthe formal proof since it follows from
the fact that\ < 1.

Corollary 2 For any and~, there is a set non-emphy, of values ob;, (i.e., oo ando,) for which

a unique equilibrium exists under sequential informatibrice while there are multiple equilibria
under simultaneous information/choice or simultaneodsrimation/sequential choice. The set is
defined by

SR G ¥ 2
22_{02|6 Jon SO-QSﬁ\/%}-

The sufficient condition in proposition 4 relies on the pagten \. A close inspection of\
reveals that it is the best two-point approximation of thenmal distribution'? The approximation
assigns 1 to the normal density at the centre of the suppabite &ny points at a distance greater

12)\ is the minimum among all two-point approximations and irt 8ense it is the best approximation.
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Figure 3:) andp in sequential information/choice case

thanr from the centre is given the value of the densityratSince the standard normal density is
symmetric around 0 and monotone decreasing as the distacreases, this approximation provides
an upper bound on the density. In the computation of the uippend), the correlation coefficient
p plays a crucial role.

Since a closed form expression’o€annot be obtained, we compute it using a numerical method
to visualize the relation betweerand)\. Figure 32 shows thaf\ is a monotone decreasing and con-
cave function op. Notice that ifA is close to 1, then the sufficient condition indicates litdaxation
in the uniqueness condition compared to the previous casebich the signals arrive simultane-
ously. On the other hand, smallgrimplies that the uniqueness condition for the sequentialeho
is substantially weaker than that of the previous two cadesice whert and X, are independent,
the sufficient condition is almost identical to the simuétans information models; while when they
are correlated, the bound for the sufficient condition iskeeahan that for the other two cases.

When# and X, are independent, the second period signal is not informathout the fun-
damental and hence the second choice is likely to be sinal#ing first period choice. To put it
differently, an X, which is independent of means that agents have similar information regard-

13Sincep < @ the figure is valid only up tGQQ on the horizontal axis.
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less of when they move; and hence the informational enviesmris similar to the simultaneous
information/sequential choice model. We have found thatsimultaneous information/sequential
choice model has an identical condition to the simultaneoiggsmation/choice model for unique-
ness. Hence the sufficient condition for the sequentialrmétion/choice model is similar to the
simultaneous information/choice model.

On the other hand, whefh and X, are strongly correlated (i.ep, is close to\/Ti), the second
period signal is strongly informative of the fundamental.sEe this, defing = 03 /0?; n measures
the relative precision of period 1 and period 2 signals,esinc

o} 0 +207 142

o3 op+ol  l+4n
In the limit whenrn = 0, the precisions of the signals in the two periods are equalyersely, as
n — oo, the period 2 signal is much more precise than the periodriakiflotice also that

Whenn = 0, p = 0; and whenp — oo, p — ‘/75 Now consider the limitry — oo or o2 —

0, in whichn — oo andp — \/75 the (relative) precision of the period 2 signal is much éarg
than the precision of the period 1 sigriél.This in turn implies that the second period choice is
not (necessarily) similar to the first period choice. Herlee agents who move in the first period
have less of a co-ordination effect and the sufficient camdlits weaker than for the simultaneous
information models.

In summary: in the simultaneous information/choice anduiameous information/seq-uential
choice cases, the conditions for equilibrium uniquenessdantical. In the simultaneous informa-
tion/sequential choice model, a simple intuition (e.gondra two-player game) suggests that the
co-ordination problem will be less, because half of the &gprove after observing the choice of the
other half. However those agents who move in the first peritigt &nticipate the consequence of
their choice for those agents who move in the second periada Aesult, the co-ordination effect
for period-1 agents is unchanged; and so is the necessaryuffitdent condition for equilibrium
uniqueness. In contrast, the sequential informationtehocase shows that gradual revelation of
information can have a significant effect on co-ordinatiparticularly when the precision of the
second period signal is high.

Note that at the limitr. = 0, the signalsY; andX, are perfectly precise about the valugloft the limit, therefore,
there is no difference between the signals arriving simelasly or sequentially. Along the path to the limit, howeve
the period 2 signal is relatively much more precise than threog 1 signal.
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4 Path Dependence

The mechanism behind equilibrium determination in the satjal information/choice case has an
interesting implication for the dynamic behavior of the rabdThe agents who move in the first
period have to make their choice with less information tHawsé in the second period. On the
other hand, the first-period choices of agents are irravier$or later movers in the second period.
Multiple equilibria occur when agents have too much effetttiee probability of successful co-
ordination. This observation implies that the first perigeats effectively ‘select’ one of multiple
equilibria. Consequently, different sequences of sigressl lto different equilibrium paths. Due
to the irreversibility of first period choices, the signahttarrives in the first period has a bigger
effect on the determination of the equilibrium path. We regethis effect as path dependence. In
this section, we make this argument precise by establidiomgthe equilibriunvy, t € {1,2}, are
affected by signal realisations.

We start by showing that our model exhibits a strong form olsastic dominance on the equi-
librium «;. In the next proposition, we consider a fixed amount of infation, and show that both
a1 anday are increasing functions of the first period signal.

Proposition 5 Givenz, consider signal draws such that + z, = z. The equilibrium values af,
anda, are increasing functions af;.

Proof.  Consider two realizations of signal draws,= (x1,z2) andx’ = (2, x%) for which
x1 + zy = x} + 2, = . Moreover assume that > z/. The first period agents’ choice satisfies
a1z, > aul, since the posterior distribution in the first period has @bignean when conditioned
onz; than onz’.
Recall that the second period equilibrium is determined from
f—-1- vé(%#).
g

Notice that both sequences of signals produce the same rmeank®th sequences have the same

Ay —

value for the sum of the signals. Moreover,, > «;|., from above. We know that, as a function
of oy Is increasing im;. Sincea, depends o, oo, anda; where the first two are identical for
both sequences and only differs in the two sequences, it follows that|, > as|,,. =

The implication of the proposition is seen clearly in thddaling example.

Example 1 Consider two realizations of signals of the same total infdramacontent but with re-
versed ordersz = (1, x2) andz’ = (xq, x1) Wherex; > 5. Thenay|, > oy andas|, > asl..

In the example, there are two sets of second-period agaitswith the same aggregate information
(and hence belief about the state of nature), but distihgdidy observing different first-period
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signals. Of the set that receives the higher first periodadjgngreater proportion chooses action
1. In short, first-period signals have not only an informagibeffect, but also a real effect on the
equilibrium path.

In the next proposition, we explore further properties @& ttynamic path to show the relative
importance of the first-period signal for the determinatdthe equilibrium outcome.

Proposition 6 Suppose thatiy(z2) = as(z)) Wherezy > 2. Thenz; < 2} and thusa;(z;) <
aq(x)). Moreoverz, + zy > @) + x4,

Proof. In order foras(xs) = as(x)) for zo > 2, the equilibrium condition

i i 1—a;—as—p(z1,22)
B =1+ (1 —¢(——rF==))
ﬁ )
implies thato, (x1) + u(xy, x2) = ag(x)) + p(x), z4). Itis easy to see that; < ) since otherwise
ai(x) > ap(x)) andu(xy, xe) > u(x), o)) so thatoy (z1) + p(x, x2) > aq(x]) + p(zl, o).

Hence suppose that < 2. Aiming at contradiction, suppose that+ x» < x| + z5,. However

Qg =

under this conditiongy; (z1) < () and u(xq, x9) < p(x}, x}) so thatay(zr) + pu(xq, xe) <
aq(x)) + p(2h, o). Since this contradicts the hypothesis thatz,) = ay(z}), we have proved that
T+ a2 >+, m

Suppose that a signal which is indicative of a low fundamest&ceived in the first period. The
proposition implies that to offset this early shock, it takelarger shock in the opposite direction.
Hence the early signal has a bigger effect on the equiliboutsome than the late one. One impli-
cation of this observation is that a form of equilibrium niplitity can occur, even if the sufficient
condition in proposition 4 is satisfied. The same overabinfation can lead to different equilib-
rium outcomes, distinguished by the order in which signalse In cases where it is possible to
observe only an aggregate of information, and not the fgjlisace of signals, the effect is similar to
equilibrium multiplicity. The cause, however, is not th@lplem of co-ordination (that is eliminated
by proposition 4)—it is instead informational.

5 Summary and Conclusions

In this paper, we have investigated the importance of dyosufur equilibrium determination in
games with strategic complementarities. We have showrthikeatming of information is crucial—
in our model, more important than the timing of actions. Tinpartance of learning is seen in three
ways: first, in the effect that it has on the conditions foriklguum uniqueness; secondly, in the
implications for equilibrium payoffs; and finally, in the w#hat equilibrium outcomes can display
path dependence.
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While we have shown these points in a very simple model, wektthat they are robust to
a number of generalizations. For example, we use througiheuhormal distribution to model
uncertainty. This allows us to have very tractable expogssfor posteriors, and single parameters
to measure variance. But it seems unlikely that the normasisumption is driving any of the main
results; and so more general distributions could be usedeifidditional complexity is warranted.
We assume that an equal mass of agents move in each perieceasy to show that this feature
could be replaced with arbitrary masses with no change inethalts.

The results of the paper underscore the importance of wmoegrifor the determination of equi-
librium in economic problems in which co-ordination masteffor instance, the stability of a market
mechanism which is subject to uncertainty resolution andrdmation externality may be affected
by how much information is released to the agents who movetove. The result has an implica-
tion for the policy suggestion by David (2001) that to avdid tanger of making a wrong decision,
agents should delay their decisions. According to the ¢awmdi for equilibrium uniqueness, a delay
in the decisions by agents may instead lead to equilibriurttipticity. On the other hand, there
seems no way to rule out the realization of bad outcomes dpattodependence if the decision is
made with less than comprehensive information. Our resists imply that any empirical assess-
ment of an economic event that involves co-ordination sthpaly attention to the dynamic nature of
the environment.

Appendix

Proof of Lemma 2

Proof. Sinces(d, X») is the standard bivariate normal distribution with covadiey, it holds that

JON 1 1 A A s 42
H0Ke) = o |-y s - 20 )|
L [ L% é)Q}xle [1)22}
V2m\/1 — p? P 2(1 - p?) Pz V2 P72
1 1 . ~ .
= —F——F——=¢eXp —ﬁ<pX2—6)2 ¢(X2)
V211 — p? 2(1—p?)
Then,
[ orm B om ) ax,

I 1—0[1—5&2

>0 1 1
= —————exp | [ pXs—
/oo NG I TE ) (p i o1

(X”““) o(Xy) dXy. (15)
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Define

. ol —ar —as(X,) —
R R

01
and defineX; such thaty(X;) = 0. Note thatd,(X,) is monotone increasing iX, and hence
g(X5) is monotone increasing and there exists a unittie
Fix 7 > 0 and define
. 1 it X;—7<X,<X;+41,
f(XZ) = p272 . ~ S A Sy
exp [—2—] if Xo<X5—7o0rXe> X+

(1-p%)

Then for all X5,

1 5 1 —ag —as(Xs) — 1 2 5
exp [—m <PX2 - ) ] < f(X3)

01

since givenr > 0,

g(X3)| > pr for X, such that X, — X3| > 7 while exp [—%} < 1for X,
such that X, — X;| < 7. It follows that

. 2
o0 1 A l—al—dg(Xg)—,ul > >
——— | p X2 — Xo) dX
/_OO exp 21— p?) <P 2 o1 P(X2) dXo

< /_OO F(X2)$(X2)d X,

B p27'2

= PI‘(|Z| < 7') + exp {—m} PI‘(|Z’ > T)

<1 (16)

whereZ in the third line of the equation is s standard normal randanable.

Define\ as )
peT
— | Pr(|Z] > 7).
_p2>] (12 > )

A= irTlfPr(]Z\ < T)+exp {—2(1

Then0 < A < 1 and

© ]~y — @g(Xy) — A A\
/ ¢( 1 2( 2) Ml,XQ)ngg

o1 V21— p?

The proof is completem
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