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Abstract

We provide analytic solutions for any asymmetric �rst-price auc-

tion, both with and without a minimum bid m, for two buyers having

valuations uniformly distributed on [v1; v1] and [v2; v2]. We show that

our solutions are consistent with the previously known subcases stud-

ied by Griesmer et al. (1967), when v1 = v2; and Vickrey (1961), when

one valuation is commonly known. We also show that the solution is

continuous in v1; v1; v2; v2 and m. Several interesting examples are

presented, including a class where the two bid functions are linear.

1 Introduction

While research on auctions, including asymmetric auctions, has grown signif-

icantly in recent years, there are still very few analytic solutions of �rst-price
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auctions outside the symmetric case. Surprisingly, even what is possibly the

most natural environment to study has not been solved analytically, namely,

that with two buyers and private values drawn from independent but asym-

metric uniform distributions. This is a fundamental case that would be useful

to test conjectures, do comparative statics, or illustrate important features

of auction design.

The uniform distribution plays a central role in Bayesian statistics (�in

the veil of ignorance�) in the same manner that the normal distribution plays

a central role in econometrics. Furthermore, it is a reasonable approximation

if the true distributions are not far from uniform in view of the continuity

result of Lebrun (2002). Perhaps, one reason it has not been solved until this

point is that the problem in general has been thought to be intractable.1

A solution does exist to a special case, dating back to Griesmer et al. (1967),

with distributions V1 � U [0; 1]; V2 � U [0; �] that has the following equilib-

rium inverse-bid functions:2

v1(b) =
2b�2

�2 � b2(1� �2)
; v2(b) =

2b�2

�2 + b2(1� �2)
: (1)

However, this result has the restriction that the distribution of buyers�values

have the same lower end.3 This is a substantial assumption: it restricts the

asymmetry between the buyers to one dimension, namely, one distribution

being a �stretch� of the other while ignoring di¤erent aspects of strength

like �shifts�. For example, if the distribution of one buyer�s value is U [0; 1];

then the second buyer could be considered stronger for having U [0; 2] or for

having distribution U [1=2; 1]: In the �rst case (stretching), he is stronger in

the sense that he may have higher values (in [1; 2]), while in the second case

he is stronger in the sense that he cannot have low values (in [0; 1=2]).

1�It resists solution by analytical methods,�Vickrey (1961).
2For presentation purposes, we normalize the �rst bidder�s distribution to be on [0,1].
3This result was later used by Maskin and Riley (2000), and Cantillon (2002). Plum

(1992) extends this analytic result to cover the power distribution F1(x) = x� and F2(x) =�
x
�

��
: Also, more recently Cheng (2006) adds the case of F1(x) = x� and F2(x) =

�
x
�

�
under the restriction that � = (�+1)

�(+1) . Note that these again have the same lower bound
for the support of the two distributions.
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These two notions of strength may yield di¤erent e¤ects on the equilib-

rium, as was already observed by Maskin and Riley (2000a). Likewise, the

lack of a minimum bid is yet another dimension missing in the existing re-

sults. For instance, outside the symmetric case, linear bid functions can occur

only in the presence of a minimum bid. Also as we shall show, the presence

of a minimum bid may qualitatively a¤ect the equilibrium. For instance,

the two equilibrium bid functions may intersect both at the minimum bid

and at an internal point (see Example 1). This means that the bidding of

the buyers cannot be ordered so that one is more aggressive than the other.

Rather, one is more aggressive in a part of the common region of values while

the other buyer is more aggressive in the other region. This is despite the

fact that starting from the minimum bid, one buyer�s distribution of values

stochastically dominates the other�s distribution. This is the �rst example

of such a phenomenon that we are aware of.

In this paper, we present analytic solutions for any asymmetric �rst-

price auction, both with and without a minimum bid m, for two buyers

having values uniformly distributed on [v1; v1] and [v2; v2]. We show that

our solutions are consistent with previously known solutions of auctions with

uniform distributions and with the result of Vickrey (1961) for the case when

one valuation is commonly known. As we explain later, our solution also

covers the general case of uniform distributions with atoms at the lower end

of the interval.

The mathematical expressions vary in the di¤erent regions of the pa-

rameters v1; v1; v2; v2 and m. While one change occurs when the mini-

mum bid ceases to bind, surprisingly, we �nd another change occurs when

m = maxfv1; v2g: Furthermore, as a function of the distributions, changes of
the solution occur when a distribution shrinks to a single point (that buyer�s

value becomes commonly known) whereupon that buyer uses a mixed strat-

egy in equilibrium. This case (without a minimum bid) was �rst analyzed

by Vickrey (1961). Using Lebrun (2002, 2006) results, we prove that despite

these changes the solutions are still continuous in the parameters and we

verify this directly by taking the appropriate limit. A consequence of the

continuity is that the pro�ts are also continuous in the parameters.
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Several interesting examples are presented, including a class where both

bid functions are linear. In particular, given any minimum bid m � 0; there
is a class of uniform distributions (where buyer 2�s distribution stochastically

dominates buyer 1�s distribution) for which the bid functions b1(v) = v
2
+ m

2

and b2(v) = v
2
+ m

4
form the equilibrium. This provides a handy textbook

example of linear equilibrium bidding in asymmetric auctions. Furthermore,

we characterize the environments with uniform distributions that yield linear

bid functions and provide a more general formula that becomes linear in those

environments.

Besides the challenge of obtaining analytic solutions to a rather wide class

of asymmetric �rst-price auctions, we hope that our results will improve our

understanding of auctions and serve as a useful tool for future research on

auctions.4 We also hope that this paper can help or at least inspire others

to �nd analytic solutions of other classes of auction models.

In Section 2, we describe the model and provide initial results about

the equilibrium and boundary conditions. We then derive the di¤erential

equations resulting from the �rst-order conditions of the equilibrium and

appropriate boundary conditions. We show that this and the second-order

conditions can be reduced to a single di¤erential equation. In Section 3,

we make use of these results to provide solutions that are distinct on the

various regions of the parameters. In Section 4, we show that our solution is

continuous in the parameters, which we also verify directly. Some examples

are then provided in Section 5 along with a short discussion in Section 6.

Several of the proofs are given in the Appendix.

2 TheModel and the Equilibrium Conditions

We consider a �rst-price, independent, private-value auction for an indivisible

object with two buyers having two general uniform distributions: U [v1; v1]

4The existing analytic solutions continue to serve as such tools. For instance, Hafalir
and Krishna (2007b) compare the solution of �rst-price auctions with resale from Hafalir
and Krishna (2007a) to the analytical solutions to �rst-price auctions without resale pro-
vided by Plum (1992) and Cheng (2006) to show that for these classes, the revenue is
higher with resale than without resale.
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for buyer 1 and U [v2; v2] for buyer 2 (where �1 < v1; v1; v2; v2 < 1, as a
uniform distribution has a bounded support). Without loss of generality, we

assume that v1 � v2:
As usual, we are interested in the Bayes-Nash equilibrium of this game

with incomplete information, that is, a pair of bidding strategies that are

best replies to each other, given the beliefs of the buyers about the values of

the object.

We allow for the possibility of a minimum bid m; which is assumed to be

�nite, to ensure that bids are bounded from below.5 The fact that the bids are

bounded from below implies that no buyer wins by bidding less than v1 (the

argument here is similar to the one made in Kaplan andWettstein, 2000).6 In

particular, in equilibrium, there is no bid b lower than v1. Consequently, we

shall assume from now on and without loss of generality that m � v1: Also,
we assume that (in equilibrium) a buyer with zero probability of winning

bids his value (this includes any value below m).7

Notice that when m � minfv1; v2g, the only equilibrium is the trivial

equilibrium of at most one buyer placing a bid at m. In addition, if v2 �
2v1 � v1, then any Nash equilibrium must have buyer 2 always bidding v1
(and hence always winning the object at price v1).8 Such an equilibrium

5Kaplan and Wettstein (2000) show that when v1 = v1 = v2 = v2 then without a lower
bound on bids there exists a positive pro�t equilibrium with mixed-strategies (with no
lower bound).

6The argument is along the following lines and by contradiction. Assume that there is
a minimum bid m and that bidding below v1 has strictly positive probability of winning.
From this, bidders must have strictly positive pro�ts for all values including v1. Take b

� as
the minimum possible equilibrium bid. The bidder bidding b� must have zero probability
of winning since if not, the other bidder must be bidding b� with positive probability.
Then, a slight increase in bid would yield a discrete jump in probability of winning. Since
he has no chance of winning by bidding b�, it follows that the bidder has zero expected
pro�ts, providing a contradiction.

7Without this assumption a bidder with value v; who in equilibrium has zero probability
of winning, can sometimes bid more than his value. Formally, this could still be part of a
Bayes-Nash equilibrium and have a di¤erent allocation than other Bayes-Nash equilibria.
Such equilibria can be eliminated, for example, by a trembling-hand argument, i.e., by
assuming that each bidder i bids with positive density on [vi; vi]. While a bidder bidding
below his value when he has zero probability of winning can also be supported in a Bayes-
Nash equilibrium, the allocation is the same as the Bayes-Nash equilibrium where he bids
his value. For simplicity, we may eliminate such equilibria.

8Let us denote v�1 as the highest value of buyer 1 for which he wins with zero probability.
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re�ects what Maskin and Riley (2000a) refers to as the Getty e¤ect where

one buyer (the J. Paul Getty Museum) is so dominant that it always wins

(in art auctions). This discussion yields the following lemma which speci�es

the non-trivial cases left to analyze.

Lemma 1 The set of parameters v1; v2; v1; v2; and m for which non-trivial

equilibria may exist is de�ned by the following constraints:

(i) v1 < v1;

(ii) v1 � v2 < v2;

(iii) v2 < 2v1 � v1;
(iv) m < minfv1; v2g:

In this range of parameters, an equilibrium would consist of strictly

monotone, di¤erentiable equilibrium bid functions b1(v) and b2(v). Denote

the inverses of these bid functions as v1(b) with support [b1; b1] and v2(b)

with support [b2; b2]. In the Appendix A.1, we show these supports are the

same and denote this common support as [b; b]: Also, in the Appendix A.1,

we solve for b: In the next section, we present the two di¤erential equations

whose solutions form an equilibrium. Since we will �nd a unique solution to

the set of equations, it will be the unique solution in the class of monotonic

and di¤erentiable bid functions.9 Furthermore, Griesmer et al. (1967) show

that any non-trivial equilibrium must consist of monotonic and di¤erential

bid functions, at least without a minimum bid, and Lebrun (2006) shows

uniqueness with a minimum bid, making our solution unique overall.10

If v�1 = v1, then the equilibrium is as stated. If v�1 < v1; then by our assumption buyer
1 bids his value for all v < v�1 : Since buyer 1 wins with some probability for all v > v�1 ;
then for some v2 buyer 2 must bid v�1 with positive probability. For this to be a part
of an equilibrium, bidding v�1 and winning with positive probability must have a pro�t
at least as high as bidding v1, which would guarantee winning. Hence, we must have
v�1�v1
v1�v1

(v2� v�1) � (v2� v1): If v2 � 2v1� v1 is satis�ed, then the LHS is strictly increasing
in v�1 (for v

�
1 < v1). However, when the v�1 = v1; the LHS equals the RHS, providing a

contradiction.
9See Lizzeri and Persico (2000) for a general proof of uniqueness and existence in

auctions with interdependent values and minimum bids for this class of solutions with
monotonic and di¤erentiable bid functions.
10The uniqueness requires our assumption that (in equilibrium) a buyer with zero prob-
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2.1 The di¤erential equations

In the interval [b; b], the functions v1(b) and v2(b) must satisfy (by the �rst-

order conditions of the maximization problems)

v01(b)(v2(b)� b) = v1(b)� v1; (2)

v02(b)(v1(b)� b) = v2(b)� v2:

Let us look now at the boundary conditions. As we noted above, b belongs

to [v1; v1]: Furthermore, ifm � v2; then b = m. We must have, in equilibrium,
the following:

B1 v1(b) = b (recall that a buyer bids his value when his probability of

winning is zero).

B2 v2(b) = maxfv2;mg (this is the minimum value that gives buyer 2 a

positive probability of winning).

B3 v1(b) = v1 and v2(b) = v2 (the highest bid of each buyer is reached for

his highest value.)

Adding the equations in (2) together yields

v01(b)v2(b) + v
0
2(b)v1(b) = [(v1(b) + v2(b)� (v1 + v2))b]0:

By integrating, we have

v1(b) � v2(b) = b(v1(b) + v2(b))� (v1 + v2) � b+ c: (3)

where c is the constant of integration.

ability of winning bids his value (see footnote 6). For example, if m; v1; v1; v2; v2 equals
0; 0; 1; 4; 5 respectively, then without our assumption two possible equilibria are b1(v) = v;
b1(v) = 1 and b2(v) = 2v; b2(v) = 2. Note that these extraneous equilibria are equivalent
to having a minimum bid at 1 and 2, respectively. More generally, each of the additional
equilibria are equivalent to an equilibrium under our assumption with a minimum bid m
(equivalent in allocation and strategies for values above m).
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Lemma 2 The upper bound of the bid functions, b; is given by

b =
v1 � v2 � c

(v1 � v1) + (v2 � v2)
; (4)

where

c =

(
(v1+v2)

2

4
if v1+v2

2
� m;

(v1 + v2)m�m2 otherwise.
(5)

Proof. Substituting the lower boundary condition B1 into (3) yields

v2(b)b = b(v2(b) + b)� (v1 + v2)b+ c:

This simpli�es to11

c = (v1 + v2)b� b2:

From (23), we have (5). (Note that c, as a function ofm, reaches its maximum

at m =
v1+v2
2
.) Using B3 and (3) we have

v1 � v2 = b(v1 + v2)� (v1 + v2) � b+ c;

which yields (4).

2.1.1 Reduction to a single di¤erential equation.

We can use (3) to �nd v2(b) in terms of v1(b) as follows:

v2(b) =
bv1(b)� (v1 + v2)b+ c

v1(b)� b
: (6)

We can then rewrite the di¤erential equation (2) as

v01(b) � (
bv1(b)� b(v1 + v2) + c

v1(b)� b
� b) = v1(b)� v1

11Notice that no where do we use boundary condition B2. Nonetheless, B2 will hold in
our solutions. This is because it is, in fact, redundant and a consequence of the di¤erential
equations and boundary condition B1. Likewise, boundary condition B1 is implied by B2
and the di¤erential equations.

8



or

v01(b) � (�b(v1 + v2) + c+ b2) = (v1(b)� v1)(v1(b)� b): (7)

Equations (5) and (7) and boundary condition v1(b) = v1 are used to �nd

a solution for v1(b): With the solution of v1(b), equations (5) and (6) are

then used to �nd v2(b). We note that using similar steps we can arrive at a

symmetric equation to (7) with boundary condition v2(b) = v2; the di¤erence

being that any subscript representing buyer 1 is replaced with buyer 2 and

vice-versa. For instance, v1(b); v01(b); v1; and v2 are replaced by v2(b); v
0
2(b);

v2; and v1; respectively. This implies that the solution will be symmetric in

the same way.

Although the di¤erential equation is derived from the �rst-order condi-

tions, any solution to it also satis�es the second-order conditions and hence

is an equilibrium bid function. For the uniform distribution without the

minimum bid, the second-order was proved by Griesmer et al. (1967) and for

completeness we provide a simple, more general proof, adapted from Wolf-

stetter in Appendix A.2. In the following section, we �nd the equilibrium

bid functions by solving the di¤erential equations.

3 Solutions

3.1 Auction without a minimum bid

The auction without a minimum bid has the same solution as an auction

with a minimum bid m that satis�es m � v1+v2
2
.

Proposition 1 When m � (v1+v2)=2; the equilibrium inverse bid functions
are given by

v1(b) = v1 +
(v2 � v1)2

(v2 + v1 � 2b)c1e
v2�v1

v2+v1�2b + 4(v2 � b)
; (8)

v2(b) = v2 +
(v2 � v1)2

(v1 + v2 � 2b)c2e
v1�v2

v1+v2�2b + 4(v1 � b)
(9)
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where

c1 =

(v2�v1)2
v1�v1

+ 4(b� v2)
�2(b� b)

e
v2�v1
2(b�b) ; (10)

c2 =

(v2�v1)2
v2�v2

+ 4(b� v1)
�2(b� b)

e
v1�v2
2(b�b) (11)

and

b =
v1 + v2
2

; b =
v1 � v2 � (v1+v22

)2

(v1 � v1) + (v2 � v2)
: (12)

Proof. In solving di¤erential equation (7), we �rst have (by (5) and (4))
c =

(v1+v2)
2

4
and

b =
v1 � v2 � (v1+v22

)2

(v1 � v1) + (v2 � v2)
:

Rewrite equation (7) as

v01(b) � (v1 + v2 � 2b)2 = 4(v1(b)� v1)(v1(b)� b):

De�ne now � � v1 + v2 � 2v1 = v2 � v1; x � b� v1 and D(x) such that

v1(b) =
�2

D(x)
+ v1: (13)

We then have v01(x) = � �2

D(x)2
D0(x), and equation (7) becomes

D0(x) � (�� 2x)2 = 4(D(x)x� �2);
D0(x) � (�� 2x)2 = 4D(x)x� 16x(�� x)� 4(�� 2x)2;

(D0(x) + 4) � (�� 2x)2 = 4x(D(x)� 4(�� x));

D0(x) + 4

D(x)� 4(�� x) =
4x

(�� 2x)2

=
2�

(�� 2x)2 �
2

�� 2x:
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By integrating both sides, we obtain

ln(D(x)� 4(�� x)) = �

�� 2x + ln(�� 2x) + ln c1;

and taking the exponent of both sides yields

D(x)� 4(�� x) = (�� 2x)c1e
�

��2x ;

D(x) = (�� 2x)c1e
�

��2x + 4(�� x): (14)

The upper boundary condition v1(b) = v1 determines c1: When b = b, we

have x = x � b� v1. From our de�nition we have D(x) = �2

v1�v1
: Hence the

boundary condition becomes

c1 =

�2

v1�v1
� 4(�� (b� v1))
(�� 2(b� v1))

e
� �
��2(b�v1) ;

which can be rewritten as (recall that in this case b = v1+v2
2
)

c1 =

(v2�v1)2
v1�v1

+ 4(b� v2)
�2(b� b)

e
v2�v1
2(b�b) :

Note that this depends only on the constants of the game vi; vi, since

b� v2 =
v1 � v2 � (v1+v2)

2

4

(v1 + v2)� (v1 + v2)
� v2

and

b� b =
v1 � v2 � (v1+v2)

2

4

(v1 + v2)� (v1 + v2)
� v1 + v2

2
:

Equations (8) and (10) are obtained from equations (13) and (14) and the

de�nitions of �; x. Finally, equations (9) and (11) are obtained from equa-

tions (8) and (10), respectively, by reversing the roles of v1; v1 with those of

v2; v2.

Note that equations (8)-(12) imply, as expected, that the solution is in-

variant under translations of [vi; vi], i.e., a shift of zi to [vi + zi; vi + zi].
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3.2 Auction with a minimum bid

When the minimum bid is binding, as in the case wherem > (v1+v2)=2; equa-

tion (5) becomes c = (v1+v2)m�m2 and (4) becomes b = v1�v2�(v1+v2)m+m2

(v1�v1)+(v2�v2)
.

Also, since v1 � v2, we have m > v1. Now, we can rewrite the di¤erential

equation (7) as

v01(b) � (b�m)(b+m� v1 � v2) = (v1(b)� v1)(v1(b)� b): (15)

Notice that since b � m and 2m > v1 + v2; the coe¢ cient of v
0
1(b) on the

left-hand side of the above equation is positive. This leads to the following

proposition:

Proposition 2 The equilibrium inverse bid function for buyer 1 with mini-

mum bid m such that m > (v1 + v2)=2 and m 6= v2 is given by

v1(b) = v1 +
(m� v1)(m� v2)

b� v2 + (b�m)
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
(m�v2)

(m�v1)+(m�v2) c1

;

(16)

where

c1 = �
(v1 �m)(v2 � v2)

�
(m�v2+v1�v1)(m�v1+v2�v2)

(v1�m)(v2�m)

� m�v1
(m�v1)+(m�v2)

(v1 � v1)(m� v1 + v2 � v2)
: (17)

Buyer 2�s inverse bid function v2(b) is obtained from v1(b) by interchanging

the roles of v1; v1 and v2; v2: The bounds of the bid functions are b = m and

b =
v1�v2�(v1+v2)m+m2

(v1�v1)+(v2�v2)
:

Proof. The derivation of this solution of equation (15) is given in Ap-
pendix A.3.
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3.2.1 Special case when v1 = v2 = 0:

Corollary 1 The equilibrium inverse bid function for buyer 1 with minimum
bid m > 0 and v1 = v2 = 0 is given by

v1(b) =
m2

b+
p
b2 �m2c1

;

c1 = �
(v1 �m)(v2)

�
(m+v1)(m+v2)
(v1�m)(v2�m)

�1=2
v1(m+ v2)

:

Proof. Substituting v1 = v2 = 0 into the solution, equations (16) and

(17) yields the result.

This is a special case that comes directly from substitution in our formula

of Proposition 2.

We are not aware of this solution elsewhere. As a prelude to Section 4,

we show that the limit of this solution converges to Griesmer et al. (1967).

Taking limm!0 v1(b) and applying L�Hopital�s rule yields

v1(b) =
2bv21v

2
2

v21v
2
2 + b

2(v22 � v21)
:

Reversing the roles of v1 and v2 gives us

v2(b) =
2bv21v

2
2

v21v
2
2 � b2(v22 � v21)

:

Setting v1 = 1 and v2 = � to �nd v1(b) and v2(b) yields equation (1), which

is the result in Griesmer et al. (1967).

Furthermore, setting v1 = v2 = 1 yields the symmetric case with a mini-

mum bid:

v1(b) =
m2

b+
p
b2 �m2c1

;

c1 = �
(1�m) (m+1)

(1�m)

(m+ 1)
= �1:

The limit as m! 0 is v1(b) = 2b; which agrees with the standard result.
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3.3 The case when m = v2

Looking at the solution for the case of a minimum bid, the expressions (m�
v1) and (m � v2) appear in the denominator (in the constant). Since we
are in the case where m > (v1 + v2)=2 and v2 � v1; we have m = v1 only

when v1 = v2 = m, which reduces to the case of no minimum bid. We are

thus left to provide a solution for the case with a minimum bid equal to

v2: The reason for this transition at m = v2 is that boundary condition B2,

v2(b) = maxfv2;mg; is at the border between v2(b) = v2 and v2(b) = m. It is
interesting that the equations in Proposition 2 do double duty for both when

m < v2 and m > v2.

Proposition 3 The equilibrium inverse bid function for buyer 1 with mini-

mum bid m such that m = v2 and v2 > v1 is given by

v1(b) = v1 +
v2 � v1

1�
�
b�v2
v2�v1

� h
c+ log

�
b�v1
b�v2

�i (18)

where

c =
(v1 � v2) (v2 � v1)
(v1 � v1) (b� v2)

� log
�
b� v1
b� v2

�
=

(v1 � v1 + v2 � v2) (v2 � v1)
(v1 � v1) (v2 � v2)

� log
�
(v2 � v1) (v1 � v1)
(v2 � v2) (v1 � v2)

�
: (19)

Again, the buyer 2�s function v2(b) is obtained from v1(b) by interchanging

the roles of v1; v1 and v2; v2: The bounds of the bid functions are b = m and

b =
v1�v2�v1�v2

(v1�v1)+(v2�v2)
.

Proof. See the Appendix A.4.

3.4 The case where one valuation is commonly known

The case where v1 = v1 � v1 or v2 = v2 � v2, namely, the situation in which
the value of at least one of the two buyers is common knowledge cannot be

obtained directly from equations (8) and (9). For the case when there is no

14



minimum bid, these were treated by Vickrey (1961), appendix 3, (see also

Kaplan and Zamir, 2000, and Martínez-Pardina, 2006). For simplicity, we

normalize this situation to [v1; v1] = [0; 1] and v2 = v2 = � where 0 < � < 2

(when � > 2; the equilibrium is that buyer 2 bids 1 and wins with certainty).12

For this situation, Vickrey found that in the equilibrium of the �rst-price

auction, buyer 1�s inverse bid function is

v1(b) =
�2

4(� � b) ; (20)

while buyer 2, whose value is known to be �; uses a mixed strategy given by

the following cumulative probability distribution (with support from b = �
2

to b = � � �2

4
) :

F (b) =
(2� �)�
2(2b� �)e

� �
2b���

2
��2 : (21)

3.4.1 The case with a minimum bid.

In the presence of a binding minimum bid, the counterpart of the previous

result is the following.

Proposition 4 When �=2 � m < minf1; �g, the unique equilibrium when

buyer 2�s value is known is where buyer 1 has inverse bid function v1(b) and

buyer 2 bids with a mixed-strategy given by the cumulative distribution G(b),

with support b = m to b = � �m(� �m), described by

v1(b) =
m(� �m)
� � b

and

G(b) =
((1�m)(� �m))

m��
2m�� (m(m� � + 1))

m
2m��

(b�m)
m��
2m�� (b+m� �)

m
2m��

:

Proof. We show directly that v1(b) and G(b) is in fact the unique equi-
librium when buyer 2�s value is known. Since buyer 2 bids a mixed strategy,

12When buyer 1�s value is commonly known, the equilibrium is trivial in that buyer 2
wins the auction at buyer 1�s value. (In this special situation, we also have to relax the
assumption of buyer 1 bidding his value when he doesn�t win to obtain an equilibrium.)
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he must be indi¤erent to every point in his support including the minimum

bid m (which is in the support if the minimum bid is binding). The following

formula represents this.

v1(b)(� � b) = m(� �m):

Hence, we have

v1(b) =
m(� �m)
� � b : (22)

If the cumulative distribution of buyer 2�s mixed strategy is G(b), then the

�rst-order conditions of buyer 1 yields

G0(b)(v1(b)� b) = G(b):

By rewriting this equation and substituting for v1(b) using equation (22), we

have
G0(b)

G(b)
=

1

v1(b)� b
=

� � b
m(� �m)� b (� � b) :

We can solve this di¤erential equation through the following steps:Z
G0(b)

G(b)
db =

Z
� � b

m(� �m)� b (� � b)db =
Z

� � b
(b+m� �)(b�m)db;

ln(G(b)) =
(� �m) ln(b�m)�m ln(b+m� �)

2m� � + c;

G(b) = c2(b�m)
��m
2m�� (b+m� �)

� m
2m��

:

Note that for b; we have

v1(b)(� � b) = m(� �m) = (� � b);

which implies

b = � �m(� �m):

This determines c2 by using the equality G(b) = 1:

1 = c2(b�m)
��m
2m�� (b+m� �)

� m
2m��

16



Rewriting this gives us the expression for c2:

c2 = ((1�m)(� �m))�
��m
2m�� (m(m+ 1� �))

m
2m��

:

We note that when m! �(< 1); the solution approaches the equilibrium

that buyer 2 stays out of the auction and buyer 1 wins the auction (for all

values above m). Also, it can be shown that when m ! �=2, this goes to

the solution in Section 3.4 (when the minimum bid is not binding).

3.5 Summary of the solution.

� When v2 = v2 � � (and for convenience [v1; v1] = [0; 1]),

� m � �
2

v1(b) =
�2

4(� � b) ;

while buyer 2 uses a mixed-strategy (with support from b = �
2
to

b = � � �2

4
)

F (b) =
(2� �)�
2(2b� �)e

� �
2b���

2
��2 :

� m > �
2

v1(b) =
m(� �m)
� � b ;

G(b) =
((1�m)(� �m))

m��
2m�� (m(m� � + 1))

m
2m��

(b�m)
m��
2m�� (b+m� �)

m
2m��

;

on support from b = m to b = � �m(� �m):

� When v2 > v2;

� m � v1+v2
2

v1(b) = v1 +
1

`1(b)e
1

`2(b) + `3(b)
;

17



� m >
v1+v2
2

and m 6= v2

v1(b) = v1 +
1

`4(b) + `5(b)� � `6(b)1��
;

� m = v2 > v1

v1(b) = v1 +
v2 � v1

1�
�
b�v2
v2�v1

� h
c+ log

�
b�v1
b�v2

�i ;
where `1; : : : ; `6 are linear functions of b and �; c are constants:

`1(b) =
(v2 + v1 � 2b)c1
(v2 � v1)2

;

`2(b) =
v2 + v1 � 2b
v2 � v1

;

`3(b) =
4(v2 � b)
(v2 � v1)2

;

`4(b) =
b� v2

(m� v1)(m� v2)
;

`5(b) =
(b�m)c2

(m� v1)(m� v2)
;

`6(b) =
(b+m� v1 � v2)c2
(m� v1)(m� v2)

;

c1 =

(v2�v1)2
v1�v1

+ 4(b� v2)
�2(b� b)

e
v2�v1
2(b�b) ;

c2 = �
(v1 �m)(v2 � v2)

�
(m�v2+v1�v1)(m�v1+v2�v2)

(v1�m)(v2�m)

� m�v1
(m�v1)+(m�v2)

(v1 � v1)(m� v1 + v2 � v2)
;

c =
(v1 � v1 + v2 � v2) (v2 � v1)

(v1 � v1) (v2 � v2)
� log

�
(v2 � v1) (v1 � v1)
(v2 � v2) (v1 � v2)

�
;

� =
m� v1

(m� v1) + (m� v2)
:

Buyer 2�s inverse bid function v2(b) is obtained from v1(b) by in-

18



terchanging the roles of v1; v1 and v2; v2:

4 Continuity of the Equilibrium

In addition to verifying that our solution is consistent all known results (sym-

metric case, Griesmer et al., 1967) we ask the more general question: Is our

solution continuous in the parameters of the problem? That is, are the bid

functions continuous in the space of functions w.r.t. v1; v1; v2; v2 and m? To

answer this, we make use of a proposition by Lebrun (2002) for equilibrium

bid strategies in �rst-price, private-value auctions without a minimum bid.

Proposition 5 The equilibrium bid strategies are continuous in the distrib-

utions of valuations (endowed with the weak topology).

Proof. By Lebrun (2006, Theorem 1), which applies to our case, the

equilibrium is unique. By Lebrun (2002, Corollary 1), the equilibrium cor-

respondence is upper hemicontinous, which in conjunction with uniqueness

implies continuity.

We observe that the distributions U [v1; v1] and U [v2; v2] are continuous in

the weak topology in the space of probability measures (on a bounded inter-

val), with respect to v1; v1; v2; v2.
13 When the minimum bid is binding and

the case is not trivial, v1+v2
2

< m < minfv1; v2g, the e¤ect on the bid func-
tions is equivalent to modifying the distributions- U [vi; vi] to distributions

Fi;m on [~vi; vi] where ~vi = maxfm; vig and Fi;m is uniform on (~vi; vi) with an
atom � =

~vi�vi
vi�vi

at ~vi. The modi�ed distributions Fi;m are continuous (in the

weak topology) in the minimum bid m. Thus, we can use Proposition 5 also

for the continuity in m and arrive at the following corollary.

Corollary 2 The equilibrium bid strategies are continuous in the parameters
v1; v1; v2; v2 and m:

13A sequence of probability measures (on 
) (Fn)1n=1 converges in the weak topology to
the probability F if limn!1

R


gdFn =

R


gdF for all bounded and continuous functions

g : 
! R. Equivalently, if limn!1 Fn(x) = F (x) for all x 2 R at which F is continuous.
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We shall verify directly the continuity of the equilibrium (inverse) bid

strategies. Outside the case of vi ! vi; we have found the equilibrium bid

functions on four regions of the minimum bid m:

(1) For m � (v1 + v2)=2: This was the case of �no minimum bid�, that

is, the minimum bid is not binding in equilibrium. This equilibrium, given

in equations (8) and (10), thus does not depend on m.

(2) For m > (v1 + v2)=2 and m 6= v2. The minimum bid is binding in

equilibrium, and this equilibrium depends on m. It is given in equations (16)

and (17).

(3) Form > (v1+v2)=2 andm = v2: This equilibrium is listed in equations

(18) and (19).

(4) For vi � m � vj: Buyer j bids m for all m � vj while buyer i bids his
value vi.

It follows from the explicit forms that, within each of these regions, the

solution is continuous in v1; v1; v2; v2; and m. Hence, to check the continu-

ity of the equilibrium, we need to check continuity between regions in the

following cases:

(A) between regions 1 and 2. (m = (v1 + v2)=2):

(B) between regions 2 and 3. (m = v2 and m > (v1 + v2)=2).

(C) between regions 2 and 4. (m = minfv1; v2g):
In addition, we need to check continuity as vi ! vi; which we denote as

case (D).

(A) Continuity at m = (v1 + v2)=2

The proof is in the Appendix A.5.

(B) Continuity at m = v2 (in the region m > (v1 + v2)=2)
To prove continuity at m = v2, we have to show that the limit of the

functions in (16) and (17) as m! v2 converges to the functions in (18) and

(19) in Proposition 3. This we prove in Appendix A.8, which completes our

proof of the continuity in m:

(C) Continuity at m = minfv1; v2g (between regions 2 and 4)
Here we examine the case where v1 � v2: In region 2, when m ! v2; by

equation (17), c1 ! �1: By examining equation (16). The only way that
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v1(b) > v1 is for b ! m: Similarly, we can show the same for v2(b) when

v1 � v2:

(D) Continuity as vi ! vi

In the Appendix A.6 and A.7, we prove continuity when v2 ! v2 with

and without a binding minimum bid m. When v1 ! v1 (and m � v1), the
solution goes to the equilibrium where buyer 2 is bidding v1 and winning the

auction:

We note that continuity of the bid functions in the parameters also implies

that the pro�ts are continuous in the parameters (if v1 < v1 and v2 < v2).
14

To see this notice that given this continuity of the bid functions in the

parameters, a discrete change in the pro�ts requires both an atom in the

distribution of equilibrium bids and that this atom transverses the mini-

mum bid. An atom in the distribution of equilibrium bids can only occur if

minfv1; v2g < m < maxfv1; v2g: In such a case, the atom is always at m and

thus the atom doesn�t transverse m.

5 Some New Examples

In this section, we provide a few examples of interest that were not solved

analytically before. In looking at these examples, we note the minimum bid

m provides a way to model distributions of values with atoms at the lower

end of the intervals. In fact, when Vi � U [vi; vi] and m is in (vi; vi); then this

is equivalent to a distribution with an atom �i =
(m�vi)
(vi�vi)

at m and a uniform

distribution on [m; vi] with the remaining probability.15

Thus, our analytic solution for the general uniform case with a minimum

bid also covers the case of two buyers with distributions that are uniform

on intervals with either (or both) having an atom at the lower end of the

interval.
14The reason why we need v1 < v1 and v2 < v2 is, for instance, if v1 < v2 = v2, there

will be a discrete jump in pro�ts as we lower m from above v2 to below v2:
15In the distribution with atoms, we either have to relax the assumption that a buyer

bids his value when he has zero probability of winning, break any ties with messages sent
by the bidders as in Lebrun (1996b) or break ties by holding a subsequent second-price
auction as in Maskin and Riley (2000b).
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In this section, we generate examples using the solution with a minimum

bid given by equations (16) and (17).

Example 1 v1 = 0; v2 = 1; m = 2; v2 = 3; v1 = 4: Here, we have

v1(b) =
2

b� 1 + (b� 2) 23 (b+ 1) 13 c1
; c1 =

(10)
2
3

(�4) ;

v2(b) =
2

b+ (b� 2) 13 (b+ 1) 23 c2
+ 1; c2 =

2 (10)
1
3

(�5) :

43.532.52

2.35

2.3

2.25

2.2

2.15

2.1

2.05

2

value

bid

value

bid

Figure 1: Solution when v1 = 0; v2 = 1;m = 2; v2 = 3; v1 = 4. The thick

line is v1(b).

We note that the conditional distribution of V1 above the minimum bid

m = 2 stochastically dominates that of V2. Nevertheless, there is no dom-

inance of the bid functions in this region (see Figure 1). As a matter fact,

this is the �rst case of intersecting bid functions that we are aware of. In

contrast, Lebrun (1999, Corollary 3 (ii) and (iii)) and Maskin and Riley

(2000a) show that a weaker buyer in terms of value distribution will have a

higher bid function.16

16Lebrun (1999, Corollary 3 (i)) and Milgrom (2004, page 151) show that if one bidder
has a higher distribution of values, then in equilibrium he also has a higher distribution
of bids.
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It is interesting to compare this with the same conditional value distri-

butions above 2 (without the atoms at m = 2), namely, V1 � U [2; 4] and

V2 � U [2; 3]: This is given in Figure 2 and can be obtained from equations

(1) by shifting the lower bound from 0 to 2 (hence, it is originally from

Griesmer et al.,1967).

43.532.52

2.625

2.5

2.375

2.25

2.125

2

value

bid

value

bid

Figure 2: Solution when v1 = 2; v2 = 2; v2 = 3; v1 = 4. The thicker line is
v1(b).

As we see, the presence of a minimum bid, even though it is at the center

of both distributions, changes the equilibrium qualitatively by introducing

the crossing of the bid functions. This example generalizes to the whole range

of minimum bids.
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Example 2 v1 = 0; v2 = 1; 1=2 < m < 3; v2 = 3; v1 = 4:

By (16) and (17), we have

v1(b) =
m(m� 1)

b� 1 + (b�m)
m

2m�1 (b+m� 1)
m�1
2m�1 c1

;

c1 = �
(4�m)( (m+3)(m+2)

(3�m)(4�m))
m

2m�1

2(m+ 2)
;

b =
v1 � v2 +m2 �m(v1 + v2)
(v1 + v2)� (v1 + v2)

=
12 +m2 �m

6
;

v2(b) = 1 +
m(m� 1)

b+ (b�m)
m�1
2m�1 (b+m� 1)

m
2m�1 c2

;

c2 = �
2(3�m)

�
(m+2)(m+3)
(3�m)(4�m)

� m
2m�1

m+ 3
:

We have found by numerical computation of the solution that the crossing

occurs for di¤erent values of m in the range.17

In the following example we characterize a family of auctions with uniform

distributions with linear equilibrium bid functions.

Example 3 v1 = 0; v1 = m+ z; v2 = 3m=2; v2 = 3m=2 + z (where z > 0):
Here we obtain from (16) and (17) that

v1(b) = 2(b�m) +m = 2b�m;
v2(b) = 2(b�m) + 3m=2 = 2b�m=2;

b1(v) =
v

2
+
m

2
; b2(v) =

v

2
+
m

4
:

17One method is by way of computation to show that v1(m+ ") < v2(m+ "). This then
implies that the bid functions must cross in order to arrive at their respective endpoints.
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43.532.52

2.5

2.375

2.25

2.125

2

value

bid

value

bid

Figure 3: Solution when v1 = 0; v2 = 3;m = 2; v1 = 3; v2 = 4. The thicker

line is v1(b).

Notice that these bid functions are independent of z and linear. Further-

more, the measure of values where a bid is submitted above the minimum

is the same for both buyers, namely, z. Also notice that when m ! 0; this

goes to the standard symmetric uniform case of uniformly distributed values

on [0; z].

It turns out that linear bid functions appear only in this special case, as

we see in the following proposition.

Proposition 6 The bid functions are linear if and only if m = (2v2+ v1)=3

(the minimum bid is two-thirds of the way from the lower end of the support

of buyer 1�s values to the lower end of the support of buyer 2�s values) and

v1�m = v2�v2 � z (the range of values above the minimum bid is the same
length for both buyers). In this case, b1(v) = v

2
+ m

2
and b2(v) = v

2
+ m

4
+

v1
4
:

Proof. See the Appendix A.9.

Corollary 3 When the equilibrium in the �rst-price auction is linear, the

�rst-price auction generates higher revenue to the seller than the second-price

auction.
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Proof. We note that in this class of auctions, the revenue for the �rst-
price auction (for v1 = 0) is

RFP =
12m2 + 15mz + 4z2

12(m+ z)
;

and the revenue for the second-price auction is

RSP =

(
m3+42m2z+60mz2+16z3

48z(m+z)
if z > m=2;

2m2+2mz+z2

2(m+z)
if z � m=2:

In both cases, the �rst-price auction has higher revenue (it is higher by
m2(6z�m)
48z(m+z)

when z > m=2 and by (3m�2z)z
12(m+z)

when z � m=2): We note that since
the good is always sold, increasing all parameters by a constant increases

both revenues by that same constant. Thus, the relationship also holds for

v1 > 0.

Note that in the symmetric case v1 = v2 = 0, the condition of Proposition

6 implies m = 0 < z = v�v and hence by the above formulas RFP = RSP =
z=3 in accordance to the well known revenue equivalence results.

The following example helps illustrate the Proposition 6 by demonstrating

that linearity is lost by stretching the upper range.

Example 4 v1 = 0; v1 = 3; v2 = 3; v2 = 6; m = 2: Here we obtain

v1(b) =
8(b� 1)

(8 + b(b� 4)) ;

v2(b) = 3 +
10(b� 2)

(4 + 2b� b2) :

By inverting the functions, we get the following non-linear bid functions (see

Figure 4):

b1(v) =
2
�
2 + v �

p
4 + 2v � v2

�
v

;

b2(v) =
v � 8 +

p
5
p
8� 4v + v2

(v � 3) :
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65432

2.625

2.5

2.375

2.25

2.125

2

value

bid

value

bid

Figure 4: Solution when v1 = 0; v2 = 3;m = 2; v1 = 3; v2 = 6. The thicker

line is v1(b).

6 Concluding Remarks

In this paper, we have analytically solved the �rst-price auction for two

buyers with uniform distributions for any bounded supports, with or without

a minimum bid. Of all possible distributions, this is clearly the simplest.

Thus, it is desirable to have an explicit analytic expression of the bid functions

for at least this case. In particular, it may prove useful for disproving existing

conjectures or for suggesting new ones. A future direction of research would

be to search for analytic solutions for other environments, such as extending

our solution to N buyers. Another direction would be to �nd environments

with simple equilibrium bid functions: the simplest being linear. There is

potential to expand the linear characterization in this paper in conjunction

with the recent independently derived results of Cheng (2006) and Kirkegaard

(2006). Together these should provide a useful set of examples for researchers

and students. They may also suggest a set of parameters for additional

experiments (see Güth et al., 2005) on asymmetric auctions.
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A Appendix

A.1 Characterization of the equilibrium

Although Lebrun (2006) also characterizes the equilibria (and Griesmer el

al. (1967) does so without a minimum bid), we include these results for both

completeness (the proofs in Lebrun are only in the working paper version)

and to aid the reader by using notation of our paper.

Lemma 3 The closure of the interval of equilibrium bids (a subinterval of

[bi; bi]) in which buyer i has a strictly positive probability of winning in equi-

librium is the same for both buyers.

Proof. Denote the closure of the interval of equilibrium bids in which

buyer i has a strictly positive probability of winning as [ci; ci]: First, observe

that due to independence of the value distributions, in equilibrium when

a buyer bids ba he wins with a (weakly) higher probability than when he

bids bb � ba. This implies ci = bi: Furthermore, increasing probability and

continuity of the bid function imply that in equilibrium the set of bids used

by a particular buyer with which he has a strictly positive probability of

winning is indeed an interval. In addition, b1 = b2: Otherwise, if bi > bj,

then there would be a small enough amount for buyer i (of value vi) to lower

his bid from bi without lowering his probability of winning. Since ci = bi; we

have c1 = c2:

Finally, we show that c1 = c2. First note that for any bid above ci; buyer

i has a positive probability of winning; hence, there is a positive probability

that bj � ci. Assume by contradiction that ci < cj. By de�nition, bj > cj

with positive probability. It follows by continuity of buyer j�s bid function

that j bids bj; where ci < bj < cj; with strictly positive probability: Consider

a bid b0j such that ci < b0j < cj. By continuity of buyer i�s bid function

between ci and ci; there is a positive measure of bi for which ci � bi < b0j: In
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other words, buyer j has a strictly positive probability of winning with bid

bj in contradiction to the de�nition of cj: Hence, c1 = c2.

In view of Lemma 3, denote by (b; b] the region of equilibrium bids where

if a buyer submits a bid, he has a strictly positive probability of winning

in equilibrium. From our assumption that in equilibrium a buyer with zero

probability of winning bids his value, it follows that bi(vi) = vi for vi < b and

by continuity bi(b) = b (if b � vi):

Lemma 4 In equilibrium, v1 = b1 � maxfb2;mg = b; and

b = maxfv1 + v2
2

;mg: (23)

Proof. Since any bid b is such that b � v1 and no one bids above his

value we have b1 = v1. Consequently, b1 � b2 and b1 � maxfb2;mg: We now
show that b = maxfb2;mg by �rst showing that b � maxfm; b2g and then
showing that b � maxfm; b2g.
To show b � maxfm; b2g; let us �rst show that b � maxfm; b1; b2g: In

fact, b < m is impossible since this would imply that a bid strictly less than

the minimum bid m has a strictly positive probability of winning. Since

by de�nition (b; b] is a subinterval of both [b1; b1] and [b2; b2], it follows that

bi � b for i = 1; 2, completing the proof of b � maxfm; b1; b2g: Since b1 � b2;
this also yields b � maxfm; b2g:
Now let us show b � maxfm; b2g: By contradiction assume that b >

maxfm; b2g: Since b1 � b2; by continuity of buyer 1�s bid function, for some
value, buyer 1 bids b01 such that b > b

0
1 > maxfm; b2g: However, by continuity

of buyer 2�s bid function, buyer 2 bids b2 such that b01 > b2 > maxfm; b2g
with strictly positive probability. This implies that buyer 1 wins with strictly

positive probability when bidding b01; in contradiction to the de�nition of b.

Now we solve for b in terms v1 and v2 when m = v1. In the interval [b; b],

buyer 2 with value v2 solves the following maximization problem:

max
b
(
v1(b)� v1
v1 � v1

)(v2 � b):
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Below b buyer 1 bids his value, and thus buyer 2 with value v2(b) must not

bene�t from bidding less than b:

(b� v1)(v2(b)� b) � (b� v1)(v2(b)� b); 8 b � b:

This is true only if b � v1+v2(b)

2
: Similarly, buyer 2 with value v2(b) does not

bene�t from bidding more than b:

(b� v1)(v2(b)� b) � (v1(b)� v1)(v2(b)� b); 8 b � b: (24)

However, since v1(b) � b; we have

(b� v1)(v2(b)� b) � (b� v1)(v2(b)� b); 8 b � b: (25)

This can happen only if b � v1+v2(b)

2
; therefore b = v1+v2(b)

2
: Since m = v1;

we have b2 � v1 = m, which implies that b = maxfm; b2g = b2; and hence
v2(b) = v2(b2) = v2: Thus,

b =
v1 + v2
2

: (26)

With a minimum bidm, by de�nition b � m: Ifm � v1+v2
2
; (26) still holds.

If m � v1+v2
2
; then we have b = m (the �rst constraint (24) from above is not

necessary and the second constraint (25) is satis�ed). Therefore,

b = maxfv1 + v2
2

;mg:

A.2 Proof that second order conditions are satis�ed

Here we show that second-order conditions are satis�ed for our solution.

(This is adapted from Wolfstetter, 1996.) Buyer j with value v and bid b has

probability of winning W j(b) and expected pro�t �j(v; b); where

�j(v; b) =W j(b)(v � b):
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De�ne bj(v) as a bid function that is monotonic and solves the �rst-

order conditions, namely, �jb(v; b) = 0: Assume that these bid functions are

monotonic. Then, second-order conditions are satis�ed. Since �jb(v; b) =

W j0(b)(v � b)�W j(b), we have

�jbv(v; b) =W
j0(b) > 0: (27)

Take b� = bj(v�): If bb < b�, then by monotonicity of the bid function, webv � (bj)
�1
(bb) < v�. Hence, by (27) we have �jb(v

�; b) > �jb(bv; b) for all b.
This includes �jb(v

�;bb) > �jb(bv;bb) = 0. Thus, �jb(v;bb) > 0 for all bb < bj(v):

Likewise, �jb(v;bb) < 0 for all bb > bj(v): Hence, second-order conditions are

satis�ed (as long as our solution is monotonic).

A.3 Proof of Proposition 2: solution with minimum

bids

The solution that we presented with minimum bids is

v1(b) = v1 +
(m� v1)(m� v2)

b� v2 + (b�m)
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
m�v2

(m�v1)+(m�v2) c1

;

c1 = �
(v1 �m)(v2 � v2)

�
(m�v2+v1�v1)(m�v1+v2�v2)

(v1�m)(v2�m)

� m�v1
(m�v1)+(m�v2)

(v1 � v1)(m� v1 + v2 � v2)
:

To derive this solution we divide both sides of equation (15) by

(v1(b)� v1)2(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
m�v2

(m�v1)+(m�v2)

to obtain

v01(b)

(v1(b)� v1)2(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)

=

(v1(b)� b)

(v1(b)� v1)(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)

: (28)
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The RHS can be broken into two expressions:

1

(b�m)1+
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
1+

(m�v2)
(m�v1)+(m�v2)

+

(v1 � b)

(v1(b)� v1)(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m� v1 � v2)

1+
(m�v2)

(m�v1)+(m�v2)

:

Observe thatZ
1

(b�m)1+
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
1+

(m�v2)
(m�v1)+(m�v2)

db =

1

(b�m)
m�v1

(m�v1)+(m�v2) (b+m� v1 � v2)
(m�v2)

(m�v1)+(m�v2)

� v2 � b
(m� v1)(m� v2)

+ C

and

R 2664
v01(b)

(v1 (b)�v1)2(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m�v1�v2)

1+
(m�v2)

(m�v1)+(m�v2)
�

(v1�b)

(v1 (b)�v1)(b�m)
1+

m�v1
(m�v1)+(m�v2) (b+m�v1�v2)

1+
(m�v2)

(m�v1)+(m�v2)

3775 db =
� 1

(b�m)
m�v1

(m�v1)+(m�v2) (b+m�v1�v2)
(m�v2)

(m�v1)+(m�v2)
� 1
v1(b)�v1

+ C:

Hence, we can integrate (28). From this we can obtain v1(b) as in (16),

and the expression for c1 is obtained by the boundary condition B3.

A.4 Proof of Proposition 3: solution when m = v2

The di¤erential equation for this case is obtained by substituting m = v2 in

equation (15):

v01(b) � (b� v2)(b� v1) = (v1(b)� v1)(v1(b)� b):

Dividing both sides by (b� v2)2(b� v1)(v1(b)� v1)2 and rewriting yields

v01(b)

(b� v2)(v1(b)� v1)2
� (v1(b)� b)
(b� v2)2(b� v1)(v1(b)� v1)

= 0:
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By further rewriting, we have�
1

v2 � v1

�2�
1

b� v2
� 1

b� v1

�
+

�
1

v2 � v1

��
� 1

(b� v2)2

�
+

�
v01(b)(b� v2) + (v1(b)� v1)
(v1(b)� v1)2(b� v2)2

�
= 0:

Now by integration, we derive the solution:�
1

v2 � v1

�2
(log(b� v2)� log(b� v1))+

1

(v2 � v1) (b� v2)
� 1

(v1(b)� v1)(b� v2)
= c1:

Rewriting this yields

1

v2 � v1

�
�
�
b� v2
v2 � v1

�
log

�
b� v1
b� v2

�
+ 1� c

(v2 � v1)
(b� v2)

�
=

1

(v1(b)� v1)
;

where c = c1 � (v2 � v1)
2 : Rearranging yields

v1(b) = v1 +
v2 � v1

1�
�
b�v2
v2�v1

� h
c+ log

�
b�v1
b�v2

�i :
Using boundary condition B3, v1(b) = v1; we have

v1 = v1 +
v2 � v1

1�
�
b�v2
v2�v1

� h
c+ log

�
b�v1
b�v2

�i ;
which implies

c =
(v1 � v2) (v2 � v1)
(v1 � v1) (b� v2)

� log
�
b� v1
b� v2

�
:

Substituting b = v1�v2�v1�v2
(v1�v1)+(v2�v2)

yields

c =
(v1 � v1 + v2 � v2) (v2 � v1)

(v1 � v1) (v2 � v2)
� log

�
(v2 � v1) (v1 � v1)
(v2 � v2) (v1 � v2)

�
:

Thus, we have v1(b) and c equivalent to those in equations (19) and (18).
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A.5 Continuity at m = (v1 + v2)=2

Since for m � (v1 + v2)=2 the equilibrium does not depend on m, continuity

is established by proving that the inverse bid function v1(b) given by (16)

approaches that given by (8) as m approaches the critical value (v1 + v2)=2

from above. First, we verify that

lim
m&(v1+v2)=2

(b�m)
m�v1

(m�v1)+(m�v2) (b+m�v1�v2)
(m�v2)

(m�v1)+(m�v2) =
1

2
e
� v2�v1
2b�v1�v2 (2b�v1�v2);

lim
m&(v1+v2)=2

�
(m� v2 + v1 � v1)(m� v1 + v2 � v2)

(v1 �m)(v2 �m)

� m�v1
(m�v1)+(m�v2)

= e
2
(v1�v1+v2�v2)(v2�v1)
(2v1�v2�v1)(2v2�v2�v1) :

Using these in our solution for v1(b) and c1 in equations (16) and (17), we

have

lim
m&(v1+v2)=2

v1(b) = v1+

lim
m&(v1+v2)=2

(m� v1)(m� v2)

b� v2 + 1
2
e
� v2�v1
2b�v1�v2 (2b� v1 � v2) limm&(v1+v2)=2 c1

= v1 +
�(v2 � v1)2=4

b� v2 + 1
2
e
� v2�v1
2b�v1�v2 (2b� v1 � v2) limm&(v1+v2)=2 c1

;

(29)

lim
m&(v1+v2)=2

c1 = �
(2v1 � (v1 + v2))(v2 � v2)e

2
(v1�v1+v2�v2)(v2�v1)
(2v1�v2�v1)(2v2�v2�v1)

(v1 � v1)(2v2 � (v1 + v2))
: (30)

We now see that, indeed, this limit yields the equilibrium bid functions for

the case of no minimum bid. Note that the range of bids is as follows:

b =
v1 + v2
2

; b =
v1 � v2 � (v1+v2)

2

4

(v1 + v2)� (v1 + v2)
:

Notice that by (26) and (12) we have b� b = 1
4

(2v1�v2�v1)(2v2�v2�v1)
(v1+v2)�(v1+v2)

and that

(v2 � v1)2
v1 � v1

+ 4(b� v2) =
(v2 � v2)(2v1 � (v1 + v2))
(v1 � v1) (v1 � v1 + v2 � v2)

:
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Using these two in equations (29) and (30) yields the equilibrium bid function

without a minimum bid; namely, it establishes the equality between (29), (30)

and (8), (10), respectively.

A.6 Continuity when buyer 2�s value is commonly known.

Let us view this situation as a limiting case of our model where [v1; v1] =

[0; 1], [v2; v2] = [�; � + "]; and " ! 0. This may be viewed as a continu-

ity property of the solution as v2 �! v2. To see that, we �rst write the

probability distribution of the bids of buyer 2, which is

P (b2(V2; ") � b) = P (V2 � v2(b; ")) =
v2(b; ")� �

"
:

(We use V2 for the random value of buyer 2, denote bi(v; ") as the bid function

for buyer i when the distribution is [�; � + "], and denote vi(b; ") as the

respective inverse bid function.)

Proposition 7 The equilibrium in Vickrey (1961) is a limit of our solution

in the following sense:

(i) The limit of buyer 1�s bid function is that in Vickrey, namely,

lim
"!0

v1(b; ") =
�2

4(� � b) :

(ii) The bid distribution of buyer 2 approaches the mixed bidding strategy in

Vickrey, i.e.,

lim
"!0

v2(b; ")� �
"

= F (b);

where F(b) is given by (21).

Proof. First, we observe that for [v1; v1] = [0; 1] and v2 = v2 = � we

obtain from our above equations for b and b ((26) and (12)) the correct range

of bids: b = �
2
and b = � � �2

4
. Next, notice that b > b whenever � � �2

4
> �

2

(i.e., � < 2). Assuming that this is indeed the case, we have a range of

bids even when one buyer�s value is known with near certainty. (This makes

sense since it converges to a mixed-strategy equilibrium.) Now, using the
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analytic solution for buyer 1�s inverse bid function, (8) and (10), with the

distributions of [v1; v1] = [0; 1],[v2; v2] = [�; � + "], we have

v1(b; ") =
�2

(� � 2b)c1e
�

��2b + 4(� � b)
;

c1(") =
�2 � 4(� � b)
(� � 2b)

e
� �

��2b ;

where b = b(") = �+"��2

4

1+"
:

We have

lim
"!0

v1(b; ") =
�2

(� � 2b) lim"!0 c1(")e
�

��2b + 4(� � b)
=

�2

4(� � b) ;

since

lim
"!0

c1(") = lim
"!0

�2 � 4(� � b("))
(� � 2b("))

e
� �

��2b(") = 0:

Furthermore, using the analytic solution for buyer 2�s inverse bid function,

(9) and (11), we have

v2(b; ") =
�2="�

4��+�
"

1
2
��1

�
(� � 2b) e�

�
��2b e�

2
2�� � 4b

: (31)

And �nally it can be veri�ed (by straightforward calculation using (31) and

(21)) that indeed

lim
"!0

v2(b; ")� �
"

= F (b):

A.7 Continuity when buyer 2�s value is commonly known.

In this section, we check for continuity at the limit case when buyer 2�s value

is commonly known and the minimum bid is binding. We again use the

normalization in Section A.6, that is, [v1; v1] = [0; 1] and v2 = �; v2 = � + ":

From substituting these into equations (16) and (17), it is clear that
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c1(")! 0; therefore

lim
"!0

v1(b; ") =
m(� �m)
� � b :

To �nd v2(b; "); we again use (16) and (17) (but the roles of v1; v1 and v2; v2
reversed). Hence,

v2(b; ") = � +
m(m� �)

b+ (b�m)
m��
2m�� (b+m� �)

m
2m�� c2(")

;

where

c2(") = �
(� + "�m)

�
(m+")(m��+1)
(1�m)(��m)

� m��
2m��

"(m� � + 1) :

As in Section 3.4, buyer 2�s strategy goes to a mixed strategy with cumulative

distribution

lim
"!0

v2(b; ")� �
"

=
m

( m(m��+1)
(1�m)(��m))

m��
2m��

m��+1 (b�m)
m��
2m�� (b+m� �)

m
2m��

=
((1�m)(� �m))

m��
2m�� (m(m� � + 1))

m
2m��

(b�m)
m��
2m�� (b+m� �)

m
2m��

:

This limit equals the equilibrium when "! 0.18

18Also when m ! �(< 1); the solution approaches the equilibrium that buyer 2 stays
out of the auction and buyer 1 wins the auction (for all values above m). Also, when
m! �=2, this goes to the solution in Section 3.4 (when the minimum bid is not binding).
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A.8 Continuity when m! v2

Starting with equations (16) and (17), denote

A(m) = (m� v1)(m� v2);

B(m) = (b+m� v1 � v2)
(m�v2)

(m�v1)+(m�v2) ;

C(m) = � (v1 �m)(v2 � v2)
(v1 � v1)(m� v1 + v2 � v2)

;

D(m) =

�
(b�m)(m� v2 + v1 � v1)(m� v1 + v2 � v2)

(v1 �m)(v2 �m)

� m�v1
(m�v1)+(m�v2)

:

Thus,

v1(b) = v1 +
A(m)

b� v2 +B(m)C(m)D(m)
:

Since B(v2)C(v2)D(v2) = � (b� v2) as m! v2; we get
A(m)

b�v2+B(m)C(m)D(m)
! 0

0
; so we need to use L�Hopital�s rule, which yields

lim
m!v2

v1(b) = v1 +
A0(m)

B0(m)C(m)D(m) +B(m)C 0(m)D(m) +B(m)C(m)D0(m)

����
m=v2

:

(32)

Step 1. Finding A0(v2):
A0(m) = (m� v1) + (m� v2); which implies that

A0(v2) = v2 � v1: (33)

Step 2. Finding B0(v2)C(v2)D(v2):

B(m) = (b+m� v1� v2)
(m�v2)

(m�v1)+(m�v2) � f(m)g(m). By this de�nition, we
have f(v2) = b � v1; g(v2) = 0, f 0(m) = 1; and g0(v2) = 1

v2�v1
: Recall that�

f(m)g(m)
�0
= f (m)g(m)

h
log (f (m)) g0 (m) + g (m) f

0(m)
f(m)

i
; hence, B0(v2) =

log(b�v1)
v2�v1

:

We also have C(v2) = � (v1�v2)(v2�v2)
(v1�v1)(v2�v1)

and D(v2) =
(b�v2)(v1�v1)(v2�v1)

(v1�v2)(v2�v2)
:

Thus,

B0(v2)C(v2)D(v2) = �
log (b� v1)
v2 � v1

(b� v2) : (34)
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Step 3. Finding B(v2)C 0(v2)D(v2):
We have C 0(v2) =

(v2�v2)(v1�v1+v2�v2)
(v1�v1)(v2�v1)2

and B(v2) = 1: Thus,

B(v2)C
0(v2)D(v2) =

(v1 � v1 + v2 � v2)
(v2 � v1)

�
b� v2
v1 � v2

�
: (35)

Step 4. Finding B(v2)C(v2)D0(v2):

Similarly to Step 2,D(m) =
�
(b�m)(m�v2+v1�v1)(m�v1+v2�v2)

(v1�m)(v2�m)

� m�v1
(m�v1)+(m�v2)

�

f (m)g(m) : By simple substitution, we have f(v2) =
�
(b�v2)(v1�v1)(v2�v1)

(v1�v2)(v2�v2)

�
;

g(v2) = 1; and g
0(v2) = � 1

v2�v1
:

Since f (m) = (b�m)(m�v2+v1�v1)(m�v1+v2�v2)
(v1�m)(v2�m) ; we can take the log of both

sides and then the derivative w.r.t. m. This evaluated at m = v2 yields

f 0 (v2)

f (v2)
=

1

v1 � v1
+

1

v2 � v1
+

1

v1 � v2
+

1

v2 � v2
� 1

b� v2
:

Again, recall that
�
f(m)g(m)

�0
= f (m)g(m)

h
log (f (m)) g0 (m) + g (m) f

0(m)
f(m)

i
;

hence, we have

D0(v2) =

�
(b� v2)(v1 � v1)(v2 � v1)

(v1 � v2)(v2 � v2)

�24 � log � (b�v2)(v1�v1)(v2�v1)(v1�v2)(v2�v2)

�
1

v2�v1
+ 1

v1�v1
+

1
v2�v1

+ 1
v1�v2

+ 1
v2�v2

� 1
b�v2

35 :
This implies that

B(v2)C(v2)D
0(v2) = 1+ (b� v2)

24 log
�
(b�v2)(v1�v1)(v2�v1)

(v1�v2)(v2�v2)

�
1

v2�v1
� 1
v1�v1

� 1
v2�v1

� 1
v1�v2

� 1
v2�v2

35 : (36)

Step 5. FindingB0(v2)C(v2)D(v2)+B(v2)C 0(v2)D(v2)+B(v2)C(v2)D0(v2):
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By (34), (35), and (36), we now have

B0(v2)C(v2)D(v2) +B(v2)C
0(v2)D(v2) +B(v2)C(v2)D

0(v2) =

� log (b� v1)
v2 � v1

(b� v2) +
(v1 � v1 + v2 � v2)

(v2 � v1)

�
b� v2
v1 � v2

�
+

1 + (b� v2)
�
log

�
(b� v2)(v1 � v1)(v2 � v1)

(v1 � v2)(v2 � v2)

�
1

v2 � v1
� 1

v1 � v1
� 1

v2 � v1
� 1

v1 � v2
� 1

v2 � v2

�
=

1+(b�v2)
�
log

�
(b� v2)(v1 � v1)(v2 � v1)
(b� v1) (v1 � v2)(v2 � v2)

�
1

v2 � v1
� 1

v1 � v1
� 1

v2 � v2

�
:

(37)

Step 6. Finding v1(b):
By substituting of (33) and (37) into (32), we have

limm!v2v1(b) = v1+
v2 � v1

1 + (b� v2)
h
log
�
(b�v2)(v1�v1)(v2�v1)
(b�v1)(v1�v2)(v2�v2)

�
1

v2�v1
� 1

v1�v1
� 1

v2�v2

i :
This is equivalent to equation (18) after substituting the expression for c

by equation (19).

A.9 Proof of Proposition 6: Linear Solutions

We know in the symmetric case that linear bid functions are possible for the

uniform distribution. Here we ask what conditions are necessary for linear

solutions to exist in general (for the uniform asymmetric case)?

Recall our two di¤erential equations from the �rst-order conditions (2):

v01(b)(v2(b)� b) = v1(b)� v1;
v02(b)(v1(b)� b) = v2(b)� v2:

Assume that there is a linear solution for both inverse bid functions:

vi(b) = �ib+ �i where �i > 0:
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This implies that

v0i(b) = �i:

Substituting this into the above two di¤erential equations yields

�1(�2b+ �2 � b) = �1b+ �1 � v1;
�2(�1b+ �1 � b) = �2b+ �2 � v2:

Since this is true for all b, the derivative of both sides must also be equal.

Hence,

�1(�2 � 1) = �1; �2(�1 � 1) = �2:

This implies that �1 = �2 = 2: Substituting this into the equations yields

2�2 = �1 � v1; 2�1 = �2 � v2:

Combining these equations shows that

�1 = �
1

3
v1 �

2

3
v2:

By boundary condition B1, v1(b) = b; we have b = 2b+�1: This implies that

�1 = �b and b = 1
3
v1 +

2
3
v2: Since b > (v1 + v2)=2; it must be, by (23), that

there is a binding minimum bid m = b.

Now rewriting, m = 1
3
v1 +

2
3
v2 yields m � v1 = 2(v2 � m) (or v2 =

3
2
m� 1

2
v1): Finally, we use the upper boundary conditions in B3 to �nd that

v1 = 2b�m;

v2 = 2b�m=2� v1=2:

Elimination of b implies that v1 = v2 + v1=2 �m=2 (or v1 �m = v2 � v2):
Thus, if we de�ne z such that v1 = m+ z; we have v2 = 3

2
m+ z�v1=2: Since

m = ��1 and �i = 2, we have v1(b) = 2b�m. Since 2�2 = �1 � v1; we have
v2(b) = 2b� m

2
� v1

2
:
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