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Memetic-based schedule synthesis for
communication on time-triggered
embedded systems

Heyuan Shi1, Kun Tang2, Chengbao Liu3,4, Xiaoyu Song5,
Chao Hu2,6 and Jiaguang Sun1

Abstract
Time-triggered systems play an important role in industrial embedded systems. The time-triggered network is deployed
on the time-triggered network-on-chip implementation. It ensures the safety-critical industrial communication for real-
time embedded multiprocessor systems. To guarantee the safety-critical requirements for communication, each message
is transmitted by a predefined static schedule. However, synthesizing a feasible schedule is a challenge because both spa-
tial and temporal constraints should be considered. This article presents a novel memetic-based schedule synthesis algo-
rithm to derive a feasible schedule by determining the offset of messages on the time-triggered network-on-chip.
Memetic-based schedule synthesis algorithm is based on memetic algorithm, which incorporates local search in the itera-
tions of general genetic algorithm. We compare memetic-based schedule synthesis algorithm with genetic algorithm in
different scale of time-triggered network-on-chip and number of messages. The experimental results show that the
memetic-based schedule synthesis algorithm is effective to synthesize a feasible schedule, and the failure schedule synthe-
sized by memetic-based schedule synthesis algorithm is only 34.2% in average compared to the conventional genetic
algorithm.
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Introduction

Time-triggered systems is one of the real-time systems
for industrial multiprocessor systems.1 At present, time-
triggered systems are widely deployed in various fields,
such as TTEthernet in avionic networks,2,3 Time-trig-
gered protocol (TTP) in aerospace industry4 and
GENESYS in embedded systems.5 TTNoC integrates
the time-triggered concepts into the network-on-chip
(NoC) for safety-critical real-time embedded systems.
Unlike the requirements for general networks, such as
quality of service (QoS)6 as well as quality of experience
(QoE)7 in wireless networks,8 user privacy in social net-
works,9 or energy consumptions and prolonged
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network lifetime in wireless sensor networks,10–12

TTNoC provides the temporal predictability for safety-
critical tasks, which ensures the tight and predictable
communication latency.

There are two main architectures for a time-triggered
embedded system, that is, bus-based and network-
based architecture.13 For the bus-based architecture,
only one message is transmitted on the system at the
same time. Therefore, each message owns its unique
time slot for communication. For the network-based
architecture, it allows a set of messages to be trans-
mitted at the same time, provided that the physical
links used by the messages are contention-free. Figure 1
shows the differences between bus-based and network-
based time-triggered architectures. For the bus-based
architecture, the message t0 is conflicted with t1 and t2

when they transmit at the same time. In other words,
all the messages (t0, t1, and t2 in Figure 1(a)) must
achieve temporal separation. In a network-based archi-
tecture, the messages (t0, t1, and t2 in Figure 1(b))
transmit at the same time because there is no spatial
contention among the transmission of messages. The
contention occurs at the link between PE1 and PE4

when t0 and t3 transmit at the same time.
TTNoC employs the network-based architecture. It

consists of processing elements (PEs), switches, and
physical links. PEs are interconnected by physical links
and the switches on the TTNoC. A message for com-
munication consists of header and data. Header
includes the information for message communication
on the TTNoC, for example, the addresses of source
and destination. When the communication occurs on
the TTNoC between two nodes, the switches forward
the message based on a given route. To ensure the
contention-free communication on the TTNoC, a
schedule is required to determine the offset for each
message. However, synthesizing such a schedule is
rather complicated which is known as a nondeterminis-
tic polynomial (NP)-complete problem.13,14 In this arti-
cle, we give a population-based hybrid genetic
algorithm (GA) coupled with an individual learning,

called memetic-based schedule synthesis algorithm
(MSSA), to synthesize a feasible schedule for the com-
munication on TTNoC.

The main contributions of this article are as follows.
We formally give a system model consists of architec-
ture, message, and routing for the schedule synthesis.
The Memetic-based Schedule Synthesis Algorithm
(MSSA) is proposed to synthesize the schedule. The
simulation based on different architecture scale and
number of messages proves that the MSSA reduces the
failure rate so that synthesizing a feasible schedule
effectively.

The rest of this article is organized as follows. We
first review the related work consists various algorithm
to synthesize schedule based on different architectures
in section ‘‘Related work.’’ And the problem formula-
tion consists of system model, and constraints are given
in section ‘‘Problem formulation.’’ Then, the detail of
MSSA is proposed in section ‘‘Memetic-based schedule
synthesis algorithm.’’ The experimental results are
shown in section ‘‘Evaluations.’’ Finally, we conclude
this article in section ‘‘Conclusion and future work.’’

Related work

There are many time-triggered applications in both
bus-based and network-based architecture. Despite of
different architectures, the communication on the time-
triggered systems follows an predefined and statically
configured schedule to ensure contention-free.1 There
are sufficient studies on schedule synthesis in time-
triggered bus-based architecture.4,15,16 However, in
bus-based architecture, synthesizing a feasible schedule
only need to consider the temporal constraints rather
than spatial constraints.

For the network-based architecture, most of the
studies focus on synthesizing a feasible schedule based
on satisfiability modulo theories (SMT). The schedul-
ing of the general time-triggered multi-hop networks
was first considered based on SMT solver.14 However,
it is unrealistic for a pure SMT approach to synthesize
a schedule for a large-scale time-triggered network. To
tackle the limitation of scalability based on SMT, a
decomposition approach17 and an incremental
method14 were presented. Craciunas and Oliver1,18 gave
the solution combining task and network scheduling by
SMT solver for distributed time-triggered systems. The
schedule employs in time-triggered traffic in a general
switched Ethernet network, which can also extend to
specific Ethernet protocols such as Profinet and
TTEthernet.

The schedule synthesis on network-based architec-
ture in specific domains also appears in the various lit-
erature. Craciunas et al.19 addressed the deterministic
schedule synthesis for 802.1Qbv-compliant multi-hop

Figure 1. Two main architectures for a time-triggered
embedded system: (a) bus-based architecture and (b) network-
based architecture.
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switched networks. Zhang et al.20 synthesized a sched-
ule of a mixed-integer programming (MIP) model in
Ethernet-based time-triggered systems. Ro et al.21

synthesized the schedule on wireless networks by SMT
solver. In time-triggered in-Vehicle networks, the holis-
tic scheduling in system design and integration was
studied.22 The Unfixed Start Time (UST) algorithm,
which schedules tasks and messages in a flexible way,
was proposed.

Huang et al.13 first studied the schedule synthesis
specific to TTNoC. The problem was transformed into
a special case of two-dimensional (2D) bin packing and
formulated as an SMT instance. The schedule was
synthesized by SMT solver with a First Fit Decreasing
Height Decreasing Width (FFDHDW) algorithm to
improve the algorithm performance of execution time.
Scholer et al.23 proposed an optimal scheduler based
on a Boolean SAT solver for a TTNoC. Murshed
et al.24 gave a scheduling model based on mixed-integer
linear programming (MILP), with both time-triggered
and event-triggered messages and constraints on NoC.
Freier et al.25 proposed a heuristic algorithm for sche-
duling on the scalable communication NoC-like struc-
ture. The algorithm ensures that the NoC and the core
are highly utilized with pseudo-polynomial time
complexity.

Unlike the above studies based on SMT-like
approach, we propose a meta-heuristic approach of
memetic-based algorithm to synthesize a feasible
schedule.

Problem formulation

In this section, we first introduce the basic notions and
system model of TTNoC. And the constraints on
TTNoC are given. Then, we formally state the schedule
synthesis problem.

System model

Architecture model. The architecture of a TTNoC is
modeled by a directed graph G=(V,L). The set of ver-
tices V= fv0, . . . , vm�1g represents m identical commu-
nication nodes (the PEs with switches). The edges
L � V3V comprise the communication physical links
connecting the nodes. The physical links are full-
duplex, allowing communication in both directions.
Therefore, given vi, vj 2 V, hvi, vji 2 L implies
hvj, vii 2 L, where hvi, vji is a pair denoting a directed
physical link connecting two adjacent nodes, from a
source node vi to a sink node vj.

Message model. We denote the set of n time-triggered
messages on the TTNoC by G= ft0, . . . , tn�1g.
Message ti is modeled by the tuple

hti:H , ti:S, ti:T , ti:Di, where ti:H denotes the header of
the message, ti:S denotes the size of the message, ti:T is
the period, and ti:D is the relative deadline of the mes-
sage. Only periodic messages are discussed in this arti-
cle because periodic messages are typical in
communication on real-time embedded systems.13

Routing model. Given two nodes v, v0 2 V, a route from v

to v0, denoted by rhv, v
0i. The length n of the route is writ-

ten as jrhv, v0ij. A route rhvi, vji represents a forwarding
path for message communication from vi to vj on the
TTNoC. Hence, its length jrhvi, vjij is the number of hops
along this link.

Schedule synthesis model

The schedule si for message ti is defined by a tuple
hsi:R, si:f, si:T , si:D, si:Li, where si:R is the route along
which the message ti is forwarded, si:f is the offset of
the message, si:T denotes the period, si:D denotes the
relative deadline, and si:L is the communication delay,
respectively. The unit of offset, period, deadline, and
delay is macrotick, which is the minimal time slot of
communication and scheduling.

Let MTG denote the macrotick, then we have the fol-
lowing formulas

si:T = dti:T

MTG
e ð1Þ

si:D= dti:D

MTG
e ð2Þ

Let WG denote the width of physical links in the
TTNoC. SDG and PDG represent the switching delay in
the switches and the propagation delay between adja-
cent nodes, and then, we have that

si:L
= djsi:Rj3 (SDG+PDG)

MTG
3 dti:S + ti:H

ti:H
ee ð3Þ

where MTG denotes the value of macrotick, jsi:Rj equals
the number of hops, and SDG+PDG is the forwarding
delay of each hop. This formula is based on Duato
et al.26 with adopting macrotick as the unit. By above
formulas, given si and its route si:R, si:T , si:D, and si:L
can be derived by formulas 1–3, respectively. In other
words, we want to determine the offset si:f for each
message communication.

We define the whole schedule set as
S= fS:R,S:F,S:T ,S:D,S:Lg, where S:R is the
routes of all messages, S:F is the offset of all messages,
S:T is the period of all messages, S:D is the relative
deadline of all messages, and S:L is the delay of all
messages. Therefore, the key problem is to derive
S:F= fsi:fjsi 2 Sg based on the given system model
with contention-free constraints.

Shi et al. 3



Contention-free constraints

The constraints for general time-triggered multi-hop
network are presented in Steiner.14 The constraints on
the TTNoC are similar to those on general time-
triggered network that a schedule S should ensure the
contention free in both temporal and spatial domains.

Offset constraints. For the schedule of a message si 2 S,
the offset si:f must have non-negative values and we
should guarantee that the message transmission is com-
pleted before the deadline of the communication.
Therefore, we have

Constraint 1. (si:f � 0) ^ (si:f+ si:L� si:D).

Link constraints. For each communication, a message
occupies links in terms of a given route until the whole
message is received by the sink node. The contention
will happen if messages which share the overlapped
route forward simultaneously. To show the link con-
straints, we first give the definition of overlap. Given
two schedules of messages si, sj 2 S, we define
overlap(si, sj) to indicate whether there are any common
physical links between the routes of si and sj.
overlap(si, sj) is true if the routes of si and sj share at
least one hop of physical links or false otherwise

overlap(si, sj)=
true si:R \ sj:R 6¼ [

false si:R \ sj:R=[

�
ð4Þ

where si:R and sj:R are routes of si and sj, respectively.
Then, we define the communication time for message ti

in its kth period as an interval si(k)

si(k)= ½k 3 si:T + si:f , k 3 si:T + si:f+ si:L)
si(k) 2 Z

ð5Þ

The schedule S should ensure that two messages are
never transmitted on the identical link at the same time.
In other words, the synthesized schedule must guaran-
tee that the links on TTNoC are contention-free. There
comes our constraint for links:

Constraint 2. Given any p, q 2 N, si, sj 2 S such that
i 6¼ j, overlap(si, sj)si(p) \ sj(q)=[.

Problem statement

The problem of schedule synthesis can be formulated
based on the schedule synthesis description and con-
straints, which are given as follows:

� The architecture of a TTNoC G=(V,L) consist-
ing of the set of m communicating nodes V and
interconnection links L � V3V.

� The set of n time-triggered messages G with
hti:H , ti:S, ti:T , ti:Di for each ti 2 G.

� The routes S:R of the schedule S corresponding
to G.

We try to determine the offsets S:F for messages G on
TTNoC G, which satisfies Constraints 1 and 2. To solve
the problem, we present the memetic-based schedule
synthesis algorithm to synthesize offset S:F which meet
the contention-free constraints.

Memetic-based schedule synthesis
algorithm

In this section, we first give the motivation of schedule
synthesis on TTNoC, and components’ representation
of MSSA is also given. Then, the algorithm description
is proposed, followed by discussion about the details,
that is, fitness function and global and local search
strategies.

Motivation

To show the schedule synthesis problem, we first give
an example of messages communication on a 3 3 3

mesh TTNoC, as shown in Figure 2.
And Table 1 shows the schedule information of mes-

sages on the TTNoC. The nodes on the TTNoC is
denoted as V= fv0, . . . , v8g. The set of messages for
communication is G= ft0, t1, t2, t3, t4g. The period is
a positive power of two in terms of macrotick accord-
ing to the timing specification of TTNoC.13 We assume
that the relative deadline equals its period for each mes-
sage, and we adopt XY routing26 as the routing strat-
egy for simplicity. The schedule synthesis problem is to
determine the offset to avoid contention among mes-
sages. In other words, for each message in this example,
we try to determine the offset in its possible offset.

Figure 2. Motivation of messages communication on the
TTNoC.
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Components representation

The MSSA requires genetic representation which is sim-
ilar with general GA. MSSA adopts the hyperperiod
Hp(S) as the definition of chromosome. The value of
hyperperiod is the least common multiple of the period
S:T among the schedule S for messages G, for example,
the hyperperiod is 8 for the schedule on Table 1. We
define the macrotick as a gene, and the location of a
gene on a chromosome denotes the offset of a message.
A chromosome represents a possible allocation for the
offset of messages S:F. It should be noted that a single
gene may consist of multiple offsets of messages since
several messages without contention can be transmitted
at the same time on the network-based TTNoC. Note
that each individual is equipped with a score, which is
evaluated by some fitness function. The fitness function
is discussed later.

The population with two individuals in our motiva-
tion from Table 1 is proposed in Table 2. For individ-
ual in0, the offset of message from s0, s1, s2, s3, s4 is 0, 0,
2, 4, and 7, respectively.

Algorithm description

Memetic algorithm (MA) is widely used as a synergy of
evolutionary or any population-based approach with
separate individual learning or local improvement pro-
cedures for solution search.27,28 Based on MA, MSSA
consists global search and local search. We deploy the
GA as the global search strategy. And the subset of
infeasible schedule is chosen as the element to join the
local search.

We formally give the algorithm as in Algorithm 1.
When the MSSA starts, the offset of messages is gener-
ated randomly within the possible offsets by
initPop(scale) (Line 1). The best individual best among

the population is selected by selectBest(pop). If no feasi-
ble schedule exists in the initial pop, we start the itera-
tion (Lines 6–18) until a feasible scheduling is derived
(Lines 14–16) or an upperbound of the iteration num-
ber N is reached. For each iteration, the GA operations
of crossover(pop) and mutation(pop) are employed as
global search strategies. And the local search
localSearch(pop) is employed after that. After the
search, the best individual will be chosen (Lines 11–13).
The iteration ends when the chromosome of best indi-
vidual is a feasible schedule (Lines 14–16). The new
population for the next iteration is generated by selec-
tion select(pop, scale) (Line 17). The individual with

Table 1. The schedule information of messages in Figure 2.

Schedule Route Period Deadline Possible offset

s0 r
h0, 4i
0

2 1 f0, 1g
s1 r

h3, 8i
1

4 1 f0, 1, 2, 3g
s2 r

h2, 7i
2

4 1 f0, 1, 2, 3g
s3 r

h5, 6i
3

8 2 f0, 1, 2, 3, 4, 5, 6g
s4 r

h1, 5i
4

8 1 f0, 1, 2, 3, 4, 5, 6, 7g

Table 2. The component representation of the population consists of two individuals.

In. 0 1 2 3 4 5 6 7

in0 s1:f
s0:f

s2:f s3:f s4:f

in1 s0:f s1:f s2:f s3:f s4:f

Algorithm 1. MSSA description.

Input:
the size of population scale
the maximum number for iterations N

Output:
best scheduling offsets S:F

1: pop initPop(scale)
2: best selectBest(pop)
3: if best:score= 0 then
4: return S:F best:chromosome
5: end if
6: for i= 0 to N� 1 do
7: pop crossover(pop)
8: pop mutation(pop)
9: pop localSearch(pop)

10: best0  selectBest(pop)
11: if best0 score\best score if
12: best best0

13: end if
14: if best score= 0 if
15: break
16: end if
17: pop select(pop, scale)
18: end for
19: return S:F best chromosome

Shi et al. 5



lower score owns more possibility to reserve for the
next iteration.

Fitness function

The fitness function is to evaluate individuals in the
population. To adopt the fitness function, we first
determine the scenario of overlap among messages.
And we transform chromosome to represent the com-
munication time for messages in the hyperperiod.
Then, the score of each individual can be acquired by
the fitness function to evaluate the chromosome in
Constraint 2.

By checking the forward routing for each message
by Formula 4, we denote the set of overlapped schedule
O(si) for si based on Formula 4, and we have

O(si)= fsjjoverlap(si, sj), si, sj 2 Sg

Table 3 shows the route based on XY routing and
overlapped set for the messages depicted in Table 1.
Since overlap(s0, s1) and overlap(s0, s3) are false while
overlap(s0, s2) and overlap(s0, s4) are true, the over-
lapped set O(s0) is fs2, s4g.

The communication time of message in the kth
period si(k) is defined by Formula 5, so we have

DHp(si)= fsi(k)jk 2 ½0,Hp(S)=si:T � 1�g

where DHp(si) denotes the communication time in a
hyperperiod. We define DHp(S)= fDHp(si)jsi 2 Sg that
denotes the set of communication time for messages in
a hyperperiod. Table 4 shows communication time for
messages based on given individuals in Table 2.

For si, sj 2 S, si 6¼ sj, if si and sj are overlapped, the
times of conflicts between them should be derived to
evaluate the chromosome. For si 2 S, we define C(si)
to derive the set of schedule conflicted with si. So, we
have

C(si)= fsjjDHp(si) \ DHp(sj) 6¼ [, sj 2 O(si)g

If there is no conflict with si on the its duration, then
C(si)=[. We define the total times of conflicts for si

as times(si). And we have

times(si)=
X

sj2C(si)

conflict(si, sj)

=
X

sj2C(si)

jDHp(si) \ DHp(sj)j

where the function conflict(si, sj) is to count the times of
conflicts between si and sj. We define
C(S)= fsijC(si) 6¼ [g to denote the set of conflicting
schedule. The fitness function is the sum of times of
conflicts in C(S). Thus, for a individual in, we have

fit(in)=
X

si2C(S)
times(si)

Since the score represents the times of conflicts, the
lower the score, the better the individual is, and the
individual with score zero represents a feasible sched-
ule. The score of two individuals in Table 2 is shown in
Table 5.

Global search strategy

The general operation in a GA, such as crossover and
mutation,29 is used in the step of global search. For
operation of crossover, we employ two of the individu-
als ini and inj among the population as parents to join
the crossover in terms of their score. The lower score of
an individual, the higher possibility for this individual
to be selected as parent. The crossover generates a new
individual called child, and its chromosome depends on
the parents. The individual of parents with lower score
owns higher possibility to determine the offset location
si:f for si 2 S on the chromosome of child. For parents
ini and inj, we define the function

Table 3. The route and overlapped set for schedule in Table 2.

Schedule si 2 S Routing per hop si:R Overlapped set O(si)

s0 h0, 1ih1, 4i s2, s4

s1 h3, 4ih4, 5ih5, 8i s4

s2 h2, 1ih1, 4ih4, 7i s0, s4

s3 h5, 4ih4, 3ih3, 6i [
s4 h1, 4ih4, 5i s0, s1, s2

Table 4. The communication time in a hyperperiod for the
schedule in Table 2.

In. 0 1 2 3 4 5 6 7

in0 t0 t0 t0 t0 t4

t1 t2 t1 t3 t2

t3

in1 t0 t1 t0 t2 t0 t1 t0 t2

t3 t3 t4

Table 5. Evaluating individuals in Table 1 by the fitness function.

Individual in Conflict C(si) Conflict times
times(si)

Score fit(in)

in0 s0, s2 times(s0)= 2 4
times(s2)= 2

in1 s0, s4 times(s0)= 1 2
times(s4)= 1

6 International Journal of Distributed Sensor Networks



Possibility(ini)= 1� ini

ini + inj

to represent the possibility for ini as a parent to deter-
mine the offset in the chromosome of child. Table 6
shows process of crossover. in2 is generated by cross-
over based on the two individuals in Table 2 as parents.
Because the score of in0 is 4 while in1 is 2, in0 owns 67%
while in0 has 33% of possibility to determine the offset.
A possible result of crossover is given: chromosome of
in2 with the offset of s0, s2, s3 from in1 and s1, s4 from
in0.

The operation of mutation randomly selects an off-
set and reallocate a new offset randomly in its possible
offset. Table 7 is an example of mutation. It is noticed
that the probability of mutation for each individual in
our implement is 10%.

Local search strategy

Before the local search for each individual, the schedule
si 2 S with the maximum value of times(si) is selected as
local search element. If there are two or more individu-
als with the maximum times of conflicts, the element to

be searched is selected stochastically among them.
Then, the offset of message to be searched is reallocated
in its possible offset. Each reallocated individual with
minimum score replaces the previous individual.

Table 8 shows an example of local search for in0 in
Table 2. Since times(s0)= times(s2)= 2 in Table 5, we
randomly select s0 as the element. We locate the s0 on
its possible offsets 0 and 1. After evaluating individuals
within possible offset s0:f, we select the individual
whose score is 2 as the updated in0 because this individ-
ual owns the minimum score.

Evaluations

The network architecture we employed for simulation
is a 2D mesh network whose scale is 3 3 3, 5 3 5, 7 3 7,
9 3 9, 11 3 11, and 13 3 13, respectively. The number
of message in our evaluation is from 5 to 100. Each
message owns its period and delay which is randomly
generated. The period is randomly synthesized in
f2njn 2 ½1, 10�, n 2 Zg, and the delay is less than its
period. We compare the MSSA with the GA in various
architecture and number of messages, and for each

Table 6. An example of the crossover between individuals in Table 2.

Pa. 0 1 2 3 4 5 6 7
in0 s0:f s2:f s3:f s4:f

s1:f
in1 s0:f s1:f s2:f s3:f s4:f
Ch. 0 1 2 3 4 5 6 7
in2 s0:f s2:f s3:f s4:f

s1:f

Table 7. An example of the mutation for individuals in Table 2.

Before 0 1 2 3 4 5 6 7

in0 s0:f s2:f s3:f s4:f
s1:f

After 0 1 2 3 4 5 6 7
in0 s0:f s4:f s2:f s3:f

s1:f

Table 8. Local search for individual in0 in Table 2.

Before 0 1 2 3 4 5 6 7
in0 s0:f s2:f s3:f s4:f

s1:f
Score 0 1 2 3 4 5 6 7
4 s0:f s2:f s3:f s4:f

s1:f
2 s1:f s0:f s2:f s3:f s4:f
After 0 1 2 3 4 5 6 7
in0 s0:f s4:f s2:f s3:f

s1:f
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configuration of simulation, we repeat 15 times. The
size of population in MSSA and GA is both 100.

Failure rate of schedule

The schedule of a message fails if the message commu-
nication faces contention with other messages based on

this given schedule. To compare the performance of
schedule synthesis of MSSA with GA, we define the
failure schedule of messages as S:Ffail. And the failure
rate of schedule Rfail as jS:Ffailj=jS:Fj. Figure 3 shows
Rfail for variable types of test cases by MSSA and GA,
denoted as Rfail(MSSA) and Rfail(GA), respectively. The
failure rate by the GA is higher than the MSSA in each

Figure 3. The failure rate of different number of messages on varying architectures: (a) 3 3 3 TTNoC, (b) 5 3 5 TTNoC,
(c) 7 3 7 TTNoC, (d) 9 3 9 TTNoC, (e) 11 3 11 TTNoC, and (f) 13 3 13 TTNoC.
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configuration, especially when the scale of architecture
and the number of messages are both relatively large,
for example, for the case of 90 messages in 13 3 13

TTNoC, the rate is 11.9% for the GA while only 1.8%
for the MSSA. It is proposed that the local search in
the MSSA is the key step to significantly improve the
performance.

We define Rfail(MSSA)=Rfail(GA) in Table 9 to com-
pare MSSA with GA in different scales of architecture.
From the results, we can see that the Rfail(MSSA) is
about 34.4% of the Rfail(GA). Rfail decreases when the
scale of TTNoC architecture increases. The reason is
that the link resource increases with the growth of
architecture scale, resulting in decreasing the possibility
of contention among the messages’ transmission on the
TTNoC. The failure rate of schedule increases when
the number of messages on the TTNoC increases. It is
because the limited link resources have to transmit
more messages when there is more messages on the
TTNoC.

Feasible cases

We consider the number of feasible cases in each experi-
ment type. The schedule for all messages on TTNoC is
feasible when there is no conflict between communica-
tion of messages in both spatial and temporal domains.
In other words, a case of communication is feasible if
each synthesized schedule of message S:F is conten-
tion-free, otherwise it is an infeasible case.

Figure 4 presents the result of numbers of feasible
cases in different scale of architecture after the schedule
synthesis. For simple test cases with less than 15 mes-
sages, most of the cases are feasible. But for complex
test cases of more than 60 messages, it is hard for
MSSA to find a feasible schedule.

Discussion

Synthesizing a feasible schedule depends on the number
of messages, the route of messages, and the scale of
TTNoC. It is hard for MSSA to synthesize a feasible

scheduling when the set of messages is large and/or the
scale of TTNoC architecture is small. However, except
two reasons above, the mapping between messages and
nodes as well as routing strategy also affect generating
a feasible solution. The designer can manually change
the mapping allocation or the routing strategy for the
failure schedule or even design a larger scale of network
architecture if needed. After these changes, the feasible
scheduling can be generated by the MSSA iteratively.

Conclusion and future work

This article proposes an MSSA to synthesize the sched-
ule for message communication on the TTNoC. MSSA
deploys the GA as the global search strategy, and the
subset of infeasible schedule is chosen as the element to
minimize its contention times. We evaluate our MSSA
and general GA with various randomly generated mes-
sages on varying scales of mesh-based TTNoC. The
results show that our MSSA is effective to synthesize a
schedule with less infeasible message communication,
which is 34.2% compared with the general GA. In our
future work, the mapping between messages and nodes
and routing strategy will be integrated to our consider-
ation before scheduling of messages on the TTNoC.
And the different TTNoC architecture, for example,
torus and hypercube, and different local search strate-
gies, for example, simulated annealing, will also be
implemented in our evaluations for the improvement of
schedule synthesis performance.
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Table 9. The average failure rate of schedule in different scale
of TTNoC.

Scale Rfail(GA) Rfail(MSSA)
Rfail(GA)

Rfail(MSSA)

333 0.1857 0.1261 0.6792
535 0.1226 0.0546 0.4452
737 0.0994 0.0345 0.3470
939 0.0721 0.0174 0.2411
11311 0.0618 0.0120 0.1944
13313 0.0557 0.0088 0.1582
Average 0.0995 0.0422 0.3442

Figure 4. The number of feasible cases in different scale of
TTNoC and number of messages.
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