
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1989

A finite state machine synthesizer A finite state machine synthesizer

Jiuling Liu
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Liu, Jiuling, "A finite state machine synthesizer" (1989). Dissertations and Theses. Paper 3912.
https://doi.org/10.15760/etd.5796

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3912&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://doi.org/10.15760/etd.5796
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Jiuling Liu for the Master of Science in Electrical

and Computer Engineering presented April 3, 1989.

Title: A Finite State Machine Synthesizer

APPROVED BY MEMBERS OF THE THESIS COMMITTEE:

Marek A. Perf owski, Chairman

Michael Ariscoll I

This thesis presents a Finite State Machine (FSM) Synthesizer developed at Port­

land State University. The synthesizer starts from a high level behavioral description, in

which no states are specified, and generates the lower level FSM descriptions for simula-

tion and physical layout generation.

In this thesis the author introduces the concept of the nondisjoint state tables,

which has not been defined ever before, as well as the algorithms of state minimization

and state assignment with the nondisjoint state tabies. He also presents a new algorithm

for parallel to sequential conversion, the algorithm to avoid some redundant states

assigned to the specified operations and the algorithm to provide different interface

2

structure between the data path and the control unit. All the above mentioned algorithms

have not been applied to the other existing FSM synthesizers.

With the author's contribution, the synthesizer has following distinguished

features:

1. By the multiple optimization procedures included in the synthesizer, the hardware

implementation of the generated FSM will be greatly simplified.

2. The size of the nondisjoint state table will be greatly reduced compared with the

conventional state table, and in consequence the computer memory space

required by the state minimization program will be greatly reduced.

3. The designer can define the digital system either in parallel or sequential program

statements, which will simplify the ways of the description and speed up the

implementation of high level specification.

A FINITE STATE MACHINE SYNTHESIZER

by

JIULINGLIU

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ELEClRICAL AND COMPUTER ENGINEERING

Portland State University

1989

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Jiuling Liu presented April

3, 1989.

Marek A. Pe

Mohammad
t I

APPROVED:

Rolf Schaumann, Chairman, Department of Electrical Engineering

Bernard Ross, Vice Provost for Graduate Studies

ACKNOWLEDGEMENT

I would like to thank my advisor, Marek A. Perkowski, for organizing the syn­

thesis project· and providing the framework in which I could work on such interesting

research.

I would like to thank Michael A. Driscoll and Mohammad Ghafarazade for their

valuable comments and corrections.

I would like to thank Shirley Clark for providing all kinds of help during my

entire working period.

I would like to thank all the people iri the DIADES research group for their

knowledge and technical supports.

I would also like to thank the faculty and staff of the electrical engineering

department for their help in knowledge and facilities.

I acknowledge funding for this research under SHARP Microelectronics Technol­

ogy company grant.

TABLE OF CONTENTS

PAGE

ACKNOWLEGEMENT ... iii

LIST OF TABLES .. vi

LIST OF FIGURES .. vii

CHAPTER

I INTRODUCTION 1

II CONTROL FLOW GRAPH ... 7

2.1 Control Flow Graph Definition .. 7

2.2 The Data Formats Representing cf-graph in DIADES 12

ID FSM DESCRIPTION GENERATION.. 18

3.1 Operation Partitioning.. 18

3.2 State Graph Generation .. 21

3.3 Input and Output Signal Generation .. 28

3.3.1 Input Codes Generation ... 28

3.3.2 Output Codes Generation... 29

3.4 Parallel Control Flow to Sequential Control Flow Conversion 36

3 .5 Graph Modification 48

3.6 State Minimization with Nondisjoint State Tables 54

y

CHAPTER PAGE

3.7 State Assignment for Nondisjoint Format FSM .. 64

IV THE FSM SYNTHESIZER OVERVIEW .. 71

V OUTPUT DESCRIPTION OF THE SYNTHESIZER 77

VI TWO DESIGN EXAMPLES .. 83

6.1 The Control Unit of Eight-instruction CPU ... 83

6.2 The Control Unit of the Signal Delay Device ... 86

VII CONCLUSION AND FUTURE WORK .. 91

REFERENCES ... 96

APPENDIX.

A DESIGN DATA OF EIGIIT INSTRUCTION CPU 99

B DESIGN DATA OF SIGNAL DELAY PROCESSOR................................... 107

LIST OF TABLES

TABLE PAGE

I Example of Nondi:sjoint State Table ... 56

II Example of Disjoint State Table ... 56

ID Disjoint State Table for the Example in Figure 22 65

IV Nondisjoint State Table for the Example in Figure 22 66

V Statistic Data of Design Examples.. 92

LIST OF FIGURES

FIGURE

1. Diagram ofDIADES system.

2. Example of a program graph.

PAGE

2

7

3. Parallel branches starting from FORK. ... 10

4. Parallel branches merged with DAND and its equivalent

sequential graph. .. 11

5. Parallel branches merged with DEX.OR and its equivalent

sequential graph. .. 12

6. Flowchart example. ... 14

7. Program graph description for the :flowchart in Figure 6. 15

8. Example of data paths of different structures.

9. Connections of operations of different speed.

19

20

10. Example of operations slice. ... 22

11. Structure of the two nodes that can be of the same states. 23

12. Example of state graph generation. .. 25

13. Block diagram of the similar assigment example. .. 31

14. Block diagram of concatenate assignment example. 32

15. Fields in output control code. ... 33

16. Block diagram of combinational assignments. ... 35

Vlll

FIGURE PAGE

17. Block diagram of multi-FSM control. .. 37

18. Example of parallel to sequential conversion. 40

19. Example of parallel to sequential conversion. .. 44

20. Example of different PLAs for a FSM. ... 49

21. Example of graph modification. ... 50

22. State graph example. ... 55

23. Example of state graph. .. 65

24. Adjacency graph for the example in Figure 23. ... 66

25. FSM example in Kiss and its multiple-valued specification. 68

26. Minimal symbolic cover of the example in Figure 25 (a). 69

27. Kiss descriptions for the example in Figure 23. ... 70

28. Diagram of the FSM Synthesizer. ... 72

29. Diagram of program connection. 7 5

30. Example of the truth table format. ... 78

31. Example of Eqn format. .. 79

32. Example of parallel graph and its compact graph. 82

33. Flowchart of eight-instruction CPU. ... 84

34. Different cases of signal delay. ... 86

35. Control flow diagram for the signal delay device. .. 88

36. Compact control flow graph of signal delay device. 89

37. Conversion example for part of parallel graph in Figure 36. 90

CHAPTER I

INTRODUCTION

As the· technology advances in the area of VLSI design, even more sophisticated

digital systems are emerging. This places even higher demands on the quality and sophis­

tication of control units (CU) synthesized by the automatic synthesis systems. Newer

and more effective ways of synthesizing and optimizing various types of such units must

be found. In some automatic synthesis systems [Tsen 86], [Meye 84], [Sout 83], the con­

trol unit synthesis begins from the control flow description in which the machine's states

are detenlrined. Some systems [Pang 87] begin from the data flow-graph, but they can

not deal with the flow-graphs of complicated controls. Other systems [Bray 88] consider

the hardware performance of the operations in the data path (DP) only, when assigning

states to those operations, but not the structure of the control graph itself. This produces

Finite State Machine (FSM) realizations of control units with many redundant states.

Because of the lack of the state minimization procedures, which is almost the universal

case for currently existing systems, FSMs with nonminimum numbers of states are

assigned and realized in logic. The consequence is that the area and speed requirements

are not satisfactorily met.

This thesis describes one of the two control synthesizers used in DIADES

automatic synthesis system [Perk 89] at Portland State University: the FSM Synthesizer.

DIADES is a research project sponsored by the SHARP Microelectronics Technology

company. It translates a high level behavioral description of a digital system in the pro­

gram language ADL into the logic or hardware structure description for the lower level

simulation or physical layout design. The diagram of DIADES is shown in Figure 1. The

t

Program graph
description

CONTROL UNIT GENERATION:
·, I v f

microprogram FSMcontrol unit generation
control unit
generation. FSM generation :

1. Graph modification.
2. Parallel to sequential

conversion.
3. State graph generation.
4. Input output encoding . .,
FSM optimization :

1. State assignment.

2. State minimization.

ii
truth table to Eqn

conversion

Figure 1. Diagram of DIADES system.

2

~
DATA PATH
GENERATION

ADL program defines the overall function of the digital system in terms of assignment

statements and control flow statements, not necessarily how it is built and what com-

ponents it will use. DIADES first compiles the ADL program and generates a program

graph (p-graph) description which includes the control flow graph (cf-graph) and some

other information not related to this thesis. Afterwards the design task is divided into the

control unit generation and the data path generation. The p-graph is the input data for

both of the generations. Two choices of the control unit implementation, microprogram

control unit and FSM control unit, are provided by the synthesis system. The result of

microprogram control unit generation is the microcode for control memory. The result of

3

FSM control unit generation is the truth table or the Eqn (a set of Boolean equations)

[Walt 85] data formats for the combinational part of the FSM. The Microprogrammed

Control Unit Synthesizer, MiCUS, is described in [Yang 89].

The FSM Synthesizer is composed of the FSM generation stage and the FSM

optimization stage. The first stage is the process to analyze the cf-graph and assign

machine states to the specified operations. It also encodes the input and the output signals

for FSM's. In the generation process, the user can select optimal interface structure

between the control unit and the data path from different variants of design scheme. The

different variants mean either encoding or not encoding the input signals from data path.

That can be approached by the program graph modification. For the digital system

specified by the parallel description, the corresponding cf-graph includes parallel nodes

and paths. In this case a parallel to sequential conversion procedure is needed to find the

operations executed in parallel and to assign states to these parallel operations.

The FSM optimization is composed of the state minimization program and the

state assignment program. The state minimization reduces both the number of rows and

the number of columns of state table, which is a unique feature of DIADES. This pro­

gram uses state tables without the restriction that input expressions corresponding to the

columns of the table should be disjoint, as it is required in most of the textbooks [Koha

82]. The state assignment program encodes machine states to simplify the hardware

implementation of the FSM.

The author developed the FSM generation algorithm and program, modified the

state minization algorithm and program and fixed the bugs in state assignment program.

He also developed the programs to interface different parts in the Synthesizer and to con­

vert different data formats. Totally about 4500 lines of source code were developed by

him.

With author's contribution, the synthesizer has the following advantages com-

4

pared to other synthesis systems.

1) Since the cf-graph does not contain any state transition information, the designer

need not be concerned with complicated state transition analysis when defining

overall function of the digital system.

2) During the FSM generation stage, some efforts have already been made to reduce

the nu.mber of the generated states, which will 'speed up the state minimization

procedure.

3) The elimination of the restriction that the FSM input expressions should be dis­

joint greatly reduce the state table sizes compared with conventional state tables,

and in consequence, the computer memory space required by the state minimiza­

tion program is greatly reduced.

4) The designer can define the digital system either in parallel or sequential program

statements, which will simplify the ways of the description and speed up the

implementation of high level specification.

Designing such a large software system involves solving two kinds of problems:

theoretical models of algorithms and data structures, and practical problems related to the

implementation. Only the problems of the first type will be addressed in this thesis.

Those interested in the second category problems can referred to the comprehensive

annotated and fully commented listings of the programs introduced here as well as to

other DIADES documentation.

The details of the above mentioned cf-graph description is introduced m

CHAPTER II.

CHAPTER ID describes the entire synthesis process of the FSM control unit gen­

eration. In § 3.1 the principles of the state partitioning are briefly discussed, which will

help to understand the the basic ideas for future development for DIADES.

5

In § 3.2 the algorithm of state transition generation, which is the transformation

from a cf-graph to a state graph description, is analyzed. As the internal data, both the

state transition format, Kiss, and the state table format, Stab, of FSMs are generated.

The input and output expressions included in these formats are encoded according

to the rules presented in § 3.3. The outputs of a control unit are the control signals for the

register transfer operations, memory read/write operations as well as the multiplexers

addressing for multiple-input register loading. The input signals to FSM can be either

encoded or not encoded, according to the user's choice. The advantage of providing the

two variants is demonstrated in§ 3.5.

For the parallel cf-graph, the conversion of the parallel control flow to a sequen­

.. rial control flow is first performed before the Kiss format and Stab format creation. The

theory and the algorithm for this conversion are illustrated.in§ 3.4.

The state tables are used as the input data for the FSM state minimization pro­

gram [Perk 87][Zhao 89]. To our knowledge, it does not currently exist in any other

design automation system. The details of the advantages of using the nondisjoint state

tables for state minimization and the modified algorithm for this task are described in §

3.6.

The current state assignment program in DIADES is FASS [Perk 89]. The Kiss

is the input data for this program. This is an input format to the Kiss program [DeMi

83a], that can be used instead of FASS. The confirmation that the modification of the

nondisjoint input expression does not affect the state assignment results is presented in

3.7.

In CHAPTER IV, the reader will obtain a concept of the entire performance of

the synthesis, with the overview of the synthesis structure as well as the important pro­

cedures involved.

6

CHAPTER V will help the user to be familiar with all the internal and external

data formats in the synthesis process and, consequently, to feel comfortable in develop­

ing future synthesis programs for DIADES.

CHAPTER VI, together with APPENDICES A and B, presents the design pro­

cedures of two examples which are the Eight-instruction CPU design and the Signal

Delay Proces~or design. The first example illustrates the design with encoded instructions

and the second example demonstrates the design with the parallel control flow descrip­

tion.

The statistics of twelve design examples are presented in CHAPTER VII. The

suggestions of future developments are also proposed in this chapter.

CHAPTER II

CONTROL FLOW GRAPH

§ 2.1 CONTROL FLOW GRAPH DEFINITION

Control flow graph (cf-graph) is an execution flow graph of the circuit under

design. It describes the sequence of operations, as well as the relations between the

operations. One example of this kind graph is shown in Figure 2. In DIADES such

graphs are represented as components of the description in language GRAPH88 [Yang

89], [Perk 8.2]. The graph is composed of the following items:

Pl

5

f 1 : a= 0, b = 0, c = O;

Ji: a= a+ 1;

13: b = b + 1;

/4: c = c + 1;

f s : flag = input;

pn1 :p1-flag=1;
P2 -flag= 2;

p3 - flag= O;

pn2 :p4 - stop;

P s - (not stop).

Figure 2. Example of a program graph.

A set of operational nodes - F = {Ji, f 2, · · · , fn}. Each operational node

8

specifies a set of operations to be performed in this node within one machine

cycle. In Figure 2, F = {f1, f1, f3, f4, fs }. Ii specifies the operations a:= 0,

b := 0 and c := 0, h, h, f4 and fs specify the operations a:= a+ 1, b := b + 1,

c := c + 1 and flag := input respectively.

A set of predicate nodes • PN = {pn1, pn2, · · ·, pnm}. Each predicate node

specifies a set of predicates, denoted by Pi= {P11, Pi2• ... , Pikl· A predicate can

be a relation or its complement, a variable or its complement, or a Boolean

expression of the relations and variables. In Figure 2, PN = {pn 1. pn 2}. The

predicate node pn 1 specifies predicates p 1. p 2 and p 3 which represent the rela­

tions flag= 1, flag= 2 and flag= 3, while the node pn2 implies predicates p4

and p 5 which represent the logic variable stop and its complement.

A set of arcs - A = {a i. a 2, .. ., an}. The arcs direct the control flow of the cf­

graph. An arc is a triple of the form (pi, psn, nxn). Here Pi represents a predicate

which determines the existence of the arc, psn is the head node that the arc points

from and nxn is the tail node that the arc points to. Both psn and nxn can be either

an operational node or a predicate node. The actual meaning of this representation

is "if Pi, go from psn to nxn." For the graph in Figure 2, the arc from operational

node Ji to predicate node pn 1 is represented by (1, fi. pn 1), the arc from predi­

cate node pn 2 to pn 1 is ((not stop), pn 2, pn 1).

The immediate successor of an operational node is one of its successor nodes

which is linked by an arc or a set of arcs and predicates. In Figure 2, the nodes f 2, h

and f 4 are immediate successors of node f 1. The node f 1 is also an immediate successor

of itself. The control flows from an operational node to its immediate successor when all

the predicates along the path between them are satisfied. It is, therefore, the Boolean

AND of all the predicates on the transition leading path. This Boolean expression is

defined as the transition predicate which is denoted by tpk. In Figure 2, the transition

9

predicate leading the transition from operational node f 1 to the node f 4 is p 3p 4.

Two predicates are disjoint when they can not be satisfied at the same time. It

can be defined as follows:

Definition I: Two predicates are disjoint, denoted by Dis(pi, Pj) = 1, if pi ()Pi= 0.

In a program graph, all the predicates included in one predicate node are disjoint

and the Boole~n OR of them has a logic value 1, which guarantees correct and sufficient

control flow information. For instance, in Figure 2, predicates p 1 , p 2 and p 3 are disjoint

since they are specified by the same predicate node pn 1 · From an operational node of the

graph, there is only one arc pointing to another node.

The sequential cf-graph is the graph in which the control flow, starting from a

single initial node, will keep transferring from one node to another single node. The

transition function is defined as the control flow from one operational node to its immedi­

ate successor under certain transition predicate. For the sequential graph it can be defined

as

fsj = Q lfpri' tpk)

where fsj e F, fpri e F and /pri represents present operational node while fsj represents

one of its immediate successors. For example, the transition function defining the transi­

tion from node f 1 to node f 4 in Figure 2 is

f4 =Q(fi,p3p4)

One of the important features of DIADES is the existence of parallel behavioral

specifications. To represent this kind of a p-graph (cf-graph), called a parallel p-graph

(cf-graph) some special control nodes are required.

The first control node is FORK which means that the control from the current

node is concurrently transferred to the several nodes pointed by all the arcs starting from

it. It can be illustrated by the example from Figure 3. In this example, after node FORK

10

the predicates a and b are parallelly evaluated. With the different combination of predi­

cates the different combinations of operational nodes will be approached. In this example

four different combinations are involved and each combination is composed of two

operational nodes. The distinguishing feature of the parallel branch in this parallel fork­

ing (forking) is that the predicate linking the node FORK to one of the nodes Ji and f 2 is

nondisjoint to the other predicates linking the FORK to any one of the nodes h and f 4 .

y

6
Figure 3. Parallel branches starting from FORK.

The second control node is DAND which is an end of parallel branches (coin­

cidence join). Only when all the branches coming to DAND have been arrived, this node

is passed. An example to illustrate this is presented in Figure 4 (a). In this figure, the

nodes pn 1 and pnz are parallel. f 3 will be executed only when both pn 1 and pnz are

satisfied. Its equivalent serial description is in Figure 4 (b). In comparison, it can be seen

that the graph in Figure 4 (a) is a more compact description than the one in Figure 4 (b).

With DAND node, the deadlock, which is the endless loop, might happen in certain

situation. The current Synthesizer can not check out this problem so that the user have to

do some analysis to avoid it.

The third control node is DEX.OR which is a dual case to DAND. This node is

passed whenever any one of its inputs, instead of all the coming branches, is reached by

the control. In this case all other controls that were parallel to this control under the

11

y

Jvy
n r----. n

y
n n

Q Q G ®0
(a) (b)

Figure 4. Parallel branches merged with DAND and its equivalent sequential graph.

same FORK are terminated. The example of the graph with DEXOR node and its

equivalent serial graph is shown in Figure 5.

The next control node, DROP, locally terminates one control path of a graph. For

instance, in one of three parallel branches of a FORK, where only two of them are joined

with a DAND, the another one might be terminated by a DROP.

The final control node is STOP ADL which globally terminates the execution of

the graph, removing all existing controls, when it is reached.

The transition function for parallel cf-graph is

FSn = Q (FP m• tpk)

where FSn c F, FP m <;;,. F and FP m is the set of present operational nodes while FSn

represents the set of immediate successors. This equation can also be used for serial pro­

gram graph since sequential graph is a special case in which both FSn and FP m are com­

posed of only one element.

l~ <j»j . y dexor Y

. i
0 G

(a)

n

Q

n

~
~

y

(b)

12

n j
y

(!:\ (;;'\
w '\ji)

Figure 5. Parallel branches merged with DEX.OR and its equivalent sequential graph.

§ 2.2 THE DATA FORMATS REPRESENTING CF-GRAPH IN DIADES

In DIADES the cf-graph is represented by a number of lists, specified description

of which is as follows:

A list of arcs (contained in *coplisset*)

This list contains all of the arcs in the graph. For example, the element (x 3 13) in

the list means that an arc exists between the operational node 3 and node 13; (e 3

13) also specifies the arc between node 3 and node 13 but node 3 is a control node

or the node performing some combinational logic functions which dosen 't need

one machine cycle to delay; (6 3 4) indicates that node 3 is a predicate node and if

the predicate 6 specified by node 3 is fulfilled the arc will point to node 4, while

((not 6) 3 5) corresponds to the failure of the predicate.

A list of operational nodes (contained in * nalisset*)

This list specifies all the operational nodes as well as the functions specified by

each node. For example, (5 (:= y a)) means that node 5 specifies the register

13

transfer operation y :=a, (6 (:=a (a+ 1))) indicates that in node 6 a register incre­

ment operation will be executed, while (7 (5 6)) means the operations specified by

both node 5 and 6 are contained in node 7.

A list of descriptions of node properties (contained in * nolisset*)

The property of each node is described in this list. Each element in this list has

the format as either (cond number nil) or (number number nil). For example,

(cond 8 nil) means that node 8 is a predicate node; (5 5 nil) and (5 12 nil) indi­

cates that both node 5 and 12 are operational nodes and specify the same opera­

tions as in node 5. The meaning of the last element (nil) is irrelevant at this point

A list of predicates (contained in *plisset*)

In this list each element represents a predicate number as well as the predicate

that.it specifies. For two complement predicates, only one is specified in this list.

Whenever ref erring another one, the complement of the predicate number is used.

For example, (10 (lessp x 20)) means that the number 10 predicate implies the

relation "x < 20". The predicate "x;:;:: 20" is referred by the expression (not 10).

A list of node groups (contained in *anlisset*)

This list groups all the nodes of the same property. All the predicate nodes are

considered to have the same property and those nodes of the same operation are

included in one group. For example, (cond (3 4 6 8 10)) includes all of the predi­

cate nodes of the graph; (5 (5 12)) groups two nodes of the same operation

specified by node 5.

A list of memory variables (contained in * lzmset*)

All the memory variables, either the register or memory types of the graph are put

in this list. For example ((1 (y j))) means that in system 1 there are two register

variables y and j.

14

Each of *coplisset*, *nalisset*, *plisset*, * anlisset* and *lzmset* contains a set

of lists which describes a set of the cf-graphs. The graphs are identified by the graph

number. Each of the sets are of the format as

((1 (list of description))(2 (list of description)) · · ·).

The number before the list of description is the graph number.

start

n

: y :! : .----i---. iy
I y:=2

!
j:=j-1

Figure 6. Flowchart example.

For the flowchart example shown in Figure 6, the corresponding program graph,

which is shown in Figure 7, is described by the following LISP statements which specify

a number of lists. Instead of the operation and control statements in the flowchart, the

program graph contains the operational nodes represented by circles and predicate nodes

represented by the diamonds. The actual meaning of each node is specified by the lists

stored in the lists under the names *nalisset* and *plisset*. For example, the node 2 in

Figure 7 corresponds to the statement ''j := 49" in the flowchart, which is specified by the

element (2 (:= j 49)) from the list stored in *nalisset*. The node 3 in Figure 7

15

corresponds to the control statement ''j ~ 0 ? " in flowchart, which can be ref erred by the

element (3 (lessp 0 j)) from the list stored in *plisset*. The difference is that the later

expression is specified by the LISP statement. So is the operation statement (13 (:= j

(plus j (minus 1))))which specifies the operation "j := j - l ". The control flow in the pro­

gram graph is specified by the arc list stored in *coplisset*. The control flow from the

predicate node 3 is either to the operational node 14, specified by ((not 3) 3 14) , or to

the predicate node 4, specified by (3 3 4). Since this program graph corresponds to only

one flowchart, each list specified by the LISP statement contains only a single list with

the graph number 1.

4
14) y '
y~
y~

./'

l v~,88
13 < i I ~

Figure 7. Program graph description for the flowchart in Figure 6.

(setq *coplisset* '
((1
((x 14 15)
((not 3) 3 14)
(x 13 3)

(x 5 13)
(x 7 13)
(x 9 13)
(x 11 13)
(x 12 13)
((not 10) 10 12)
(10 10 11)
((not 8) 8 10)
(8 8 9)
((not 6) 6 8)
(6 6 7)
((not 4) 4 6)·
(4 4 5)
(3 3 4)
(x 2 3)
(x 1 2)))))

(setq *nolisset* '
((1

((stopadl 15 nil)
(14 14 nil)
(13 13 nil)
(5 12 nil)
(7 11 nil)
(cond 10 nil)
(9 9 nil)
(cond 8 nil)
(7 7 nil)
(cond 6 nil)
(5 5 nil)
(cond 4nil)
(cond 3 nil)
(2 2 nil)
(start 1 nil)))))

(setq *nalisset* '
((1

((14 (:= y 0))
(13 (:= j (plus j (minus 1))))
(9 (:= y 1))
(7 (:= y 2))
(5 (:= y 3))
(2 (:= j 49))))))

(setq *plisset* '
((1

((10 (lessp x 128))
(8 (lessp x 127))
(6 (lessp x 126))
(4 (lessp x 125))
(3 (lessp 0 j))))))

(setq *anlisset* '

16

((1
((stopadl (15))
(14 (14))
(13 (13))
(5 (5 12))
(7 (7 11))
(cond (3 4 6 8 10))
(9 (9))
(2 (2))
(start (1))))))

(setq *lZillset* '
((1 (y j)))) .

(setq *symlis* '
((c 1)))

17

CHAPTER ID

FSM DESCRIPTION GENERATION

Control synthesis is a process to generate a control unit (CU) description accord­

ing to the control and operational flow description. Control synthesis consists of opera­

tion partitioning (control a/location), state synthesis and logic synthesis. In DIADES, the

state minimization is also the part of the state synthesis. In this chapter we will briefly

discuss the basic idea of operation partitioning since DIADES currently has no program

to perform this task. The state synthesis will be discussed comparatively in detail. The

details of the logic synthesis can be referred to the related materials [Wu 88][Hell

88][Cies 89].

§ 3.1 OPERATION PARTITIONING

Operation partitioning assigns (partition, decompose) algorithm operations into

machine cycles. In the high level description, operations are usually presented in algo­

rithms as assignment statements such as a := b + c * d. According to different structures

of data paths and length of machine cycles the operations described by the algorithms

have to be partitioned in order to enable each group of operations to be performed in a

single machine cycle.

In the design process, different choices of the data path structures have to be

made due to the area, speed and power consumption constraints. The choices are some­

times made between parallel and serial structures of DP for operation performance [Pang

87]. The parallel structure needs comparatively more area but less execution time and the

serial one needs less area but more execution time. The choices are the trade-offs

19

between the area and the speed. For example, the assignment a = b + c + d + e can be

either carried out by one adder or by three adders as shown in Figure 8 (a) and (b). Con­

sidering the one adder case, it takes four machine cycles to perform this assignment,

while three adders need only a single machine cycle (assuming that the addition can be

executed in 1/3 machine cycle). The speed is gained at the expense of more silicon area.

e b

~
b c d IT le

e

tM I + !ct

~ +I

a I a
)

(a) (b)

Figure 8. Example of data paths of different structures.

Operation partitioning follows the data flow restrictions [Bray 88]. Each operation

as well as each data transition between operations takes a certain delay time. Therefore,

in one clock cycle only a given number of operations can be performed. The number of

operations grouped in one state depends on the total delay time of the operations. When­

ever a delay time exceeds the time limit for one machine state, an additional operation

node has to be assigned. For example, if the time delay for the sequence of three adders

in Figure 8 exceeds one machine cycle, another state cycle has to be involved to carry out

this operation.

The partitioning should also consider the performance difference between opera­

tions of the different speeds. For example, the input of the operation can not be changed

before the operation is done; while the outputs of some fast operators are fed into slower

20

operators, they have to be stored in memory units so that additional states should be ad­

ded. This can be illustrated by the example shown in Figure 9. The circuit in Figure 9 (a)

should realize the assignment d = a * b + c. The multiplication operation takes more

time to perform than the addition operation. Before the multiplication is finished, any

changes of b or c will cause a wrong result. With another register added, the circuit is

modified as in Figure 9 (b). For this structure, an extra state cycle has to be introduced to

load the result of the b + c to the register d. During the state cycle of multiplication, the

changes of b or c have no effects on the assignment result.

b c

~
a

~.

b c

~"mllr
* i:

d

d

(a) (b)

Figure 9. Connections of operations of different speed.

In DIADES the initial sequence of operations is specified by the designer. Each

algorithm needs one machine cycle to be executed. The system first generates an initial

version of the data path and control unit descriptions. Later on, system will make the

transformation of the DP architecture to satisfy the specified constraints. This approach

permits the designer to specify, for the implementation of the data path, the components

as macros that are not the reserved operators acquainted by the compiler.

The different choices of the data path structures are reflected on the program

graphs, which are the results of the transformations from one cf-graph to another. The

----i

21

time delay of each operational node on each of the different program graphs is the same.

The transformation consists of the regrouping, decomposing and merging of the opera­

tional nodes.

§ 3.2 STATE GRAPH GENERATION

In DL~DES the state transition description is represented by Kiss [DeMi 83a] for­

mat and state-table format [Koha 82]. These two formats represent the state transition

graph. The state transition graph specifies a set of the present states, a set of the next

states, a set of the input expressions and a set of the output expressions. The items in

these four sets are one-to-one correspondents. The four corresponding items from the

four sets specify the state transition from the given present state to the given next state if

the specified input expression is satisfied. During the next state the FSM will give the

output control signals specified by the output expression. The generation of the state

transition description is actually the generation of the state transition graph (state graph)

which is transformed from the program graph (either original or transformed).

In different design automation systems, the state synthesis starts from different

types of graphs. Yorktown silicon compiler [Bray 88] starts from a graph similar to the

graph introduced in CHAPTER II, except there is no restriction of one machine cycle for

each operational node. In the transformation of this graph to the state graph, each loop on

the graph is initially assigned one state and then additional states are added according to

the restrictions introduced in operation partitioning. Unfortunately, some obvious redun­

dant states are produced by this approach, which will be indicated later on in this chapter.

The system proposed by [Pang 87] starts with a flow-graph shown in Figure 10. In state

synthesis, this graph is sliced into different levels and each level corresponds to one

machine state. For the complicated controls, however, the states can not be divided into

levels. For example, if there are two operations in the same level. Under different condi-

22

tions only one of them will be executed and after execution it will transfer to the different

next operation. In this case these two operation can not have the same state eventhough

they are in same level.

u dx 5 x x dx

~-~·-·····~--~·-;·········B······················-~·-······

state 2

state 3

state 4

·······················!·················•·····································
u y control · x

Figure 10. Example of operations slice.

Since in the cf-graphs of DIADES, each operational node needs one machine

cycle to execute, the cf-graph to state graph transformation can be directly done by map­

ping each operational node to one state. The input of the state transition of the state

graph is the transition predicate along the path from one operational node to another one

of its immediate successors [see CHAPTER II]. The output is the control signal needed

to enable the operations implied by the immediate successor. This kind of conversion

does not make any possible reduction of the state graph states and leaves all the work of

the state minimization to a future state minimization program. In DIADES there is a pro­

gram called FMINI [Zhao88] which does both row and column minimization for state

table description of incompletely specified FSM. However, some state reductions will be

23

done comparatively faster on the p-graph level than on the state table level where more

comparisons would be needed.

For a FSM description of m states and n input expressions, one state reduction in

the state graph generation stage will save (m - 1) row comparisons in the state table level

minimization. Each row comparison involves the comparisons of n pairs of next states as

well as n p~ of outputs.

Two operational nodes on the cf-graph can be assigned the same states when they

come to the same predicate node or operational node, as shown in Figure 11. In this

figure, predicate node snk and operational node fk are called merging nodes which is the

node pointed by more than one operational nodes. The state assigned to Ji and Jj are

called the previous state of the merging node, which is the state assigned to the opera­

tional nodes pointing to a common merging node. In the Yorktown silicon compiler,

these two nodes are always assigned different states.

Figure 11. Structure of the two nodes that can be of the same states.

The state generation process is to create two lists which contain the information

about the state transitions. One of the lists is a so called transition-list.

24

transition-list= (transition 1,transition2, ... ,transitionn)

where

transitioni = (present-state-number, next-state-number, transition-number)

The predicates that determine the transition and the operations to be enabled during the

next state for each state transition are generated in another so called relation-list.

relation-list = (relation i.relation 2, ... , relationn)

where

relationi = (list-of-predicate-numbers, list-of-operation-numbers, transition­

number)

Each number in the list-of-predicate-numbers represents a predicate. The Boolean AND

of all the predicates determines the state transition. Each number in list-of-operation­

numbers represents an operation. All the operations corresponding to the numbers in the

list should be enabled during the next state.

The generation process keeps the searching from one operational node, which is

assigned a state called the present state, to its immediate successors (another operational

nodes linked by arcs and predicate nodes), which are to be assigned the states called the

next states. Each time an immediate successor is encountered in tracing, the algorithm

first checks to see if this node is already assigned a state to avoid the conflict state assign­

ments to a single operational node. If not, it will trace one step further to see if the next

node of the encountered immediate successor node is a merging node. If it is, the

encountered immediate successor node would be assigned the previous state of the merg­

ing node.

For example, Figure 12 (a) is part of a cf-graph. The state graph generation for

this partial cf-graph starts from the operational node f 1 which is assigned a state, say, m.

By tracing this cf-graph, / 1 is assumed to be approached first as the immediate successor

of itself. Since it has been already assigned state m, a state transition from the present

P1+P2

from the rest
of the cf-graoh

Gp

to the rest
of the cf-graph

(a)

from the rest
of the state graph

i

P1+P2lfi

P2l/3

P1lf2

+
to the rest

of the state graph

(b)

Figure 12. Example of state graph generation.

25

state m to the next state m is generated. Node f 2 is next found to be another immediate

successor which has not been assigned a state. By tracing one step further, it is found that

its next node is an unencountered predicate node. Therefore a new state, say n, is

assigned to f 2 and a state transition from state m to n is generated. At this stage, the

predicate node sn2 is not realized as a merging node, but it is stored in the list of encoun-

tered nodes. Only after the third immediate successor h is approached and one step

further tracing encounts sn2 again, it is found that sn2 is a merging node and h is to be

assigned the same state as f 2· The state graph generated for the cf-graph shown in Figure

12(a) is presented in Figure 12 (b).

The algorithm of the state graph generation is as follows.

Algorithm 3 .1

1) Initialization :

start from an initial-node on the cf-graph and set it to be the

26

current-node;

find the successor node of the initial-node and set it to be the next-node;

present -state = 1;

global-next-state= 2;

transition-nwnber = 1;

closed-list= {(initial-node . present-state)}.

2) While (next-node is a predicate node)

{

current-node = next-node;

set-of -predicates -along-the -path

=set-of -predicates -along-the -path u {current-node};

waiting -list = waiting -list u {all the successor nodes of the current-node};

next-node= one of the successor nodes of the current-node;

delete next-node from waiting -list;

}

3) By one step further tracing find the successor node of the next-node, which will

be called the further-next-node (FNN).

4) if (next-node is closed [comment: has been assigned a state])

else

next-state = closed-state [comment: the state assigned to the

next-node];

closed-merging-list= closed-merging-listu {(FNN. next-state)};

}

{

if (FNN is included in closed -merging -list [has been encounted])

else

next-state =previous-state ofFNN;

next-state =global-next-state;

global-next-state= global-next-state+ l;

27

closed-merging-list= closed-merging-listu {(FNN. next-state)};

}

closed-list= closed-list u {(next-node. next-state)};

}

5) relation -list = relation -list u {(transition -number,

{predicates along the path},{operations specified by the next-node})};

transition -list

=transition -list u {(present-state, next-state, transition -number)};

relation-number = relation-number + 1;

present-state = next-state;

{set of predicates along the path} = 0 ;

6) If (the next-node is closed)

{

if (the waiting-list is empty)

terminate the process;

else

}

current -node = one element in the waiting -list;

delete current -node from the waiting -list;

else

current-node= next-node;

next-node = the successor node of the current-node;

repeat step 2 to step 6;

end of generation.

§ 3.3 INPUT AND OUTPUT SIGNAL GENERATION

28

The state graph description generated by the state graph generation process is

specified by the transition-list and relation-list (see § 3.2). For FSM hardware realiza­

tion, each state transition is determined by the input code and the present state code. The

FSM outputs are also the specified binary codes. The principles of encoding the input and

output signals for FSM with generated state graph description will be introduced in this

section. The state encoding problem will be discussed in§ 3.6.

§3.3.1. Input codes generation

The input signals of FSM consist of the internal inputs, which represent the predi­

cates from the data path, and the external inputs, which are the inputs from the outside of

the digital processor under design.

Each input signal represents a predicate. As mentioned in CHAPTER II , there

are three types of predicates: the variables, the relations and the Boolean function of the

variables or relations. For the predicate to be a specified variable, an input signal is

needed to represent the logic value of this variable. For instance, the statement "if a then

... " is a predicate with the variable a. Therefore, one bit input representing the logic value

of a has to be involved. When the predicate is a relation, an input signal to indicate the

logic value of this relation is also needed. For example, the statement "if (m > n) then ... "

specifies a predicate with the relation (m > n). One bit input signal is needed to identify

the logic value of the relation (m > n). The data path has to contain the hardware to

29

perform the comparison and to provide one bit signal to indicate the result of this com­

parison.

In the case that the predicate is a Boolean function of the relations or variables,

the input signals can either be the signals representing the logic values of the relations or

variables, or the signals corresponding to the outputs of this Boolean function. For

example, to ~mplement the statement "if (a /\ (m > n)) then ... "either two bits signals,

which correspond to the variable a and relation (m > n) respectively, or one bit of the

signal, which is the result of the Boolean AND of the variable a and the relation (m > n),

are needed. The input corresponding to the second approach is called a pre -encoded

input and the additional combinational logic gates have to be included to realize this

Boolean function. If the arguments in the Boolean function, a and (m > n) in above

example, have already been used as the inputs in rea.IJ.zation, then the second approach

would cause an extra input signal as well as the hardware to generate this signal. In the

current FSM Synthesizer, either of the above two approaches can be selected by the user.

§3.3.2. Output codes generation

Output codes of the FSM are the control signals to enable certain operations in

the data path. For different objects under control, different types of control codes are

needed. For example, the bus oriented system needs the signals to control buffers for the

register transfer operations, while the multiplexer oriented system needs the control sig­

nals to address multiplexers. The current version of DIADES can generate only multi­

piexer oriented systems. The data path operations to be controlled are the data transfers

among registers and memories.

1) Control signals for register transfer:

A. Special control: Special controls are defined for control registers only. They

include the control for register clear, increment and decrement operations. Each opera­

tion needs a unique signal to enable it. For example, the assignments for register a,

30

(:=a 0), (:=a (plus a l)) and (:=a (plus a (minus 1)), are three forms of operation that

need special control.

B. Control for register loading : If the input of the register comes from a single

source, the control of the load operation needs only one bit signal. Whenever the input

comes from more than one source, we refer to the case of similar assignments. In such

case the control output provides the signals for multiplexing of the multiple inputs. The
'•

input source is the output of the other register or combinational logic. Assuming that

there are similar assignments orderred from number 1 to number n, which are the dif-

ferent assignments to a certain destination register, the multiplexer addressing is shown

below:

0 ... 00 - No operation

0 ... 01 - assignment 1

0 ... 10 - assignment 2

1.. .11 - assignment n

The right most bit of the above addressing codes, as well as of all the codes intro­

duced afterwards, is the least significant bit while the left most bit is the most significant

bit. The bits from most significant to least significant are represented as

bm, bm+l• ... , bm+k·

In cf-graph description, each assignment has a corresponding assignment number.

In the above addressing code, assignment 1 refers to the lowest number of assignment

specified by the cf-graph. Assignment n refers to the highest number of assignment

specified by the cf-graph.

The don't care conditions occupy the upper end of the address range. These

addresses are never selected. Here don't-care conditions mean that the respective codes

31

are not used.

The multiple inputs can be identified by similar assignments specified in the cf-

graph. For example, statements (2 (:=x a)), (5 (:=x b)), and (8 (:=x c)) specified in the

cf-graph are the similar assignments. The first number in each parentheses is the assign­

ment number. If the assignments for x consist only of these three forms, then the multi-

plexing addressing codes for them would be

00 - No operation.

01 - Control of (:=x a)

10 - Control of(:=x b)

11 - Control of (:=x c)

~Cb
~1+

addressing --1 0 1 2 3
MUX

b2

loading __. x

c
?

Figure 13. Block diagram of the similar assignment example.

The block diagram of the hardware implementation to realize these assignments

is shown in Figure 13. The registers used in DIADES system are the ones which can be

loaded only the load input is active high.

Special control does not belong to similar assignments but concatenate does. For

example, the statements (:= x ((b [0 % 3]) @ (c [0 % 3]))) (symbol @ means con­

catenate) and (:=x ((a [0 % 3])@ (c [0 % 3]))) are two similar assignments. There are

two hardware choices to realize these assignments. Their block diagrams are presented

in Figure 14. For either implementation, the addressing signals to select the inputs for

32

(a[0%3]@c[0%3])

(a[0%3]@b[0%3]) b[0%3lc[0%3]

b t ~b, 1
-- 0 1 2 3 3

MUX a[0%3]
b1 --b2 ~ t t

x I I x

Figure 14. Block diagram of the concatenate assignment example.

the multiplexer have to be generated. The control unit, however, generates the same con-

trol signals in both cases. The assignments(:= (x@ y) d) and (:=x a) also contain simi­

lar part, since the statement (:= x (d [0 % m])), which assigns the first m bits to register

x, and (:=x a) are similar.

2) Control signal for memory

For the memory reference data transfers, two bits of read-write control signals are

needed. The control implied by these two bits is shown below:

00 - No operation

01 - Read

10 - Write

11 - Never used

If the memory is addressed possibly by more than one source, similar to multiple

inputs register assignments, the extra signals for multiplexer addressing, which select the

memory address from different sources, should be generated. All the assignments which

refer to the memory unit are considered to be similar assignments. The difference of the

read and the write assignments is identified by the read-write control signal. For instance,

if three different memory referring assignments specified by program graph are

(2 (:= (m [R 2]) a)), (5 (:= b (m [R 1]))) and (8 (:= (m [R 3]) c)), the memory control

signals for them should be as below:

0110 - Control for assignment(:= (m [R 2]) a)

IOOI - Control for assignment(:= b (m [RI]))

I I 10 - Control for assignment (:= (m [R 3]) c)

33

The first two bits of the above signals select the memory address from different

registers. The last two bits perform the read-write control. For instance, the first two bits

of the control code 0110 are 01 which address the multiplexer to select the memory

address from the register R 2. The last two bits 10 control memory read operation.

It should be pointed out that for the memory read assignments, the control signals

for the destination register loading need to be generated as well, which was, however, not

shown in the above example. For example, two memory read statements (5 (:= b (m [RI

]))), (7 (:= d (m [R2]))) specify two memory read operations to transfer data from the

memory to different registers b and d. The addresses of the memory are provided by the

registers RI and R2. The control signals not only select the memory addresses for the

operations, but also select the registers to load the data.

The address selection codes are ordered by the assignment numbers specified in

the cf-graph description. It is the same method as the one used for multiplexer address­

ing for similar assignments in the register loading control.

special control and

· multiplexer address
memory address

Figure 15. Fields in output control code.

read_ write
control

When the control signal is represented by a binary code expression, the total

number of bits in it is equal to the total number of signals for the special controls, the

register transfer controls, and the memory reference assignment controls. The output

34

control code is divided into three fields, as shown in Figure 15. In each field the least

significant bit is the right most bit and the most significant bit is the left most bit. The

first field provides the special control signals and the multiplexer addressing signals for

all the distenation registers. The order of the control bits in this field is allocated accord­

ing to the order of the assignment numbers specified in the cf-graph description. Let us

assume that the different assignments specified by the cf-graph are:

(15 (:= f (mem [R 1])))

(13 (:= b 0))

(10 (:= f (plus f (minus 1))))

(7 (:= f (and b (mem [R 2]))))

(4 (:= (b@ /) t))

· (3 (:= (mem [R3]) (or f b)))

and the block diagram for the hardware implementation to perform these assignments is

shown in Figure 16.

The control codes assigned to enable these assignments are as follows.

The special controls (two bits - bi. b 2):

00 - No operation

01 - (:= b 0)

10 - (:= f (plus f (minus 1)))

The controls for register loading (three bits):

loading for register b - one bit (b3).

0 - No operation

1 - (:= (b @ f) t)

Select input for register f - two bits (b 4, b 5).

00 - No operation

t

load b 3

clear --. bz ,___~__J

from
memory

load

from
memory

RI

MUX
b4
bs

1
f .,.._minus 1

bi

-f.. to memory L_-----~-~--;1~

R2

0

to memory
address

Figure 16. Block diagram of combinational assignments.

01 - (:= (b @ f) t)

10 - (:= f (and b (mem [R 2])))

11 - (:=/ (mem [R 1]))

b6
b1

R3

35

The controls for memory reference assignments (four bits - b 6, b 7, b s, b 9)

which include the selection of the memory address as well as the read-write con-

trols:

Memory read assignments :

0000 - No operation

0110 - (:= f (and b (mem [R 2])))

1010 - (:= f (mem [R 1]))

Memory write assignment:

0000 - No operation

1101 - (:= (mem [R 3]) (or f b))

The total number of bits in the control output codes needed in this case is nine. If

in a certain state transition, the assignments (15 (:= f (mem [R 1]))) and (13 (:= b 0))

36

need to be executed during the next state period, then the output control codes are

represented by the binary number 010111010. In this expression, the first bit from the

left is the control signal for the special control of register b, the third bit (loading for

register b) has no operation, the next two bits are the control for multiplexer addressing

which selects input for register f, the fourth and the fifth bits are the memory address

selection and the last two bits are the read-write control..

§ 3.4 PARALLEL CONTROL FLOW TO SEQUENTIAL

CONTROL FLOW CONVERSION

For the circuits described using a parallel program graph, there are two kinds of

approaches to FSM control unit realization. In the first approach the machine is com­

posed of one main FSM, which controls global operations, as well as several pieces of

subFSMs, each of them controlling the operations for one of the parallel branches. Some

communications have to be involved between the main FSM and subFSMs as well as the

subFSM themselves to trigger each other. The signals of communication are the selected

inputs and outputs of each FSM. The block diagram of this approach is shown in Figure

17. Since each piece of parallel branch can be treated as a sequential graph, the state

description generation for a sequential program graph can be utilized several times by a

designer for a parallel program graph to generate the main FSM and the subFSMs.

In case that the multi-FSMs control will increase the complicity of the control

unit, another control unit realization is also a choice which is composed of just a single

FSM. For this kind of realization the conversion from the parallel cf-graph to the sequen­

tial graph has to be introduced to make it possible to use the remaining programs of the

FSM Synthesizer for the parallel graph as well.

The cf-graph shown in Figure 18(a) is a part of a parallel graph. From the given

parallel cf-graph description, the following information can be extracted before the

conversion.

input 1 Main
FSM

i----.,... output 1

input 1 - from external or data path.
output 1 - to external or data path.

Figure 17. Block diagram of multi-FSM control.

37

An open-set OS = {fp l • fp 2• ... , !Pm}, which is the set of operational nodes that

are simultaneously executed in one machine cycle. In Figure 18, set {f 1, f 2 } is an

open-set.

A leading-set LS = {TP 1, TP 2 •... , TP m}, in which each TPi is a set of disjoint

transition predicates, denoted by {tpi 1, tpi2• ... , tpik}, which lead the control­

flow from !Pi to its immediate successors. As mentioned in CHAPTER II, all the

tpi's are disjoint and the Boolean OR of them is a logic 1. In Figure 18, the set

{{a, a},{ b, b}} is such a leading-set.

An end-set ES = {ISP i. ISP 2, ... , ISP m}, in which each ISP i is a set of immedi-

38

ate successors of !Pi, denoted by {fsil, Jsi2• ... , Jsikl· In Figure 18, the end-set is

{ {/3 ,f 4 } {f 5 ,J 6 } } .

the transition functions: {/Sij = Q (fpi, tpij) I i=l,2, ... ,m,j=l,2, ... ,i}.

where Q is the transition function defined in CHAPTER II.

The tpix 's included in a certain TPi are disjoint, but the tpix and tpjy are not neces­

sarily so if i ~ j. When they are nondisjoint, under the predicate tpk, which is (tpixAtpjy),

both the transition functions Jsix=Q (fpi,tpk) and Jsjy=Q (fpj,tpk) are satisfied. It means

that the Jsix and Jsjk will possibly be approached in parallel. With the currently known

information, the set of new parallel operational nodes can be, therefore, derived.

The conversion process is to create a behaviorally equivalent sequential graph. In

this sequential graph all the operations executed in parallel are specified by a single

operational node, and the transition predicates leading ·the transitions from one opera­

tional node to its immediate successors are disjoint. The following tasks should be,

therefore, carried out with the information provided

Create a new operational node Jn which is the combination of all the nodes

included in OS so that all the parallel operations specified by !Pi's in OS are

specified by the current Jn.

Generate the set of new transition predicates which leads the transitions from Jn

to its immediate successors. The set is denoted by TP = { tp 1, tp 2, ... , tpn}

Find out the set of all the new immediate successors of Jn. All the possible com­

binations of derived parallel operational nodes will be included in it. This set is

denoted by FSN = {FS1, FS2, ... , FSnJ.

The FSk is defined as the set of elements which is

FSk = {pfi lpfie!SPi,p.fi=Q (fpi,Pi),pieTPi,tpknpr1'0} (1)

39

the above expression means that the newly generated immediate successor FSk is the

combination of the immediate successors of the nodes in OS in the parallel graph. For

each element in the combination, there is a corresponding transition specified by the

parallel graph. The transition starts from one of the elements in OS, and determined by

the transitions predicate nodisjoint to the new predicate tpk.

The converted control flow is a sequential control flow only if

1) the.transition predicates are disjointed,

2) the Boolean OR of the transition predicates is a logic 1.

For a set of specified predicates

p ={Pi IPiE TPiJ (2)

the control flow from a set of parallel operational nodes in OS in the parallel graph will

transfer to a set of parallel immediate successors

PF= {pfi lpfie/SPi,pfi=Q (jpi>pJ) (3)

In Figure 18 (a), for a set of specified predicates P ={a, b}, the control flow from the

parallel operational node set OS = {/ 1, f 2} will go to the parallel immediate successor

set PF= {f3, f5}.

The relation between the elements in set P is the logic AND relation. If the new

transition predicate is defined as the logic AND of the elements in set P, formula (1) will

be satisfied when the Pi in the formula 1.s the same one in set P. Comparing formula (1)

and formula (3), it can been seen that the transition defined by formula (1) is equivalent

to the transition specified by the parallel graph.

For example, the new transition predicate of the logic AND of the elements in set

P ={a, b} is ab. It is nondisjoint to both predicates a and b. By formula (1), the transi-

tion will go to the immediate successor which performs the operations specified by the

operational node f3 and f5. They are equivalent to what is specified by the parallel

40

graph.

The key problem for the conversion is now focussed on how to generate all the

possible set of P specified by the formula (2). This is approached by the generation of

the Cartesian product of those items included in LS. By the definition, their Cartesian

product is expressed as

TP 1X1:P2X • • • xTPm = {(tp1xl'tp2.x2 , ••• ,tpmxm) I tpixieTPiJ

The set of generated transition predicates is defined as

TP ={ tpx I tpx = tp lx 1 /\tp2.xz /\ ... /\tpmxmJ

(a) (b)

Figure 18. Example of parallel to sequential conversion.

The idea of this conversion will be explained by the next example.

Example 3.1:

A part of a parallel graph is presented in Figure 18 (a). Two branches after node

FORK are executed in parallel. A new operational node for the sequential graph

is first created, which is the combination off 1 and f 2. The set of the components

of this combination is an open-set (OS) which is put to a so called open-list. At

this stage, the list has only one open-set which is {/1, /2}. The next conversion

starts from one of the open-sets in tlle open-list. For the open-set {f 1, f 2} the

41

leading-set (LS) is {{a, a),{ b, b)}, which determines the parallel control flow

from f 1 and/2 to their immediate successors h or f4 andfs or !6 respectively.

The Cartesian product of the subset in the leading-set is a set of new predicates.

These predicates determine the transition for the new operational node to its

immediate successors. The Cartesian product of the subsets in leading-set

{{a, a),{ b, b)} is
·,

TP 1xTP 2 = {(a,b),(a,b),(a,b)(a,b)J

The set of the new transition predicates is

TP = {ab , ab , 7ib , ab).

For each new predicate, a set of the parallel immediate successors of the nodes in

the open-set is found. This set of the parallel immediate successors is called a

parallel successor set. The combination of these parallel successors forms a new

immediate successor in the sequential graph. In consequence, the set of the new

immediate successors in the sequential graph is generated by using all the ele­

ments from the leading-set. The new immediate successors determined by

leading-set {ab, ab, ab, ab} are four operational nodes which are the combina­

tions of h and f5, h and /6, f4 and fs as well as fs and !6 respectively. Each

combination will then be put into the open-list. The equivalent sequential branch

for Figure 18 (a) is created by the above process in Figure 18 (b).

The generation of the Cartesian product can be mathematically approached by the

formula

(tp 11+tp12+ ... +tp ln1)(tp21 +tp22+ ... +tp2n2) ... (tpml +tpm2+ ... +tpmnm)

By expanding this formula, a sum of products form expression is achieved. Each product

form in this expanded expression corresponds to a tpi in TP.

In Example 3.1, the Cartesian product of the leading set {{a, a){b, b)} can be

achieved by the formula

(a+a)(b+b)=ab+ab+ab+"iib

42

The generated new predicates are the product terms from the above sum of products

form.

In this approach, the generated transition predicates are disjoint, because the dif­

ferent tpx ~d tpy contain different tpixi and tpiYi ineluded in the same TPi as their

Boolean AND terms. From the given information, the items included in the same TPi are

disjoint so that the results of the above Boolean AND are disjoint.

Any two of the generated predicates in the above example contain disjoint predi­

cates a and a or b and b. They are, therefore, disjoint.

By the definition, the Boolean OR of all the generated transition predicates can be

expressed as

tp 1 +tp2+ · · · +tpk = (tp 11+tp12+ ... +tp ln1)(tp21+tp22+ •.. +tp2n2) ... (tpm1 +tpm2+ ... +tpmn,,)

From the definition of the leading-set given above, the results of all the OR forms at the

right side of the above expression have logic values 1. So the result of the AND of all the

OR forms also has a logic value 1. In the above example, the Boolean OR of all the gen-

erated predicates is
- -

ab+ab+ab+"iib = (a+a)(b+b) = 1

Now the fact that the converted graph is a sequential has been verified.

By the above analysis it can be concluded that the converted control flow descrip­

tion is a sequential control flow description and is equivalent to the provided parallel

description. When the generated immediate successor is a combination of a set of opera­

tional nodes, the new open-set is generated. The next conversion step will start from any

one of the open-sets and the information needed for the conversion can be extracted from

the parallel cf-graph description.

43

The conversion algorithm must take, however, some particular cases into account.

For instance, the result of the Cartesian product should exclude the null terms. According

to the properties of the different parallel control nodes introduced in CHAPTER II, some

special procedures should be also included in the conversion process. The open-set

should exclude a DROP node since such a node terminates the transition of the branch in

which it is located. The passing DAND (DEXOR) transition is the transition to the node

pointed by the arrow from DAND (DEXOR) node. The destination node of the passing

DAND (DEXOR) is called a passing DAND (DEXOR) node. If the parallel successor set

only partially passes a certain DAND node (not all nodes in this set have passed the

DAND node), then only the unpassing nodes are kept in the open-set, since any transition

that passes DAND node is allowed only when all the nodes in the open-set have passed

DAND node. Only the passing DEXOR nodes are kept in the open-set when the parallel

successor set partially passes a DEXOR node, since the transition which passes DEXOR

is performed whenever any one of the nodes in open-set is a passing DEXOR node. The

transitions starting from the unpassing DEXOR nodes will be terminated. The conver­

sion process for passing DAND case can be illustrated by the next example.

Example 3.2 :

Figure 19(a) is the part of the parallel cf-graph. For the conversion of this graph

to the part of the sequential cf-graph, the current open-set is {f 1, f 2). The current

operational node for the sequential graph is the combination of nodes in the

- -
open-set. The set of the new transition predicates is {ab, ab, ab, ab}. For the

transition predicate ab, the parallel successor set is the open-set itself and the new

immediate successor in the sequential cf-graph is the current operational node.

Under the transition predicate ab, the parallel successor set is {f 1, h}, in which

/3 is an passing DAND node. Since the transition from/1 to itself has not passed

the DAND node, the / 3 can not be approached. The immediate successor gen­

erated for the sequential cf-graph is f 1. The successor transition should start from

44

b

(a) (b)

Figure 19. Example of parallel to sequential conversion.

the new open-set {f d and its immediate successors are f 1 and h led by the
. -

predicates a and a respectively. With a similar analysis, under the predicate ab,

the generated immediate successor is f 2 and the immediate successors off 2 are

f 2 and 13. Only under the predicate ab, the DAND node is passed and the gen-

erated immediate successor is h, since both the transitions from f 1 and f 2 have

passed the DAND node. The converted sequential graph is presented in Figure

19(b).

The parallel to sequential conversion is performed with the parallel control-flow descrip­

tion in terms of the following data formats.

1) A set of the transition descriptions : each element in it contains the lists of three

elements: the transition-number, the present operational node and the immediate

successor.

2) A set of the relation descriptions : each element in it contains the lists of the

transition-number, the transition predicates for the transition and the operations

specified by the immediate successor.

45

3) A set of the DROP nodes.

4) A set of the passing DAND transitions : each element in it is a pair of an opera­

tional node and its immediate successor which has passed the DAND.

5) A set of the passing DEX OR transitions : each element in it is of the same form as

that in 4).

6) A set of the passing FORK transitions : each element in it contains the items of

the present operational node and a list of its immediate successors determined by

the leading-set.

The data format for above descriptions will be presented in CHAPTER V.

For the example presented in Figure 19, if the node numbers which correspond to

Ji, f 2 and h are 1, 2 and 3 respectively; the predicate numbers correspond to predicates

a and bis 4 and 5; the node number before fork, which is not shown ill Figure 19, is 0.

Also, it is assumed that the operation specified by each operational node has the same

number as the node number. Then the set of the transition descriptions is

{(1(01))(2 (0 2))(3 (1 3))(4 (2 3))(5 (11))(6 (2 2))}.

The set of the relation descriptions is

{(1 nil (1))(2 nil (2))(3 (4) 3)(4 (5) 3)(5 ((not 4)) 1)(6 ((not 5)) 2)}.

The "nil" specification in above set corresponds to logic value 1. It means that the transi­

tion from the current node to the node specified in the set of transition descriptions will

always happen in any case.

The set of passing DAND transitions is {(1 3)(2 3)}. The set of passing FORK

transitions is { (0 1)(0 2)}.

The algorithm for the conversion can be described as follows.

Algorithm 3 2

1) Start from an initial node specified by the parallel control description. Create an

46

open-list of the only open-set of this initial node.

2) Pick up one open-set from the open-list and put it to a so called closed-list.

3) Find out the leading-set, which corresponds to the current open-set by checking

the set of transition descriptions, the relation descriptions and the set of the pass­

ing FORK transitions. For the sequential transition, this leading-set is composed

of only, one element which is the set of disjoint transition predicates.

4) Generate the Cartesian product of all subsets of the leading-set generated in step

3, which will become the set of new predicates.

5) Find the set of new immediate successors of the current open-set, which are deter­

mined by the new predicates.

6) For the set generated in step 5, delete DROP nodes from all the subsets by check­

ing the set of the DROP nodes provided; delete the nodes passing the DAND

nodes from the partially passing DAND subsets by checking the set of the passing

DAND transitions; delete the nodes unpassing the DEXOR nodes from the par­

tially passing DEX.OR subsets by checking the set of the passing DEXOR transi­

tions.

7) Check each subset of the set processed by step 6 to see if it has been already

included in the closed-list If no, put it into the open-list.

8) Create converted sequential control-flow description in terms of the new set of

transition descriptions and the new set of relation descriptions. Check to see if

the open-list is empty. If not, repeat steps 2 to 8. If yes, terminate the conversion.

For the example in Figure 19, the conversion starts from a initial node, say 0. The

open-list at this stage is composed of one open-set {0}. This open-set is then put to a

closed-list.

The leading-set for the current open-set is { (nil,nil)}. Here the "nil" specification

47

has the same meaning as the one specified in the set relation descriptions. The Cartesian

product of this leading-set is also "nil".

With the above leading-set, the new immediate successor is (j1,/2). This combi­

nation is then put into the open-list as an new open-set as well as into the closed-list as a

closed-set. The open-list now still contains only one element {f 1,/ 2}. The next conver­

sion will start from this open-set.

After putting this open-set to the closed list, the closed list is { { 0}, {f 1,f 2 }}. The

leading-set of the current open-set is { {a,a},{b,b} }. The Cartesian product of this lead-

- -
ing set is {ab,ab,ab,ab }. Each product is a new transition predicate.

The parallel successor set is { (j 3), (j 2,f3),(j1,h), (j 1,f 2)}. Each element in it

will be a new immediate successor of the node corresponding to the open-set. The transi­

tions from the open-set to the new immediate successors are led by the corresponding

new transition predicates.

Since <!2,/3),(fi,h) are partially passing DAND, the passing DAND node h

should be deleted from them. After the deletion, the parallel successor set becomes

{ (j3),(f2),(f 1),(f 1 ,/2) }. This is the set of new immediate successors in sequential graph.

Since the set {/ 1,/2} is already in the closed-list, only other three elements in the above

set are put into the open-list as the new open-sets. The current open-list is

{ {f 1},{f2},{f3} }.

Suppose the following transition starts from the open-set {/1 }, the closed-list \Vill

include this set in it. The leading-set for this open-set is {{a,a}}. The Cartesian product

of this set is itself. The new immediate successors of the open-set are (j 1), (f 3). The first

one is included in the closed-list and the second one is already in open-list.

The conversion will be continued until no element is left in open-list.

48

§ 3.5 GRAPH MODIFICATION

The graph modification process consists of alternating the predicate specifications

in cf-graph and, consequently, achieving a variant number of input bits for FSM.

It has been already mentioned that a predicate can be the Boolean expression of

relations or logic variables such as p 1P 2+P 1P 4, or (p 1+jj4)@ 1+p2), etc. Here Pi is a

logic variable or a relation. For an FSM based control unit implementation, the logic

value of each predicate is an input signal to the FSM. If the predicate is a Boolean

expression, the input signal would be the output of the combinational logic which real­

izes this Boolean expression. By this approach, some redundant input bits are generated.

Amoung a set of predicates

P ={Pk I k=l,2, ... ,n}

a redundant predicate Pi is defined if there exist

Pi =B (psl•Ps2•···•Psm)

and

{Psj IJ=l,2, ... ,m, sfi:i}cP

where B(psl•Ps2•···•Psm) represents the Boolean expression of the arguments in

parentheses. The input signal corresponding to this redundant predicate is an extra bit

input, since this predicate can be evaluated with the logic values of other predicates

which have been already utilized as the input signals. For example, any one of the predi­

cates p 1=(a>b), P2=(a<b) and p3=(a=b) would be a redundant predicate if the other

two predicates have been already utilized as the input signals, since p 1=ji2P 3, p 2 =p 1P 3

andp3=P1P2· If the FSM is realized by the PLA and memory devices, the increment of

each input bit corresponds to the increment of one PLA column. In the case of long and

narrow PLA's, the column increment causes comparatively much area waste.

I-- m+l -11...: n >I

T
k

1 r-- __ 1 I
-- ···········--0

(a)

I-- m -I I..: n >I

T
k+l

11-·····l·····l······­

~
0 -- -
(b)

Figure 20. Example of different PLAs for a FSM.

49

For example, let us assume that a truth table, which is the description of the com­

binational part of a FSM, has (m + 1) bits of input. Among these .(m + 1) bits, m bits

represent m unique predicates or their complements, and another single bit is the predi-

cate of a Boolean expression having two predicates as its arguments. If this expression is

of the form (Pi* Pj) and can be treated as an unique input signal to the FSM, the PLA

description for this FSM is as in Figuer 20(a), where k is the number of rows, and n is

the number of output bits. The total area needed by this PLA is proportional to k * (m + 1

+ n). If, instead of the predicate of the Boolean function, the predicates of the two argu­

ments of the function are taken as the input signals, then, instead of a single row

corresponding to the predicate of the Boolean function, the two rows corresponding to

the predicates of the two function arguments should be specified in the truth table. There­

fore, only one row will be added to the truth table. Assuming Pi and Pj are the two predi­

cates included in those m bits, then one column would be saved with the second

approach.

The corresponding truth-table is presented in Figure 20(b). The size of this PLA

would be proportional to (k + l)(m + n). The size difference between the two PLA's

50

mentioned is proportional to k - (m + n). If k >> (m + n), the second approach will save a

certain amount of silicon area besides the area needed by the combinational logic to real­

ize this function.

Not knowing the relation between k and (m + n), or even the logic realization

technology, a design variant will provide the chance to select optimal result from dif­

ferent design ~pproaches. This variant approach can be performed at either the cf-graph

level or the FSM description level. For both levels, the purpose of the approach is to

modify the predicates which are of the Boolean expression forms.

3

* p4=P1P2+PoP3 _

Figure 21. Example of graph modification.

The fact that the Cartesian product of the transition predicates is needed in the

parallel to sequential conversion process is considered while making a decision at the

modification level. If the transition predicates are only of the product form, then the

algorithm to generate their products and to find the empty products which should be

excluded will be speeded up as the result of such modification. The product of the pro­

duct forms is also a product form. The empty product can be checked out whenever two

complemented variables are included in the product. Therefore, the modification of the

predicates on the cf-graph level will not only generate a variant PLA for FSM but will

also benefit the parallel to serial conversion process.

The modification modifies only the predicate nodes of the graph. The idea of

51

modification will be illustrated in the next example.

Figure 21 (a) presents part of a graph description. The predicates specified by the

predicate node pn 1 are p 4 and p 4. Suppose that p 4 is a Boolean expression of the vari­

ables of other four predicates, which is of the sum of products form as p 1P 2 +p oP 3. The

sum of products form of the p 4 is

P 1P2+PoP3=p 1P2+PoP3=(ji 1+.P2)<Jio+p3)=p1iio+ii2iio+ii 1P3+p2fi3 ·

The predicates of p 4 and p 4 are called original predicates. The operational nodes 2 and

3 are called the original next nodes determined by the original predicates. The modified

cf-graph is presented in Figure 21 (b).

The modification creates a predicate node first, which corresponds to a case con-

trol statement. It specifies a set of predicates which are the different first literals of the

product terms in both the sum of products forms of p 4 and p 4. At this stage, the first

literals p 1P 2 and p oP 3 are {p 1 } and {po}. in each product term are called the current

literals. The predicates specified by the first created predicate node for the given example

are p 1 , po, p 1 and p 2.

After the first generation, the first literals are put into the so called predecessor

literal sets of the product terms. At the current stage the predecessor literal sets for pro-

duct terms are {p 1 } , {po } , {ji 1 } , {p 1 } , {ji 2 } , {p 2 } • Then the product terms that have the

same predecessor literal set are grouped, and the second literals in the product terms are

set to be the current literals. For the example shown, four groups are found. They are

(p 1P2), (pop3), (ji 1fio,.P 1fi3) and (fi2fio,.P2fi3). The second literals in four groups are

(p2), (p3), <Jio,p3) and <Jio,p3) respectively. These second literals are also the new

current literals. For each group, a predicate node which specifies the predicates

corresponding to the current literals in the group is created. Each transition from the pre-

vious node to the new node is determined by the predicate corresponding to the last

predecessor literal of the product terms. For the given example, four new predicate

52

nodes are created. Two of them specify the predicates P2 and p3, respectively. Both of

the other two nodes specify the predicates po and ji 3.

The product terms that have the current literals as their last literals are deleted

from the sum of products forms. The transition determined by the predicate correspond­

ing to the last literal in the product term leads to the original next node. The original next

node is chosei;i according to the original predicate whose sum of product form includes

the products term and which leads the transition to the original next node. The included

product term has the last literal that corresponds to the specified predicate.

For the given example, all the current literals are the last literals in the product

terms. Therefore, the transitions determined by their corresponding predicates lead to the

original next nodes 2 and 3, respectively. The choice of nodes 2 or 3 for each predicate is

done according to which sum of products form the product term is included in. For exam­

ple, the transition determined by the predicate p 2 leads to the original next node 2, since

the corresponding literal of the predicate p 2 is the last literal of the product term p 1p 2•

This product term is included in the sum of products form of p 4 • In the orignal graph the

predicate p 4 leads the transition to node 2.

If the product terms have more than two literals, then the current literals will be

included in the predecessor literal set, the third literals of the product terms will be set as

the current literals and the above process will be repeated. The creation of the predicate

nodes will continue until the last literals in all the product terms are processed.

During the modification, some special predicate nodes, which specify only one

predicate, are created. They can be thought of as the special case statements which have

only one predicate. This predicate will always be true when the control flow reaches the

predicate node specifying it. The modified graph no longer holds the property mentioned

in CHAPTER II that the predicates specified by a single predicate node are disjoint The

overlapped predicates, however, always lead the transitions to a common immediate sue-

53

cessor. The modified graph is only an internally used graph which does not change the

overall system performance.

The algorithm for the above described modification is as follows.

Algorithm 3.3

1) Find a predicate which is of a Boolean expression form.

2) Expand this predicate to the sum of products form.

3) Find a predicate node in the cf-graph which specifies this predicate.

4) If the complement of this predicate is also a predicate specified by this predicate

node, generate the complement of this predicate and expand it to the sum of pro­

ducts form.

5) Set the first literals in the product terms included in the sum of products forms

generated by step 3) and step 4) to be the current literals. Replace the predicate

node in the cf-graph by a predicate node which specifies the first literals of the

product terms in the generated sum of products forms as the predicates.

6) Include each current literal in the predecessor literal set of the product term of the

sum of products forms, and set the next literal in the product terms to be current

literals.

7) Group those product terms of the sum of products forms that have the same

predecessor literal set.

8) · For each group of product terms create a predicate node which specifies the predi­

cates corresponding to the current literals in the product terms from this group.

The transition from the previous predicate node to the new node is determined by

the predicate which is specified by the previous predicate node and corresponds to

the last predecessor literal from the product terms of the sum of products forms.

54

9) For the predicates which are specified by the node created in step 8) and whose

corresponding literals are the last literals in the product terms of the sum of pro­

ducts forms, find the corresponding original next nodes to be transferred from

new predicate node. The original next nodes are determined by the original

predicates that include the specified product terms of the sum of products forms.

10) Repeat steps 6) to 9) until the last literal in all product terms of the sum of pro­

ducts forms is processed.

11) Repeat steps 1) to 10) until no predicate of the Boolean expression form is left.

In the above algorithm the expansion of the Boolean expression to a sum of pro­

ducts form is performed by the algorithm developed by Dr.Perkowski [Perk 89b].

§ 3.6 STATE ~IZATIONWITH NONDISJOINT STATE TABLES

The FSM Synthesizer generated FSM descriptions in two formats: the Kiss for­

mat and the Stab format. Each row of the table in the Stab corresponds to a present

state, and each column corresponds to an input expression, usually a binary cube. The

entry at the intersection of a given row and column specifies a pair of the next state and

the output expression determined by the given present state and the given input expres­

sion. The Stab format generated by the FSM Synthesizer is different from the conven­

tional state table (such tables are explained in [Koba 78]). In the conventional state table,

the input expression (usually a product of literals or a minterm) implied by each column

is disjoint with the expression implied by any other column. Each input expression

implies that the Boolean AND of the whole set of corresponding predicates is satisfied

(each expression is a product or a sum of products).

The nondisjoint input expressions are in one to one correspondence with the con­

trol flow paths of the high level behavioral description. It is defined that two input

expressions are disjoint when the two sets of predicate products implied by them can not

55

happen at the same time. For example, if one predicate implied by a certain input expres­

sion is the logic value of the relation (a := 4) and another predicate corresponding to a

different input expression is the logic value of the relation (a := 3), then these two predi­

cates can not happen at the same time, so their corresponding input expressions are dis-

joint. If the second predicate is (b := 3), then the two input expressions are nondisjoint,

since without additional restriction there is no reason to assume that these two predicates

are in contradiction.

The conventional state table, with the restriction of disjoint input patterns, pro­

vides a great deal of redundant information. In consequence, a great deal of computer

memory would be wasted during the state minimization computation using such a table.

b/10 d/00

z111
Figure 22. State graph example.

The high level behavioral descriptions are always implicit. For example, if the

. behavior can be described as "if a then do ... " it will never be tediously described as "if

(a and b or a and (not b)) then do ... ", since the first description includes all the informa­

tion provided by the second one. Based on the implicit description, the FSM description

with nondisjoint input expressions includes all the information of state transitions. When

this description is expressed in Stab format, it needs, however, some new symbols to

56

communicate the information which can not be represented by the conventional state

table.

TABLE I

EXAMPLE OF DISJOINT STA TE TABLE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . 16

1

2

3

4

-

1111 1101 1011 1001 0111 0101 0011
1110 1100 1010 1000 0110 0100

2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 1/1 1/1 1/1 1/1 1/1

3/3 3/3 3/3 3/3 2/2 2/2 2/2 2/2 3/3 3/3 3/3 3/3 2/2

4/0 4/0 3/3 3/3 4/0 4/0 3/3 3/3 4/0 4/0 3/3 3/3 4/0

1/1 4/0 1/1 4/0 1/1 4/0 1/1 4/0 1/1 4/0 1/1 4/0 1/1

*For output pattern: 0 - 00, 1 - 01, 2 - 10, 3 - 11.

TABLE II

EXAMPLE OF NONDISJOINT ST ATE TABLE

1

2

3

4

1

1---

2/2

-1/*

-1/*

-1/*

2

0---

1/1

-1/*

-1/*

-1/*

3 4 5

-1-- -0-- --1-

-1/* -1/* -1/*

3/3 2/2 -1/*

-1/* -1/* 4/0

-1/* -1/* -1/*

*For output pattern : 0-00, 1-01, 2-10, 3-11.

6 7

--0- . ---1

-1/* -1/*

-1/* -1/*

3/3 -1/*

-1/* 1/1

0001

0010 0000

1/1 1/1 1/1

2/2 2/2 2/2

4/0 3/3 3/3

4/0 1/1 4/0

8

---0

-1/*

-1/*

-1/*

4/0

In TABLE I and TABLE II, two equivalent state tables are presented which

describe the state graph ·shown in Figure 22. TABLE I is a conventional state table.

TABLE II contains columns corresponding to nondisjoint input expression. The four bits

input expression reprsents the logic value of the four variables a, b, c and d respectively.

They are defined as the disjoint format and the nondisjoint format, respectively. Each

state transition specified in the state graph is described by the specifications determined

by a number of input expressions in TABLE I. For example, in Figure 22 the state transi-

tion from the present state 1 under the predicates a, which is to a next state 2 and gives

57

the output signal 10, is described by the specifications in row 1 and columns from 1 to 8

which is determined by the input expressions 1111, 1110, 1101, 1100, 1011, 1010, 1001,

1000, respectively. The state transitions specified in state graph are one-to-one map to

the specifications defined in TABLE Il. The same state transition in above example is

described by the specification in row 1 and column 1 which is determined by the input

expression 1--- in TABLE Il.

In TABLE II, some next states and output patterns are represented by number -1

and symbol*, respectively, which indicates unspecified transitions. The unspecified tran­

sition of this kind implies the multiple state transition descriptions defined by the

corresponding input expression. The actual transitions will be determined by the other

input expressions which are nondisjoint to this input expression. This is the case dif­

ferent to a don't-care case (as it is known, don't-care means that the current input

expression will never happen under the present state). Therefore, a new term multi-care

is introduced here for this special unspecified case. For example, in TABLE lI at the

intersection of row 1 and column 4 a multi-care is appeared. It means that the state transi­

tion from the present state 1 and under the corresponding input expression -1-- is

undetermined. It depends on the first bit of the input expression. If the first bit is 1, then

the input expression will be 11--. The state transition defined by this input expression is

implied by the specified state transition determined by the input expression 1---, which is

2/10. The state transition defined by the input expression 01-- is implied by the specified

state transition determined by the input expression 0---, which is 1/01. Both 1--- and 0--­

are nondisjoint to -1--.

Besides the nondisjoint state table a matrix, called disjoint relation matrix, to

indicate the relations of the columns is needed. Instead of comparing two input expres­

sions the relation of two corresponding columns can be found by checking the matrix.

The disjoint relation matrix for TABLE II is

11000000
11000000
00110000
00110000
00001100
00001100
00000011
00000011

58

The value at the position of row i and column j the matrix indicates the disjoint relation

of columns i and j in TABLE II. The value 1 means disjoint and 0 means nondisjoint.

It can be seen that the nondisjoint farm.at state table is more compact than the

conventional table. For the input expression of n bits, the total number of disjoint expres­

sions would be 2n - the corresponding conventional state table would have up to 2n

columns. In practical designs, huge conventional state table would be always involved,

which is exactly what the nondisjoint state table tries to avoid.

The reader interested in the theorems and programs for state minimization as well

as their applications can be referred to [Zhao 89] for details. The program of state minim-

ization for a conventional state table can not be directly applied to a nondisjoint format

state table.

Formally a FSM can be defined as 5-tuple (X, Y, Z, o, A.) where,

X =X1, X2, ••• , X !XI

Y = Y 1, Y 2, ···• Y I YI

Z = z1, z2, ... , z IZI

o:XxY~Y

A.: X x Y ~ Z (A.: Y ~ Z)

set of input patterns,

set of internal states,

set of output patterns,

next state function,

output function.

With the above definition, the following property should be fulfilled for all FSMs.

If xi n Xj '¢- 0, then

't(yi E Y)[O(Xj, Yi) = O(X.t, Yi), A(Xj, Yi)= A.(xk, Yi)]

59

This property means that the state transitions defined by the same present state and the

nondisjoint input expressions should be always the same. This property holds because

for two nondisjoint input expressions there exists certain input patterns which are implied

by both of these expressions. If the state transitions determined by these two input

expressions were different, the conflict state transition specifications would exist for this

implied input pattern.

For example, let us assume that the state transition is defined from the present

state m to the state n under input 1- and to the state k under input -1. Under input 11

which is implied by both 1- and -1, the contradict transition specifications happen.

In the discussed Synthesizer, the generated FSM descriptions always fulfill this

property. Since for any two nondisjoint input expressions, only the state transitions deter­

mined by one of them are specified by the FSM description generated by the Synthesizer.

The state transitions determined by its nondisjoint input expressions are implied by the

specified state transition descriptions. The state minimizati~n program, therefore, does

not need to check the consistency of the state table.

Let the set of rows of the state table is denoted by R = { ri I i = 1, 2, ... , I YI} and the

set of columns is denoted by C = {cj lj=l,2, ... , IXIJ, The corresponding relations

between the rows and states as well as the columns and input expressions are represented

as

ri ~Yi

and

Cj ~Xj

where ~ means corresponds.

Definition 3.1 The two nondisjoint columns, denoted by NDis(ci, ck) = 1, on the state

table are the columns whose corresponding input expressions are nondisjoint. The

definition can be formulated as

60

NDis(ci, Ct)=l<=>xi nxj-::/= 0.

In TABLE II, the columns 1, 3, 5 and 7 as well as columns 2, 4, 6 and 8 are nondisjoint.

Definition 3 .2 A column is said to be covered by a set of columns if its corresponding

input expression is covered by the union of the input expressions of the columns in the

covering set and it is nondisjoint with all the columns in the covering set This definition

can be expressed as follows.

ci cu {ck I k-::i=i,NDis (ci,ck)=l} <=>xi k; u {xk lk-::1=i}

In TABLE II, column 3 is covered by the union of the columns 1 and 2.

Definition 33 An entry(ij) on a state table, represented by the symbol eij• is defined as

the position on the intersection of row i and column j.

Definition 3 .4 For a given row i, an entry eij is nondisjoint to another one eik only if

column j is nondisjoint to column k. Consequently an entry eij is covered by a set of

entries { eiki, eikz, ... , eik,,.}, if the column j is covered by the union of the columns k 1,

k2, ... and km. The entries in the covering set are called the covering entries.

If the next state and the output pair in an entry are multicares, then this entry is

called a multi-care entry; otherwise it is a non-multi-care entry.

The nondisjoint state tables should have the following property:

For a multi-care entry, there always exists a set of non-multi-care entries to cover

it.

For example, in TABLE II, the entry e 13 is covered by { e 11 , e 12 } , and both e 11

and e 12 specify the definite transition descriptions.

In the case of an multi-care entry, if a set of non-multi-care entries can not be

found to cover it, then it would mean there exist certain input expressions under which

the actual state transitions are neither don't-cares nor specified transitions. This would

61

mean the loss of information in state transition description. For example, if for a present

state m, under the input 1- the specified state transition is a multi-care, and non-multi­

care transition is only specified under the input 10 which is to a next state n. Then the

transition information about the input 11 is unknown.

The problem of state minimization is to find a minimal cardinality group of sub­

sets of the internal states Y so that these subsets would include Y and inside each subset

all states were compatible. Two states are compatible if for any sequence of input pat­

temsXs,

A(yi, Xk) = A(yj, Xk)

where xk e Xs. The above equation requires that for a disjoint format state table, if the

states i and j are compatible, then the output expressions specified by the entries eik and

ejk should be the same or one of them is a don't-care, where k is any one of the column

numbers.

For a nondisjoint format state table, the comparison of two output expression

should consider the case in which both of them are multi-cares as well as the case that

only one of them is a multi-care.

Since the multi-care entry would be covered by a set of non-multi-care entries,

the result of the comparison of two multi-cares would be determined by the comparisons

of their covering entries. For example, in TABLE II, the comparison of the entries e 17

and e 21 is determined by the comparisons of all the entries from column 1 to column 6 in

rows 1 and 2, because these columns are all nondisjoint to column 7 and the entries in

these columns will be compared in any case. Therefore the comparison of two multi­

cares can be ignored, in other words they are assumed to be equal.

In the case of a single multi-care involved in the comparison, if the output expres­

sion specified by the non-multi-care entry is a don't-care, then the multi-care and the

nonmulti-care entries are considered to be equal; otherwise all the entries in the covering

62

set of the given multi-care entry have to be compared to the given non-multi-care entry.

For example, in TABLE II, to compare the entry e 14, which is -1/*, to the entry e14 ,

which is 2/10, it has to compare e14 to e 11 and e14 to e11, respectively. Only if all the

output expressions specified by the entries in the covering set are equal to the output

expression of the non-multi-care entry, is the output in the multi-care entry considered to

be equal to the output of the non-multi-care entry.

In state minimization with the state table description, the algorithm of finding

compatible groups is actually based on the process of checking out incompatible states

[Zhao 89]. It first identifies those incompatible states because of the different output

expressions appeared in their next states under the same input. Then the incompatible

states of the incompatible next states under the same input are found. For the conven­

tional state table the algorithm for the first stage of finding the incompatible states is

shown below.

for (i = 1, i = nr, i++)

for U = i+l, j = nr, j++)

for (k = 1, k = nc, k++)

compare (out(i, k), outU, k));

where nr and nc represent the number of the rows and the number of the columns of the

state table, respectively.

The modified algorithm for the same purpose with the ~tate table containing

multi-care is shown as follows.

Algorithm 3 .4

for (i = 1, i = nr, i++)

for U = i+l, j = nr, j++)

for (k = 1, k = nc, k++)

if(out(i, k)=* andoutU, k)#*)

{for all (entry (i, k) n entry (i, x) '#<I>

and out(i, x) '# *)

compare (out(i, x), outU, k)));

else if (out(i, k) '#*and outU, k) = *)

else

{for all (entry U, k) n entry U, x) '#<I>

and outU, x) '# *)

compare (outU, x), out(i, k)));

compare (out (i, k), out U, k));

63

The above algorithm modifies the algorithm to find the incompatible states which have

different outputs in next states under the same input. The rest of the algorithm for the

disjoint state table minimization can be applied to the nondisjoint state table without any

modification.

For the nondisjoint state table TABLE II, the state minimization procedure first

tries to find the incompatible states of different outputs by comparing each pair of rows

from column to column. It first compares the entries e 11, which is 2/10, and e 21, which

is a multi-care. By checking the disjoint relation matrix, it is found that entries e 23 and

e24 are nondisjoint to entry e21 and both of them specify the nonmulti-care transitions

3/11 and 2/10, respectively. Therefore, the entry e 11 has to compare with these two

entries. Since the output of en, which is 10, is not compatible with the output of e 23 ,

which is 11, the states 1 and 2 are incompatible. The state 1 is incompatible with the

states 3 and 4 can be found when comparing the entry pairs en and e35, en and e47,

respectively. By the same procedure, it can be found that all the four states are incompa­

tible because of the incompatible outputs. The TABLE II, therefore, can not be minim­

ized.

64

§ 3.7 STATE ASSIGNMENT FOR NONDISJOINT FORMAT FSM

Most of the state assignment programs deal with disjoint state tables. The

influence of the selection of the nondisjoint state table versus the disjoint state table for

the state assignment task varies according to the different state assignment algorithms. In

this thesis the analysis of the influences to two well known state assignment algorithms is

discussed. The first algorithm was developed by Armstrong [Ann 62]. Since it has not

been assigned a name, we call it the Arm's algorithm. The second algorithm was

developed by Micheli [Mich 85] and applied to the program Kiss so that we call it Kiss

algorithm.

Ann's algorithm is based on the generation of the so called adjacency graph

which consists of a set of state nodes as well as the weighted edges between those nodes.

The state encoding is carried out according to the principle that the states linked by the

heavier weighted edges are likely to be assigned the codes of shorter Hamming distance.

The Hamming distance is defined as the number of different values (0 and 1) in the same

positions of the codes. If for the nondisjoint state table, there exists an algorithm to gen­

erate the same adjacency graph as the one generated with the Arm's algorithm, then it

can be assumed that the same state assignments are found by using this algorithm.

The edge weights can be of two kinds, which are called the first edge weight and

the second edge weight. The first edge weight betwe.en two states, A and B, is defined as

the number of the state transitions from a common present state C to states A and B as

the next states under the two adjacent inputs. The adjacent inputs are the inputs of dis­

tance one. For instance, the distance of inputs 110 and 100 is one since they have only

one different bit. The second edge weight between two states is the number of the state

transitions from two present states A and B to a common next state C under the same

inputs. The generation of an adjacency graph can be illustrated by the next example.

Example 3.3:

a

~
Figure 23. Example of state graph.

TABLE ill

DISJOINT STATE TABLE FOR TIIE
EXAMPLE IN FIGURE 21

abe abc abe abc a.be a.be a.be

0 1 1 1 1 " () ()

1 2 2 0 0 2 2 0

2 0 3 0 3 () ~ ()

3 LI. LI. 3 ~ 4 4 3

4 2 2 ? 2 ci d ci

* d - don't-care

65

abc
()

0

'l

3

d

Figure 23 is the state diagram of an FSM. Its corresponding. disjoint and nondis­

joint state tables are presented in Table III and Table IV respectively. By check­

ing from the disjoint state table, the adjacency graph which contains only the first

edge weights is shown in Figure 24 (a). The edge between state nodes 0 and 1 is

weighted 4 since there are four adjacent input pairs (abc and abc, abc and abc,

- - - -
abc and abc, abc and CibC) which lead the state transitions from the present state 0

to the next state pair 1 and 0. The adjacency graph which contains only the

second edge weights is presented in Figure 24 (b). The weight between states 0

TABLE IV

NONDISJOINT STA TE TABLE FOR THE
EXAMPLE IN FIGURE 21

a- a-

0 1 0

1 -1 -1

2 -1 -1

3 -1 -1

4 2 d

* d- don't-care

* -1 - multi-care

-b- -b- -c -c

-1 -1 -1 -1

2 0 -1 -1

-1 -1 0 3

4 3 -1 -1

-1 -1 -1 -1

66

and 1 is 2 since the state transitions from the pair of present states 0 and 1 are

- -
both to the next State 0 under the input abc or 7i.bc. The final adjacency graph is

the combination of the two graphs, which is shown in Figure 24 (c). The weight

of. the corresponding edges are added to create an edge of the new combined

graph. The encoding procedure will assign the codes of the shortest distances to

state pair 0 and 1 as well as the pair 0 and 2.

~0
41

~-4 .G)

8
(a)

2 2

(b)

Figure 24. Adjacency graph for the example in Figure 23.

(c)

67

For the nondisjoint state table, the adjacent inputs are overlapped. Therefore, the

adjacency graph generation routine has to be modified. The first edge weight for two

states can be also checked out by the state transitions from a common present state to

these two states as the next states under the pair of adjacent inputs. The value of the

weight, however, should be the number of all the state transitions determined by those

inputs which are nondisjoint to the pair of adjacent inputs. For example, the weight

between nodes 0 and 1 in Figure 24(a), which is 4, can also be found by checking the

nondisjoint state table in Table IV. From the first row of the state table a pair of adjacent

inputs a - and a- is found which specifies one case of the first weight edge. Since

there are four inputs (-b-, -b-, -c and -C) that are nondisjoint to both the adjacent

inputs, the weight is 4.

The second edge weight for two states can be checked out by the state transitions

from these two states as the present states to a common next state under a pair of inputs.

The value of the weight is the total number of the state transitions determined by all the

inputs which are nondisjoint to both inputs from the input pair. For example, the weight

between nodes 0 and 1 in Figure 24(b) is 2, since two inputs -c and -care nondisjoint

to both inputs a- and-b-, both of which lead the transition to the next state 0 from the

present states 0 and 1. Obviously the final Adjacency Graph generated from the nondis­

joint state table is the same as the one generated from the disjoint state table. The results

of the state encoding would be the same for the same Adjacency ~tate Table. It can be

concluded that the influence of the nondisjoint FSM description on the Arm's algorithm

can be overcome by the modification of the Adjacency Graph generation procedure.

The Kiss algorithm performs the optimal state assignment to minimize PLA

which implements combinational components of the FSM. The algorithm is divided into

two stages. At first, the logic minimization is performed on a symbolic (code indepen­

dent) representation of the combinational components of the FSM. Then the state encod-

68

ing is carried out on the symbolically minimized FSM description. Symbolic representa­

tion can be represented by a multiple-valued logic specification. Different symbols

correspond to different logic values.

0 state -1 state -6 00

0 state -2 state -5 00

0 state-3 state-5 00

0 state -4 state -6 00

0 state -7 state -5 00

1 state -4 state -6 10

1 state - 7 state -6 10

(a)

0 1000000 0000010 00

0 0100000 0000100 00

0 0010000 0000100 00

0 0001000 0000010 00

0 0000001 0000100 00

1 0001000 0000010 10

1 0000001 0000010 10

(b)

Figure 25. FSM example in Kiss and its multiple-valued specification.

For example, the Kiss format description shown in Figure 25 (a) can be rewritten to the

multiple-valued specification shown in Figure 25 (b), in which each state value is

represented by a positional cube. The symbolic minimization pr~blem is to find the

minimal symbolic cover of the function. This is carried out by the consideration that any

positional cube representing a present state is of a multiple value and any positional cube

corresponding to a next state is part of a multiple-output expression of the logic function.

Under this assumption, the input codes of the function are composed of two parts: the

input expression for FSM and the state code. The first part is the binary-valued cube. The

minimal symbolic cover of the example in Figure 25 (a) is shown in Figure 26. After

0 0110001 0000100 ()()

0 1001000 0000010 ()()

1 0001001 0000010 10

Figure 26. Minimal symbolic cover of the example in Figure 25 (a).

69

symbolic minimization, a set of new positional cubes is generated which are combina­

tions of the positional cubes representing the present states. The new positional cubes

form a so called constraint matrix which is denoted by

l
a 1.

A= ~.2.l =[a.1 la.2 1 ... 1a.nJ={aijl·

anp.

The constraint matrix A for the symbolic cover in Figure 26 is

[
0111000 A= 1001
0001001

The state encoding is to find such a code matrix

that

[

s l.l
S= :~· =[•.1 l•.2 1 ••• l•.n•l={sij}.

ns.

7{.Afi.

(a.r Sj.) A (A. S) =Fj AF= I h.Af2.

fn)Afn ·
'P 'P

=<I>.

The definitions of operations A and · are given in [Mich 85]. The difference between the

disjoint and nondisjoint FSM descriptions in Kiss format is the existence of some state

transition descriptions in disjoint format that are different only in input expressions. For

example, the Kiss format descriptions corresponding to state transitions from the present

state 0 in the state table descriptions in Table III and Table IV are shown in Figure 27(a)

000 state -0 state -0

001 state-0 state-0

010 state -0 state -0

011 state -0 state -0

100 state -0 state -1

101 state-0 state -1

110 state -0 state -1

111 state -0 state -1

(a)

0-- state -0 state -0

1- state -0 state -1

(b)

Figure 27. Kiss descriptions for the example in Figure 23.

70

and (b) respectively. The description of the nondisjoint FSM combines some rows in the

description of the disjoint format which are only different in input expressions, for

instance the rows 1, 2, 3, 4 in Figure 27.(a). In the procedure of finding minimal symbolic

cover, these rows are expected to be eventually combined. So the nondisjoint description

saves some work for the state assignment by Kiss algorithm.

CHAPTER IV

THE FSM SYNTHESIZER OVERVIEW

The FSM Synthesizer is a part of DIADES system. It takes cf-graph description

from a specified file as the input and generates the FSM description in both Kiss format

and state table (Stab) format as well as logic description in truth table format or Eqn (a

set of Boolean equation) format. The input file inn within DIADES system is either: gen­

erated by the behavioral description ADL compiler TAG [Perk 89], originates from the

p-graph high-level transformations [Perk 82], [Yang 89], or is specified by the user in a

low level cf-graph and structure description in language GRAPH88 (see CHAPTER II).

The FSM Synthesizer is composed of five parts, as shown in Figure 28. They communi­

cate through user-readable text files. Also each part can be accessed by the user

separately, according to the various design level requirements.

The first part, FGEN, takes the p-graph description as the input data and gen­

erates the FSM description. The p-graph contains both the data flow and the control flow

information. The FGEN assigns states to the operations specified in the p-graph and gen­

erates the state transition description. It also encodes the input and output signals that

interface the data path and the control unit. It supports, as options, 'several CU/DP inter­

face design styles. To accommodate such CU/DP interface design styles it is sometimes

necessary to perform transformations on p-graph.

The FSM description generation function is carried out by the following pro­

cedures.

GRAM: This program checks the predicate list to find out those predicates which

are Boolean expressions of a set of other predicates. Whenever such a predicate is

72

Program graph

i
FGEN

+-

FMINI

I

FASS

It

ESPRESSO

It

TT2EQN

T
truth table eqn

Figure 28. Diagram of the FSM Synthesizer.

found, the graph description lists contained in *coplisset*, *plisset*, *nolisset*

and *anlisset* are modified to make each predicate specified by a predicate node

being a relation or variable only. The modified graph is described by the new

internal lists coplis, plis, nolis, anlis corresponding to one of the graph descrip-

tions read out from the *coplisset*, *plisset*, *nolisset* and *anlisset* lists,

respectively. This program can be optionally called by the user to get a different

variant of FSM.

TRANSLATION: This program takes one of the cf-graph descriptions, either read

73

out from internal list *coplisset*, *nalisset*, *plisset*, *nolisset* and *anlisset*,

or generated by GRAM, as the input, and creates a state transition description.

This state transition description consists of a transition list (*relgrliststar*) and a

list of relationships between each transition (*relalis*). The format of these two

lists will be described in CHAPTER V. The relationship specifies the predicates

under which the transition occurs and the operations that need to be executed dur­

ing the next state. Both predicates and operations at this stage are represented by

node numbers. For a sequential graph, the generated description is actually a state

transition graph. The state transitions are described by the transition list and the

input-output relations are described by the relation list. For the parallel graph,

the transition and relation lists describe a compact parallel graph. In this compact

graph the predicates between two operational nodes of the original parallel graph

are combined as a single predicate, being the logic AND of these predicates.

Besides these two lists, some extra information is stored in a number of lists

needed by the Parallel to Serial Conversion procedure CONVERSION.

CONVERSION: This procedure will convert the transition and relation lists gen­

erated by program TRANSLATION for a parallel control flow to the sequential

state transition description. The converted description has the same format as the

description generated by program TRANSLATION for a sequential graph.

RELATION: The relationship of state transition description y.rill be converted to a

readable description by this program. Instead of the node number, the actual

meanings of the predicates and operations are presented in the description gen­

erated by this procedure. It will also give out an error message whenever a

conflicting register transfer occurs during the transition. The conflicting register

transfers are detected when different values are assigned to the same variable dur­

ing the same machine cycle. This program is useful only for user interface,

74

debugging and as the input to the verification program.

TRANS: This procedure reads the state transition list as well as the relationship

list and generates the Kiss format and Stab format FSM description. These two

formats will be stored in a KISSOUT file and a FSMtable file respectively.

Another file called IMPLY specifies the implication of each bit of input and out­

put in Kiss format as well as the implication of input code for each column on

Stab format. For the requirement of the state minimization program[Zhao 89] in

Fortran, afort.1 file is generated which contains the read-write format description

of the FSMtable.

The second part, the state minimization program FM/NI, performs state minimi­

zation of FSMs. It reads either the Stab format or the Kiss format description, and

minimizes the FSM: either for both states and inputs or only for states. If the designer's

goal is to minimize only the number of the internal states then the corresponding variant

is called which gives the guarantee that the soluti~n has the minimum number of internal

states. If the designer attempts to minimize both the input states and the internal states,

the solution can cause smaller total FSM circuit area (for both FSM's main logic and its

input encoder), however the algorithm does not warranty the minimum number of inputs

or the minimum number of internal states [Zhao 89]. During its execution the Kiss for­

mat will be first converted to the state table format. The output of this program is a

minimized Kiss format description which is stored back to KI$SOUT file. Another

decodett file is generated which contains the truth-table format description for the input

decoding function. More information about this part can be found in [Zhao 89].

The third part of the synthesizer, FASS, performs state assignment of FSM's

internal states [Per 89]. The input for this part is the Kiss format description which is the

data format created by either FM/NI or FGEN, and a standard truth table format descrip­

tion will be generated at this stage and put into "ttfile" file. This program is based on the

·~

75

~

@1
+

I TRANSLATION I
~

I CONVERSION I

t i
TRANS I RELATION

stab ~
f

_ I -

FMINI Kiss --.....-j

t
decodett

ESPRESSO

tt2EQN tt

EQN

Figure 29. Diagram of program connection.

idea, which is the extension of the Armstrong's algorithm [Arm 62], and uses very

efficient heuristic algorithm to solve the quadratic assignment problem. It permits to

assign machines with more than 100 states and optimizes the assignment for multi-level

logic, while keeping the number of flip-flops under partial user's control.

The fourth part of FSM Synthesizer is the Logic Synthesizer. Currently the U.C.

Berkeley tool ESPRESSO [Bray 84] is adopted to serve for this task, but we plan to con-

76

nect other programs that use truth tables (tt format) as the input They are: P ALMINI

for PALs minimization [Nguy 87], EXORCISM for mixed polarity generalized Reed

Muller Forms [Hell 87], and DECOMP for decomposition [Perk 88]. The minimized

logic description is in a "MINitt" file.

The last part TI'2EQN is the format conversion program, which converts the truth

table logic description to Eqn (set of equations) description. The purpose of the conver­

sion is to provide versatile data formats for lower level synthesis procedures. Currently

we work on other netlist formats converters, including language M from Silicon Com­

piler Systems Company (SCS).

The diagram of the program connections as well as the data files generated is

presented in Figure 29.

CHAPTERV

OUTPUT DESCRIPTIONS OF THE SYNTHESIZER

The results of FSM based control unit generation are the state transition descrip­

tion and the Boolean function description. The state transition description is in Kiss for­

mat and state table format. These two data formats are defined by University of Califor­

nia [Walt 85]. The Boolean function description is in truth table (tt) format and Eqn for­

mat. With these formats the results can be versatilely interfaced with other CAD

software. Since both Kiss format and Stab descriptions have been discussed in

CHAPTER II, in this chapter only truth table format and Eqn format, as well as an inter­

nal compact format are presented.

1) Truth table format description

The truth table format is a PLA oriented description of two level Boolean switch­

ing function. This is described as a character matrix with keywords embedded at the head

and the end of the file. The keywords consist of the following items.

- .i [d] Specifies the number of input variables.

- .o [d] Specifies the number of output functions.

- .p [d] Specifies the number of product terms.

- .ibl [s] Specifies the labels of input variables.

- .obl [s] Specifies the labels of output functions.

- .e Specifies the end of the description.

Both ".ibl" and ".obl" can be default and only ".e" is specified at the end of the file.

The logic description is specified by the matrix. Each row of the matrix is a term

78

of the function. A term is represented by a "cube" which can be considered a compact

representation of an algebraic product term. A cube has an input part and an output

part. The matrix has the structure like PLA. The rows in the matrix correspond to the

rows in PLA, the input part corresponds to the row in AND plane and the output part

corresponds to the row in OR plane.

Each position in the input part corresponds to an input variable where an 0

implies that the corresponding input literal appears complemented in the product term, a

1 implies that the input literal appears uncomplemented in the product term, and -

implies that the input literal does not appear in the product term.

Each position in an output part corresponds to an output function where a 0

implies that the corresponding input expression is a maxterm of the function, a 1 implies

that the corresponding input expression is a minterm of the function, and a - implies a

don't-care term. An example of this format is shown in Figure 30.

--100101 0001100
1-0-1-00 0110000
1--0-110 1000010
0-00-101 10001 ()()
-0-10101 1001000
-1--0101 1001000
-1--1101 1000100
0-11--01 1000001

Figure 30. Example of the truth table format

2) Eqn format description

The Eqn format is a standard cell oriented description of a Boolean switching

function. This is described as a set of logic equations. An example of the Eqn format is

shown in Figure 31. In this format, symbol I represents logic OR, symbol & represents

logic AND while the symbol ! represents the complement The commonly included pro­

duct forms in the sum of products forms are separately listed as the internal product

forms. The sum of products forms are actually the sum of the internal products, the

79

products of the inputs as well as the products of internal products and inputs. The results

of the internal product forms are labeled by Q[d], where [d] is the order number as an

index.

Ql =INl & ! IN2& ! IN4

Q2=IN1 &IN2& ! IN3

Q3 = ! INl & IN2 & IN3 & IN4

OUTl = Ql I Q2 I INS & IN2

OUT2 =Ql I Q3

OUT3 = Q2 & INS I Q3

Figure 31. The example of Eqn format.

In Figure 31, the Ql, Q2 and Q3 are internal products which are commonly

included in part of the sum of product forms OUTl, OUT2 and OUT3. The (Q2 & INS)

in the sum of products form OUT3 is the product of the internal product and input

In DIADES system, the Eqn format is converted from the truth table format. The

variables in the internal product forms, as well as the outputs from the sum of products

forms, are the input labels and the output labels specified in the truth table format,

respectively. When the labels of input and output signals in the truth table format are not

declared, the default labels, IN[d] and OUT[d], are used, respectively.

3) Compact format description

In the generation of the FSM description an internal transition description is created. For

the sequential cf-graph, this description describes the state transition graph in terms of

node numbers. When parallel graph is processed, this description provides a compact

parallel flow graph description for the Parallel to Sequential Conversion procedure. This

internal transition description is generated in a so called compact format. The compact

format is composed of a number of following lists.

80

a) The list of transitions (*relgrlistar)

Each element of this list describes a transition. The element consists of three

items, each of the form (current point (success point, transition number)) For the

FSM generation starting from a sequential graph, each point is a state. The list

describes, therefore, the state transition graph. In the case of a generation starting

from a parallel graph, each point is an operational node which is represented by

the node number.

b) The list of relations (*relalis)

This list contains the elements composed of three items. Each element describes

a relation (tn (opn) (stn)), where tn denotes the transition number, (opn) is a list

of operations performed after the transition and (stn) is a list of predicates deter­

mining the transition. The operations and the predicates are represented by the

operation numbers and the predicate numbers (or complements of predicate

numbers), respectively. Both of the.numbers are specified in the cf-graph. For two

complementary predicates, only one number to represent one of them is specified

in the cf-graph. When referring another predicate, the complement of that number

(not number) is used. In the case of the generation process starting from the

sequential graph, this list specifies the input and output information of the state

transition.

c) The list of pass FORK transition

This list describes the transitions between the operational nodes before and after

the FORK node. Each element of it is composed of the before FORK node

number and a subset of its immediate successors determined by a leading-set (see

§ 3.4). It is of the form (<node before FORK> <list of immediate successors>).

d) The list of nodes between FORK and DAND (*dandlisstar)

All the operational nodes on the path from FORK to DAND are stored in this list.

81

e) The list of nodes between FORK and DEX OR (*dexorlisstar)

All the operational nodes on the path from FORK to DEX OR are put in this list.

f) The list of passing DAND transitions (*dandpair)

This is the set of all the transitions passing DAND. Each element of the set is a

pair of operational nodes which is of the form

(<node before DAND > <node after DAND >).

The operational nodes are also represented by node numbers.

g) The list of passing DEX OR transitions (*dexorpair)

This is the set of all the transitions passing DEX.OR. Each element of the set is a

pair of operational nodes which is of the form

(<node beforeDEXOR ><node after DEXOR >).

The operational nodes are also represented by node numbers.

h) The list of DROP nodes (*droplisstar)

All the DROP nodes are stored in this list.

The lists from c) to g) are useful only in the FSM generation process which starts

from a parallel cf-graph.

An example to explain the above internal description will be illustrated in Figure

32. Figure 32 (a) presents a part of a parallel graph. Its compact graph is presented in Fig­

ure 32 (b). In the parallel graph, the node 7 is a FORK node, node 15 is a DROP node

and node 16 is a DAND ·node. In the compact graph, the predicates leading the transi­

tions from the operational nodes to their immediate successors are described in the rela­

tion list *relalis. The parallel relations described by the control nodes in the parallel

graph are described by the passing FORK, passing DAND transition lists in the compact

graph. In the compact graph, therefore, only the operational nodes are left. The numbers

of the operational nodes are reordered since the predicate nodes are deleted. The passing

FORK list, *forkpair, contains the elements representing the parallel transition node

82

v

nci; G)

(";) y y

~~
n I /.A............_ I (-- \ nl /n if

(b)

(a)

Figure 32. Example of parallel graph and its compact graph.

pairs (2 3), (2 5) and (2 8). The nodes 3, 5, 8 execute operations specified by the nodes

13, 10, 8 in the parallel graph respectively. The passing DAND list, *dandpair, describes

the transitions from nodes 11 and 8 in the parallel graph to the nodes 18 or 19 depending

on the predicates specified by the nodes 9, 12, 17. Since the nodes 11, 8, 18, 19 are reor­

dered as nodes 6, 8, 7, 9, .the passing DAND list contains the node pairs (6 7), (6 9), (8 7)

and (8 9). The predicates determining these transitions are also provided in the relation

list. The DROP list has only one element which is node 4 in compact graph. The details

about this example can be referred by the signal delay processor design example in

CHAPTER VI as well as the data in APPENDIX B.

CHAPTER VI

TWO DESIGN EXAMPLES

§ 6.1 THE CONTROL UNIT OF EIGHT-INSTRUCTION CPU

This example is adapted from [Hayes 88]. Although the eight-instruction CPU is

too simple to have a practical use, the design of its control unit demonstrates the pro­

cedures which are common to universal microprocessor CPU's.

The flowchart describing the instruction fetch cycle common to all instructions, as

well as the distinct executions, is shown in Figure 32. The instruction is first fetched to

the data register (DR). Then the control unit will interpret the instruction in DR and give

out the sequence of the corresponding control output signals. Since the total number of

instructions is 8, they can be encoded using three bit codes as follows:

000- load

001 - store

010- add

011- and

100- jump

101- jumpz

110- comp

111 - rshift

The ADL description for this CPU is presented in APPENDIX A.1. The cf-graph gen­

erated by the ADL compiler ntag is given in APPENDIX A.2.

'T1

.....
.

Jq
 ~ w

!'"
' !l

0 ~

0 ::
r ~ 0 H
)

n.

(1
q

::

r I s· en
 g 0 i:t
.

0 !::
l

(
)
 ~

B
eg

in

re
 -

-r
e

+
 1

IR

 +
-D

R
(O

r)

D
ec

od
e
or

L
O

A
D

A
R

+
-

IJ
R

(A
IJ

H
)

S
T

O
R

E

A
R

+
-

IJ
lt

(A
O

R
)

A
D

D

A
l{

+
-

IJ
R

(A
IJ

R
)

.
A

C
=

 A
cc

u1
11

ul
3t

or

A
R

 •

M
e1

11
or

y
ad

dr
es

s
re

gi
st

er

D
R

 .
.

M
er

no
ry

 c
lo

ln
 r

eg
bt

er

O
R

(O
r)

 "
'O

p
co

d
e

fi
el

d
o

r
D

R

IJ
R

(A
IJ

R
)"

"
A

dd
re

ss
 r

le
ld

 o
r

O
R

I
R
~

ln

•t
ru

ct
lo

n
re

gi
st

er

M
 "

'
M

ni
n

rn
cr

no
ry

l'C

 =
 Pro

gr
am

 c
ou

nt
er

A
N

O

JU
M

P

A
R

+
-

O
lt

(A
IJ

R
)

re
+-

D
R

(A
D

R
)

JU
M

l'Z

C
O

M
P

R

S
ll

lF
T

A
C

 +
-A

C

S
ll

lF
T

 A
C

T

re
tc

h

cy
cl

e

r:
_

.r
n

lc

cy
cl

e

0
0

~

85

The graph contains 20 operational nodes as well as 3 predicate nodes which

specify 10 predicates. Program FGEN takes this cf-graph description as the input and

generates the FSM description in both Kiss and Stab formats presented in APPENDIX

A.3.

The FSM contains 13 states and 22 transitions. In the Stab format description,

the input expressions corresponding to the columns of the state table, as well as the dis­

joint relations of those columns, are also provided after keywords .ip and .dr, respec­

tively. Because the table size is too large to print on this page, instead of the next state

output expression, the output number is printed. The corresponding output number for

each output expression is appended to each binary cube in output specification. The dis­

joint relations are presented using a two dimensional matrix. The value at the intersection

of the i-th row and the j-th column specifies the disjoint relation (by value 1) or the non­

disjoint relation (by value 0) of the i-th and the j-th columns of the state table.

In a separate file, IMP LY, the actual implications of each input bit and control

output bit are specified in two lists, as shown in APPENDIX A.4. The input implication

list contains the predicates. The logic value of the predicates are specified by the signals

of their corresponding bit positions. In the output implication list, there are two forms of

specification. For each group of encoded control output signals, the set of triple items is

provided. The first item specifies the number of bits for the encoded group. The second

item is a set of code lists, while the third item specifies the operations controlled by the

codes presented in the second item. For instance, the list :

(3 ((1 0 0)(0 1 1)(0 1 0)(0 0 1)) ((:=AC (not AC))(:= AC (and AC DR))(:= AC (plus AC

DR)) (:=AC DR)))

specifies the control codes for the group of register transfer operations with register AC

as the destination register. The order of the codes included in the second item is in a

one-to-one correspondence with the operations listed in the third item. The MR and MW

86

correspond to the memory read and write operations, respectively. They are always the

last two bits whenever memory reference operations are involved.

The FSM control unit generated for this example contains no redundant states, so

the Kiss format description generated by the state minimization process remains

unchanged. The state assignment program reads the Kiss format description, either

minimized or non-minimized, encodes the states, and performs logic minimization pro­

cedure as well. The encoded truth-table format description and its corresponding Eqn for­

mat description for the given example are presented in APPENDIX A.5. and APPENDIX

A.6, respectively. It can be seen that with a proper state encoding, 3 rows are reduced

from the original truth-table description.

This example also demonstrates the control statements for the encoded predicates

in ADL description. The encoded instruction is specified by an AND statement of all

encoded bits. With the graph modification (see § 3.5) each bit will be treated as an

unique input signal to FSM, which is. the often applied approach for microprocessor

design.

§ 6.2 THE CONTROL UNIT OF THE SIGNAL DELAY DEVICE

_J A _J A

B I B'

2T
~

2T

(a) (b)

Figure 33. Different cases of signal delay.

This is an example demonstrating the design with a parallel program description.

The design is to delay an input signal A by the time 2T. The device is supposed to have

drop

(START

1:=0
lt :=T

f:=O
Al

~~ t Pi

B = 1 IA6 n ~
~ L.!_:2._j A 7

'f

~n
Ps

y

Figure 34. Control flow diagram for signal delay device.

87

an information input signal A, an information output signal B, and a control input T. A

and B are logic signals (variables) and T is an integer number of the specified clock

cycles.

Two cases of different signal width and delay time should be considered in the

design. In the first case, the delay time (2T) is shorter than the signal width, as shown in

Figure 33 (a). The second case is an inverse case which is shown in Figure 33 (b). With

88

the restriction that the delay time should not be less than a specified value, say 100, the

ADL behavioral description for this device is shown in APPENDIX B.1, and its

corresponding parallel control flow diagram is presented in Figure 34.

Since the input delay specification is T and actual delay time is 2T, an additional

delay cycle is put before the operation It := lt-1. Thus It decreases 1 in every two

machine cycles and total 2T cycles delay is achieved whenever It becomes zero. With ·.
the DAND node, the output Bis available only when both the required delay time (2T) is

approached and the minimum delay time (100) is exceeded. If 2T < 100, the minimum

delay time will be considered as the actual delay time.

In Figure 34, each rectangular block of the diagram corresponds to an operational

node of the cf-graph. The functions in the block are the set of operations simultaneously

performed in one machine cycle. Each set is labeled by the literals beside the block. All

of the predicates are labeled by the literals beside the diamond blocks which correspond

to the predicate nodes in the cf-graph. The parallel cf-graph is described by the program

graph description in APPENDIX B.2. This cf-graph is first converted to a compact paral­

lel flow graph shown in Figure 35. In actual compact parallel graph, there are no FORK

and DAND nodes. They are described by the passing FORK (DAND) transition. They

were drawn here because of easy understanding.

In the compact parallel flow graph, the labeled arrows, instead of the predicate

nodes, determine the sequence of the function flow. The compact flow graph is described

by a number of internal lists introduced in CHAPTER V . For the current example, the

internal lists are composed of a transition list (*relgrliststar), a relation list (*relalis), a

list of the passing FORK transitions (*forkpair), and a list of passing DAND transitions

(*dandpair). All these lists are presented in APPENDIX B.3.

It can be concluded from the compact flow graph that the transition from the

state, which performs operation Al, is to the next state which enables operations A2, A3

89

-
Po

P2

Ps

Figure 35. Compact control flow graph of signal delay device.

and A4, since these operations are executed in parallel in the graph from Figure 35.

There are four possible transitions starting from this next state, as shown in Figure 36(a).

All the transitions are based on the possible combinations of the predicates which are

judged in parallel. At this stage, the predicate

P 2·P 4 = AA(lt:;tO)A(f;t=IOO) =(A v(lt = O))A(f;t:lOO)

corresponds to either case 1 or case 2 from Figure 34. The consequent state transition

from the state enabling operations A4 and AS is shown in Figure 36(b). In the present

state the signal A turns to low or the specified delay time has been approached but the

actual delay has not yet exceeded the minimum delay time. Five transitions are avail­

able. The transitions to A6 and to A 7 correspond to the cases that the specified delay time

90

~ P4 -8®
(b)

(a)

Figure 36. Conversion example for part of parallel graph in Figure 35.

and the minimum delay time are both satisfied. For the first transition, however, the input

signal A keeps high, and for the second transition it turns to low. A complete FSM

description in Kiss format is presented in APPENDIX B.4. Since the state table is too

wide to be printed out, it is omitted in the APPENDIX. After state minimization, one

state is reduced and the new state transition description in Kiss format is shown in

APPENDIX B.5. The states are encoded by FASS, as shown in APPENDIX B.6. The

combinational part of the FSM description in truth-table format is presented in APPEN­

DIX B.7, while its minimized result is shown in APPENDIX B.9. ;If this combinational

part is implemented by a PLA, this PLA has been reduced by 16 rows in its OR plane,

comparing to the PLA that corresponds to the initial description.

CHAPTER VII

CONCLUSION Al\1> FUTURE WORK

In digital circuit design, most of the FSMs considered by the industry consist of

less than twenty internal states. The large FSMs (the FSM's with many states) are usually

decomposed into small FSMs. By this approach, the design period can sometimes be

speeded up since the time needed for state generation, state minimization and state

assignment are exponentially proportional to the number of the FSM states. Sometimes,

the silicon area can also be saved for a multi-FSM approach. The disadvantage of this

approach is the human interference involved to specify the separate components, as well

as the protocols between them. For example, if there are two operations to be controlled

by an FSM and they need m and n machine cycles to perform, respectively, then (m - 1)

and (n - 1) waiting states have to be included to keep the control of these two operations

during their executions. If the control unit is composed of a single FSM, the total number

of the waiting states would be (m + n - 2). If the control unit is composed of one FSM

and a counter of module (m - 1) (suppose m > n and only one counter is used to signalize

the ends of both operations), then the FSM needs only 3 states to initiate the operations

and the counter, to keep waiting for the tenninations of the executions as well as to ack­

nowledge the termination of the operations and to reset the counter. Taking into account

the number of states needed for the counter, the total number of (m - 1 + 3) states is

needed by the whole control unit. In the second approach, the organization of the control

unit has to be decided by the designer and the counter has to be separately designed.

Whenever possible, the multi-FSM approach is always preferred and the FSMs of less

than twenty states, therefore, are the main design objects in the practical design.

TABLE V

STATISTIC DA TA OF DESIGN EXAMPLES

Machine
Number of

Op. Status Opera Predi States
Inputs Outputs Name

Nodes Nodes -tions -cates init/final

Gcd 2 4 3 3 3/2 3

Class 10 5 6 6 4/4 6

Squen 6 3 8 4 4/4 4

Regis 9 4 5 8 4/4 8

Pulse 6 5 6 4 6/6 4

Ohm 14 4 11 4 12/12 4

Trian 14 4 15 5 12/12 5

Micro 23 2 22 13 12/7 13

Telep 16 8 10 12 13/13 12

CPU 21 2 14 10 13/13 5

Delay 9 6 9 6 14/13 6

Volt 14 4 11 4 18/18 8

* Pulse, Delay are generated from parallel control flow graphs.
* Op. nodes - Operational nodes.
* inti./final - before state minimization and after minimization.

2

5

8

5

5

11

15

21

9

14

7

11

State

bits

1

2

2

2

3

4

4

3

4

4

4

4

92

Rows in Rows in
KISS PLA

7 3

10 8

10 6

18 15

15 11

18 17

20 17

24 18

35 34

22 19

50 36

12 11

Several FSM control units of less than 15 states have been experimentally

designed by the Synthesizer introduced above and the resultant data are presented in

Table V. Since the state transition descriptions are generated by Algorithm 3.1, which

tries to eliminate the redundant states in generation, and no don't-cares are involved in

the current version of the Synthesizer, for most of the examples shown in Figure 7-1 the

state minimization seems to be necessary. The state minimization· stage, however, will

benefit the future developments. With proper state assignment, the truth table descrip­

tions for the combinational parts of the FSMs can be minimized %3 - %57 rows of the

initial descriptions, which will in consequence save the silicon area for hardware imple­

mentation.

From the design experiments, the following improvements are needed for the

current synthesizer.

93

1) The output minimization process should be included either before or after the

state assignment stage. The urgent task of the minimization is to combine the

same output columns or columns which complement each other in output part of

Kiss description. For large digital systems, the optimal output encoding should be

considered.

2) The significance of the state minimization depends on the don't-care generation.

The don't-care can be generated with the information provided by the designer. In

the cf-graph description there has to be an extra list to specify the don't-care

information. The list should contains those predicate nodes, as well as the predi­

cates, which would be impossible to happen at the time when the corresponding

predicate node is approached. For example, after the assignment of value 5 to a

variable x, the relation (x = 0) would be impossible to occur. From this point of

view, the ADL compiler has to support the unhappening predicate specifications

in future ADL descriptions. Another approach for the don't-care generation is by

tracing the cf-graph during the state transition generation. The tracing can be

implemented by keeping a list of the values of those variables involved in all

predicates. Each time when there is a change of for any variable in the list, the list

is modified.

3) Some improvement of the data structure should be made to speed up the perfor­

mance of the programs. In the state transition description: generation process,

three lists of the input expression codes (inlis), the output expression codes

(outlis) and the state transition pairs (stalis) are first generated. Each input or out­

put expression code is represented by a list of binary numbers. The elements at

the same position in the three lists describe one state transition. Later on, the state

table format and Kiss format descriptions are generated from these three lists.

The disjoint relations for the input expressions are also checked out by the bitwise

94

binary operations among the binary lists. The process can be speeded up by com­

bining these three lists to a property list and changing the input and output expres­

sions to a binary matrix instead of the list of binary lists. By changing the input

expressions to a binary matrix, those disjoint checking processes can be per­

formed by the LISP binary functions instead of the user defined binary function

(include 1), which is frequently called in the state table generation, for the binary

lists. Also, the same change can be done to the disjoint record list and the state

table list (*tablis) which include the binary list as their elements.

In the control output generation for memory reference assignment, four lists are

first generated. Then the read-write control code and memory address register

selection code are generated with the information provided by these four lists.

The four lists are the List of Read Assignments, the List of Write Assignments,

the List of Different Memory Address Register References, and the List of Multi­

plexer Addressing Codes for the References. The example of these four lists is as

follows:

read-lis : ((:=a (mem [ARl]));

write-lis: ((:= (mem [ARl]) b)(:= (mem [AR2]) c));

bind-control: ((mem [ARl])(mem [AR2]));

mem-control : (1 ((1) (O))((mem [ARl])(mem [AR2]))).

In the above lists, ARl and AR2 are two memory address registers and "mem"

indicates the memory reference assignment The first number in the list

mem_control is the number of bits for multiplexer addressing, the second element

is a list of addressing codes and the third element is a list of different memory

address register references. Obviously, these four lists can be combined to a pro­

perty list so that the time to include the memory reference control codes into the

general output control codes would be reduced.

95

4) The current version of DIADES takes each predicate as an input signal for the

control unit. The hardware to evaluate the predicates is implemented in data path

except those predicates of single logic variables. The behavioral description of the

logic variable predicate a is of the form "if a then ... ". To evaluate this a, it can be

directly connected to the control unit. If the predicates are the set of instructions

for a microprocessor, the instructions are first encoded so that each predicate is a

sequence of binary codes. The description of this kind of predicate can be of the

form as "if (and (IR [0 % 0])(not (IR [1 % 1])) ...) then ... ". Here IR is assumed

to be the register to store those instruction codes. when specified in this way, the

predicate is of a Boolean expression form. If each bit of the IR is supposed to be

directly connected to the control unit, the approach introduced in 3.5 can be used,

which is the cf-graph modification to eliminate the hardware implementation of

the Boolean expression form predicates. The future work is to make the

specification of the predicates more compact. For example, the specification for

the above predicate is expected to be of the form as "if (equal IR (... 01)) then ... ".

The algorithm and the programs for optimal encoding instructions should be also

developed.

5) The interface to the high level simulation tools should be implemented to verify

the design results at high level.

6) More examples are needed to prove that the entire methodology presented in this

thesis is practical, and to modify and improve this methodology, if necessary.

[l]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

[Bray 88] Brayton, R., Camposano, R., De Micheli, G., Otten, R., and J. van
Eijndhoven, "The Yorktown Silicon Compiler System", in Silicon Compilation,
D. Gajski (ed.), Addison Wesley, 1988.

[DeMi 83] De Micheli, G., and A. Sangiovanni-Vincentelli, "Computer-Aided
Synthesis of PLA-Based Finite State Machine", Proc. IEEE ICCAD'83, pp. 154-
156. Santa Clara, California, Sept. 1983.

[DeMi 83a] De Micheli, G., Brayton, R., and A. Sangiovanni-Vincentelli, "Kiss
A Program for Optimal State Assignment of Finite State Machine", Proc. IEEE
ICCAD' 83, pp. 209-211, Santa Clara, California, Sept. 1983.

[Hell 88] Helliwell, M., and M. Perkowski, "A Fast Algorithm to Minimize
Multi-Output Mixed-Polarity Generalized Reed-Muller Forms", Proc. DAC' 88.

[Koha 82] Kohavi, Z., "Switching and Finite Automata Theory", McGraw-Hill,
New York, 1978.

[Kowa 85] Kowalski, T. J., Geiger, D. J., Wolf, W. H., and W. Fichtner, "The
VLSI Design Automation Assistant From Algorithms to Silicon", IEEE Design
and Test, Aug. 1985.

[Lee 84] Lee, E.B., and M. Perkowski, "Concurrent Minimization and State
Assignment of Finite State Machines", Proc. of the 1984 Intern. Conf on Sys­
tems, Man and Cybernetics, IEEE, Halifax, Nova Scotia, Canada, 1984.

[Meye 84] Meyer, M. J., Agrawal, P., and R. G. Pfister, "A VLSI FSM Design
System", Proc. of 21st DAC, pp. 434-440, Albuquerque, New Maxico, 1984.

[Newt 86] Newton, A. R., and L. Sangiovanni-Vincentelli, "Computer-Aidded
Design for VLSI Circuits", IEEE Computer, Apr. 1986.

[Nguy 87] Nguyen, L.B., Perkowski, M.A., and N.B. Goldstein, "PALMINI -
Fast Boolean Minimizer for Personal Computers", Proc. of the 24th Design Auto­
mation Conference, Miami, 1987.

[Wu 89] Wu, Pan, M.A. Perkowski, "KUAI-EXACT: A new approach for multi­
valued logic minimization in VLSI synthesis", accepted by ISCAS '89.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

97

[Pang 87] Pangrle, B. M., and D. Gajski, "Design tools for Intelligent Silicon
Compilation", IEEE Trans. Computer-Aided Design, Vol. CAD-6, No. 6, Nov.
1987.

[Perk 76] Perkowski, M, "ADL - source language of the system for automatic
design", in R. Marczyn'ski (ed.) Organization of digital computers and micropro­
gramming, Polish Scientific Publishers (PWN), I,tddi 1976. Vol. 1, pp. 167-180.

[Perk 77] Perkowski, M, "A Method of Validation of Parallel Programs in the
System for Automatic Design of Block-Oriented Digital Systems", Proc. 2nd
IFAC Symposium on Discrete Systems, Dresden, GDR, 14-19 March, 1977, Vol.
2, pp.71-88.

[Perk 79] Perkowski, M, "Automatischer Entwurf von MOS-LSI-digitalen Schal­
tungen in System DIADES", Messen, Steuern, Regeln, Vol. 6., 1979, pp. 346-350
(in German).

[Perk 82] Perkowski, M., "Digital Devices Design by Problem-Solving Transfor­
mations", Journal on Computers and Artificial Intelligence, Vol. 1, No. 4., 1982,
pp. 343-365.

[Perk 85] Perkowski, M., and N. Nguyen, "Minimization of Finite State Machines
in SuperPeg", Proc. of the Midwest Symposium on Circuits and Systems, Luis­
ville, Kentucky, 22 - 24 August 1985.

[Perk 88] M. Perkowski, J.E. Brown: "An Unified Approach to Designs Imple­
mented with Multiplexers and to the Decomposition of Boolean Functions",
Proceedings of 1988 ASEE National Conference, Portland, Oregon, June 19-23,
1988.

[Perk 89a] Perkowski, M., "Parallel Programs in ADL and Their Semantics",
Diades Research Group Report, PSU. 1989.

[Perk 89b] Perkowski, M., "FASS - An Optimal State Assignment Program",
Diades Research Group Report, PSU, 1989.

[Rude 85] Rudell, R. L., and A. Sangiovanni-Vincetelli, "ESPRESSO-MY Algo­
rithms for Multiple-level Logic minimization," Proc. of 13th DAC, pp. 230-233,
Portland, Oregon, May 1985.

[Sauc 87] Saucier, G., Crastes de Paulet, M., and P. Socard, "ASYL: A Rule­
Based System for Controller Synthesis", IEEE Trans. Computer-Aided Design,
Vol. CAD-6, No. 6, Nov. 1987.

[Sout 83] Southard, J. R., "MacPitts: An Approach to Silicon Compilation", IEEE
Computer, 1983.

98

[24] [Tsen 86] Tseng, C. J., Prbhu, A. M., Li, C., Memood, Z., and M. M. Tong, "A
Versatile Finite State Machine Synthesizer", Proc. IEEE ICCAD' 86, pp. 206-209,
1986.

[25] [Walt 85] Walter S. Scott, Robert N. Mayo, Gordon Hamachi, and John K.
Ousterhout, editors, "1986 VLSI Tools: Still More Works by the Original
Artists", Report No. UCBICSD/861272, EECS, University of California,
December 1985.

[26] [Yang 89] Yang, L., Perkowski, M., and D. Smith, "Design and Optimization of
Microprogrammed Control Units in Diades", Diades Research Group Report,
PSU, 1989.

[27] [Zhao 89] Zhao, W., "Two Dimensional Minimization of Finite State Machines",
Master Thesis, Department of Electrical Engineering, Portland State University,
1989.

APPENDIX A

DESIGN DATA OF EIGHT-INSTRUCTION CPU

1) ADL program for eight-instruction CPU :

adl
graph
subgraph
(((adl c 8-inst-cpu

((clock (1000)))
(intern (read (d))(write (d))(pc (p kl 8))(AR (p kl 8))(IR (p kl 8))

((starti~R (p kl 8))(AC (p kl 8))~~~~m ~. ~])(~ ~1_8~~~ (p kl 8)))~

(AR:=pc)
(DR := (mem [AR]))
(sim (pc :=(pc+ 1))

(IR:= DR)) r- ;load
I (cond ((and (not (DR [2 % 2])) V (not (DR [1 % 1]))

(not (DR [0 % 0])))
(AR:=DR)
(DR:= (mem [AR]))
(AC:= DR))

< ;store
\ ((and (not (DR [2 % 2]))
~ (not (DR [1 % 1]))

(DR [0 % 0]))
(AR :=DR)
(DR :=AC)
((mem [AR]) :=DR))

<~·;add
\ ((and (not (DR [2 % 2]))
\J (DR [1 % 1])

(not (DR [0 % 0])))
(AR:=DR)
(DR := (mem [AR]))
(AC:= (AC+ DR)))
;and

\((and (not (DR [2 % 2]))
\ (DR [1%1])

(DR [0 % 0]))
(AR :=DR)
(DR := (mem [AR]))
(AC:= (and AC DR)))

end

;jump
((and (DR [2 % 2])

(not (DR [1 % 1]))
(not (DR [0 % 0])))

(pc:= DR))
;jumpz
((and (DR [2 % 2])

(not (DR [1 % 1]))
(DR [0 % 0]))

(if (AC= 0) then (pc:= DR)))
;comp
((and (DR [2 % 2])

(DR [1%1])
(not (DR [0 % 0])))

(AC:= (not AC)))
;rshift
((and (DR [2 % 2])

(DR [1%1])
(DR [0 % 0]))

(sirn
((AC [0 % 6]) :=(AC [1 % 7]))
((AC [7 % 7]) :=(AC [0 % 0])))))

(stopadl)
)))

2) The cf-graph description of eight-instruction CPU :

a)List of arrows:
(setq *coplisset* '

((1
((x 31 34)
(x 29 34)
((not 26) 26 34)
(x 27 34)
(x 24 34)
(x 22 34)
(x 18 34)
(x 14 34)
(x 10 34)
(30 7 31)
(28 7 29)
(2626 27)
(25 7 26)
(23 7 24)
(x 21 22)
(x 20 21)
(19 7 20)
(x 17 18)
(x 16 17)
(15 7 16)
(x 13 14)
(x 12 13)

100

(11 7 12)
(x 9 10)
(x 8 9)
(7 7 8)
(x4 7)
(x 3 4)
(x2 3)
(x 1 2)))))

b) List of node properties :
(setq *nolisset* '

((1
((stopadl 34 nil)
(3131 nil)
(29 29 nil)
(24 27 nil)
(cond 26 nil)
(24 24 nil)
(22 22 nil)
(3 21 nil)
(8 20 nil)
(18 18 nil)
(3 17 nil)
(8 16 nil)
(14 14 nil)
(13 13 nil)
(8 12 nil)

. (1010 nil)
(3 9 nil)
(8 8 nil)
(cond 7 nil)
(44nil)
(3 3 nil)
(22 nil)
(start 1 nil)))))

c) List of ~ignments :
(setq *nalisset* '

((1
((31 (32 33))
(33 (:= (AC m 7 % 7 IJD (AC m 0 % 0 l]I)))
(32 (:=(AC m 0 % 61]1) (AC m 1 % 7 l]I)))
(29 (:=AC (not AC)))
(24 (:=pc DR))
(22 (:= AC (and AC DR)))
(18 (:=AC (plus AC DR)))
(14 (:= (mem l[I AR l]I) DR))
(13 (:=DR AC))
(10 (:=AC DR))
(8 (:=AR DR))
(4 (5 6))
(6 (:=IR DR))
(5 (:=pc (plus pc 1)))

101

(3 (:=DR (mem 1(1AR1]1)))
(2 (:=AR pc))))))

d) List of predicates :
(setq *plisset* '

((1
((30 (and (DR l[I 2 % 21]1) (DR 1[11 % 1 l]I) (DR 1(1 0 % 0 l]I)))

102

(28 (and (DR m 2 % 2 DD (DR m 1 % 1 llD (not (DR m 0 % 0
l]I))))

(26 (equal AC 0))
(25 (and (DR l[I 2 % 2 Ill) (not (DR l[I 1 % 1 Ill)) (DR l[I 0 % 0

llD))
(23 (and (DR 1(1 2 % 2 Ill) (not (DR 1[11 % 1 l]I)) (not (DR l[I 0 %

o llD)))
(19 (and (not (DR l[I 2 % 2 IJI)) (DR l[I 1 % 1 l]I) (DR l[I 0 % 0

l]I)))
(15 (and (not (DR 1[12 % 2 l]I)) (DR l[I 1 % 1 IJD (not (DR l[I 0 %

o I]())))
(11 (and (not (DR l[I 2 % 21]1)) (not (DR l[I 1 % 1 l]I)) (DR l[I 0 %

0 Ill)))
(7 (and (not (DR m 2 % 21]1)) (not (DR m 1 % 1 IJD)

(not (DR l[I 0 % 0 IJI))))))))

e) List of node groups :
(setq *anlisset* '

((1
((stopadl (34))
(31 (31))
(29 (29))
(24 (24 27))
(cond (7 26))
(22 (22))
(3 (3 9 17 21))
(8 (8 12 16 20))
(18 (18))
(14 (14))
(13 (13))
(10 (10))
(4 (4))
(2 (2))
(start (1))))))

f) List of memory variables :
(setq *lzmset* '

((1 ((AC l[I 7 % 7 llD (AC l[I 0 % 6 Ill) (mem l[I AR Ill) AC IR pc
DRAR))))

g) List of the systems under design :
(setq *symlis* '

((c 1)))

3) Kiss format and state table format description of FSM :

----0 stl stl 00000000000000
----- st13 st5 00000000100000
----- st12 st13 00010000000010
-000- st4 st12 10000000000000
1101- st4 st5 00000000010000
----- stl 1 st5 00000001000000
---- stlO stl 1 00010000000010
-010- st4 stlO 10000000000000
0101- st4 stl 00000000000000
-111- st4 st5 00000000001100
----- st9 st5 00000000000001
----- st8 st9 00100000000000
-001- st4 st8 10000000000000
----- st7 st5 00000001100000
----- st6 st7 00010000000010
-011- st4 st6 10000000000000
-100- st4 st5 00000000010000
----- st5 stl 00000000000000
-110- st4 st5 00000010000000
----- st3 st4 00001100000000
----- st2 st3 00010000000010
----1 st 1 st2 01000000000000

1J9-1J* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* 2J13
-lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* 3J12-1J*
-lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * 4Jll -lJ *
-lJ* 12J7 5J810J7 1J9 5J3 8J7 6J7 5J8 5J10-1J* -lJ*
-lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * 1J9 -lJ .*
-lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* 7J12-1J*
-lJ* -lJ*-lJ*-lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* 5J6-1J*
-lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * 9J 5 -lJ *
-lJ*-lJ* -lJ*-lJ* -IJ* -lJ* -lJ* -lJ* -IJ* -lJ* 5J4-IJ*
-lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * -lJ * 11J12 -IJ *
-lJ* -IJ* -lJ* -lJ* -lJ* -lJ* -IJ* -lJ* -lJ* -lJ* 5J2-IJ*
-lJ * -lJ * -lJ * -lJ * -lJ * -IJ * -IJ * -lJ * -lJ * -lJ * 13J12 -IJ *
-lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -lJ* -IJ* -IJ* -lJ* 5J8-IJ*

.ip
----0
-000-
1101-
-010-
0101-
-111-
-001-
-011-
-100-
-110-

----1
.op
00000000100000(1)
00000001000000(2)

103

00000000001100 (3)
00000000000001 (4)
00100000000000 (5)
00000001100000 (6)
10000000000000 (7)
00000000010000 (8)
00000000000000 (9)
00000010000000 (10)
00001100000000 (11)
00010000000010 (12)
01000000000000(13)
.dr
000000000001
001111111100
010111111100
011011111100
011101111100
011110111100
011111011100
011111101100
011111110100
011111111000
000000000000
100000000000
end

4) Input and output implications of FSM

input-implication:

104

((equal AC 0) (DR l[I 2 % 2 IJD (DR 1[11 % 1 IJD (DR l[I 0 % 0 IJD
(start))

output-implication:
((2 ((1 0) (0 1)) ((:=AR DR)(:= AR pc)))
(2 ((1 0) (0 1)) ((:=DR AC) (:=DR (mem l[I AR l]I))))
(:=pc (plus pc 1))
(:=IRDR)
(3 ((1 0 0) (0 1 1) (0 1 0) (0 0 1))

((:=AC (not AC)) (:=AC (and AC DR)) (:= AC (plus AC DR))
(:=AC DR)))
(:=pc DR)
(:=(AC l[I 0 % 61]1) (AC l[I 1 % 7 l]I))
(:=(AC 1[17 % 7 l]I) (AC l[I 0 % 0 l]I))
MR
MW)

5) Truth-table description for the combinational part of FSM

a) Encoded states :
stl 0 0 0 0
st2 0 0 0 1
st3 100 1
st4 0 100

st5 0 0 1 0
st6 1 1 1 0
st7 101 0
st8 1 100
st9 100 0
stlO 0 101
stll 0 11 1
st12 0 11 0
st13 0 0 1 1

b) Unminimized truth-table :
.i 9
.0 18

----1 0000 0001 01000000000000
----0 0000 0000 00000000000000
---- 0001 1001 00010000000010
----- 1001 0100 00001100000000
-110- 0100 0010 00000010000000
-100- 0100 0010 00000000010000
-011- 0100 1110 10000000000000
-001- 0100 1100 10000000000000
-111- 0100 0010 00000000001100
0101- 0100 0000 00000000000000
-010- 0100 0101 10000000000000
1101- 0100 0010 00000000010000
-000- 0100 0110 10000000000000
--- 0010. 0000 00000000000000
-- 1110 1010 00010000000010
---- 1010 0010 00000001100000
---- 1100 1000 00100000000000
--- 1000 0010 00000000000001
---- 0101 0111 00010000000010
--- 0111 0010 00000001000000
--- 0110 0011 00010000000010
---- 0011 0010 00000000100000
.e

c) Minimized truth-table:
.i 9
.018
.p 19
-111-0100 000000000000001100
110--0100 001000000000010000
-010-0100 010110000000000000
-110-0100 001000000010000000
-100-0100 001000000000010000
-000-0100 011010000000000000
-0-1-0100 110010000000000000
---10000 000101000000000000
---1001 010000001100000000
---0011 001000000000100000
---1010 001000000001100000

105

'

106

--11-01-- 001000000000000000
-----1100 100000100000000000
-----1000 001000000000000001
-----0111 001000000001000000
-----0001 100100010000000010
-----1110 101000010000000010
-----0110 001100010000000010
-----0101 011100010000000010
.e

6) The result of the conversion from truth-table description to EQN description

Q 1 = IN2 & IN3 & IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q2 = INl & IN2 & ! IN3 & ! IN6 & IN7 & ! IN8 & ! IN9
Q3 = ! IN2 & IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q4 = IN2 & IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q5 = IN2 & ! IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q6 = ! IN2 & ! IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q7 = ! IN2 & IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q8 = IN5 & ! IN6 & ! IN7 & ! IN8 & ! IN9
Q9 = IN6 & ! IN7 & ! IN8 & IN9
QlO = ! IN6 & ! IN7 & IN8 & IN9
Q 11 = IN6 & ! IN7 & IN8 & ! IN9
Q12= IN6 &IN7 & ! IN8 & ! IN9
Q13 = IN6 & ! IN7 & ! IN8 & ! IN9
Q14 = ! IN6 &IN7 &IN8 & IN9
Q15 = ! IN6 & ! IN7 & ! IN8 & IN9
Q16 = IN6 &IN7 & IN8 & ! IN9
Q17 = ! IN6 &IN7 & IN8 & ! IN9
Q18 = ! IN6 & IN7 & ! IN8 & IN9
OUTl = Q7 I Q12 I Q15 I Q16
OUT2 = Q3 I Q6 I Q7 I Q9 I Q18
OUT3 = Q2 I Q4 I Q5 I Q6 I QlO I Qll

I & IN3 & IN4 & ! IN6 & IN7
I Q13 I Q14 I Q16 I Q17 I Q18

OUT4 = Q3 I Q8 I Q15 I Q17 I Q18
OUT5 = Q3 I Q6 I Q7
OUT6=Q8
OUT7 =Q12
OUT8 = Q15 I Q16 I Q17 I Q18
OUT9=Q9
OUT10=Q9
OUTll =Q4
OUT12=Ql1 I Q14
OUT13 = QlO I Ql 1
OUT14 = Q2 I Q5
OUT15 =Ql
OUT16 = Ql
OUT17 = Ql5 I Q16 I Q17 I Q18
OUT18 =Ql3

APPENDIXB

DESIGN DATA OF SIGNAL DELAY PROCESSOR

1) The description of signal delay device in ADL:

graph
subgraph

(((adl c opimp
((clock(lOOO)))
(input(a(d))(t(p kl 8)))
(intem(l(p kl 8))(1t(p kl 8))(f(p kl 8)))
(output(b(d))))

((start) c
10 (sim (1 := 0) (lt := t)(f := 0))

(if(! a)then(go 10))

end

(fork
(15 (f := (f + 1))
(if (!(f = 100)) then (go 15)))

(12(lt := lt)
. (lt := (lt - 1))
(if(!(lt = O))then(go 12)))

(11 (1 := (1 + 1))
(if(and a (!(lt = 0))) then(go 11))
(drop))
dand)
13(if a then (b = l)(go 13))
14(sim

(1 := (1- 1))
(b == 1))

(if(l = O)then(go lO)else(go 14))
)))

2) The cf-graph description of signal delay device:

a) List of arrows :
\./ (setq *coplisset* ' ((1

(((not 22) 22 19)
(22 22 2)
(x 19 22)
((not 6) 17 19)
(x 18 17)
(6 17 18)
(e 16 17)
(12 12 16)

(9 9 16)
((not 14) 14 15)
(14 14 13)
(x 13 14)
(e 7 13)
((not 12) 12 10)
(x 11 12)
(x 10 11)
(e 7 10)
((not 9) 9 8)
(x 8 9)
(e 7 8)
(6 67)
((not 6) 6 2)
(x 2 6)
(x 1 2)))))

b) List of node properties :
,j (setq *nolisset* ' ((1

((cond 22 nil)
(19 19 nil)
(18 18 nil)
(cond 17 nil)
(eland 16 nil)
(diop 15 nil)
(cond 14 nil)
(13 13 nil)
(cond 12 nil)
(1111 nil)
(10 w nil)
(cond 9 nil)
(8Jlpil)
(forlc 7 nil)
(cond 6 nil)
(2-2 nil)
(stiit 1 nil)))))

c) List of Assignments :
(setq *nalisset* ' ((1
((19 (18 20))
(20 (:= 1 (plus 1 (minus 1))))
(18 (= b 1))
(13 (:= 1 (plus 11)))
(11 (:= 1t (plus 1t (minus 1))))
(10 (:= lt lt))
(8 (:= f (plus f 1)))
(2 {~4:5))

--15-(:= f 0))
(4 (:= 1t t))
(3 (:= 1 0))))))

d)List of predicates :
(setq *plisset* ' ((1

108

((22 (equal I 0))
(14 (and a (not (equal It 0))))
(12 (equal It 0))
(9(equalf100))
(6 a)))))

e) List of node groups :
(setq *anlisset* ' ((1

((cond (6 9 12 14 17 22))
(19 (19))
(18 (18))
(dand (16))
(drop (15))
(13 (13))
(11 (11))
(10 (10))
(8 (8))
(fork (7))
(2 (2))
(start (1))))))

f) List of memory variables :
(setq *lzmset* ' ((1 (bf lt 1))))

g) List of systems under design :
(setq *symlis* ' ((c 1)))

3) Compact parallel cf-graph description:

a) Transition description list :
((1 (11))
(9 (7 2))
(9 (9 3))
(7 (7 4))
(7 (2 5))
(8 (9 6))
(8 (8 7))
(6 (9 8))
(6 (5 9))
(3 (3 10))
(8 (7 11))
(2 (8 12))
(6 (7 13))
(5 (6 14))
(2 (5 15))
(3 (4 16))
(2 (3 17))
(2 (2 18))
(1 (2 19)))

b) Relation description list :
((1 (1) ((not (start))))

109

(2 (18 20) ((not 6)))
(3 (18) (6))
(4 (18 20) ((not 22)))
(5 (3 4 5) (22))
(6 (18) (6 9))
(7 (8) ((not 9)))
(8 (18) (6 12))
(9 (10) ((not 12)))
(10 (13) (14))
(11 (18 20) ((not 6) 9))
(12 (8) (6))
(13 (18 20) ((not 6) 12))
(14 (11) nil)
(15 (10) (6))
(16 (drop) ((not 14)))
(17 (13) (6))
(18 (3 4 5) ((not 6)))
(19 (3 4 5) ((start))))

c) Passing FORK transitions list:
((2 8) (2 5) (2 3))

d) Passing DAND transitions list :
((8 9) (6 9) (8 7) (6 7))

4) Kiss format and state table descriptions of FSM control unit :

----0 stl stl 0000000
--~-1 stl st2 1110000
---1- st2 st3 0001010
----0- st2 st2 1110000
-1-11- st3 st4 0000110
-0-11- st3 st5 0000100
-1-0-- st3 st6 0001110
-0-0-- st3 st7 0001100
-0-10- st3 st5 0000100
--111- st7 st8 0000000
--011- st7 st9 0000000
--101- st7 stlO 0001000
--00-- st7stl1 0001000
--100- st7 stl 0 0001000
--010- st7 st9 0000000
--110- st7 st12 0000001
---11- stll st5 0000100
---0-- stll st7 0001100
---10- stll st5 0000100
---11- stlO st8 0000000
---0-- stlO stlO 0001000
---10- stlO st12 0000001
------ st9 st5 0000100
-0111- st6 st8 0000000
-1011- st6 st13 0000010
-0011- st6 st9 0000000

110

-0101- st6 stlO 0001000
-100-- st6 stl 4 0001010
-000-- st6 stl 1 0001000
-0100- st6 stlO 0001000
-0010- st6 st9 0000000
-0110- st6 st12 0000001
-1-11- stl4 st4 0000110
-0-11- st14 st5 0000100
-1-0-- st14 st6 0001110
-0-0-- st14 st7 0001100
-0-10- st 14 st5 0000100
-1---- st13 st4 0000110
-0---- st13 st5 0000100
--1-1- st5 st8 0000000
--0--- st5 st9 0000000
--1-0- st5 st12 0000001
-01-1- st4 st8 0000000
-10--- st4 st13 0000010
-00--- st4 st9 0000000
-01-0- st4 st12 0000001
0----- st12 st12 0000001
1---- stl2 st2 1110000
----0- st8 st12 0000001
----1- st8 st8 0000000

.ip
-----0
-----1
--111-
--011-
--101-
--00-
--100-
--010-
--110-
---11-
---0--
---10-

-0111-
-1011-
-0011-
-0101-
-100--
-000--
-0100-
-0010-
-0110-
-1-11-
-0-11-
-1-0--
-0-0--
-0-10-

111

-1---
-0----
--1-1-
--0---
--1-0-
-01-1-
-10---
-00---
-01-0-
0-----
1-----
---0-
---1-
0001010
0001000
0001110
0001100
0000110
0000100
0000010
1110000
0000001
0000000
.dr
0100000000000000000000000000000000000000
1000000000000000000000000000000000000000
0001111110110011111111001110001101110010
0010111110110100111111001110010110010010
0011011111010111011111110010001101110010
0011101111010111100111110010010110010000
0011110111010111111011110010011011100001
0011111011100111111101111100010110010001
0011111101100111111110111100011011100001
0000111110110000111111001110000100010010
0011000111010111000011110010000000000000
0011111001100111111100111100010010000001
000000000000000000000000000000000000000
0001111110110011111111101111001101110010
0010111110110101111111011110110110110010
0010111110110110111111101111010111010010
0011011111010111011111111011001101110010
0011101111010111101111110110110110110000
0011101111010111110111111011010111010000
0011110111010111111011111011011011100001
0011111011100111111101111101010111010001
0011111101100111111110111101011011100001
0000111110110101111111011110100110110010
0000111110110010111111101111000101010010
0011000111010111101111110110100010110000
0011000111010111010011111011000001000000
0011111001100111111100111101010011000001
0000000000000101101111010110100010110000
0000000000000010010000101001000001000000

112

0001011110010011011111000010001101110010
0010101010000100100101000000010110010000
0011110101000111111010110000011011100001
0001011110010011011111101011001101110010
0010101010000101101111010110110110110000
0010101010000110110101101001010111010000
0011110101000111111010111001011011100001
0000000000000000000000000000000000000100
0000000000000000000000000000000000001000
0011100001000111100000110000010010000001
0000001110010000000111000010000100010010
end

5) Minimized Kiss format format description :

-----0 st 1 st 1 0000000
-----1st 1st 2 1110000
----0- st 2 st 2 1110000
----1- st 2 stl3 0001010
-01-1- st 3 st 7 0000000
-10--- st 3 st12 0000010
-00--- st 3 st 8 0000000
-01-0- st 3 stll 0000001
--1-1- st 4 st 7 0000000
--0-- st 4 st 8 0000000
--1-0- st 4 stll 0000001
-0111- st 5 st 7 0000000
-1011- st 5 st12 0000010

· -0011- st 5 st 8 0000000
-0101- st 5 st 9 0001000
-100-- st 5 st13 0001010
-000-- st 5 stlO 0001000
-0100- st 5 st 9 0001000
-0010- st 5 st 8 0000000
-0110- st 5 stll 0000001
--111- st 6 st 7 0000000
--011- st 6 st 8 0000000
--101- st 6 st 9 0001000
--00-- st 6 st 10 0001000
--100- st 6 st 9 0001000
--010- st 6 st 8 0000000
--110- st 6 stll 0000001
----0- st 7 stll 0000001
---1- st 7 st 7 0000000
---- st 8 st 4 0000100
---11- st 9 st 7 0000000
---0-- st 9 st 9 0001000
---10- st 9 stll 0000001
---11- stlO st 4 0000100
---0-- stlO st 6 0001100
---10- stlO st 4 0000100
0--- stl 1 stll 0000001
1--- stll st 2 1110000

113

114

-1---- st12 st 3 0000110
-0---- st12 st 4 0000100
-1-11- st13 st 3 0000110
-0-11- st13 st 4 0000100
-1-0-- st13 st 5 0001110
-0-0-- st13 st 6 0001100
-0-10- st13 st 4 0000100

6) Input and output implications

input-implication:
((equal I 0) (equal f 10) (equal It 0) (and a (not (equal It 0))) a

(start))

output-implication:
((:=I 0)
(:=It t)
(:= e 0)
(:= f 0)
(:=I (plus I 1))
(:=It (plus It (minus 1)))
(:= e (plus e 1))
(:= f (plus f 1))
(:=I (plus I (minus 1))))

7) Encoded states :

stl. 0000
st2 0001
st3 1101
st4 0 10 0
st5 1000
st6 1 1 1 0
st7 1100
st8 0 11 0
st9 1010
stlO 0 0 1 0
stll 100 1
st12 11 11
st13 0 1 0 1

8) Truth-table description for the combinational part of FSM :

.i 10

.0 11

-----1 0000 0001 1110000
-----0 0000 0000 0000000
----1- 0001 0101 0001010
----0- 0001 0001 1110000
-01-0- 1101 1001 0000001
-00-- 110101100000000
-10--- 1101 1111 0000010

-01-1- 110 l 1100 0000000
--1-0- 0100 1001 0000001
--0--- 0 l 00 0110 0000000
--1-1- 0100 1100 0000000
-0110- 1000 1001 0000001
-0010- 1000 0110 0000000
-0100- 1000 1010 0001000
-000-- 1000 0010 0001000
-100-- 1000 0101 0001010
-0101- 1000 1010 0001000
-0011- 1000 0110 0000000
-1011- 1000 1111 0000010
-0111- 1000 1100 0000000
--110- 1110 1001 0000001
--010- 1110 0110 0000000
--100- 1110 1010 0001000
--00-- 1110 0010 0001000
--101- 1110 1010 0001000
--011- 1110 0110 0000000
--111- 1110 1100 0000000
---1- 1100 1100 0000000
---0- 1100 1001 0000001
----- 0110 0100 0000100
---10- 1010 1001 0000001
---0-- IO 10 10 IO 0001000
---11- IOlO 1100 0000000
---10- 0010 0100 0000100
---0-- 0010 11 IO 0001100
---11- 0010 0100 0000100
1---- 1001 0001 1110000
0--- 1001 1001 0000001
-0--- 111101000000100
-1--- 1111 lIOl 0000110
-0-10- 0101 0100 0000100
-0-0-- 010111 IO 0001100
-1-0-- 01011000 0001110
-0-11- 01010100 0000100
-1-11- 01011101 0000110
.e

9) Optimiz.ed truth-table description for the combinational part of FSM :

.i 10

.0 11

.p 36
-001--1000 01100000000
-0-11-1--0 01000000000
-1011- IOOO 111 IOOOOO IO
-0110-1--0 00010000001
-0-0--0101 10100001000
-100--1000 0 IO IOOO IO IO
-1-0--0101 10000001110
---11--1-0 01000000000

115

-1-11-0101 11010000110
--110-11-0 00010000001
--01--1110 01100000000
---11-1010 11000000000
----0-0001 00011110000
-01-1-110- 11000000000
-----10000 00011110000
-0-0--10-0 00100001000
---10-1010 10010000001
-0---0101 01000000100
-01-0-110- 10010000001
1----1001 00011110000
--0--0100 01100000000
--0---1101 01100000000
-10---11-110010000010
----1-0001 01010001010
-1---1111 10010000010
0-----1001 10010000001
---0--1-10 00100001000
--1-1--100 11000000000
--1-0--100 10010000001
--1--1-10 10000000000
-01---1--0 10000000000
---0---010 10100001000
-----1111 01000000100
---1-1100 11000000000
--0-1100 10010000001
-----0-10 01000000100
.e

10) The result of the conversion from truth-table format to EQN format :

Ql = IN2 & IN3 & IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q2 = INl & IN2 & ! IN3 & ! IN6 & IN7 & ! IN8 & ! IN9
Q3 = ! IN2 & IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q4 = IN2 & IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q5 = IN2 & ! IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q6 = ! IN2 & ! IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q7 = ! IN2 & IN4 & ! IN6 & IN7 & ! IN8 & ! IN9
Q8=IN5 & ! IN6& ! IN7 & ! IN8 & ! IN9
Q9=IN6 & ! IN7 & ! IN8 &IN9
QlO = ! IN6 & ! IN7 & IN8 & IN9
Ql 1 = IN6 & ! IN7 & IN8 & ! IN9
Q12 = IN6 & IN7 & ! IN8 & ! IN9
Q13 = IN6 & ! IN7 & ! IN8 & ! IN9
Q14 = ! IN6 & IN7 & IN8 & IN9
Ql5 = ! IN6 & ! IN7 & ! IN8 & IN9
Q16= IN6 &IN7 & IN8 & ! IN9
Q17 = ! IN6 & IN7 & IN8 & ! IN9
Q18 = ! IN6 & IN7 & ! IN8 & IN9
OUTl = Q7 I Q12 I Q15 I Q16
OUT2 = Q3 I Q6 I Q7 I Q9 I Q 18
OUT3 = Q2 I Q4 I Q5 I Q6 I QlO I Qll

116

I & IN3 & IN4 & ! IN6 & IN7
I Ql3 I Q14 I Q16 I Q17 I Q18

OUT4 = Q3 I Q8 I Q15 I Ql 7 I Q18
OUTS =Q3 I Q6 I Q7
OUT6=Q8
OUTI =Q12
OUT8 = Q15 I Q16 I Q17 I Q18
OUT9=Q9
OUT10=Q9
OUTll = Q4
OUT12 = Qll I Q14
OUT13 = QlO I Ql 1
OUT14 = Q2 I Q5
OUT15 =Ql
OUT16 =Ql
OUT17 = Q15 I Q16 I Q17 I Q18
OUT18 =Q13

117

	A finite state machine synthesizer
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1508792629.pdf.HIGkS

