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Mechanism and catalytic strategy of the prokaryotic specific 
GTP cyclohydrolase IB

Naduni Paranagama1,#, Shilah A. Bonnett3,#, Jonathan Alvarez2,#, Amit Luthra1, Boguslaw 
Stec1, Andrew Gustafson3, Dirk Iwata-Reuyl3,*, and Manal A. Swairjo1,*

1Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, 
San Diego CA 92182

2The Graduate College of Biomedical Sciences, Western University of Health Sciences, 309 E. 
Second Street, Pomona CA 91766

3Department of Chemistry, PO Box 751, Portland State University, Portland OR 97207

Abstract

GTP cyclohydrolase I catalyzes the first step in folic acid biosynthesis in bacteria and plants, 

biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine modified tRNA 

nucleosides in bacteria and archaea. The type IB GTP cyclohydrolase (GCYH-IB) is a 

prokaryotic-specific enzyme found in a number of pathogens. GCYH-IB is structurally distinct 

from the canonical type IA GTP cyclohydrolase involved in biopterin biosynthesis in humans and 

animals, and thus is of interest as a potential antibacterial drug target. We report kinetic and 

inhibition data of Neisseria gonorrhoeae GCYH-IB, and two high-resolution crystal structures of 

the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-

oxo-GTP, and one with a TRIS molecule bound in the active site and mimicking another reaction 

intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP reveals an inverted mode 

of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows 

that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a 

conserved active site Cys149, and this residue is S-nitrosylated in the structures. This is the first 

structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and 

biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-
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nitrosylation maintains enzyme activity, suggesting a potential role of the S-nitrosothiol in 

catalysis.

Keywords

Transfer RNA (tRNA); bacterial metabolism; metalloenzyme; 7-deazaguanosine; modified 
nucleoside; Post-Translational Modification (PTM)

Introduction

GTP cyclohydrolase-I (GCYH-I; FolE) is a Zn2+-dependent enzyme that catalyzes the 

conversion of GTP to 7,8-dihydroneopterin triphosphate (H2NTP), the first intermediate in 

the de novo tetrahydrofolate (THF, folate) biosynthesis pathway in bacteria, fungi and plants 

(Fig. 1) [1]. THF is an essential cofactor involved in one carbon transfer reactions in the 

biosynthesis of purines, thymidylate, panthothenate, glycine, serine and methionine in all 

domains of life [1], and formylmethionyl-tRNA in bacteria [2]. GCYH-I also catalyzes the 

first step in the biosynthesis of the 7-deazaguanosine modified tRNA nucleosides queuosine 

and archaeosine in bacteria and archaea [3], the 7-deazapurine natural products in some 

bacteria [4], and the 7-deazaguanosine modified nucleosides recently discovered in the 

genomes of some organisms [5]. GCYH-I is also found in mammals and other higher 

eukaryotes where it catalyzes the first and rate-limiting step of the tetrahydrobiopterin (BH4) 

pathway (Fig. 1) which functions in mammals as a cofactor of aromatic amino acid 

hydroxylases, nitric oxide synthase, and glyceryl ether monooxygenase [6].

GCYH-I has been studied in some detail both biochemically and structurally. It is part of the 

tunneling-fold (T-fold) structural superfamily, a small but catalytically diverse group of 

pterin/purine binding proteins that utilize a common oligomerization of the T-fold domain, 

the core structural component of the superfamily. The T-fold domain is comprised of a 4-

stranded antiparallel β-sheet and two helices, that upon assembly form a β2nαn barrel [7]. 

The functional enzymes are comprised of two barrels that join in a head-to-head fashion, 

forming a tunnel-like center (the origin of the name).

The GCYH-I catalyzed conversion of GTP to H2NTP is a mechanistically complex 

transformation that involves hydrolytic opening of the purine ring at C-8 of GTP to generate 

an N-formyl intermediate, followed by deformylation and subsequent rearrangement and 

cyclization of the ribosyl moiety to generate the pterin system. This mechanistic complexity 

coupled with the biological importance of GCYH-I has made the enzyme the subject of 

interest since its discovery by Burg and Brown 48 years ago [8]. While the outlines for the 

chemical mechanism of the reaction were proposed shortly after the enzyme discovery [9], 

only relatively recently has an understanding of the molecular basis for GCYH-I catalysis 

begun to emerge.

Despite the essential role of GCYH-I as the initiating step in the bacterial folate pathway, its 

role in the biopterin pathway in humans, coupled with the high homology between the E. 
coli and human GCYH-I enzymes, precluded GCYH-I as a viable target for new 

antibacterials. However, a significant number of bacteria possess a second class of GCYH-I 
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enzymes (COG1469) that display virtually no sequence homology to the canonical GCYH-I 

despite exhibiting the high topological homology characteristic of this superfamily. The new 

subfamily of GCYH-I is prokaryotic specific and was named GCYH-IB, while the canonical 

enzymes were renamed GCYH-IA [10]. Notably, GCYH-IB is found in a number of 

pathogens, including the clinically important Staphylococcus and Neisseria where it is 

essential [11, 12].

Crystal structures have been determined for GCYH-IA from Escherichia coli [13], humans 

[14], rat [15], and Thermus thermophilus [16], and for Zn2+- and Mn2+-metallated forms of 

GCYH-IB from Neisseria gonorrhoeae [12]. Remarkably, while both subfamilies catalyze 

the same reaction and belong to the same structural superfamily (T-fold), they share only 2 

residues in common and exhibit major differences in global structure and active site 

architecture [12]. While GCYH-IA is a unimodular, homodecameric, Zn2+-dependent 

enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent 

cations [12], with maximal activity observed with Mn2+. In both enzymes, as in all T-fold 

members, catalysis occurs at the interfaces between the T-fold subunits [12, 17]. However, 

several helical insertions and deletions near the interface render the active sites of the two 

enzymes significantly different. These differences, coupled with the occurrence of the latter 

enzyme in clinically important human pathogens that lack GCYH-IA, and thus depend 

solely on GCYH-IB for folate biosynthesis, have positioned GCYH-IB as a potential new 

antibacterial target in the folate pathway [12, 18]. These differences also led to the proposal 

that the two GCYH-I subfamilies may employ different catalytic strategies [12].

While details of the mechanism have been proposed for the type IA enzyme [14, 16, 19], the 

mechanism of the type IB enzyme has not been explicitly addressed. Here, we present 

kinetic parameters and competitive inhibition data of N. gonnorrhoae GCYH-IB, and 

describe crystal structures of two enzyme-ligand complexes that represent two states of the 

enzyme catalytic cycle: one structure is of the complex with 8-oxo-GTP, an analog of a 

reaction intermediate, and the other structure is of the complex with 

Tris(hydroxymethyl)aminomethane (TRIS), representing another intermediate previously 

postulated for the GCYH-I reaction. Additionally, we provide data on the consequences of 

site-directed mutagenesis of putative catalytic residues implicated from the crystal 

structures. Finally, we present crystallographic and biochemical evidence of specific, 

posttranslational S-nitrosylation of a conserved, catalytic cysteine residue, suggesting a role 

of the S-nitrosothiol in catalysis. The results provide insight into the catalytic strategy of 

GCYH-IB, and offer a starting point for the design of specific inhibitors against GCYH-IB.

Experimental Procedures

General

Reagents, salts and buffers were of the highest quality grade, and were purchased from 

Sigma unless otherwise noted. Millipore ultrapure water (18.2 MΩ) was used for all 

solutions. [8-14C]-GTP was purchased from Moravek. Ultra pure grade 2′-dGTP and GTP 

were from Ameresco or Sigma. 8-oxo-GTP was purchased from Jena Bioscience. 7-deaza-

GTP was purchased from Trilink Biotechnologies. Neopterin and glutathione were 

purchased from Sigma.
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Preparation of wild-type protein

Wild-type N. gonorrhoeae GCYH-IB was overexpressed as an N-terminally His6 tagged 

protein in Bl21(DE3) cells (New England Biolabs Inc.) grown in Luria–Bertani (LB) 

medium with vigorous aeration as described previously [10], and purified by Ni-NTA 

chromatography. The His6 tag was removed by cleavage with factor-Xa (New England 

BioLabs, product number P8010L) according to manufacturer's protocol, followed by 

capture of the affinity tag on Ni-NTA resin. For enzyme used for biochemical assays, the 

His6 tag-free protein was subjected to a final purification step by gel filtration 

chromatography using a Enrich SEC 650 column (Bio-Rad, Hercules, CA) pre-equilibrated 

with TRIS-free buffer containing 100 mM HEPES (pH 7.4), 100 mM KCl, and 1 mM 

dithiothreitol (DTT) or β-mercaptoethanol (BME). For enzyme used for crystallization, all 

purification steps were conducted in buffer containing 50 mM TRIS-acetate (pH 8.0), 100 

mM KCl, 5 mM ZnCl2 and 1 mM BME, and the final gel filtration step was skipped. For all 

preparations, reducing agent (DTT or BME) was kept at a concentration of 1 mM in all 

purification steps, and protein purity was confirmed to be greater than 95% by SDS-PAGE.

Enzyme activity assays

Enzymatic activities were measured using either of three different enzyme assays, the 

standard fluorescence based GTP cyclohydrolase assay that relies on post-reaction oxidation 

of the enzymatic product H2NTP to the fluorescent neopterin [10], a continuous UV-vis 

assay that measures H2NTP directly [10], and a radiochemical assay that uses [8-14C]-GTP

and measures the co-product formic acid (as [14C]-HCO2H) [10]. The fluorescence assay

were performed in 100 mM HEPES (pH 8.0), 100 mM KCl, 0.5 mM MnCl2, 1 mM MgCl2, 

and 0.5 – 5 μM of N. gonorrhoeae GCYH-IB in a total volume of 100 μL. Reactions were 

initiated by the addition of GTP (final concentration 100 μM) and incubated at 37 °C for 

50-60 minutes. Reactions were terminated by addition of 12 μL of a 1% I2, 2% KI solution 

in 1.0 M HCl to oxidize the H2NTP to neopterin. Following a 15-minute incubation at room 

temperature in the dark, excess iodine was quenched with the addition of 6 μL of 2% 

ascorbic acid, and the samples were analyzed by fluorescence spectroscopy using either a 

FluoroMax-3 instrument (Horiba Jobin Yvon Scientific), a PTI Time-Master fluorometer, or 

a Gemini XPS microplate spectrofluorometer (Molecular Devices) at λEx=365 nm. 

Emission spectra were recorded between 400 and 500 nm, and the neopterin peak at 446 nm 

was monitored. Neopterin was quantified using a linear calibration curve of the fluorescence 

signal from a pure neopterin standard.

The UV-vis assays were carried out in 100 mM HEPES (pH 8.0), 100 mM KCl, 0.5 mM 

MnCl2, 1 mM DTT, 0.5 - 5 μM enzyme, and 50 μM GTP in a final volume of 100 μL. The 

reaction was held at 37 °C and monitored over 40 minutes at a wavelength of 330 nm with a 

CARY 100 Bio UV-visible spectrophotometer (Varian). Radiochemical assays were 

performed in 100 mM HEPES (pH 8.0), 100 mM KCl, 0.5 mM MnCl2, 1 mM DTT, 0.5 - 5 

μM enzyme, and 50 μM of [8-14C]GTP (10 μCi/μmol). The reactions were incubated at 

37 °C and 50 μL aliquots were taken at 5, 10, 20, and 40 minutes. Aliquots were 

immediately quenched with 62.5 μL of 0.5 M formic acid, and loaded onto columns packed 

with 100 mg of activated charcoal pre-equilibrated with 0.1 M formic acid (pH 7.0). The 

flowthrough and a 3 mL elution of 0.1 M formic acid (pH 7.0) were collected together in a 
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scintillation vial, combined with Econo-Safe scintillation cocktail (RPI), and counted on a 

LS6000 Series Scintillation Counter (Beckman).

Determination of pH optima

The optimal pH of N. gonorrhoeae GCYH-IB was determined in a 3 component buffer 

system composed of Tris-MES-acetic acid (100-50-50 mM) over a pH range of 4.0-9.0. 

Buffers also contained 100 mM KCl, 0.5 mM MnCl2, 2 mM DTT, 50 μM GTP and 1 μM 

protein in a final volume of 100 μL. After incubating at 37 °C in the dark for 30 min, the 

reactions were terminated and analyzed by fluorescence with a Gemini XPS microplate 

spectrofluorometer (Molecular Devices) as described above.

Metal activation studies

The ability of various metal ions to support catalytic activity was examined by incubating 

the dematellated apoenzyme (2 μM), prepared as described previously [12], in the presence 

of varying concentration (0.1 μM - 4 mM) of metal chlorides (MnCl2, ZnCl2, MgCl2, NiCl2, 

CaCl2, CdCl2, CoCl2, CuCl2, CoCl3, FeCl3) in 100 mM HEPES (pH 8.0) and 100 mM KCl 

for 10 min at 37 oC. Since iron(II) readily oxidizes in the presence of oxygen, all assays 

involving iron were conducted with Fe(SO4)2 under anaerobic conditions with buffers that 

had been degassed and sparged with nitrogen prior to use. Assays were initiated upon the 

addition of GTP to a final concentration of 0.1 mM and the reactions were allowed to 

proceed at 37 °C for 30 min in the dark. Reactions were terminated and analyzed by 

fluorescence with either a PTI Time-Master fluorometer or a Gemini XPS microplate 

spectrofluorometer (Molecular Devices) as described above.

Steady state kinetic analysis of wild-type N. gonorrhoeae GCYH-IB

Steady-state kinetic measurements were conducted under initial velocity conditions with 

varying concentrations of GTP (3-50 μM) as substrate. Assays were carried out in 100 mM 

HEPES (pH 8.0), 100 mM KCl, 0.5 mM MnCl2, 1 mM DTT and 0.5 μM of protein in a final 

volume of 100 μL at 37 oC. Reactions were terminated at various time points and analyzed 

by fluorescence with either a PTI Time-Master fluorometer or a Gemini XPS microplate 

spectrofluorometer (Molecular Devices) as described above. Kinetic parameters were 

calculated from the average of minimally 4 triplicates with the Michaelis-Menten equation 

using the software Kaleidagraph 4.0 (Synergy Software, Reading, PA).

Inhibition analysis was conducted by assessing enzyme activity in the presence of various 

fixed concentrations of 2′-deoxy-GTP (0, 50, 100, 200 μM), 7-deaza-GTP (0, 15, 30, 60 

μM), or 8-oxo-GTP (0.1, 0.25, 0.5 μM). Reactions were carried out as described above in the 

presence of 1 mM DTT, 0.5 μM protein, 0.5 mM MnCl2, variable GTP concentration (3-50 

μM), and analyzed by fluorescence. The data (average of minimally 4 triplicates) were fitted 

to the equation for competitive inhibition (eq. 1)

(1)
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where ν is the initial rate of reaction, S is the varied substrate concentration, I is the inhibitor 

concentration, Ki is the inhibition constant, and V is the maximum reaction velocity.

Substrate specificity analysis

Substrate specificity was determined with various nucleotides in 100-μL reactions performed 

in the presence of 100 mM HEPES (pH 8.0), 100 mM KCl, 0.5 mM MnCl2, 1 mM DTT and 

5.0 μM of protein and incubated at 37 °C for 60 minutes. Activity with GTP was assessed by 

both fluorescence and reversed-phase HPLC, while activities with 2′-dGTP, 7-deaza-GTP or 

8-oxo-GTP as substrates were assessed by reversed-phase HPLC, as described previously 

[10, 12].

Crystallization

Crystals of the enzyme complex with TRIS were generated using the enzyme prepared in 

buffer solutions containing 50 mM TRIS-acetate (pH 8.0), 100 mM KCl, 5 mM ZnCl2 and 1 

mM BME, and concentrated to 9 mg/mL in an Amicon device. Crystals were grown at 20 °C 

by vapor diffusion in sitting drops prepared by mixing 1 μL enzyme solution and 1 μL 

reservoir solution containing 10-16% (w/v) polyethylene glycol 6000, 1-1.4 M LiCl, 50 mM 

TRIS (pH 9.0), and 50 mM TRIS-HCl (pH 7.0), and equilibrated against reservoir solution 

for 1 week.

For preparation of the complex with 8-oxo-GTP, first TRIS was removed from a sample 

containing 9 mg/mL N. gonorrhoeae GCYH-IB by dialysis against 2 L of buffer solution 

containing 50 mM HEPES (pH 7.4), 100 mM KCl, 5 mM ZnCl2, and 1 mM BME for 12 

hours. 8-oxo-GTP was then added directly to the dialyzed protein to a final concentration of 

1 mM and incubated for 30 minutes. Crystals were grown by vapor diffusion in sitting drops 

prepared by mixing 1 μL enzyme-inhibitor complex and 1 μL reservoir solution containing 

10-16% (w/v) polyethylene glycol 6000, 0.6-1.4 M LiCl, 60 mM HEPES (pH 8.2), and 40 

mM HEPES (pH 6.8). For both enzyme-ligand complexes, rhomb shaped crystals grew in 1 

week to dimensions of 0.2 × 0.2 × 0.1 mm3 and were harvested and cryo-protected in 

mother liquor containing additional 25% ethylene glycol as cryo-protecting agent, and flash-

cooled in liquid nitrogen.

X-ray data collection, structure determination and refinement

For the complex with TRIS, single-wavelength X-ray diffraction data were collected at the 

Stanford Synchrotron Research Laboratory beam line 7-1. For the complex with 8-oxo-GTP, 

data were collected at the Advanced Light Source beam line 5.0.1. All data were processed 

in the HKL2000 program suite [20]. The structures were determined using the difference 

Fourier method, and the previously determined structure of the enzyme (PDB ID 3D1T, 

[12]) as a start model after removing all heteroatoms. Initial rigid-body refinement, followed 

by restrained crystallographic refinement and solvent fitting were done using refmac-5 [21] 

and Coot [22]. Clear density corresponding to bound ligands and zinc ions could be seen in 

the active sites in both structures after rigid-body refinement. Zn2+ and ligands were 

modeled in the density and the structures were subjected to several rounds of restrained 

maximum-likelihood refinement of coordinates and temperature factors, iterated with 

solvent modeling.
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Preparation of site-directed mutants

Point mutagenesis was carried out on pSAB-8-142 (N. gonorrhoeae GCYH-IB gene cloned 

in pET-30 Xa/LIC vector [10]) using the Q5® Site-Directed Mutagenesis Kit (NEW 
ENGLAND Biolabs Inc.) or the QuikChange™ site-directed mutagenesis kit (Stratagene). 

The Glu152 residue was mutated to Ala (GAG→GCT). Glu243 was mutated to Ala 

(GAG→GCT). His246 was mutated to Ala (CAC→GCT), Asp (CAC→GAC), Gln 

(CAC→CAG), Asn (CAC→AAC), and Lys (CAC→AAG). Cys149 was mutated to Ser 

(TGT→TCT) and Ala (TGT→GCC). The primers used for the mutations are listed in 

Supplementary Table 1. The resulting DNA constructs were confirmed to be correct and in 

frame by sequencing (at Genewiz, Inc, South Plainfield, NJ, or at the Portland State 

University-Keck Genomic Facility, Portland, OR). The His246Ala and Glu243Ala mutants 

were overexpressed in E. coli DH5α competent cells, and all other mutants were 

overexpressed in E. coli BL21(DE3) as described for the wild-type enzyme. All mutant 

proteins were purified by Ni-NTA and size-exclusion chromatography as described for the 

wild-type enzyme. Purity was verified to be greater than 95% by SDS-PAGE.

Enzymatic assays of all GCYH-IB mutants and wild-type enzyme were monitored via both 

UV-vis and radiochemical assays as described above. Initial velocities were calculated from 

non-linear fits of the reaction progress curves.

Test for in vitro formylation of GCYH-IB

To test for formylation of GCYH-IB 50 μL reactions containing 100 mM HEPES (pH 8.0), 

100 mM KCl, 0.5 mM MnCl2, 1 mM DTT, and 100 μM [8-14C]GTP (10 μCi/μmol) were

prepared. Reactions were initiated with either 25 μM recombinant His6-tagged N. 
gonorrhoeae GCYH-IB that possessed a modified Cys149 residue, or 25 μM enzyme that 

had been subjected to the GSH treatment described below. The reactions were incubated in 

1.5 mL Eppendorf tubes at 37°C for 40 minutes before the addition of 20 μL of Ni-NTA 

resin and a further 30 minute room-temperature incubation with gentle mixing. The 

reactions were centrifuged for 5 minutes at 500g and the supernatant saved. The Ni-NTA 

resin pellets were subjected to 10 washes with 200 μL of buffer (100 mM HEPES (pH 8.0), 

100 mM KCl) with centrifuging for 2 minutes at 500g between each wash. The supernatant, 

the ten washes, and the 1.5 mL reaction tube holding the Ni-NTA resin pellet (but with cap 

removed) were collected in 5 mL scintillation vials and combined with Econo-Safe 

scintillation cocktail (RPI). Counting was performed on a Hidex 300 SL scintillation counter 

(Hidex) using MikroWin software (Mikrotek Laborsysteme GmbH).

In vitro de-nitrosylation of GCYH-IB

To prepare de-nitrosylated GCYH-IB, a sample containing 600 μg of freshly purified, active 

enzyme was made at a concentration of 28 μM in buffer containing 100 mM HEPES, 100 

mM KCl, and 0.5 mM MnCl2 (pH 8.0). Glutathione (GSH) was freshly dissolved in water 

and added to the protein sample to a final concentration of 280 μM and was incubated for 30 

minutes in the dark. Excess GSH was removed in two buffer exchange steps by loading onto 

Zeba Spin Desalting Columns (MWCO 7,000 Da, ThermoFisher Scientific, Waltham, MA) 

pre-equilibrated in buffer containing 100 mM HEPES (pH 7.4), and 100 mM KCl; and 

centrifuging at 1000 g for 2 minutes. The resulting GSH-treated protein was immediately 
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assayed for activity using the fluorescence assay described above, and for its state of 

nitrosylation using the iodoTMT-switch assay (vida infra).

IodoTMT switch assay

This assay was carried out using the Pierce™ S-nitrosylation Western Blot Kit 

(ThermoFisher Scientific, Waltham, MA) following a modified version of the manufacturer's 

protocol. Briefly, a 100 μL sample containing 1 μg/μL protein in HENS buffer was prepared, 

and 5 μL of a 100 mM solution of the irreversible blocking agent N-ethylmaleimide (NEM, 

prepared in ultrapure water) were added to block the protein free thiols. After vortexing 

vigorously and incubating for 30 minutes at 50 °C, excess NEM was removed in two buffer 

exchange steps using Zeba Spin Desalting Columns (MWCO 7,000 Da). The protein was 

then precipitated by adding 6 volumes of cold acetone (pre-equilibrated at -20 °C) and 

incubating for one hour at -20 °C. The precipitated protein was pelleted by centrifuging at 

10,000 g for 10 minutes, and the pellet was re-suspended in 100 μL of HENS buffer and 

divided into two 50-μL batches. To one batch, 4 μL of 1.0 M sodium ascorbate (prepared in 

ultrapure water) and 1 μL of 20 mM iodoTMT6-126 labeling reagent (iodoTMT) were 

added to reduce and label the nitrosylated thiols, respectively. (The final protein, ascorbate, 

and iodoTMT concentrations were 30 μM, 75 mM and 0.4 mM, respectively). For a negative 

control, the second batch was treated similarly except that the ascorbate was replaced with 

ultrapure water. Following incubation for 2 hours at room temperature, excess labeling 

reagent and ascorbate were removed in two buffer exchange steps using Zeba Spin Desalting 

Columns. The proteins were then precipitated by adding 6 volumes of cold acetone and 

incubating over night at -20 °C, followed by centrifugation at 10,000 g for 10 minutes. The 

precipitated proteins were each re-suspended in 50 μL of HENS buffer and analyzed by 

Western blotting (see below). All steps were performed in the dark and the protein 

concentration after each precipitation/resuspension step was determined using a Bradford 

assay, absorption at 280 nm, and BSA-calibrated SDS-PAGE on an Any kD Mini-Protean 

TGX gel (Bio-Rad, Hercules, CA).

Western blot analysis of iodoTMT-labeled proteins

Equal amounts of labeled proteins were loaded on a denaturing Mini-Protean TGX precast 

gel (Bio-Rad, Hercules, CA) and electrophoresed without any reducing agents for 15 

minutes at 300 V. The proteins were then transferred to a PVDF membrane (0.45 μm, 

ThermoFisher Scientific) by electroblotting for 48 mins at 60 V in a wet transfer apparatus 

(Bio-Rad, Hercules, CA). The membrane was blocked by incubating for 5 hours in 5 mL 

TRIS-Buffered Saline and Tween (TBST buffer: 20 mM TRIS, 150 mM NaCl and 0.1% 

Tween 20, pH 7.5) containing 2% BSA, and immunolabeled by incubation overnight in 

TBST solution containing mouse anti-TMT monoclonal antibody (IgG2b, ThermoFisher 

Scientific, product number 90075) at a dilution of 1:500. Following 5 washes in TBST, the 

membrane was probed with goat anti-mouse IgG-horseradish peroxidase conjugate antibody 

(ThermoFisher Scientific, product number Ab97040) at 1:10,000 dilution for one hour. 

Subsequently, the membrane was washed 5 times with TBST and developed with 

SuperSignal West Pico Chemiluminescent Substrate (ThermoFisher Scientific). All steps 

were carried out at room temperature. To verify equal loading of proteins, a second, identical 
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SDS-PAGE was performed in parallel on the same samples and that gel was stained with 

Coomassie to visualize total protein.

Oxidation of GCYH-IB by hydrogen peroxide (H2O2)

A 20-μL sample of each of the freshly purified GCYH-IB (verified to be S-nitrosylated by 

the iodoTMT assay as described above), and the GSH-treated GCYH-IB was prepared in 

assay buffer (100 mM HEPES (pH 8.0), 100 mM KCl, 0.5 mM MnCl2, 1 mM MgCl2) at a 

final protein concentration of 25 μM. H2O2 was added to a final concentration of 0.25 mM 

and the reactions were incubated in the dark for 5, 10, 15, 30 and 60 seconds before addition 

of catalase (from bovine liver, Sigma-Aldrich) to a final concentration of 600 U/mL to 

quench excess H2O2. The samples were immediately assayed for H2NTP production using 

the fluorescence assay.

Results

Biochemical characterization of GYCH-IB from N. gonorrhoeae

We previously reported the biochemical properties of GCYH-IB from B. subtilis [12], and 

the N. gonorrhoeae enzyme exhibited similar characteristics. In particular, the N. 
gonorrhoeae GCYH-IB shows optimal activity broadly between pH 8.0 – 8.5 in HEPES 

buffer (data not shown), and is able to utilize a variety of metals for catalysis 

(Supplementary Table 2), exhibiting maximal activity in the presence of 0.5 mM Mn2+.

Kinetic parameters and competitive inhibition of N. gonorrhoeae GCYH-IB with substrate 
analogs

Steady-state kinetic analysis of recombinant N. gonorrhoeae GCYH-IB, overexpressed in E. 
coli and freshly purified, provided a Km of 9.15 ± 0.67 μM and kcat of 0.0159 ± 0.0013 

min-1 with GTP as substrate, similar to the previously reported kinetic parameters for the 

Bacillus subtilis enzyme (Km of 9.87 μM and kcat of 0.0011 min-1 [12]). The substrate

analogs 2′-dGTP, 7-deaza-GTP and 8-oxo-GTP were investigated for their effects as 

inhibitors, and all three analogs gave competitive inhibition patterns with respect to GTP, but 

only 8-oxo-GTP functioned as a potent inhibitor with a Ki/Km of 0.022, which is 300 and 

1000 fold lower than the Ki/Km for 7-deaza-GTP and 2′-dGTP, respectively (Table 1, Fig. 

2). These analogs were also investigated as alternate substrates, but reversed-phase HPLC 

analysis of incubations with the enzyme failed to detect any products. Indeed, in each case 

only a single peak corresponding to the starting nucleotide was observed in the HPLC 

chromatogram (data not shown), indicating that they were not turned over by the enzyme.

Crystal structure of N. gonnorrhoae GCYH-IB in complex with 8-oxo-GTP

The enzyme complex with the inhibitor nucleotide 8-oxo-GTP crystallized in space group 

C2221. The structure was determined by difference Fourier calculation using model phases 

calculated from the previously determined crystal structure of the inhibitor-free enzyme 

(PDB ID 3D1T [12]), and was refined at a resolution of 2.77 Å. Data collection and 

structure refinement statistics are listed in Table 2. The structure reveals the GCYH-IB 

homotetramer [12] with half a tetramer (subunits A and B) comprising the asymmetric unit 

(Fig. 3). Each subunit (257 amino acids) is composed of two tunnel-fold (T-fold) modules 
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with the architecture characteristic of bimodular T-fold enzymes. In each subunit, an eight-

stranded tightly twisted antiparallel β-sheet is backed by four antiparallel α-helices. The β-

sheets from the two adjacent subunits form a continuous 16-stranded β-barrel, and two 

barrels join together head-to-head to form a central tunnel. The enzyme active sites are 

located at the interfaces between subunits.

Difference electron density maps reveal a bound zinc ion and 8-oxo-GTP molecule in two of 

the four active sites in the biological tetramer (Fig. 3 and Fig. 4A). The other two active sites 

are more exposed to solvent in the crystal lattice and are unoccupied. The inhibitor 

nucleotide is in the syn conformation and its binding pocket lies at the interface between 

three subunits, two from the same β-barrel (subunits A and B), and one from the opposite β-

barrel (subunit B′, Fig. 4). The purine moiety of the inhibitor is inserted into the pocket, 

while the ribosyl and triphosphate moieties lie on the surface near the pocket entrance.

The Zn2+ ion binds at the interface between opposite β-barrels and is coordinated in a 

distorted tetrahedral geometry by the Sγ atom of Cys147, the Nε2 of His159, the Oε2 of 

Glu201 (all invariant residues in the type IB enzymes), and the O8 atom of 8-oxo-GTP (Fig. 

4). The purine moiety of the inhibitor is sandwiched between Phe214 (from subunit B) and 

Met60 (from subunit A), both conserved hydrophobic residues in the GCYH-IB family. The 

purine ring is anchored to the pocket by side chain and backbone interactions with Glu216, 

Val215, and Thr58; while the purine N7, which is protonated in 8-oxo-GTP, donates a 

hydrogen bond to the side chain of the invariant residue Glu243 (Fig. 4). The latter 

interaction indicates a role for Glu243 in the protonation of N7 of the GTP substrate, an 

event necessary for the first hydration step of the GCYH-I reaction. Consistent with this 

interpretation, replacement of N7 with a carbon in the 7-deaza-GTP analog results in 

compromised binding (Table 1).

The ribose ring adopts a C3′-endo pucker conformation, a common conformation in 

nucleosides and nucleotides in general [23]. Two key interactions are seen with the ribosyl 

moiety: 1) The ribosyl 2′-hydroxyl group is coordinated via a hydrogen bond (H-bond) by 

the carboxylate Oε1 of Glu201 from the adjacent β-barrel (thus, Glu201 bridges between the

metal ion and the inhibitor). The importance of this interaction for substrate binding is 

demonstrated by the 24-fold higher Ki value of 2′-deoxyGTP relative to the Km of GTP 

(Table 2). 2) The C2′ atom is within contact distance from the Sγ atom of the conserved

residue Cys149. Close inspection of the difference electron density maps revealed extra 

density extending from the Sγ atom of Cys149, corresponding to a nitrosyl group (Fig. 4A). 

Although the resolution of this structure does not permit distinguishing a nitrosyl from a 

formyl group, the latter was ruled out based on the higher resolution Tris-bound structure 

and a biochemical test (vida infra). The S-nitrosothiol adopts a staggered anti conformation 

with a Cβ-Sy-N-O dihedral angle of 103°. As shown by Zhao and Houk [24], this 

conformation suggests a stable reduced thionitroxide radical form in which a hydrogen is 

bonded to the nitrogen atom (Cβ-Sy-NH-O). Consistent with this interpretation, the putative 

radical is stabilized in the structure by interaction with the conserved Arg198 side chain 

protruding into the active site from the opposite β-barrel (Fig. 4B). Notably, the nitrosyl 

group is present even though the protein was purified and crystallized in the presence of 1 

mM DTT/βME, consistent with a highly stable thionitroxide form. S-nitrosylation of 
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Cys149 is also seen in the unoccupied active sites, and with a similar staggered 

conformation (dihedral angle ∼ 122°). The triphosphate tail of 8-oxo-GTP is stabilized by 

H-bonds with conserved residues His59, Ser61 and Arg62.

Bound TRIS molecule mimics a reaction intermediate

We also determined a high resolution (1.9 Å) crystal structure of the enzyme prepared and 

crystallized in the presence of TRIS buffer. In this structure, a bound TRIS molecule is seen 

coordinating the Zn2+ ion in two of the four active sites in the homotetramer. The Zn2+ ion 

forms a trigonal bipyramidal coordination shell with its five ligands: the Sγ atom of Cys147, 

the Oε2 atom of Glu201 from subunit B′, and the amino group of bound TRIS in the 

equatorial plane; and the O3 hydroxyl group of TRIS, and the Nε2 atom of His159 as axial 

ligands (Fig. 5). This rather unusual zinc coordination geometry is common in proposed 

transition states of metalloenzymes [25]. Cys149 is also found S-nitrosylated in this 

structure. To rule out the possibility that the modification may be S-formylation associated 

with the formate-releasing activity of the enzyme, we modeled a formyl group in the 

electron density and observed the resulting temperature factors after structure refinement. 

The refined temperature factor for the formyl carbon atom was 8 Å3 lower than the 

temperature factor of the Sγ atom, indicating that the electron density is under-represented 

by the model in this case. In contrast, when modeled as a nitrosyl group, the refined 

temperature factor of the nitrosyl nitrogen atom is within the expected range for optimal fit 

to the density (< 3 Å3 lower than the temperature factor of the Sγ atom). In this structure, 

the S-nitrosyl group is in a syn conformation and exhibits a planar geometry with a small 

Cβ-Sγ-N-O dihedral angle of ∼24°, close to the geometry of small-molecule S-nitrosothiols 

[26-31], indicating that it is the oxidized form Cβ-Sγ-N=O [24].

Superposition of the TRIS-bound structure with the 8-oxo-GTP-bound structure (r.m.s.d. of 

0.27 Å over 237 of subunit B Cα atoms, subunit A is much less ordered) reveals that the 

bound Tris molecule is reminiscent of a tetrahedral transition-state intermediate proposed to 

occur in the GCYH-I-catalyzed reaction prior to breakage of the C8-N7 bond and release of 

formate from GTP (Fig. 6) [16]. In this intermediate, C8 is the tetrahedral center that is 

imitated by the tetrahedral carbon atom of TRIS. In the superposition, the N atom of TRIS 

occupies the same site as the O8 atom of 8-oxo-GTP, thus mimicking the state of the metal-

coordinated hydroxyl ion after it performs the first nucleophilic attack on the C8 atom of the 

substrate. The C2 carbon of TRIS mimics the state of the second water molecule after it 

performs the second nucleophilic attack on C8. Notably, the O2 atom of TRIS makes a 

hydrogen bond with the conserved side chain His246 (Fig. 5 and Fig 6), and the position of 

O2 may represent the position of the second nucleophilic water molecule just before its 

attack on C8 and formation of the tetrahedral center. Further, the metal-coordinating O3 

atom of TRIS occupies an analogous position to the 2′-OH of 8-oxo-GTP, thus may 

represent the position of the 2′-OH of the substrate during a late step in the reaction after 

opening of the ribose ring. Finally, a 6 Å-wide water-filled cavity located behind the purine 

binding pocket is seen in both structures and may serve as the putative binding site for the 

formate molecule released in the early steps of the GTP cyclohydrolase reaction (Fig. 6).
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The crystal of the complex with TRIS was grown under the same crystallization conditions 

and using the same sample preparation conditions as the previously described structure with 

PDB ID 3D1T [12] and a resolution of 2.2 Å. Re-refinement of PDB ID 3D1T also revealed 

a bound TRIS molecule in the active site and S-nitrosylated Cys149, and was therefore 

replaced with the higher resolution structure presented here.

S-nitrosylation of GCYH-IB is site specific and preserves enzyme activity

The structural observation of S-nitrosylation of a catalytic active-site cysteine residue 

prompted us to investigate this post-translational modification biochemically. First, we 

confirmed its presence in the freshly purified enzyme in solution using the iodoTMT-switch 

assay, and investigated the effect of the SNO on enzyme activity. In the iodoTMT-switch 

assay, the free thiols in the protein are first blocked using the irreversible blocking agent 

NEM. The S-nitrosylated cysteines are then reduced with ascorbate, and the newly formed 

free thiols are labeled with iodoTMT. The labeled thiols are then detected and quantified by 

Western blot analysis using an anti-TMT antibody. To elucidate the effect of S-nitrosylation 

of Cys149 on enzyme activity, we denitrosylated the freshly purified wild-type enzyme by 

treating it with reduced glutathione (GSH, a widely used method for denitrosylation of 

proteins [32]) and, after removal of excess GSH, assayed the resulting denitrosylated form 

for H2NTP production activity using the fluorescence assay. To eliminate the effect of 

possible glutathione chelation of the catalytic metal, the GSH-treated enzyme was incubated 

in assay buffer containing 0.5 mM metal before adding substrate. While the GSH-treated 

enzyme was fully denistrosylated, as confirmed by the iodoTMT-switch assay (Fig. 7A), its 

activity was found to be comparable to that of the untreated enzyme, with only 20% 

reduction (Fig. 7B), indicating that Cys149 supports catalysis in both the nitrosylated and 

reduced states.

As further proof that the Cys149 modification occurred as a consequence of nitrosylation, 

and not formylation in the course of enzymatic turnover, we probed for the possibility of 

formyl transfer from GTP with reactions containing [8-14C]GTP followed by capture of the 

protein on Ni2+-NTA resin and liquid scintillation counting. To test for formylation that 

might occur during each turnover (with consequent loss of starting formyl group) as well as 

advantageous formylation that might occur to unmodified Cys149 and then be retained in 

subsequent turnovers, we tested enzyme that possessed modification of Cys149 and enzyme 

that had been treated with GSH as described above, and thus lacked modification. In no case 

did we see radioactivity above background associated with protein fractions (data not 

shown), allowing us to conclude that no transfer of a formyl group to the protein occurred in 

any of the reactions. In these experiments the background radioactivity corresponded to the 

calculated radioactivity that would be observed for ∼0.5% labeling.

In addition to Cys149, N. gonnorrhoae GCYH-IB contains two other cysteine residues in 

each subunit: the metal coordinating Cys147 in the active site, and Cys190 located in a 

partially solvated hydrophobic pocket 12 Å away from the active site. In the crystal 

structures, only Cys149 is seen S-nitrsoylated. To confirm this observation, we assessed the 

nitrosylation state of the Cys149Ala mutant using the iodoTMT-switch assay. The results 

show that while the fully active, wild-type protein in solution and as purified from E. coli is 
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S-nitrosylated, the Cys149Ala mutant protein purified under the same conditions lacks any 

S-nitrosylated thiols (Fig. 7A). These results demonstrate that the observed S-nitrsoylation 

of GCYH-IB occurs posttranslationally during heterologous expression in E. coli and that it 

is specific to Cys149. Although the physiological relevance of the observed S-nitrosylation 

of GCYH-IB in a heterologous system is unclear, the specificity of the nitrosylation to a 

conserved and essential active-site cysteine, and the direct interaction of the thionitroxide 

group with the substrate analog seen in the crystal structure suggest that it may participate 

directly in catalysis (see details in the discussion).

Role of Cys149, Glu152, Glu243, and His246 in catalysis

Of the active site residues that interact with 8-oxo-GTP and TRIS in the structures, three 

residues make contacts that suggest a direct role in catalysis. These residues are Glu243 and 

Cys149, which interact with the guanine imidazole ring and ribosyl moiety of 8-oxo-GTP, 

respectively, and His246, which coordinates the O2 atom of the transition state mimic TRIS. 

Additionally Glu152 is positioned where it might serve as an acid/base residue to modulate 

the protonation state of Cys149. Glu243, and His246 are conserved residues in all GCYH-IB 

sequences, whereas Cys149 is only conserved in bacterial GCYH-IB sequences and Glu152 

is present in only a subset of bacterial sequences (see Supplementary Fig. 1). To investigate 

the role of these residues in catalysis, we prepared site-directed mutants of Cys149, Glu152, 

Glu243, and His246, and measured the abilities of the mutant proteins to catalyze formation 

of the reaction product H2NTP, as well as their abilities to catalyze the early steps in the 

reaction leading to formate release from GTP. For the former activity we monitored the 

formation of H2NTP using a fluorescence assay as well as a UV-vis continuous assay 

measuring the absorbance of H2NTP at 330 nm. For the latter activity, we monitored release 

of [14C]-formate from [8-14C]GTP using a radiochemical assay. Notably, studies with the IA 

enzyme have demonstrated the ability to uncouple the early steps in the reaction from the 

late steps by independently measuring formate and H2NTP formation, and showing that 

some mutants compromised in H2NTP formation are able to efficiently catalyze the early 

steps in the reaction and release formate along with the intermediate 2,5-diamino-(6β)-

ribosylamino-4(3H)-pyrimidinone 5′-triphosphate (DRPT) [33]. All mutants were 

overexpressed in E. coli and freshly purified under the same conditions used to purify the 

wild-type enzyme. The structural integrity of the mutant proteins was checked by size 

exclusion chromatography and their elution profiles were identical to that of the wild-type 

enzyme, showing a single peak corresponding to an intact homotetramer with apparent 

molecular weight of 135,000 Da (Supplementary Fig. 2).

With the exception of the Glu152 mutant, which exhibited ∼20% of the wild-type activity, 

all of the alanine mutants exhibited impaired ability to carry out full catalytic turnover to 

produce H2NTP, with activities <1% that of the wild-type enzyme (Table 3, Supplementary 

Fig. 3). In contrast, when assaying for production of [14C]-formate only the Glu152Ala and 

Glu243Ala mutants showed a similarly impaired ability in the production of formate, while 

the His246Ala mutant exhibited an almost 3x higher rate of formate production than H2NTP, 

and the Cys149Ala mutant, for which we were unable to detect H2NTP production, 

exhibited a robust rate of formate production roughly 10% that of the wild-type enzyme. 
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Consistent with this pattern, the Cys149Ser mutant displayed activity for H2NTP formation 

∼3% that of wild-type, and for formate production almost 20% that of wild-type.

The observed catalytic activities of the Glu243 and Cys149 mutants suggest roles in the 

early and late stages of the chemical mechanism, respectively, conclusions consistent with 

the crystallographic information from the GCYH-IB structures containing 8-oxo-GTP and 

TRIS. In contrast, mutation of His246, which interacts with the O2 atom of TRIS in the 

TRIS-bound structure, an interaction suggestive of the transition state leading to formate 

release (vide supra) in an early step in the reaction, results in enhanced production of 

formate relative to H2NTP.

To further probe the role of His246, we constructed His246 mutants substituted with Asn, 

Gln, Asp and Lys and measured their ability to catalyze the formation of formate and 

H2NTP. All of these mutants were compromised in their ability to catalyze the formation of 

H2NTP (Table 3), with only the Asp and Gln mutants capable of complete turnover. 

Remarkably, all of the mutants were capable of modest to robust production of formate, with 

the Asp and Gln mutants capable of formate production at a rate >65% that of the wild-type 

enzyme (Table 3).

S-nitrosylation of GCYH-IB does not provide protection against oxidation

Since the nitrosylated cysteine is a catalytic residue, we interrogated the possibility of the 

SNO modification serving a protective role against oxidative inactivation of the enzyme. In 

this experiment, the activities of the freshly purified (S-nitrosylated) GCYH-IB and the 

GSH-treated (denitrosylated) enzyme were monitored following incubation with 0.5 mM 

hydrogen peroxide for 30 seconds. The activities of both the nitrsoylated and denitrosylated 

enzyme dropped by the same extent and rate with exposure time to H2O2 (data not shown), 

indicating no observable protection by the SNO against oxidative inactivation.

Discussion

Comparison with GCYH-IA

8-oxo-GTP is the most potent inhibitor of GCYH-IB identified to date, exhibiting a Ki = 150 

nM with the N. gonorrhoeae enzyme. Notably, however, inhibition is more modest than 

observed with GCYH-IA, which exhibits a Ki = 5.4 nM with the enzyme from T. 
thermophilus [16], almost 28-fold lower than the observed Ki for GCYH-IB. Comparison 

with the crystal structure of the ternary complex of T. thermophilus GCYH-IA with Zn2+

and 8-oxo-GTP (PDB ID 1WUQ) [16] reveals that the two enzymes bind 8-oxo-GTP in the 

same general orientation and provide the same distorted tetrahedral geometry for 

coordinating the Zn2+, with the O8 atom of 8-oxo-GTP acting as the fourth and axial ligand 

(Fig. 8A), consistent with a similar role for the metal ion in their catalytic mechanisms.

Both enzymes make the same number of H-bonds (five direct and one water-mediated H-

bonds) and similar hydrophobic interactions with the guanidine ring of 8-oxo-GTP. 

However, their recognition of the ribosyl and triphosphate moieties is different (Fig. 8B). 

First, the two enzymes favor different orientations of the ribosyl moiety relative to the base, 

as achieved through rotation around the β-N9-glycosidic bond. In GCYH-IB, the bound 
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nucleotide's chi (χ) torsion angle (defined by O4′-C1′-N9-C4) is 34°, whereas in GCYH-IA 

it is -106° (averaged over all active sites), amounting to a counterclockwise rotation around 

the glycosidic bond of 140° in the GCYH-IB-bound conformer relative to the GCYH-IA-

bound conformer. This rotation is stabilized by enzyme-specific interactions with the 2′- and 

3′-hydroxyl groups. In the GCYH-IB-bound conformer, O2′ and O3′ point toward the B 

and B′ subunits and O2′ interacts with the -IB specific and invariant side chain Glu201, 

whereas in the GCYH-IA-bound conformer these hydroxyl groups point toward subunit A 

and are coordinated by the -IA specific and invariant Ser133 (in T. thermophilus numbers, 

Fig. 8B). Second, the two enzymes accommodate different conformers of the ribose ring in 

their active sites; in GCYH-IB the ribose adopts the common C3′-endo conformation, while 

in GCYH-IA it adopts a rare C1′-exo conformation [16]. Third, in GCYH-IB, the 

triphosphate tail binds in a shallow pocket formed by residues from one subunit, whereas in 

GCYH-IA this pocket is deeper and is formed by basic side chains from all three interfacing 

subunits (Fig. 8C).

Overall, the inhibitor makes only 15 H-bonds with the GCYH-IB active site (14 direct and 

one water-mediated) versus 20 H-bonds with GCYH-IA (17 direct and 3 water-mediated), 

and 4 of the 5 additional bonds are with triphosphate atoms. Thus, the apparent difference in 

Ki exhibited by 8-oxo-GTP to the two enzymes appears to be mostly due to differences in 

recognition of the triphosphate tail.

In summary, GCYH-IA and GCYH-IB exhibit similarities in their binding to the purine 

moiety of the substrate analog, but differ in binding the ribosyl and triphosphate groups. 

These differences may be employed in the design of improved inhibitors specific for GCYH-

IB.

S-nitrosylation of GCYH-IB

S-nitrosylation is a nitric oxide (NO) mediated posttranslational modification that regulates 

protein function [34-38]. Our structural and biochemical data show that GCYH-IB is S-

nitrosylated at an essential, active-site catalytic cysteine and that the nitrosylated enzyme is 

active, if not more active than the denitrosylated form. Although many enzymes are known 

to be reversibly inactivated by S-nitrosylation of an active-site cysteine (e.g., the human 

mitochondrial caspases [39], protein tyrosine phosphatases [40], mammalian methionine 

adenosyltransferases [41], and dimethylarginine dimethylaminohydrolases [42], for partial 

review see [43]), to our knowledge, there are no reported examples of enzymes in which S-

nitrosylation of a catalytic cysteine residue maintains (or enhances) activity.

S-nitrosylation of active site cysteines has also been shown to protect some enzymes from 

oxidative inactivation (e.g., protein tyrosine phosphatase IB [44] and galectin-2 [45]), 

however we did not detect such protection of the S-nitrosylated N. gonorrhoeae GCYH-IB 

from oxidative inactivation by H2O2. This could be due to oxidation of one or both of the 

other two cysteine thiols in the protein, especially the metal ligand Cys147, thus 

compromising the structural integrity of the enzyme tetramer. Consistent with this 

interpretation, purification of the enzyme in the absence of DTT results in a destabilized 

tetramer (as detected by gel filtration chromatography) and subsequent loss of activity 

(Supplementary Figure 4). Additionally, GCYH-IB is transcriptionally upregulated in N. 
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gonorrhoeae when the organism is subjected to oxidative stress by exposure to peroxide 

[46].

The precise source of the NO that posttranslationally modifies GCYH-IB during 

heterologous expression in E. coli remains unclear. S-nitrosylation in E. coli has been shown 

to be a prominent feature of anaerobic respiration on nitrate where the nitrate reductase 

NarG acts as the major source of S-nitrosylating activity [37]. However, in the present study, 

we did not provide the E. coli cultures with exogenous nitrate, and the cultures were grown 

aerobically. In general, biological S-nitrosylation of proteins occurs through 1) an 

autocatalytic mechanism in which the protein hydrophobic core accumulates NO and 

accelerates its oxidation to the more reactive N2O3 causing S-nitrosylation of a nearby 

cysteine thiol within the protein interior [47], or 2) oxidation of NO to the nitrosonium 

cation (NO+) by reaction with a transition metal or transfer from another S-nitrosylated 

protein or small S-nitroso compounds (e.g., S-nitrosoglutathione) to a solvent-exposed thiol 

(transnitrosylation) [48]. The nitrosylated cysteine in GCYH-IB resides in a short helix on 

the surface of the protein, completely exposed to solvent, consistent with transnitrosylation, 

not autocatalysis.

Proposed catalytic mechanism of GCYH-IB

A chemical mechanism has been proposed for the GCYH-IA enzyme based on 

crystallography and a variety of biochemical studies, including mutagenesis, NMR analysis 

and transient state kinetics [14, 16, 19, 33, 49-52]. In the early steps in the mechanism, the 

reaction is initiated with reversible hydrolysis of GTP at C8 via nucleophilic attack of a zinc 

activated water molecule and cleavage of the C8-N9 bond to form an N-formyl intermediate, 

which subsequently undergoes a second hydrolysis reaction at C8 resulting in the cleavage 

of the C8-N7 bond and elimination of C8 as formate. In the second half of the reaction the 

ribosyl moiety undergoes ring opening and an Amadori rearrangement followed by 

cyclization and loss of the 2′-oxygen as H2O to give H2NTP.

Our biochemical and structural data are consistent with GCYH-IB facilitating the same 

chemical steps as GCYH-IA. 8-oxo-GTP, 7-deaza-GTP and 2′-deoxyGTP do not act as 

substrates for GCYH-IB, consistent with the proposed GCYH-IA chemical mechanism in 

which oxidation of C8 to the carbonyl state and protonation of N7 (i.e. 8-oxo-GTP), 

although formally analogous to the N-formyl intermediate (III, Fig. 9A), precludes the 

second nucleophilic attack of water due to the reduced electrophilicity of C8 as a 

consequence of electron delocalization in the 8-oxo-guanine ring. Likewise, replacing N7 

with a carbon (i.e. 7-deaza-GTP) prevents the initial hydrolysis step due to reduced 

electrophilicity of C8. Finally, the absence of the 2′-OH (i.e. 2′-deoxyGTP) prevents the 

Amadori rearrangement necessary for the formation of the pterin ring system (VIII to X, 

Fig. 9B).

However, differences in the active-site architecture and the different modes of recognition of 

the ribosyl moiety by the two enzymes suggest that they utilize different catalytic strategies. 

Our proposal of the GCYH-IB catalyzed mechanism is shown in Figure 9. In this proposal, a 

water molecule coordinated to the metal is first deprotonated by Glu243 to produce a metal-

coordinated hydroxyl ion (I, Fig. 9A) that carries out nucleophilic attack at C8, accompanied 
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by protonation of N7 by Glu243 (II, Fig. 9A). In contrast, in GCYH-IA, protonation of N7 is 

carried out by a water molecule [16] coordinated to a His residue. Decomposition of the 

tetrahedral intermediate and breakage of the C8-N9 bond (II, Fig. 9A) is mediated by a 

bound water molecule (W2 in 8-oxo-GTP bound structure, Fig 4A), yielding the 

intermediate 2-amino-5-formylamino-(6β)-ribosylamino-4(3H)-pyrimidinone 5′-

triphosphate (AFRPT, III, Fig. 9A). This intermediate has been experimentally verified in 

the reaction catalyzed by GCYH-IA [33, 50] and is mimicked by 8-oxo-GTP except for the 

out of plane geometry of the CHO group relative to the base.

The water molecule (W2), H-bonded to His246, is deprotonated by Glu243 to yield a second 

nucleophilic hydroxyl ion that attacks the out of plane electrophilic carbonyl C8 to produce a 

second tetrahedral intermediate (IV, Fig. 9A). This intermediate is mimicked by TRIS in the 

TRIS-bound crystal structure of GCYH-IB (Fig. 5). Collapse of this intermediate coupled 

with protonation of N7 by Glu243 and bond cleavage between N7-C8 produces formic acid 

and the intermediate 2,5-diamino-(6β)-ribosylamino-4(3H)-pyrimidinone 5′-triphosphate 

(DRPT, V, Fig. 9A) [8].

Ring opening of the ribose moiety is facilitated by protonation of the ring oxygen by a water 

molecule coordinated to His246 coupled with Schiff base formation at C1′-N9 (VI, Fig. 

9B). Ring opening facilitates a conformational rearrangement that allows the 2′-hydroxyl 

group to displace formate from the metal, a process facilitated by Glu201, which is seen H-

bonded to the 2′-hydroxyl in the 8-oxo-GTP-bound structure (Fig. 4). The fate of the 

formate is unclear; the presence of a water-filled cavity behind 8-oxo-GTP (Fig. 6) suggests 

that formate may be trapped there until the end of the catalytic cycle. Deprotonation of C2′ 
by Cys149 (VII, Fig. 9B) yields the enol-enamine and the protonated Cys149 thiol (VIII, 

Fig. 9B). The proximity of the carboxyl group of Glu152 suggested that the this step might 

be facilitated by proton transfer from Cys149 to Glu152, but the mutagenesis data, in which 

activity for the Glu152Ala mutant was decreased by only ∼75% in both assays, does not 

support such a role in catalysis. Glu201, then deprotonates the 2′-OH with protonation at 

C1′ by Cys149 (VIII, Fig. 9B) to give a C2′ keto group (IX, Fig. 9B). Subsequent 

nucleophilic attack by N7 on the electrophilic keto carbonyl at C2′ is facilitated by 

deprotonation at N7 by Glu243 and protonation of the carbonyl by Glu201, giving the 

bicyclic pterin ring system (X, Fig. 9B). Dehydration coupled with imine formation then 

occurs with protonation of the OH group by Glu243, forming dihydroneopterin triphosphate 

(H2NTP).

The proposed mechanism is consistent with all of the mutagenesis and crystallographic data. 

Specifically, mutation of Glu243 essentially abolishes both the formate releasing activity as 

well as complete turnover to H2NTP, as is expected for a residue involved in the early steps 

of the reaction. Replacement of Cys149 with either Ala or Ser removes a base necessary for 

initiation of the Amadori rearrangement, thus precluding the formation of the pterin ring. 

However, mutation does not prevent the hydrolytic steps in the reaction as these occur prior 

to the direct participation of Cys149. Nevertheless, there is a decrease in the rate of 

hydrolytic activity (Table 3) for the two mutants, indicating that Cys149 does play some role 

in this process, potentially in substrate binding as suggested by the 8-oxo-GTP bound 

structure. The role of His246 is more complex; while the structural data suggests a role in 
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the second hydrolytic step (vide supra), the mutagenesis data instead implicate a more direct 

role in the late steps of the reaction and only a minor role in the steps involved in formate 

release. Thus, in our mechanistic proposal His246, while involved in H-bonding in the early 

steps of the reaction, does not participate directly in any chemical steps (Fig. 9A), but does 

participate in protonation of the ribose ring via an intervening water molecule in the second 

half of the reaction (Fig. 9B).

Notably, the proposal is also consistent with the observation that Cys149 can be nitrosylated 

(Fig. 10). S-nitroso groups on cysteine side chains can exist in several oxidation and 

protonation states, and computational quantum mechanical studies have shown that the 

dihedral angle and the S-N bond length is a function of its chemical state [24]. Accordingly, 

the staggered conformers seen in the 8-oxo-GTP-occupied sites and in the empty active sites 

(dihedral angle ∼103° and ∼122°, respectively) are consistent with the radical thionitroxide 

form C-S-NH-O•, while the almost planar CSNO conformer (dihedral angle ∼24°) seen in 

the TRIS-occupied active site represents the oxidized C-S-N=O form. The latter species, 

constituting a minority of states, may be an artifact of oxidation by O2 or X-ray exposure 

during data acquisition. Although detailed acid/base properties for these species have not 

been reported, they are observed to be involved in H-bonding interactions (e.g., Fig. 4) and 

presumed to readily undergo protonation/deprotonation reactions. It is not clear which atom 

of C-S-NH-O• serves as the site for deprotonating C2′, but we show this occurring on the 

oxygen (Fig. 10) since this position has been explicitly highlighted as a putative basic site 

[53].

Since its discovery GCYH-I has come to exemplify the chemical complexity possible for 

enzymatic catalysis, and it continues to astonish some five decades later. Remarkably, this 

complex reaction is now known to be catalyzed by two enzymes that, despite their common 

origin, share only two amino acids in common and bind GTP in markedly distinct ways. As 

a further surprise, an essential catalytic cysteine in a GCYH-IB family member undergoes 

nitrosylation to form a thionitroxide species, a post-translational modification heretofore 

associated only with metabolic regulation, here utilized directly in catalysis. While the 

formation of this modification of GCYH-IB in N. gonorrhoeae awaits confirmation, the 

observation that the enzyme undergoes site-specific nitrosylation in E. coli, and that 

nitrosylation enhances catalytic activity, offers an exciting new insight into the chemistry of 

GCYH-I, and potentially new roles for nitrosylation in biology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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2′-dGTP 2′-deoxyguanosine triphosphate

7-deazaGTP 7-deazaguanosine 5′-triphosphate

DTT DL-dithiothreitol

BME β-mercaptoethanol

EDTA ethylenediaminetetraacetate

GCYH-I GTP cyclohydrolase I

GCYH-IA Type IA GTP cyclohydrolase

GCYH-IB Type IB GTP cyclohydrolase

GTP guanosine 5′-triphosphate

HEPES N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)

TRIS 2-Amino-2-hydroxymethyl-propane-1,3-diol

H2NTP 7,8-dihydroneopterin triphosphate

HPLC high-pressure liquid chromatography

MES 4-morpholineethanesulfonic acid

8-oxo-GTP 8-oxoguanosine 5′-triphosphate

PEG polyethylene glycol

SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis

T-fold tunnel fold

R.m.s.d root mean square deviation

GSH reduced glutathione

TBST TRIS-buffered saline and Tween 20

MWCO molecular weight cut-off

BSA bovine serum albumin
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Figure 1. 
The reaction catalyzed by GTP cyclohydrolase I, and the metabolic pathways in which it is 

found.
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Figure 2. 
Competitive inhibition of N. gonorrhoeae GCYH-IB with GTP analogs. Reactions were 

performed with varied GTP concentration (3-50 μM) and in the presence of various fixed 

concentrations of inhibitor. Activity was monitored by fluorescence with excitation at 365 

nm and emission at 446 nm. (A) 2′-dGTP: (•) 0, (□) 50, (◊) 100, and (○) 200 μM; (B) 7-

deaza-GTP: (•) 0, (□) 15, (◊) 30, and (○) 60 μM; and (C) 8-oxo-GTP: (•) 0, (□) 0.1, (◊) 

0.25, and (○) 0.5 μM. Data were fit to equation 1 using KaleidaGraph 4.0.
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Figure 3. 
Crystal structure of N. gonnorrhoae GCYH-IB in complex with 8-oxo-GTP. A) Side (left) 

and top (right) views of the enzyme homotetramer with subunits shown in different colors. 

Bound Zn2+ ions are shown as red spheres, and bound 8-oxo-GTP molecules in two of the 

four active sites in the homotetramer are shown in red stick representation.
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Figure 4. 
View of the active site of N. gonnorrhoae GCYH-IB with bound 8-oxo-GTP. A) Stereoview 

of the 2Fo-Fc electron density map (contour level 1.1 σ, resolution 2.77 Å), contoured 

around the bound Zinc ion, 8-oxo-GTP, and the nitrosylated Cys149, and superposed on the 

refined model. Zn2+ is shown as purple sphere, and water molecules as red spheres. Side 

chains interacting with 8-oxo-GTP are labeled and the subunits from which they originate 

are indicated in parentheses. B) Schematic of enzyme-inhibitor interactions. The ligand is 

shown in ball-and-stick representation. Dotted lines indicate hydrogen bonds or interactions 

with the metal ion. Residues are labeled as in panel A. For clarity, His246 and the water 

molecule W2 are not shown in panel B. The figure was made with the program LIG-PLOT 

[54].
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Figure 5. 
The TRIS occupied active site in the crystal structure of N. gonnorrhoae GCYH-IB in 

complex with TRIS. A) Stereoview of the 2Fo-Fc electron density map (contour level 1.3 σ, 

resolution 1.9 Å), contoured around the bound Zinc ion, TRIS, and the nitrosylated Cys149; 

and superposed on the refined model. Zn2+ is shown as purple sphere, and water molecules 

as red spheres. Side chains interacting with TRIS are labeled and the subunits from which 

they originate are indicated in parentheses. B) Schematic of enzyme-TRIS interactions. The 

ligand is shown in ball-and-stick representation. Dotted lines indicate hydrogen bonds or 

interactions within the metal coordination sphere. The figure was made with the program 

LIG-PLOT [54].
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Figure 6. 
View in the active site region of the superposition of the 8-oxo-GTP-bound structure (pink) 

and the TRIS-bound structure (grey). Zn2+ is shown as purple sphere, and water molecules 

as red spheres. For clarity, Ser61(A) is not shown. The ligand-coordinating side chains are 

shown and labeled as in figure 4. TRIS and 8-oxo-GTP atoms discussed in the text are 

labeled in black and pink, respectively. The water filled cavity serving as the putative 

formate binding site is marked with an asterisk.
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Figure 7. 
S-nitrosylation of N. gonnorrhoae GCYH-IB. A) iodoTMT-switch assay of freshly purified 

wild-type GCYH-IB, of the enzyme after treatment with 0.5 mM GSH, and of the 

Cys149Ala mutant. Top: Western blot of TMT-labeled proteins visualized using an anti-

TMT antibody. Bottom: Coomassie Brilliant Blue staining of the same gel showing equal 

loading in all lanes. B) Relative H2NTP producing activities of the enzyme samples in panel 

A as measured using the fluorescence assay. The error bars indicate the standard error of 

triplicate measurements.
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Figure 8. 
Comparison between GCYH-IB (left) and GCYH-IA (right) ternary complexes with zinc 

and 8-oxo-GTP showing interactions in the active site. Cα chains and active site residues are 

shown as ribbons and sticks, respectively. Subunits A, B and B′ are colored orange, cyan 

and magenta, respectively. Hydrogen bonds and Zinc ion interactions are shown as dashed 

yellow lines. A) The Zinc-binding site and common distorted tetrahedral coordination 

geometry. Two subunits contribute ligands to the metal site in the -IB enzyme, whereas in 

the -IA enzyme, all ligands originate from one subunit. B) The purine and ribose binding 

pocket showing similar interactions and mode of binding for the purine ring and rotation of 

the ribosyl group (the triphosphate tail was removed from this view for clarity). C) 

Hydrogen-bond interactions for the triphosphate moiety. One subunit contributes residues to 

stabilization of the triphosphate in the –IB enzyme, whereas in the –IA enzyme, all three 

interface subunits participate.
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Figure 9. 
Proposed mechanism for the GCYH-IB catalyzed reaction. A) The early hydrolytic steps in 

the reaction leading to the formation of formic acid and the intermediate 2,5-diamino-(6β)-

ribosylamino-4(3H)-pyrimidinone 5′-triphosphate (DRPT). B) The later steps in the reaction 

involving the conversion of DRPT to H2NTP.
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Figure 10. 
Proposed mechanism for the participation of the thionitroxide of Cys149 in catalysis.
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Table 1

Competitive inhibition constants for N. gonorrhoeae GCYH-IB with substrate analogs.

Inhibitor Ki (μM)a Ki/Km

2′-deoxyGTP 164.2 ± 3.1 24.3

7-deaza-GTP 45.7 ± 1.5 6.8

8-oxo-GTP 0.149 ± 0.0049 0.022

a
Values are presented with respect to their standard errors.
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Table 2

X-ray data collection parameters and structure refinement statistics.

Parameter Value Value

Data collection

Structure TRIS complex 8-oxo-GTP complex

Beamline ALS-5.0.1 ALS-5.0.1

Space group C 2 2 21 C 2 2 21

Unit cell (Å) 92.71, 100.56, 114.02 91.88, 100.56, 115.04

Resolution (Å) 68.16-1.9 (1.95-1.9) 67.83-2.77 (2.90-2.77)

Wavelength (Å) 0.9774 0.9774

Unique Reflections 41,799 (2,2068) 13,898 (1,297)

Completeness (%)a 99.2 (91.6) 99.7 (96.8)

Redundancy 4.4 (2.7) 8.4 (6.0)

Rsym b 0.053 (0.45) 0.076 (0.67)

 Average I/σ(I) 36.4 (2.1) 16.4 (1.2)

Refinement statistics

Resolution range (Å) 68.1-1.9 67.8-2.8

Rcrsyt c 0.172 0.19

Rfree
d 0.208 0.25

R.m.s. deviation from ideality

Bond length (Å) 0.019 0.010

 Bond angle (°) 1.89 1.49

Average B factor (Å2) 42.4 61.6

Ramachandran plot:

Preferred (%) 94.4 90.8

Allowed (%) 5.6 6.8

Outlier (%) 0.0 2.4

a
Values in parentheses are for the highest-resolution shell.

b
Rsym = Σ|Iobs − <I>|/Σ Iobs.

c
Crystallographic R-factor = Σ||Fobs| − |Fcalc||/Σ|Fobs|.

d
Rfree is monitored with 5% of the reflections excluded from the refinement.
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Table 3

Relative catalytic activities (%) of GCYH-IB mutants.

Protein Radiochemicala UV-visa

Wild-type 100 100

E152A 24.7 21.4

E243A 0.36 0.37

C149A 11.0 NAb

C149S 17 2.7

H246A 2.0 0.74

H246D 72 3.0

H246Q 67 2.4

H246N 24 NA

H246K 5.0 NA

a
Activity reflects the relative initial velocities determined via the radiochemical and UV-vis time course assays, which quantify the formation of 

[14C]-HCO2H and H2NTP, respectively. Standard errors for the initial velocity measurements calculated from the radiochemical and UV-vis data 

varied from 2-8% and 2.5-10%, respectively.

b
NA indicates that no activity was detected. Detection limits were 0.25% of wild-type activity.
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