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Abstract

Phosphorylation of the C-terminal domain of RNA polymerase II controls the co-transcriptional 

assembly of RNA processing and transcription factors. Recruitment relies on conserved CTD-

interacting domains that recognize different CTD phosphoisoforms during the transcription cycle, 

but the molecular basis for their specificity remains unclear. We show that the CTD-interacting 

domains of two transcription termination factors, Rtt103 and Pcf11, achieve high affinity and 

specificity both by specifically recognizing the phosphorylated CTD and by cooperatively binding 

to neighboring CTD repeats. Single amino acid mutations at the protein-protein interface abolish 

cooperativity and affect recruitment at the 3′-end processing site in vivo. We suggest that this 

cooperativity provides a signal-response mechanism to ensure that its action is confined only to 

proper polyadenylation sites where Serine 2 phosphorylation density is highest.
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Introduction

Synthesis of mature mRNA by RNA polymerase II (Pol II) requires the mRNA to be 

processed in a series of reactions that occur concomitantly with transcription1. These 

processes are physically linked to the transcribing polymerase by the C-terminal domain 

(CTD) of the largest subunit of Pol II2,3. The CTD promotes efficient RNA maturation by 

raising the local concentration of processing complexes near the nascent transcript; by 

kinetically coupling the rate of assembly of RNAprotein complexes with the rate of 

transcription4,5; and by allosterically regulating the activity of processing complexes6,7,8.

The CTD contains 26 (in yeast) to 52 (in human) heptad peptide repeats of sequence: Y1-S2-

P3-T4-S5-P6-S7 (ref. 9). Residues Ser2, Ser5, and Ser7 are dynamically phosphorylated and 

dephosphorylated by specific kinases and phosphatases during the transcription cycle10. 

Changes in the CTD phosphorylation pattern during transcription are both temporally and 

functionally coupled to the recruitment and activation of RNA processing complexes11. At 

the promoter, the Pol II CTD is unphosphorylated11. Coincident with early initiation, the 

CTD becomes phosphorylated at Ser5 (Ser5P), which promotes recruitment and activation 

of the 5′-capping enzymes6,12,13. As Pol II progresses into the elongation phase, levels of 

Ser2 phosphorylation (Ser2P) increase while Ser5P levels decrease11. Near the 3′-end of 

genes, Ser2P predominates leading to increased recruitment of the protein complexes 

responsible for cleavage and polyadenylation14,15. Phosphorylation of Ser7 has been 

recently linked to termination events for the small nuclear snRNA genes16-18.

The functional unit of the CTD is thought to consist of two consecutive heptad peptide 

sequences19 and each CTD-interacting domain (CID) from different transcription factors 

appears to have a preferred phosphoepitope20-23. Several structures of CIDs bound to 

diheptad CTD peptides revealed common themes for recognition of the CTD22,24; 

however, the molecular details for how the domain achieves specificity for a particular 

phosphoepitope remain elusive because all CIDs bind the CTD with a conserved binding 

surface (Fig. 1a).

To understand how the phosphorylation state of the CTD is recognized specifically by 

mRNA transcription termination factors, we measured the binding affinities of the CIDs of 

S. cerevisiae Pcf11 and Rtt103 for an exhaustive set of CTD peptides containing all possible 

Ser2 and Ser5 phosphorylation states. We were surprised to observe that Pcf11 binds to Ser2 

phosphorylated diheptad CTD peptides much more weakly than Rtt103 and with little 

preference over other phosphoisoforms, because Pcf11 plays a particularly critical function 

in transcription termination21,25-27 and its concentration is sharply peaked near the 3′-end 

of genes where the CTD is primarily phosphorylated at Ser2 (ref. 28). However, when 

Rtt103-CID and Pcf11-CID were presented with longer CTD mimics containing four heptad 

peptide repeats, we observed stronger binding affinity to the CTD and evidence for 

cooperativity between adjacent CID molecules on these longer CTD mimics. By mutating 

the observed cooperative protein-protein interaction sites, we were able to demonstrate that 

protein-protein interactions between CIDs along the CTD are important for the recruitment 

of these proteins to the 3′ processing site, particularly for Rtt103-CID. Several lines of 
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evidence suggest cooperative interactions may be important for recruitment of Pcf11 as well, 

but additional interactions with other components of the cleavage factor Ia (CFIa) complex 

are also likely to aid Pcf11 recruitment to the 3′ processing site making this mechanism less 

prominent. Overall, our data indicate that the ability to cooperatively bind to the Ser2 CTD 

provides an additional effective molecular mechanism to sharply regulate recruitment to the 

CTD only near 3′-end processing sites of genes, where a critical density of Ser2 CTD 

phosphorylation sites occur, and to suppress premature termination at cryptic sites.

Results

Rtt103 and Pcf11 recognize CTD phosphoisoforms differently

To investigate the molecular basis for Pol II CTD specificity, we compared the affinity of 

Pcf11-CID and Rtt103-CID for an exhaustive panel of CTD phosphoisoforms. We initially 

probed the binding affinity of these two proteins against a library of synthetic diheptad CTD 

peptides (Fig. 1b) using two independent assays, fluorescence anisotropy (FA) and NMR. 

Representative binding curves generated using a competitive fluorescence anisotropy 

titration are shown in Figure 2a and b. Changes in NMR chemical shift were plotted against 

the concentration of added CTD peptide for every resonance exhibiting significant chemical 

shift changes upon peptide addition (Fig. 2c, d). The average value of these chemical shift 

changes for each CTD peptide with Pcf11-CID and Rtt103-CID is given in Table 1 next to 

the data generated by FA experiments (see Supplementary Methods for a detailed 

description).

The FA and NMR data consistently demonstrate that Rtt103-CID displays higher affinity for 

Ser2P CTD peptides compared to the unphosphorylated CTD or to any other 

phosphoisoform (Table 1). For example, it binds to peptides having Ser2P in both repeats 

with an approximate increase by a factor of 100 in affinity over unphosphorylated CTD. 

Rtt103-CID also discriminates Ser2P against Ser5P peptides, showing an increase by a 

factor of 20-30 in affinity for Ser2P peptides, and an increase by a factor of 5-10 for a 

peptide with Ser2P, Ser5P in both repeats. Pcf11-CID binds to all peptides much more 

weakly than Rtt103-CID, and requires Ser2P for sub-millimolar binding (Table 1). It also 

discriminates less effectively than Rtt103-CID between Ser2P and unphosphorylated CTD 

peptides, with a difference of only a factor of 10, compared to a factor of 100 for Rtt103-

CID.

Rtt103-CID–CTD structure reveals Ser2P CTD specificity

In order to understand why Rtt103 displays much higher affinity and specificity for Ser2P 

CTD compared to Pcf11, we determined the structure of the CTD interacting domain from 

yeast Rtt103 (residues 1-131) both free and bound to a Ser2P CTD peptide (Fig. 3 & 

Supplementary Fig. 1 online). As expected from the sequence conservation, the Rtt103-CID 

is very similar to the structures of previously solved CIDs with a 1.9 Å Cα RMSD to Pcf11-

CID, 2.2 Å Cα RMSD to the SCAF8-CID, and 2.4 Å Cα RMSD to Nrd1-CID over the 

entire length of the polypeptide chain (Fig. 3b). The primary differences between the Pcf11-

CID and the Rtt103-CID are the presence of an additional turn in helix 4 and the much 

shorter loop connecting helix 7 and 8 in Rtt103-CID. The SCAF8 and Nrd1 CIDs share with 
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Rtt103-CID the extension of helix 4 and the short loop between helices 7 and 8, but they 

differ in the loop connecting helices 1 and 2 due to the presence an additional 310-helix in 

the SCAF8-CID and an additional turn of helix 1 in the Nrd1-CID which is not observed in 

Rtt103-CID or Pcf11-CID (Fig. 3b).

The structure of Rtt103-CID was also determined bound to a diheptad CTD peptide 

phosphorylated at both Ser2 positions, by combining experimental NMR restraints with 

molecular docking routines in HADDOCK (see Methods). The lowest-energy docked 

structure of Rtt103-CID bound to the Ser2P CTD (Fig. 3c) shows that the peptide binds 

along helices 2, 4, and 7 of the Rtt103-CID similarly to previously determined CTD–CID 

structures. As seen in other CID–CTD complexes, the peptide adopts a β-turn conformation 

formed by Ser2bP, Pro3b, Thr4b, and Ser5b22,24. The structure of the Rtt103-CID complex 

displays a core set of conserved residues responsible for the recognition of the CTD β-turn, 

primarily through interactions with Tyr1b and Pro3b in the second CTD repeat (Fig. 1a, 3d). 

In the Rtt103-CID structure, Tyr1b makes hydrophobic contacts to Ile22, stacks against the 

aromatic ring of Tyr62, and hydrogen bonds to the side chain carboxyl of Asn65 to the side 

chain hydroxyl group of Tyr1b (Fig. 3d, Supplementary Fig. 2 online). Asn65 is occupied by 

a conserved aspartate in all other CIDs that have been characterized structurally, yet this 

residue makes an equivalent hydrogen bond interaction to the phenolic tyrosine hydroxyl 

group on the CTD. Pro3b is recognized in a hydrophobic pocket formed by residues Tyr62, 

Val109, Ile112, and Leu113 (Fig. 3d, Supplementary Fig. 3 online). With the exception of 

Asn65, these residues are generally conserved across CIDs (Fig. 1a) and make similar 

contacts in both the SCAF8 and Pcf11-CID structures (Supplementary Fig. 2 online). The 

CTD β-turn conformation is further stabilized by intra-molecular hydrogen bonding that 

occurs between the hydroxyl group of Thr4b and a phosphate oxygen in Ser2bP and by two 

hydrogen bonds between the backbone amides of Thr4b and Ser5b within repeat 2 to Ser2bP 

(Fig. 4a).

The structure of Rtt103–CTD complex clearly shows that the β-turn in the second CTD 

heptad peptide repeat provides the majority of intermolecular contacts. However, our 

binding data (Table 1) suggest that weak interactions with the phosphoserine within repeat 1 

increase affinity by a factor of 3 for Rtt103-CID arguing for additional weak contacts 

outside the second repeat. In contrast, our Pcf11-CID binding affinities are unaffected by the 

Ser2a phosphorylation state, suggesting this protein does not contact the first phosphoserine 

at all.

Rtt103-CID forms a key salt-bridge interaction with the Ser2bP phosphate that is absent in 

the Pcf11–CTD complex. Arg108 in helix 7 of Rtt103-CID (Fig. 4a) consistently shows 

greater than average chemical shift changes in all of the peptides tested, while the 

corresponding residue in Pcf11-CID, Asn107, does not. In the structure of Rtt103-CID 

bound to the Ser2 phosphorylated peptide, Arg108 is within hydrogen bonding distance of 

the Ser2 phosphate and primed to stabilize the hydrogen bond between the CTD Thr4b 

hydroxyl and the Ser2bP phosphate oxygen (Fig. 4a). Additionally, the close proximity of 

the positively charged Arg108 guanidinium group to the negatively charged phosphate leads 

to a salt bridge not observed in the Pcf11-CID crystal structure.
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One mutation enhances Pcf11's affinity for Ser2P CTD

A clear difference in the Rtt103–CTD complex compared to Pcf11–CTD complex is the 

direct interaction of an arginine side chain (Arg108) with the CTD Ser2bP phosphate. Thus, 

we mutated Pcf11-CID to have an arginine in place of Asn107 and Rtt103-CID to have an 

asparagine in place of Arg108, and then determined the binding affinities of each mutant. 

For Rtt103-CID, the R108N mutation reduced the affinity for the Ser2abP CTD to 

approximately 100 μM, as determined by FA, which is similar to the affinity of wild type 

Pcf11-CID for the Ser2abP CTD peptide (Fig. 4b). The Pcf11-CID (N107R) mutant was 

more difficult to study by FA because the protein aggregates as its concentration is 

increased. Thus, we measured its affinity by NMR, because this technique allowed the 

protein concentration to be kept constant, below levels where aggregation occurs, and the 

peptide was titrated instead. The Pcf11-CID (N107R) mutant had an affinity of 24 μM (Fig. 

4b) for the diheptad peptide with both Ser2 residues phosphorylated, which is nearly 

identical to the wild-type Rtt103-CID affinity for the same peptide. These results strongly 

suggest that the difference in affinity for Ser2P CTD peptides between Rtt103-CID and 

Pcf11-CID is due to the presence of Arg108, and that a single amino acid change reverses 

the binding properties of these two proteins.

To test the effect of these mutants in vivo, we used chromatin immunoprecipitation (ChIP) to 

compare 3′-end recruitment of wild-type proteins with the Rtt103 (R108N) and Pcf11 

(N107R) mutant proteins. Replacement of wild type TAP-tagged Rtt103 with the tagged 

Rtt103 (R108N) mutant did not cause any notable growth differences or changes in 

expression level (not shown). This is not surprising given that the RTT103 gene is not 

essential for viability. However, 3′-end recruitment of the mutant was significantly reduced 

(by a factor of 8 at the PMA1 gene and by a factor of 5 at ADH1) (Fig. 4c and 

Supplementary Fig. 4a online). At the same time, 3′-end recruitment for the Pcf11 (N107R) 

mutant significantly increased (greater than a factor of 2 at the PMA1 and ADH1 genes), 

compared to the wild type Pcf11-TAP (Fig. 4d and Supplementary Fig. 4b online). An 

untagged Pcf11 (N107R) strain showed no obvious growth defect (not shown). However, 

the TAP tagged mutant could not support viability, despite being expressed at levels 

indistinguishable from the wild-type protein (data not shown), indicating that the Pcf11 

(N107R) mutant is partially defective in vivo. Accordingly, the Pcf11-TAP ChIP 

experiments were done in the presence of an untagged wild-type Pcf11 protein to rule out 

any indirect effects. When normalizing the results for the Pcf11 and Rtt103 mutants to 

account for differences in Pol II levels, we observe a similar pattern of recruitment as for the 

un-normalized data (Supplementary Fig. 5 online). The results of these experiments 

demonstrate that direct recognition of the Ser2 phosphate by an arginine residue in the CID 

affects the recruitment of Pcf11 and Rtt103 to 3′-end processing sites. However, we found 

no evidence for a termination defect for either mutant, since we only observed small effects 

on read through termination (data not shown).

Multiple CTD repeats enable cooperative CID–CID interactions

We were surprised by the observation that the essential termination factor Pcf11-CID does 

not share Rtt103-CID's ability to bind strongly to Ser2P CTD peptides and to discriminate 
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between the Ser2P CTD and other phosphoisoforms. We reasoned that the repeated nature 

of the CTD might be able to influence recruitment of these proteins.

In order to explore the possibility of cooperative binding to the CTD, we repeated our 

titrations with longer peptides containing four instead of two heptad peptide repeats and 

performed NMR and fluorescence anisotropy measurements with both Rtt103-CID and 

Pcf11-CID (Fig. 5a). The fluorescence anisotropy results for both CIDs are shown in Table 

2. The data for both proteins with the longer peptides were fit using a 2:1 binding model 

where Kd1 ≠ Kd2. We observed one binding event tighter than the binding of the original 2-

repeat CTD peptides, and a second binding event, Kd2, with affinity similar to that observed 

with 2-repeat peptides (compare Table 1 and Table 2).

To assess whether these effects are simply due to avidity (the presence of multiple 

neighboring binding sites) or if instead this 2:1 CID–CTD complex behaves as a single 

cooperative unit held together by proteinprotein interactions, we used NMR relaxation 

measurements to estimate the overall rotational correlation times of the various CID–CTD 

complexes. If the two CIDs were cooperatively associated with the 4-heptad repeat CTD, we 

would expect an overall tumbling rate consistent with a single complex of approximately 30 

kDa. In contrast, the independent, non-cooperative association of two CID monomers with 

the same 4-repeat peptide would produce tumbling rates comparable to those observed for 

the 1:1 complex of about 16 kDa formed with a diheptad repeat CTD peptide. For the free 

Rtt103-CID, we measured the rotational correlation time (τc=10 ns) expected for a 16-kDa 

protein. This rate increases to τc=12 ns for Rtt103-CID bound to a 2-repeat Ser2abP peptide, 

consistent with the slight increase in molecular weight. For Rtt103-CID bound to a 4-repeat 

Ser2P peptide, we observe a much larger increase to τc=16 ns, consistent with a single 

cooperative complex of two proteins bound to the peptide. For Pcf11-CID we see a 50 % 

increase in the rotational correlation time with the longer peptides, similar to what is 

observed for Rtt103-CID, but accurate measurements of the rotational correlation times 

could not be obtained because the Pcf11-CID partially dimerizes at the concentrations used 

for NMR, as determined by analytical ultracentrifugation (data not shown). These results 

suggest that when two CID molecules are bound to the four heptad repeat CTD peptide, this 

complex tumbles as a single complex held together by proteinprotein interactions, and not as 

two independent domains tethered to the CTD and tumbling independently of each other.

To identify regions of the Rtt103-CID structure involved in the proteinprotein interactions, 

we compared the NMR chemical shifts of Rtt103-CID bound to two or four heptad repeat 

CTD peptides. We identified several residues within helix 7 that show significant chemical 

shift perturbations in the presence of the four heptad repeat peptide but not with the two-

repeat peptide (Fig. 5b). These are residues Glu115, Arg116 and Asn117 near the carboxyl 

terminus of helix 7 (Fig. 5c) and Asp17, located in the loop connecting helix 1 and helix 2. 

Based on this observation, we mutated residue Glu115 to arginine within the Rtt103-CID 

and then tested its ability to bind to the four heptad repeat Ser2P peptide using fluorescence 

anisotropy. Consistent with the structural analysis, the fluorescence anisotropy data for the 

Rtt103 E115R mutant could no longer be reliably fit by a 2:1 binding model (Supplementary 

Fig. 6a online). Instead, it was better fit using a 1:1 binding model. To confirm a 1:1 

stoichiometry, we repeated our NMR relaxation experiment with this mutant bound to a four 
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heptad repeat Ser2P CTD peptide. The relaxation data demonstrated that the Rtt103-CID 

(E115R) mutant behaves similar to the 1:1 Rtt103-CID complex bound to the diheptad 

repeat CTD peptide, giving a rotational correlation time of 13.3 ns. In the CTD–Rtt103-CID 

complex, Glu115 points away from the CTD binding site and mutation to arginine has little 

effect on the affinity of Rtt103-CID for the first binding event (Table 2); this mutation only 

affects binding of a second Rtt103-CID molecule to the CTD. Thus, this single amino acid 

change appears to directly affect binding of a second Rtt103-CID molecule to the CTD 

peptide without substantially altering the affinity of the first binding event or the structure of 

the Rtt103-CID, as judged by small changes in the 15N-HSQC (data not shown). This result 

strongly suggests that we are observing a cooperative interaction between neighboring 

Rtt103-CIDs templated by the CTD.

To assess the generality of this observation, we tested mutants in the corresponding region 

of the Pcf11-CID. We mutated Asp117 to alanine or lysine in the loop connecting helices 7 

and 8 because this region is involved in crystal contacts in the structure of Pcf11-CID, and 

tested recognition of the four heptad repeat Ser2P CTD using fluorescence anisotropy (Table 

2). Mutation of D117A resulted in decreased affinity for the second binding event, but the 

effect is not as dramatic as observed for the glutamate to arginine mutation in Rtt103-CID 

and the data can still be reliably fit with a 2:1 binding model. Mutation of D117K results in 

affinity similar to the wild type Pcf11-CID.

Finally, we tested binding of wild type Pcf11-CID to a four heptad repeat peptide where the 

two amino terminal heptads have Ser2P and the two carboxyl terminal heptads are 

unphosphorylated (Fig. 5a). With this peptide, we observe that the Pcf11-CID binds with 

wild type affinity for the first repeat, but has substantially weaker affinity for the second 

repeat; its binding is best fit using 1:1 stoichiometry (Supplementary Fig 6b online). Thus, it 

appears that for the Pcf11-CID, cooperative binding of a second molecule to the longer CTD 

peptides requires Ser2P on adjacent diheptad peptide units.

In order to establish the physiological significance of these findings, we used ChIP to 

compare the recruitment of Pcf11 (D117A) and Rtt103 (E115R) with wild type proteins. 

The ChIP results clearly show a strong (~20-50 %) reduction in recruitment of the Rtt103 

(E115R) mutant to the 3′-end of the PMA1 and ADH1 genes (Fig. 5d). Pcf11 (D117A) also 

shows reduced recruitment at the 3′-end processing site (Fig. 5e) but this effect is less 

dramatic than the observed reduction for Rtt103 (E115R) (~20 % for the PMA1 and ADH1 

genes), consistent with the less dramatic loss of affinity observed for this mutant. Expression 

levels remain unchanged compared to wild type proteins for both point mutants (not shown).

Discussion

Co-transcriptional RNA processing depends on the precisely-timed recruitment of 

processing factors to the elongating transcript, which is facilitated by recognition of specific 

CTD phosphoisoforms through specialized CTD binding domains29. Changes in CTD 

phosphorylation during transcription generate a ‘CTD code’ that can be read by these 

protein domains30. This ‘thermodynamic’ model of factor recruitment assumes that CTD-

binding domains have sufficient affinity and selectivity to bind to and discriminate between 
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different CTD states. However, when we compared binding of Rtt103-CID and Pcf11-CID 

to peptides containing diheptad repeats (several studies have suggested that the CTD 

functional unit is composed of pairs of heptad repeats19) phosphorylated at Ser2 and/or Ser5 

in all possible combinations (Fig. 1b), we observed that the Pcf11-CID has only modest 

preference for CTD peptides phosphorylated at Ser2 (Table 1), consistent with previous 

results31,32. Given that the Pcf11-CID is critically important in transcription termination for 

mRNA-coding genes23, and that Pcf11 is sharply concentrated near the 3′-end of such 

genes, we expected, instead, that Pcf11 would bind specifically and with high affinity to the 

Ser2P form of the CTD that is predominant at or near poly(A) processing sites14.

Examination of the structures of Rtt103-CID and Pcf11-CID bound to the Ser2P CTD 

indicated that the differing affinities are likely due to a direct contact with the Ser2 

phosphate by the Rtt103-CID mediated by Arg108 (Fig. 4a). By mutating Pcf11-CID 

Asn107 to arginine and correspondingly mutating Arg108 in Rtt103-CID to asparagine, we 

essentially reversed the relative affinities of Rtt103-CID and Pcf11-CID for the Ser2P CTD 

(Fig. 4b). The importance of this direct contact is further corroborated in the SCAF8-CID 

where the corresponding residue, Arg112, makes direct contacts to the Ser2 phosphate as 

well, and mutation to a threonine residue shows a reduction by a factor of 4 in affinity22. 

Supporting the functional relevance of the in vitro data, this single amino acid change in 

Rtt103 and Pcf11 resulted in an altered recruitment to the 3′-end processing site in vivo (Fig. 

4c, d).

These results surprised us; during evolution, this single amino acid could have been readily 

changed to provide Pcf11 with increased specificity for Ser2P CTD. However, when we 

tested for termination defects with the Pcf11 (N107R) and Rtt103 (R108N) mutants we 

could not find conclusive evidence for a termination defect. We reasoned that perhaps these 

proteins also rely on additional clues (proteinprotein, proteinRNA interactions or the 

distance from the promoter) to identify a proper site to terminate mRNA transcription. One 

possibility was the untested suggestion that the CTD may facilitate cooperative 

proteinprotein interactions on neighboring repeats and thereby increase the specificity of 

these proteins for particular CTD phosphorylation patterns.

We observed that the four heptad repeat peptides could accommodate two CIDs (Table 2), 

and that these proteins behaved as a single complex in solution. Several observations 

suggested that protein-protein interactions occur between CIDs bound to the four heptad 

repeat CTD involving the loops connecting helices 1 and 2 as well as helix 7. Mutation of a 

single residue in helix 7 of Rtt103-CID dramatically altered the affinity of the second CID 

molecule to the four heptad repeat CTD, to the point that cooperativity is lost. For Pcf11-

CID, mutation of Asp117 to alanine reduced binding of the second Pcf11-CID molecule in a 

manner consistent with the observed effect for the Rtt103-CID mutants, yet mutation of 

Asp117 to lysine behaved similarly to wild type in vitro. Since this loop of Pcf11 is quite 

flexible31, it is possible that mutation to alanine results in a loop conformation that hinders 

binding of the second CID while a lysine at the same position results in a conformation 

where the second CID can still bind. Building from these in vitro results, we tested the 

Rtt103-CID and Pcf11-CID mutants that severely reduced binding of the second CID 

molecule in vivo, and observed reduced recruitment to the 3′ processing site of several genes 
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(Fig. 5d, e), confirming that the observed cooperativity in vitro is important for factor 

recruitment in vivo. For the Rtt103 mutants, we observed a significant decrease in protein 

localization near the 3′-end of genes, which demonstrates the importance of cooperativity 

for its recruitment. For the Pcf11 mutant, the decrease is significant but not as marked as for 

Rtt103. Perhaps recruitment of Pcf11 is less dependent on cooperative interactions with the 

CTD because, as a stable component of CFIa, it relies on multiple proteinprotein and 

proteinRNA interactions to provide robustness to recruitment at the 3′-end of genes. 

However, these additional interactions do not fully compensate for the loss of a cooperative 

interaction with the CTD, since recruitment levels are still reduced significantly compared to 

wild type. It should also be noted that CFIa may be a dimer23,33,34, thus more than one 

Pcf11 molecule may be present at the 3′ processing site which could facilitate cooperative 

interactions with the CTD. Thus, it appears that cooperativity mediated by direct 

proteinprotein interactions is an important mechanism for recruitment of Rtt103, and to a 

lesser extent Pcf11, to the 3′-ends of genes.

The phosphorylation state of the CTD is a sensor indicating the position of Pol II within a 

gene14,20,30,35. Two competing transcription termination mechanisms use this positional 

cue to decide which termination pathway to use. For the Nrd1-dependent pathway of 

snoRNA-coding genes, high Ser5P density within the CTD predominant at short distances 

from the transcription start recruits the Nrd1-Nab3-Sen1 complex to act on short 

RNAs20,35. Near poly(A) sites of mRNA-coding genes, high Ser2P density provides a 

mechanism to tightly regulate binding of Rtt103 and Pcf11 so that their recruitment occurs 

only when the polymerase reaches proper mRNA termination sites. Our results suggest that 

the increasing density of Ser2P heptad peptide repeats facilitate cooperative proteinprotein 

interactions between neighboring CIDs (Fig. 6). In this model, cooperative binding to 

neighboring repeats may allow Pcf11 and Rtt103 to respond sigmoidally to changes in the 

CTD phosphorylation state, providing a potent signal-response mechanism that results in the 

tight regulation of transcription termination.

Methods

Protein samples were prepared as described in the Supplementary Methods, and all peptides 

purchased from AnaSpec (San Jose, CA). NMR experiments on CIDs and their complexes 

were recorded 15N/13C-labeled samples at ~1 mM protein concentration on various 

spectrometers at fields of 500-900 Mhz, equipped with cryoprobes, at the University of 

Washington and at the Environmental Molecular Sciences Laboratory (EMSL) at Pacifc 

Northwest National Laboratory (PNNL). Backbone and side-chain resonance assignments 

were obtained from standard heteronuclear NMR experiments37; while NOE data were 

obtained using 15N- and 13C- edited three-dimensional spectra. Intermolecular NOEs 

between Rtt103 and the CTD peptide were observed with 2D-filtered-edited NOESY 

experiments38. Relaxation experiments were collected for the free protein, as well as for 

Rtt103 and Pcf11 bound to both 2- and 4-repeat Ser2 phosphorylated CTD peptides as 

described39. NOE assignments and structure calculation for both free Rtt103-CID and for 

Rtt103-CID bound to the CTD were performed using CYANA2.140. The structure of 

Rtt103-CID bound to the CTD was determined using multiple samples, as described in the 

Supplementary Methods. For the Rtt103-CID complex, docking with HADDOCK41 was 
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used starting from structures generated using CYANA2.1 and CNS42. The strength of the 

interaction between Pcf11-CID and Rtt103-CID with various CTD phosphoisoforms was 

measured using both NMR titrations, and fluorescence anisotropy assays using N-terminally 

5,6-carboxyfluorescein (FAM) labeled CTD peptides, using standard methods as detailed in 

the Supplementary Methods. ChIP assays of TAP-tagged Rtt103 and Pcf11 were performed 

using IgG sepharose (GE Healthcare) as previously described28. PMA1 and ADH1 primers 

used in PCR are as listed in Kim et al43. ChIP assays for 3xHA tagged Pcf11 or Rtt103 

were carried out as previously described28. Yeast strains and plasmid construction are 

provided in the Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sequence alignment of CIDs and diheptad CTD phosphopeptides used in this study. (a) 

Sequence alignment of yeast Rtt103, Pcf11, Nrd1, and human SCAF8 and SCAF4 CIDs. 

Red represents identical residues, while purple identifies conserved amino acids. The 

secondary structure of Rtt103 is shown above the figure. Blue dots identify Rtt103 residues 

that bind to the CTD in our structure. The cyan box shows the positions of Arg108 and 

Asn107 in Rtt103 and Pcf11, respectively, as well as the corresponding residues in the Nrd1 

and the SCAF CIDs. (b) Schematic diagram of the diheptad CTD peptides used in this 

study; the sequence is indicated at the top and the sites of serine phosphorylation are shown 

as orange circles.
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Figure 2. 
Binding of Rtt103 and Pcf11 to diheptad CTD phosphopeptides monitored by fluorescence 

anisotropy and NMR. (a) Rtt103 titrated into 2 μM FAM-labeled Ser2P-CTD diheptad 

repeat peptide (●) which competes against 25 μM Ser2P-CTD diheptad repeat peptides (○) 

50 μM Ser5P- CTD diheptad repeat peptides (▽) and 50 μM Ser2P and Ser5P-CTD diheptad 

repeat peptides (◇) for binding. (b) Titration of Pcf11, as described in (a) except that 300 

μM of unlabeled peptides were used. (c) Superposition of 1H-15N HSQC spectra of Rtt103 

at several points in the titration with the doubly Ser2 phosphorylated CTD peptide showing 

changes in chemical shift upon peptide binding. The inset zooms into part of the spectrum to 

better illustrate that binding occurs in the so-called fast exchange NMR regime, indicative of 

Kd greater than about 1-10 μM. (d) HSQC perturbations were used to calculate binding 

affinities on a residue-by-residue basis for all amino acids displaying significant chemical 

shift changes upon peptide binding by plotting the change in chemical shift vs the peptide 

concentration and by fitting the data to equation 1 (Supplementary Methods).
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Figure 3. 
Structure of Rtt103-CID and recognition of the Ser2-phosphorylated CTD. (a) Ensemble of 

the 20 lowest energy structures of the free Rtt103-CID as determined by NMR. (b) 

Superposition of the four existing CID structures: Rtt103 (green, this study), Pcf11 (cyan)24, 

SCAF8 (pink)22 and Nrd1 (grey)20. All four structures are very similar, but Rtt103, SCAF8 

and Nrd1 have an additional turn in helix 4 and shorter loops between helices 7 and 8. 

SCAF8 and Nrd1 both have extended loops between helices 1 and 2 compared to Pcf11 and 

Rtt103. (c) Structure of Rtt103 bound to the Ser2 phosphorylated CTD (yellow). The CTD 

peptide binds in a β-turn conformation along helices 2, 4 and 7. (d) Close-up view of the 

recognition of the phosphorylated CTD by Rtt103 highlighting residues that directly contact 

the peptide. This and all subsequent structural figures were generated with PyMOL36.
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Figure 4. 
CTD specificity can be altered by a single amino acid change. (a) Arg108 in Rtt103 makes 

several direct contacts to the CTD Ser2 phosphate; it is within hydrogen bonding distance of 

both the phosphoserine and the threonine residue in the CTD (dotted black lines). Several 

other hydrogen bonds (dotted black lines) are characteristic of the β-turn structure. (b) 

Affinities (± standard deviation) for wild type and mutant Rtt103 and Pcf11 CIDs 

determined by anisotropy and NMR, respectively, with the Ser2ab phosphorylated diheptade 

CTD peptide. (c) Recruitment of C-terminally TAP tagged Rtt103 and Rtt103 (R108N) to 

the highly transcribed PMA1 gene was monitored by ChIP assay. Immunoprecipitated DNA 

was amplified with PMA1 primers as diagrammed in the bottom panel. The top band is the 

PMA1-specific band, while the common lower band (marked by an asterisk) is an internal 

background control from a non-transcribed region on chromosome VI. The middle panel 

shows quantification of ChIP data, expressed as fold enrichment over the background. (d) 

Recruitment of wild type Pcf11 and Pcf11 (N107R) to PMA1 gene was also monitored by 

ChIP assay.
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Figure 5. 
Cooperative binding of the CID to phosphorylated CTD phosphoisoforms. (a) Schematic of 

the extended CTD phosphopeptides composed of four CTD heptad peptide repeats; 

phosphorylated serines are shown in orange circles. (b) Chemical shift perturbations (CSP) 

of Rtt103 with the four heptad repeat peptide phosphorylated at Ser2. Resonances that show 

increased CSPs with the four repeat peptides are shown in purple, while resonances that 

show changes with both 2 and 4 repeat peptides are in blue. (c) Residues showing chemical 

shift perturbations due to protein-protein interactions (purple) are primarily localized near 

the C-terminus of helix 7; coloring is the same as in (b). ChIP assays were carried out for the 

HA-tagged protein and Rpb3 from cells expressing (d) HA-tagged Rtt103 (WT) [YSB2537] 

or Rtt103 (E115R) [YSB2538], and (e) HA-tagged Pcf11 (WT) [YSB2535] or Pcf11 

(D117A) [YSB2536]. For quantitation, the fold enrichment of Pcf11 or Rtt103 proteins were 

normalized to that of Rpb3 protein, and the ratio of wild-type protein level over Rpb3 level 

was set to 100 %. Results are only shown for the polyA region where Rtt103 or Pcf11 

association is strongest (primer set 7 for PMA1 and 3 for ADH1). Error bars show standard 

deviation from three repeats of the experiment.
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Figure 6. 
Cooperative model of Pcf11 and Rtt103 recruitment. The density of Ser2-phosphorylated 

heptad repeats affects the location of transcription termination through cooperative 

recruitment of Pcf11 and Rtt103. At the polyA site, the density of Ser2-phosphorylation is 

highest15, allowing efficient recruitment of Pcf11 and Rtt103.
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Table 1

Affinities of Rtt103-CID and Pcf11-CID for diheptad repeat CTD peptides measured by NMR and 

fluorescence anisotropy for each of the diheptad repeat peptides tested (as identified in Figure 1b).

CTD Peptide
Rtt103 (μM) Pcf11 (μM)

NMR FA NMR FA

Unphosphorylated 1200 ± 300 > 1000 1500 ± 300 > 1000

Ser2aP-CTD 420 ± 70 N.A. 1400 ± 650 N.A.

Ser2bP-CTD 76 ± 16 N.A. 240 ± 60 N.A.

Ser2abP-CTD 15 ± 10 2.1 +0.1 160 ± 50 130 ± 35

Ser2abP/Ser5abP-CTD 41 ± 19 53 ± 10 630 ± 170 370 (+160/−110)

Ser5abP-CTD 600 ± 300 122 (+2/−3) 1200 ± 500 > 1000
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Table 2

FA data with four heptad repeat Ser2P CTD peptide. The data were fit using a 2:1 (protein:peptide) binding 

model. Kd1 is the dissociation constant for the first binding event and Kd2 is the dissociation constant for the 

second binding event. All units are μM unless otherwise indicated.

Protein Kd1 Kd2

wtRtt103-CID 3 (+1.1/−0.9) 20 (+16/−8)

Rtt103(E115R)-CID 1.8 (+1/−0.6) > 1 mM

wtPcf11-CID 50 (+30/−20) 140 (+230/−80)

Pcf11(D117A)-CID 40 (+5/−10) 430 (+1040/−220)

Pcf11(D117K)-CID 30 (+10/−6) 130 (+130/−60)
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