
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

Summer 8-8-2017 

Enhancing Value-Based Healthcare with Enhancing Value-Based Healthcare with 

Reconstructability Analysis: Predicting Risk for Hip Reconstructability Analysis: Predicting Risk for Hip 

and Knee Replacements and Knee Replacements 

Cecily Corrine Froemke 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Public Health Commons, Rehabilitation and Therapy Commons, and the Surgery Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Froemke, Cecily Corrine, "Enhancing Value-Based Healthcare with Reconstructability Analysis: Predicting 
Risk for Hip and Knee Replacements" (2017). Dissertations and Theses. Paper 3772. 
https://doi.org/10.15760/etd.5656 

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations 
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/738?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/749?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/706?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://doi.org/10.15760/etd.5656
mailto:pdxscholar@pdx.edu


 

 

 

Enhancing Value-Based Healthcare with Reconstructability Analysis: 

Predicting Risk for Hip and Knee Replacements 

 

 

 

by 

 

Cecily Corrine Froemke 

 

 

 

 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of 

 

 

 

 

Doctor of Philosophy 

in 

Systems Science 

 

 

 

 

Dissertation Committee: 

Martin Zwick, Chair 

Matthew Carlson 

Neal Wallace 

Carlos Crespo 

 

 

 

 

Portland State University 

2017 

  



 

 

 

 

 

 

 

 

 

 

 

© 2017 Cecily Corinne Froemke 

 



 

- i - 

Abstract 

Legislative reforms aimed at slowing growth of US healthcare costs are focused 

on achieving greater value, defined specifically as health outcomes achieved per dollar 

spent. To increase value while payments are diminishing and tied to individual outcomes, 

healthcare must improve at predicting risks and outcomes. 

One way to improve predictions is through better modeling methods. Current 

models are predominantly based on logistic regression (LR). This project applied 

Reconstructability Analysis (RA) to data on hip and knee replacement surgery, and 

considered whether RA could create useful models of outcomes, and whether these 

models could produce predictions complimentary to or even stronger than LR models. 

RA is a data mining method that searches for relations in data, especially non-

linear and higher ordinality relations, by decomposing the frequency distribution of the 

data into projections, several of which taken together define a model, which is then 

assessed for statistical significance. The predictive power of the model is expressed as the 

percent reduction of uncertainty (Shannon entropy) of the dependent variable (the DV) 

gained by knowing the values of the predictive independent variables (the IVs). 

Results showed that LR and RA gave the same results for equivalent models, and 

showed that exploratory RA provided better models than LR. Sixteen RA predictive 

models were then generated across the four DVs: complications, skilled nursing 

discharge, readmissions, and total cost. While the first three DVs are nominal, RA 

generated continuous predictions for cost by calculating expected values. Models 

included novel comorbidity variables and non-hypothesized interaction terms, and often 

resulted in substantial reductions in uncertainty.  
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Predictive variables consisted of both delivery system variables and binary patient 

comorbidity variables. Complications were predicted by the total number of patient 

comorbidities. Skilled nursing discharges were predicted both by patient-related factors 

and delivery system variables (location, surgeon volume), suggesting practice patterns 

influence utilization of skilled nursing facilities. Readmissions were not well predicted, 

suggesting the data used in this project lacks the right variables or that readmissions are 

simply unpredictable. Delivery system variables (surgeon, location, and surgeon volume) 

were found to be the predominant predictors of total cost. 

Risk ratios were generated as an additional measure of effect size. These risk 

ratios were used to classify the IV states of the models as indicating higher or lower risk 

of adverse outcomes. Some IV states showed nearly 25% of patients at increased risk, 

while other IV states showed over 75% of patients at decreased risk. In real time, such 

risk predictions could support clinical decision making and custom-tailored utilization of 

services. 

Future research might address the limitations of this project’s data and employ 

additional RA techniques and training-test splits. Implementation of predictive models is 

also discussed, with considerations for data supply lines, maintenance of models, 

organizational buy-in, and the acceptance of model output by clinical teams for use in 

real-time clinical practice. 

If outcomes and risk are adequately predicted, areas for potential improvement 

become clearer, and focused changes can be made to drive improvements in patient care. 

Better predictions, such as those resulting from the RA methodology, can thus support 

improvement in value—better outcomes at a lower cost. As reimbursement increasingly 



 

- iii - 

evolves into value-based programs, understanding the outcomes achieved, and 

customizing patient care to reduce unnecessary costs while improving outcomes, will be 

an active area for clinicians, healthcare administrators, researchers, and data scientists for 

many years to come. 
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Chapter 1.  Introduction 

Transitioning to Value and the Role of Predictive Analytics 

Healthcare in the United States is facing unprecedented challenges. The trajectory 

of spending in US healthcare costs is unsustainable. This has led to a national dialogue 

that is currently under way among the federal government, insurance payers, healthcare 

delivery systems, and patient advocates—all calling for substantial changes to the current 

system in order to improve the value of healthcare.  

One example where this challenge is clearly evident is in the field of orthopedics. 

The population in the United States that is age 65 and older is more active than in 

previous generations and expects to maintain a quality of life dependent on mobility. The 

demand for total joint replacement procedures is increasing. At the same time, Federal 

and state funding of Medicare and Medicaid services is in decline, and reimbursement 

rates are decreasing for these procedures.  

The Patient Protection and Affordable Care Act of 2010 has already resulted in 

significant changes in how Medicare pays providers. These payment reforms are 

designed to slow the growth in costs and push improvements in quality of healthcare 

delivery. The Centers for Medicare and Medicaid Services (CMS) has already 

implemented a mandatory bundled payment for hip and knee replacements, with other 

condition groups soon to follow. In 2015, the Medicare Access and CHIP 

Reauthorization Act (MACRA) was passed, which changes the way CMS pays 

physicians for Medicare covered patients and includes programs such as The Merit-based 

Incentive Payment System (MIPS) and Advanced Alternative Payment Models (APMs), 
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specifically tying payments to quality. In the last decade, the activation of healthcare 

reform is increasingly reflected in the policies and practices of both government and 

private health insurance payers and healthcare providers.  

Bundled payments, and other new models of reimbursement, are now charged 

with finding ways to assess physician performance and create payment systems that 

determine what physicians should be paid for what they actually do. These new payment 

models will simultaneously include increased financial risk for health systems, insist on 

better quality outcomes, and demand lower cost. Under traditional payment models, 

healthcare providers were paid per service provided, and the outcome of that service was 

not linked to payment. Under new payment models, payment is increasingly tied to 

performance based on outcomes.  

In fact, the dialogue among healthcare reform players has now focused on 

achieving value as the overarching goal of healthcare delivery. Value in healthcare has 

come to be specifically defined as the health outcomes achieved per dollar spent. The 

formula for value therefore places outcomes as the numerator and dollars spent as the 

denominator. A key driver of value is the aggregate set of services provided to a patient 

throughout an episode of care. The more focused and appropriate the services provided, 

given the unique patient factors, the more value can be achieved (Porter, 2010).  

In President Barack Obama’s 2015 State of the Union address, the President 

announced the Precision Medicine initiative, saying, “I want the country that eliminated 

polio and mapped the human genome to lead a new era of medicine—one that delivers 

the right treatment at the right time” (State of the Union Address, 2015). While precision 

medicine most frequently applies to the use of genomic level data, the term precision 
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delivery refers to the use of a patient’s electronic health record data to predict risk and 

tailor care to improve value. To increase value while payments are diminishing and tied 

to individual outcome quality, healthcare must improve at predicting risks and outcomes, 

and matching the right services to the right patient when needed.  

The time for precision delivery is now. With the advent of accountable 

care, the health care organizations that succeed will be those that deliver 

high value. Perhaps the most important step to improving value will be 

implementing clinical analytics in routine care. Organizations that 

adapt by integrating these tools may do better both clinically and 

financially going forward.  (Parikh, Kakad, & Bates, 2016).  

 

Some healthcare delivery system front runners are currently deploying predictive 

analytics in order to improve efficiency by tailoring the delivery of services to the 

individual patient. Delivery systems can focus costly resources on the higher-risk patient 

groups if patient risk is assessed in real time at the point of care. One way to improve 

predictions of risk is through better modeling methods. 

Historically, predictive methods used fall under the category of generalized linear 

modeling, and more specifically Regression Analysis. Regression Analysis methods, such 

as Logistic Regression, have been widely accepted as the default method of prediction 

and are still the predominant methodology in health outcomes research. More recently, 

machine learning and artificial intelligence are gaining popularity, particularly with real-

time analytics and risk prediction. Logistic Regression is broadly understood and has 

high “explainability,” thus allowing the clinicians clear insight into the mechanism of 

prediction. Artificial Intelligence (AI) methods, such as Neural Networks (NNs), may 

enhance predictions, but perhaps with a sacrifice of explainability. If a methodology is 
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both more predictive than LR and explainable, then this methodology will be worth 

considering. 

This project explores the possibility that there are other methods of predictive 

modeling that may be stronger than or at least complimentary to standard methods of 

prediction. Reconstructability Analysis (RA), which is the methodology that this study 

looks at, is a machine learning methodology developed in the systems science research 

community for finding relations in data, especially non-linear and higher ordinality 

relations. These relationships between the variables in the data can have high ordinality 

(involve many variables), and one need not impose any hypothetical relationship prior to 

RA. RA may perform as well as LR methods and may provide additional accuracy 

through detection of novel variables and interaction effects between independent 

variables. While LR can model interaction effects, in standard implementation of this 

method these interactions must be specified during model construction, usually based on 

empirical findings, and specific hypotheses of interaction tested. RA is truly exploratory 

in that no interactions need to be specified during model construction, but emerge 

through exploration. 

Reconstructability Analysis (RA) is a validated data mining method and has been 

used with success in other fields. It is relatively unknown, however, in health outcomes 

research. RA assesses hyper-graph structures either using set theoretic (SRA) or 

information theoretic (IRA) modeling. This study will use the information theoretic form 

IRA, which utilizes information theory to measure the uncertainty (entropy) in the output 

(dependent) variable(s), as a function of the known input (independent) variable(s). 
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The potential value of RA for the present study is threefold: 

 (1)  RA can play a confirmatory role. If RA results in similar findings as those 

arrived at through use of more commonly accepted methodologies (LR), then this 

confirmation of results increases the credibility of the research findings of the standard 

methodologies. 

(2)  RA can be used as a hypothesis generator, detecting variables that were not 

known a priori as strong predictors and then modeled using more standard regression 

analysis methods, therefore providing a complimentary and supportive approach. 

(3)  Further, RA might predict with better accuracy than LR. If this result is 

found, then RA is valuable as a stand-alone method that can replace LR in the creation 

of predictive risk models. 

Problem Domain 

Reform efforts are looking at joint replacement procedures as an area ripe for 

improvement in costs and outcomes because of the high cost, the high variation in 

outcomes, and the increasing demand for these procedures. This project presents 

condition specific models to predict outcomes that are important in hip and knee 

replacement. RA is used to look for predicting variables (including interaction effects) 

from a large set of patient comorbidities and delivery system variables on the following 

four dependent variables: Complication (inpatient), discharge to Skilled Nursing Facility 

(SNF), Readmission (90 day), and the continuous variable Total Cost (expected values 

are calculated for cost).  
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Research Objectives 

Within the specifics of the domain of hip and knee replacement surgery, this 

project aims to demonstrate that RA models are able to predict outcomes and provide 

additional insights that improve healthcare value, comparable to and beyond the 

capabilities of LR. 

Preliminary Research Objective: LR and RA Comparison 

Do RA and LR give the same results for equivalent models? 

Prior to exploratory modeling with Reconstructability Analysis, the first task is to 

demonstrate the validity of the data used in this project and the RA methodology. RA is 

validated by testing a logistic regression (LR)-generated model arrived at by a past study, 

using LR on this project’s data. If LR applied to this data approximately reproduces LR 

results reported in the literature, and if the results of RA applied to this data are similar to 

those from LR, then the RA and LR methods are comparable. Generating similar results 

using RA gives confidence in the use of RA for exploratory modeling.  

Does exploratory RA provide better or novel models compared to LR? 

It is possible that RA produces better models than models produced by LR. If RA 

generates stronger predictions, then RA is not only valuable as a method to confirm or 

augment LR, but as a stand-alone method that could replace LR in the creation of 

predictive risk models.  
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Main Research Objective: Find Predictive Models with RA 

What are the best RA models? 

The primary results of this project are a set of 16 predictive models. Each model 

provides a conditional probability distribution of the possible outcomes of four measures 

(DVs), given a set of comorbidities and delivery system variables (IVs). The models look 

not only at the probability distribution of outcomes given a single IV, or of multiple IVs 

taken individually, but also at the probability of outcomes given relationships between 

IVs, i.e., given complex interaction effects between the IVs and the DV. 

The exploratory phase of this project aims to detect predictive IVs and interaction 

effects among the IVs and each of the DVs. Relations between the IVs and the DV do not 

have to be specified up front, and thus their form does not need to be known or 

hypothesized. These relations can be discovered using RA. These interaction effects may 

offer better prediction than that of single IVs known from the current literature. 

Exploratory modeling with RA may even detect surprising predictive IVs. 
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 Chapter 2.  Review of Literature 

In this chapter, four areas of literature are described. The first body of literature is 

that of the healthcare context, and new payment models spurred by healthcare reform 

efforts aimed at increasing value by tying costs to outcomes. The second area concerns 

the assessment of risk for quality measurement and optimization of real-time patient care. 

This discussion of risk is enhanced by the third area of focus, where the literature 

surveyed looks at specific predictive models in the analysis of outcomes and, although 

much less common, the clinical care setting.  This literature shows that predictive models 

provide value, particularly condition/procedure-specific models.  A large body of 

literature exists for predictive modeling in adult cardiac surgery, but a much more limited 

body of literature exists for hip and knee replacement surgery. Of the studies that exist in 

hip and knee replacement surgery, none make use of data mining techniques to increase 

predictive ability. These studies use regression analysis methods with the most common 

approach being the logistic regression methodology. That being said, in the fourth main 

body of literature, data mining techniques are reviewed and the potential role for 

Reconstructability Analysis to add value as a methodology is highlighted. 

The Healthcare Context 

Costs in the US healthcare system have spiraled out of control, resulting in what 

is referred to as a healthcare crisis. This crisis is reflected not only in soaring costs, but 

also in lack of access to care and in variation in treatments and outcomes and many other 

issues (Fisher, 2003). National Health Expenditure Projects Americans will spend 

4.5 trillion dollars on healthcare by 2019 (Medicare, 2016). The US is an outlier in 
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healthcare spending, spending 40% more per capita then the next highest spending 

country (Lorenzoni, Belloni, & Sassi, 2014). This massive amount of spending has not 

resulted in better care. Glaring variations in services provided and outcomes have 

intensified efforts toward reforming the healthcare delivery system. In a system that has 

traditionally paid a fee for every service provided, current policy reform is essentially 

focused on removing the incentive to provide too much care by creating fixed payments, 

and guarding against poor care by incentivizing the delivery system on good performance 

based on quality (Doyle, Graves, & Gruber, 2015). In a seminal publication, Michael 

Porter captured the conflicting goals of stakeholders, including access to services, 

profitability, high quality, cost containment, safety, convenience, patient-centeredness, 

and satisfaction, and introduced the concept of value as the overarching goal to unite 

healthcare delivery (Porter, 2010). Arguing for value, Porter states “If value improves, 

patients, payers, providers, and suppliers can all benefit while the economic sustainability 

of the health care system increases” (Porter & Teisberg, 2006). 

Literature on healthcare reform shows the evolution toward value-based care over 

the last decade, through adoption of performance-based payment systems as a primary 

mechanism for the reduction of soaring healthcare costs and improvement in quality care  

(Nichols & O’Malley, 2006). The Patient Protection and Affordable Care Act (ACA) of 

2010 (“Patient Protection and Affordable Care Act of 2010,” 2010) has been a significant 

piece of legislation with myriad components and strategies. A central piece of this 

legislation provides for slowing growth in Medicare spending and promotes experiments 

in payment and delivery system reform (Oberlander, 2010). Under value-based payment 

systems, the fee-for-service payment system is retained but tied to efficiency and quality 
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by the delivery system. The transformation of healthcare is under way, with 30% of 

Medicare payments going through alternative payment models (APMs) (Obama, 2016). 

These APMs include bundled payments, where a single payment is reimbursed for all 

services falling within a pre-defined episode, or accountable care organizations (ACOs). 

According to CMS, an ACO is “an organization of health care practitioners that agrees to 

be accountable for the quality, cost, and overall care of Medicare beneficiaries who are 

enrolled in the traditional fee-for-service program who are assigned to it” (Centers for 

Medicare & Medicaid Services (CMS), HHS, 2011). 

One of the first specific clinical areas to face these reform efforts is hip and knee 

replacements. The demand for hip and knee replacements, coupled with the variation in 

cost and outcomes, has resulted in the first early bundled payment experiments, such as 

Bundled Payment for Care Improvement Initiative (BPCI) and now the first mandatory 

bundled payment for hip and knee replacement surgery by the Centers for Medicare and 

Medicaid Services (CMS). In the CMS Comprehensive Care for Joint Replacement (CJR) 

episode-based payment model, set target payments require hospitals, physicians, and 

post-acute care providers to coordinate in order to improve patient outcomes at an 

increasingly smaller target price (Centers for Medicare & Medicaid Services, 2015). 

Additionally, a large number of joint replacement commercial bundled contracts are in 

the marketplace today.  

Demand for total hip and knee replacement is expected to continue rapid growth 

in the next 10 years, largely due to the aging baby boomer population and the obesity 

epidemic (Fehring et al., 2010). One estimate places the total number of hip and knee 

replacements at over 4 million by 2030, an increase of 174% over 2007 volumes 
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(Kurtz S, 2007). Estimates place the prevalence of osteoarthritis, the disease causing total 

hip and knee replacement, at 18.2% by 2020 (Lawrence et al., 1998). Osteoarthritis 

increases with age (Pulido L, 2008) and “the higher life expectancy and the upcoming 

massive cohort from the ‘old baby boomers’ will lead to a higher number of joint 

arthroplasties being performed . . . it is hence plausible that a higher incidence of medical 

complications in this growing joint arthroplasty population will be observed” (p.139). 

The quality of elective total hip and total knee procedures is extremely varied (Tomek 

et al., 2012) and in fact, hip and knee replacements are among the procedures with the 

most varied payments. These variations in payment correspond in part to the fact that the 

profile of patient populations differ across regions and within regions by the fact that 

some hospitals receive larger burdens of higher-risk patients. Even after controlling for 

the differences between patient populations, there is still a large variation between 

payments for these procedures (Miller et al., 2011). The authors suggest that the 

unexplained remaining variation is possibly unwarranted, suggesting that there is room to 

improve. The literature shows a broad consensus that the medical system can perform 

better—providing good patient outcomes at a lower cost.  

Delivery systems contracted under bundled payments will have to deal with the 

issue of risk: what happens if the cost of care exceeds the set bundled price? In some 

bundle arrangements, the physician is a partner with the hospital on the gains, and in 

some scenarios also on the loss. A set bundled price therefore provides incentive to come 

in under the set fixed price as often as over it and therefore break even, or better yet, 

come in under the bundled price more often than not and therefore derive profit. 

Reducing costs alone will not solve the healthcare crisis, and achieving high quality 
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outcomes is an essential component of value. Porter states “Cost reduction without regard 

to the outcomes achieved is dangerous and self-defeating, leading to false “savings” and 

potentially limiting effective care.” (Porter & Teisberg, 2006). Alternative payment 

models reward cost effectiveness, and there is concern that without adjusting for patient 

comorbidities restricted access to care will be encouraged (Rozell, Courtney, Dattilo, Wu, 

& Lee, 2016). An increase in demand for total hip and knee replacement surgery in a 

market where surgeons must select only a subset of all surgical candidates for surgery 

and a reimbursement model that does not account for patient risk is a recipe for higher-

risk patients to be pushed out of the pool of surgical candidates.  

Assessing Risk 

Accounting for patient risk is important not only for optimizing the value equation 

and ensuring fair physician reimbursement, but for patients, ensuring that reimbursement 

is structured in a way that allows for broad and equitable patient access. With payments 

increasingly tied to outcomes, providers are demanding collection of better data on 

outcomes and improving risk adjustment techniques to account for underlying patient 

comorbidities and understanding what techniques lead to the best outcomes (Luft, 2009). 

There are two primary ways that the assessment of risk plays a role in this 

landscape. First, adequately understanding a patient’s risk allows for the measurement of 

outcomes adjusted by patient individual risk factors. This retrospective measure of 

quality is critical for the measurement of performance. Second, predicting risk can allow 

for-real time identification of high-risk patients likely to require expensive care or to 
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experience an adverse event (Bates, Saria, Ohno-Machado, Shah, & Escobar, 2014) as 

well as low-risk patients who may be appropriate candidates for fast-track care pathways. 

Whether the reimbursement is an APM bundled-payment model or not, there are 

challenges when tying payment to performance. In an article looking at pay-for-

performance in orthopedics, authors describe these challenges: 

The implementation of such a dramatic paradigm shift in healthcare 

payment policy is fraught with challenges. Those challenges include 

difficulty in defining and measuring quality and efficiency, cost of 

collecting and analyzing performance data, development and 

implementation of appropriate risk adjustment models, lack of additional 

funding to reward quality, unintended consequences of provider “gaming” 

and patient deselection (e.g., “cherry picking”), and impact on low-tier, 

low quality providers. (Bozic, Smith, & Mauerhan, 2007) 

 

There are several limitations that must be addressed before widespread 

implementation of new payment models that tie payment to quality. One of these 

limitations is inadequate risk adjustment for clinical outcome measures (Nichols & 

O’Malley, 2006). The authors state that: 

Inadequate information systems, as well as imperfect algorithms and data 

to control for patient-level comorbidities, severely limit the ability to risk 

adjust clinical outcomes measures. This is a major barrier to more 

widespread implementation of pay for performance (P4P) and to 

convincing some physicians, who manage complex patients on a daily 

basis, of the value of these measures. (Nichols & O’Malley, 2006).  

Risk adjustment models have been developed and implemented for the large-scale 

insurance market. This is the actuarial side of healthcare finance. Insurers have always 

understood that if they can attract healthier patients to their pool of enrollees then they 

will pay out less in medical claims. Health insurers have long used risk adjustment 

methods to group patients into risk cohorts for payment strategies. At present, the type of 

risk adjustment that occurs at the level of the health insurer is based on complex 



 

- 14 - 

algorithms with the sole purpose of making adjustments between populations of patients 

for financial balance in the insurance market. This type of risk adjustment is evolving 

under the Affordable Care Act, where Health Insurance Exchanges are now mandated. 

This new model of risk adjustment will utilize retrospective, diagnosis-based risk 

adjustment strategies as a way to compensate insurers with higher-risk populations 

(Weiner, Trish, Abrams, & Lemke, 2012). This large-scale risk adjustment performed in 

the insurance market is very different from the prospective risk models that will be 

created in this project. While the former is critical for a functional insurance market, it 

cannot be applied at the patient or physician level and cannot calculate an expected 

outcome.  

In order to assess physician performance based on patient outcomes, it is crucial 

to determine if the observed outcome for a group of patients is better or worse than 

expected based on the patient comorbidities rather than better or worse than a fixed target 

based on an average. Payments based on average targets are frequently referred to as 

global payments. With or without physician performance incentives, the practice of 

global payment is worrisome. If an expected outcome is simply a fixed target, providers 

are punished “whose complex patients, even if doing ‘better than expected,’ do not hit 

targets that are easier to achieve with healthier patients” (Ash AS, 2012). Target 

outcomes that adjust based on the patients’ risk are critical for assessing physician 

performance. Goroll and Schoenbaum (2012) describe robust, scientifically validated 

risk-adjustment models as critical in order to address the impediments to payment reform. 

Global payments, without risk adjustment, burden the providers with significant financial 

risk. Risk adjustment that accounts for performance based on expected outcomes versus 
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an average-based target will help alleviate this financial risk and deter providers from the 

“temptation inherent in global payment to cherry-pick patients.” Utilizing risk adjustment 

models at the provider level will enable patient-based expected outcomes to be generated, 

and can connect directly with pay-for-performance strategies. Goroll and Schoenbaum 

(2012) state that “Risk adjustment applied to payment for performance can serve to 

recognize, reward, and incentivize the extra work needed to achieve better-than-expected 

outcomes, helping to alleviate the concern that global payment will lead to less care.” 

Ellis and Ash (2012) are also concerned about the use of globally calculated performance 

measures and the lack of methods to make patient-based adjustments  stating that 

“Although using non-adjusted performance measures may create undesirable incentives 

for practices to avoid the sickest patients, even crude adjustments are rare.” 

A seminal report issued by the Institute of Medicine (IOM), an arm of the 

National Academy of Sciences titled “Crossing the Quality Chasm: A New Health 

System for the 21st Century,” makes the following request: 

The committee calls for all purchasers, both public and private, to 

carefully reexamine their payment policies to remove barriers that impede 

quality improvement and build in stronger incentives for quality 

enhancement. Clinicians should be adequately compensated for taking 

good care of all types of patients, neither gaining nor losing financially for 

caring for sicker patients or those with more complicated conditions. 

Payment methods also should provide an opportunity for providers to 

share in the benefits of quality improvement, provide an opportunity for 

consumers and purchasers to recognize quality differences in healthcare 

and direct their decisions accordingly, align financial incentives with the 

implementation of care processes based on best practices and the 

achievement of better patient outcomes, and enable providers to 

coordinate care for patients across settings and over time. 

Achieving high-quality outcomes can certainly be enhanced with retrospective 

measurement, appropriately adjusted for patient risk. Quality improvement programs 
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have been built using measures based on retrospective data. But the question remains: 

Can we do something to prevent rather than merely to adjust? If we can predict, we can 

prevent—or so the theory goes. With delivery systems accountable, predictive algorithms 

can help allocate resources more effectively for both high-risk and low-risk patients.  

Successful organizations will use a broad array of tools to predict important outcomes, 

including to identify patients likely to require expensive care, be readmitted, or 

experience a specific type of adverse event. (Bates, Saria, Ohno-Machado, Shah, & 

Escobar, 2014). 

Risk Models and Methodologies in Healthcare 

In this section of the literature review, existing risk models are reviewed. 

Literature shows that for condition-specific hip and knee replacement models, most are 

based on logistic regression (LR) and previously identified comorbidities in a 

retrospective analysis. Additionally, literature is reviewed showing some promising 

implementations of real-time risk prediction systems, offering the chance to prevent 

costly care and poor outcomes.  

Predicting risk of adverse outcomes is common practice in insurance and in 

research. Many insurers use risk assessment and risk adjustment models to identify 

patients who are at risk of high-cost care as well as to profile and rate physicians. High-

risk care management is used for patients identified as expected to incur high costs. 

However, broad risk profiling may not be suitable for subgroups of patients with specific 

clinical conditions and interventions. “Interventions that are appropriate and effective for 

one group will often do little to improve care and reduce costs for others” (Powers & 



 

- 17 - 

Chaguturu, 2016). Insurance companies have long been involved in risk adjustment, and 

have large pools of claims data for their members, yet are always on the lookout for 

better methodologies to improve predictions of expected utilization.  

There are a handful of general risk adjustment models that are based on pre-

operative clinical characteristics such as: Adjusted Clinical Group (ACG), Diagnostic 

Cost Group (DCG), Seattle Index of Comorbidity (SIC), Chronic Illness and Disability 

Payment System (CDPS), Charlson Index, RxRisk, Self-reported measures for 

demographic and health, and prior year expenditures. In one study, Maciejewski (2005) 

and Liu compared the predictive accuracy of these risk adjustors for prospective 

modeling of the expenditures in a year period of time. The goal of this study was to look 

at which measures were most predictive and ought to be considered in future studies. One 

of the interesting results from this study was that administrative-based data performed 

better than patient self-reported measures. Administrative data refers to data that is most 

often collected by government or commercial payers, typically for reimbursement 

purposes. 

Administrative data sets are large, inexpensive, structured, and readily available, 

however they lack important clinical information. As the authors state:  “VA provides an 

ideal setting to assess the performance of differing strategies to adjust for patient risk 

differences in observational or experimental studies because of the availability of 

extensive demographic, clinical, pharmacy, and economic data on several million 

veterans who use VA services” (Maciejewski & Liu, 2005). This type of model 

validation would be very difficult in hip and knee replacement, as there is little 

accessibility to comparable data.  
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The private sector has recognized an unmet need for risk prediction, and a handful 

of proprietary risk adjustment models exist. Currently, there are general risk calculators 

available to providers marketed by private companies such as Archimedes, which 

markets the product IndiGO. In this case, as is true with virtually all privately marketed 

risk models, the mechanisms by which prediction is calculated are at least partially a 

“black box,” meaning that the end user does not know exactly how a score was 

calculated. In IndiGO, patient data is entered into a software application, and after the 

data is entered, “IndiGO uses its advanced algorithms, based on the Archimedes Model, 

to create individualized guidelines. The individualized guidelines include person-specific 

risk of adverse events (such as heart attack, stroke, diabetes onset and its complications) 

. . .” (Bellows, Patel, & Young, 2014). The predictive value of these models can be—and 

has been—validated against compared with other models based simply on how well they 

predict. Not only are they comparable, but they can be included in other risk scoring 

models as well. For example, in the Global Outcomes Score (GO Score), Eddy, Adler & 

Morris (2012) use the IndiGO risk calculator as the method to predict multiple outcomes 

across many healthcare domains. The GO Score looks at a spectrum of outcomes, 

comorbidities and interventions. The GO Score takes aggregated predicted outcomes and 

measures them against the observed outcomes. The GO Score demonstrates the use of 

predicted versus observed outcome as a method to quantify and measure quality. Quality 

occurs when a patient does better (observed outcome) than expected (predicted risk). The 

GO Score could be augmented, and utilize another risk calculator, as the authors suggest: 

“Other risk calculators can be used to generate GO Scores, but they should be similarly 

validated” (Eddy, Adler & Morris, 2012). 
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While global risk models may be validated and useful at a general level, models 

constructed for specific procedures are needed. Each surgical procure has its own patient 

population with different rates of comorbidities, and disease-specific risk models are 

more precise in predicting outcomes. For example, newborn infants will have a different 

set of comorbidities than elderly patients prior to heart surgery. Not only are the 

comorbidities different, but the heart surgeries conducted on each are technically unique, 

and the adverse outcomes related to the procedure are distinct.  

The procedure-specific Aristotle Based Complexity (ABC) score is used to 

predict complications, mortality, and prolonged length of stay for surgeries performed by 

congenital cardiac surgeons (Jacobs JP, 2009). The ABC score classifies the procedure 

and assigns it a case complexity allowing placement of cases into low-risk or high-risk 

groups, thus enabling researchers to make adjustments based on risk in order to conduct 

outcomes analysis. The ABC score is uniquely created to apply to congenital heart 

surgery, performed almost entirely on infants and children, and has no widespread use 

outside of congenital heart surgery.  

The most widespread and commonly used procedure-specific risk models are 

found in adult cardiac surgery outcomes research. The body of literature on predictive 

modeling is largely composed of studies aiming to predict operative mortality and 

complications after adult cardiac surgery. These studies often use predictive risk models 

created and maintained by the Society of Thoracic Surgeons (STS) and EuroScore. The 

plethora of studies may have resulted from the fact that the STS and EuroScore models 

are available online as a simple-to-use calculator, allowing widespread application. 

Head et al. (2013) performed a systematic review of risk prediction and located 5,768 
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studies modeling outcomes in adult cardiac surgery. They ended up reviewing 844 

studies identifying preoperative independent comorbidities for adverse outcomes after 

adult cardiac surgery. In this review, the authors found many instances of independent 

variables that were found to be predictive of outcomes, but many of these variables were 

not frequently considered in the bulk of the predictive studies. The authors conclude, 

“Risk estimates of mortality, stroke, renal failure and length of stay may be improved by 

the inclusion of additional (non-traditional) innovative comorbidities. Current and future 

databases should consider collecting these variables” (p. 121). What this study 

demonstrates is the need for exploratory modeling to reveal unexpected variables that 

may have predictive strength. These would be what the authors refer to as “innovative” or 

“non-traditional” variables. 

Cagini (2012) discusses what may be considered the traditional variables popular 

in risk prediction in adult cardiac surgery, stating: 

A core set of variables associated with outcomes in cardiothoracic surgery 

have evolved over time. Accuracy of risk models developed based on 

administrative data in New York and Pennsylvania have been shown to be 

substantially improved by addition of a few critical clinical variables. . . . 

One may further question how many variables are actually needed to have 

a robust prediction model (p. 68). 

This quote illustrates that commonly-used predictive variables are empirically 

grounded on past studies, yet accuracy in these studies was improved by adding new 

variables. This raises the question of which variables, exactly, should be added. The 

authors ask, “How many variables are actually needed to have a robust prediction 

model?” (p. 68). The RA exploratory modeling approach is a response to exactly this type 

of question. RA can search through even thousands of variables, and can detect the 
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variables and their relations that are most predictive. However, exploratory results should 

be confirmed with confirmatory tests.  

Cagini (2012) further points out the primary methods used in the thousands of 

adult cardiac outcomes studies. The author determines that logistic regression models are 

the most common method for risk modeling and site comparative studies, demonstrating 

that logistic regression models offer the best overall performance. The author discusses 

potential advances that may be offered by the use of machine-learning techniques 

“as these models permit complex, nonlinear information processing. However, tests of 

these models have not yet shown significant improvement over logistic [. . .] models.” 

Like RA, the neural networks methodology often falls under the more general class of 

methods referred to as machine learning. The literature shows a very limited testing on 

the ability of machine learning to predict better than logistic regression, with studies 

largely falling within the arena of adult cardiac outcomes research (Lippmann, Kukolich 

& Shahian, 1995), (Tu JV, 1998). Lippmann and Shahian (Lippmann RP, 1997) 

compared a neural network model to logistic regression, finding that “a committee 

classifier combining the best neural network and logistic regression provided the best 

model calibration . . .”—suggesting that there is possibly a combination of methods used 

to get best prediction.  

Compared to the thousands of studies conducted in adult and congenital heart 

surgeries, studies conducted in the field of orthopedics are relatively few. Of the 

outcomes studies published in orthopedic journals, the majority look at the effect of 

traditional comorbidities on one or more adverse outcomes. Bjorgul, Novicoff & Saleh 

(2010) discuss this body of literature: 
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There is ample evidence that comorbidity is a major factor in determining 

the outcomes of various conditions, and there is a large body of literature 

discussing the multiple aspects of comorbidity. The general finding is a 

close relationship between comorbidities and complications, mortality, 

functional outcome, and consumption of healthcare resources (Bjorgul 

et al., 2010). 

Comorbidities previously found to be predictive of adverse outcomes include 

obesity (Andrew et al., 2008; Suleiman et al., 2012), diabetes (Bolognesi et al., 2008; 

Berbari et al., 1998; Everhart, Altneu & Calhoun, 2013), hypertension (Memtsoudis 

et al., 2010; Jafari, Huang, Joshi, Parvizi & Hozack, 2010), and age (Polanczyk et al., 

2001; Memtsoudis, González Della Valle, et al., 2010), heart failure, pulmonary issues 

(Bozic et al., 2012; Jain, Guller, Pietrobon, Bond & Higgins, 2005) among others. 

Almost without exception, these studies used logistic regression methods to test a 

hypothesis that a relationship exists between a comorbidity and the outcome of interest. 

Studies that looked at more than one potential comorbidity used multivariable logistic 

regression techniques to see if there was an effect on the outcome from more than one 

comorbidity. This body of literature illustrates the current approach to performing 

retrospective risk prediction in hip and knee replacement, which is limited to using 

previously validated comorbidities in order to predict adverse outcomes. A good portion 

of the literature on outcomes in hip and knee replacement is not focused on adverse 

outcomes at all, but is focused on the functional and general patient-reported health from 

follow-up surveys administered postoperatively and over the years of follow-up visits 

(Caracciolo & Giaquinto, 2005; Gandhi et al., 2010). These studies require data 

collection normally outside of the standard of care, are resource-intensive to collect, and 

require prognostic study design and close monitoring of patients for long-term follow-up. 
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The broad category of adverse outcomes includes not only post-surgical 

complications, but outcomes such as discharge destination, readmissions, length of stay, 

and total cost. These endpoints can all be measured with commonly available 

administrative claims databases, a prerequisite for a simple and widely available risk 

prediction. After hip or knee surgery, a patient may be sent directly home after the 

hospital stay or may be discharged from the hospital directly to an extended care facility 

(ECF). Researchers have looked at the impact of certain comorbidities on the discharge 

destination of patients after hip and knee replacement surgery (Bozic, Wagie, Naessens, 

Berry, & Rubash, 2006; Oldmeadow, McBurney, & Robertson, 2003; Barsoum et al., 

2010.) Munin et al., (1995) looked at the outcome of being discharged to an extended 

care facility (ECF) and found that patients discharged to an ECF had increased 

comorbidities prior to surgery. They developed a logistic regression model that was able 

to predict 76% of the discharges to an ECF. This high predictive ability included not only 

comorbidities, but operative and postoperative data as well. Using post-discharge data to 

calculate risk does not allow for prognostic risk calculation and makes unclear the extent 

to which the patient’s risk played a role relative to the in-hospital processes of care and 

medical complications that patient may have experienced.  

A prolonged length of stay (LOS) is another nonmedical indicator of adverse 

outcomes. Researchers have looked at the impact of certain comorbidities on length of 

stay of patients after hip and knee replacement surgery (Clague et al., 2002; Md, 

Elsharkawy, 2011; Cram, 2011; Polanczyk et al., 2001). Dall et al., (2009) looked at the 

association between various comorbidities and LOS using standard logistic regression 

techniques. Understanding the need for a simple and easily available calculator, the 
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authors discussed the possibility that findings from their research will contribute to the 

creation of a simple scoring system to predict LOS. This study discussed the need to have 

this available as a prognostic tool in order to increase patient flow in the hospital and 

adjust staffing levels based on case mix (Dall et al., 2009). Interestingly, this multivariate 

study found that the day of the week and the surgeon performing the surgery had an 

effect on LOS. Because this information is routinely collected and is easily available in 

claims data, future model development should include these variables alongside the 

patient’s medical comorbidities. Other research has confirmed surgical volume in a given 

hospital as predictive of complications after joint replacement (Schroer, 2008). 

A key opportunity for delivery systems to improve value is by limiting overuse of 

costly resources by focusing these resources on high-risk patient groups (Bates et al., 

2014). Screening patients for relevant comorbidities prior to surgery allows for increased 

medical interventions, which have proven to be successful in decreasing adverse 

outcomes (Meding, 2007). “Estimating the risk of complications when a patient first 

presents to a hospital can be useful for a number of reasons, such as managing staffing 

and bed resources, anticipating the need for a transfer to the appropriate unit, and 

informing overall strategy for managing the patient” (Bates et al., 2014). Radcliff et al. 

(2012) discuss the success of preoperative risk stratification on reducing cardiac and 

thromboembolic complications in elective hip and knee replacement surgery, but point 

out that few studies have been done on non-cardiac medical complications. The authors 

subsequently present a risk stratification tool constructed from comorbidities confirmed 

in previous studies and physician interviews. This study went beyond a demonstration of 

a relationship between comorbidities and non-cardiac complications, but provided a 
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method to increase and measure quality. The researchers in this study compared the 

observed outcomes of patients who were screened against the observed outcomes patients 

who were not screened (Radcliff et al., 2012). If the screened group has better outcomes 

than the group that was not screened, then the screening tool is shown to have a positive 

effect on quality. 

Oldmeadow et al. (2003) developed The Risk Assessment and Predictor Tool 

(RAPT) as a way to simply and easily predict a patient’s risk of requiring discharge to an 

extended care facility (ECF). Initially constructed from a logistic regression model, it was 

subsequently transformed into a simple points-based scoring system that was validated on 

patient populations in its development and applications. The RAPT score places patients 

into one of three risk groups. This score and the subsequent risk group the patient is 

placed in are designed specifically to provide an objective measure of who ought to be 

placed on a home pathway (those with a RAPT score >9) and those who need definite 

rehabilitative care (those with a RAPT score <6) (Dauty, Schmitt, Menu, Rousseau & 

Dubois, 2012).  

A risk calculator developed for total joint arthroplasty predicting discharge to 

skilled nursing facility (SNF) using logistic regression found age, dependent functional 

status, living location, and severity of illness (ASA score) to be predictive of SNF 

discharge (Gholson et al., 2016). However, it is quite well known that the utilization of 

SNF varies by surgeon and hospital location, but no specific studies look at the relative 

predictive effects of patient comorbidities versus provider practice patterns. This research 

project will look at SNF, and test the effects of patient-related versus delivery system 

predictors. 
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Romine, May, Taylor & Chimento (2013) created a total knee replacement risk 

calculator and found it to have predictive value of perioperative complications. This 

evaluation resulted in 19 comorbidities as predictive of “1 or more” complications 

modeled using logistic regression. The inputs for the calculator include the patient’s 

comorbidities, which are necessary for prognostic prediction and can support patient care 

decisions. While Romine et al.’s calculator predicts perioperative complications, 

including complications that occur in the hospital prior to discharge, it also includes 

complications that occur within 14 postoperative days. This post-discharge data is 

problematic in its inherent incompleteness since post-discharge data is available for only 

a fraction of the total population of the surgical cases. Another limitation of this 

calculator is that it was built using Medicare data, and then tested on a more diverse 

population of patients, resulting in an overestimate of complications due to the known 

fact that the Medicare population has a higher incidence of complications (Romine et al., 

2013). Because Medicare datasets are large, well validated, accessible, and comparable to 

other studies using the same data, Medicare data is commonly used. The difficulty in 

more widely applying a model derived from Medicare data points to the need to construct 

a model on data that includes the non-Medicare commercial patient mix as well. That 

being said, this risk calculator fills a void in the field of health outcomes research and is 

considered by Romine et al. (2013) to be: 

the first risk assessment calculator designed specifically for use in total 

joint arthroplasty. Despite limitations of our study design, and the lower 

than predicted complication rate, the TKA [total knee replacement] risk 

calculator represents the novel development of an objective risk 

assessment tool that does have predictive value, and is a tangible risk 

assessment device….Physicians may use the calculator to provide more 

individualized patient counseling and to better stratify risk. (p. 448). 



 

- 27 - 

 

Researchers at the Mayo Clinic developed a prognostic scoring system that 

identifies patients at high risk of developing a postoperative infection after total hip or 

knee replacement surgery (Berbari et al., 2012). The purpose of this risk score is for 

improved risk-stratified reporting and to target high-risk patients for additional 

preventative interventions. The Mayo model identified single predicting factors for 

prosthetic joint infection (PJI). Logistic regression was used to determine the magnitude 

of each of these associations and then combined into multivariable modeling with logistic 

regression to determine if there was a pairwise effect between two factors on the risk of 

infection. Current surgical site infection (SSI) models only take into consideration the 

patient’s American Society of Anesthesiologists (ASA) physical status classification 

system score; however, the Mayo study has shown that better risk stratification occurs 

with inclusion of additional important predictors such as BMI, prior arthroplasty, 

underlying immunosuppression, and prior surgery (Berbari et al., 2012). The authors 

discuss the importance of accurately accounting for risk, and appropriate risk adjustment 

will “assure tertiary referral institutions and specialty orthopedic institutions involved in 

the care of high-risk patients of their ability to perform surgeries on high-risk patients 

without the fear of being penalized for their relatively higher SSI rates” (p. 779). A 

limitation of the Mayo model is that in order to calculate a one-month score, data is 

needed from the preoperative, operative and one-month postoperative time frame. This 

postoperative information is critical in analyzing infection, as many surgical infections do 

not set in until the postoperative period. Postoperative data is limited only to those 

patients that returned to the same facility, or same hospital system if a common electronic 
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health record (EHR) system is used. Unless patients are being followed as part of the 

protocol for a clinical research study, then it is very difficult to achieve accurate 

postoperative patient information. The Mayo study may not easily be reproduced because 

patients were followed as part of a research study protocol, something that does not 

normally occur in the standard delivery of care for patients undergoing surgery. 

Furthermore, while the factors selected as candidates for the model indeed turned up 

predictive factors for infection, the question remains whether there are variables that were 

not included that would have increased the predictive strength of these factors. These 

non-traditional variables would not have appeared in the initial search of highly 

predictive individual factors, and may only be predictive in their relation to another 

factor.  

Hospital readmissions are a substantial driver of spending, with all-cause 30-day 

readmissions costing the US health system more than $41 billion annually (Hines Al, 

Barrett Ml, Jiang Hj & Steiner Ca, 2011). An application of machine learning techniques 

has resulted in the highly successful PIECESTM software (Amarasingham, 2012). 

PIECES functions on top of a health system’s EMR, identifying high-risk patients using a 

machine learning approach. Patients at high risk for readmission are flagged based on 

both social and clinical factors found in the patient’s chart. This model was implemented 

in a hospital, where clinical care was tailored for flagged patients, resulting in a 31% 

reduction in readmissions. 

With bigger data and new techniques for structuring data, disparate data sources 

will have opportunities to merge into vast repositories. The possibility of more predictive 

models, and the emergence of “data science” programs within healthcare systems, are 
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leading to increased testing of machine learning techniques. While LR will likely 

continue to be a very well performing method, exploration of new methods with the 

ability to search through expansive data repositories is an effort that may have significant 

payoffs when seeking to predict outcomes and custom tailor healthcare delivery in the 

pursuit of higher value care. 

General Overview of LR and its Relation to RA 

Hosmer and Lemeshow (2005) provide an overview of logistic regression (LR) 

models and discuss the recent explosion in the use of LR over the past decade. They state 

that from its origination in epidemiological research, LR has gained widespread use and 

acceptance in biomedical research. LR is typically used to analyze relationships between 

a dichotomous dependent variable and categorical or continuous independent variables. 

LR combines the independent variables to estimate the probability that a particular 

outcome will occur. For example, if we assume that Z represents the adverse outcome 

complication, we can create a formula in terms of the probability that a complication 

occurs, or Z = 1, shown below as p(Z1), and the probability that no complication occurs, 

or Z = 0, shown as p(Z0). Therefore, the general mathematical notation is: 

𝐿𝑜𝑔 (
p(Z1)

p(Z0)
) =   α0 +  α1A +  α2B +  α3C 

There are areas of overlap between RA and LR. For example, when nominal 

variable states in RA are re-coded into binary states, RA does resemble LR. Zwick (2011) 

points out that whether or to what degree the two methods are mathematically equivalent 

is under investigation. Regardless of the potential mathematical overlap however, RA is 

computationally distinct. LR maximizes likelihood most often with the Newton-Raphson 
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algorithm, while RA uses Iterative Proportional Fitting (IPF) to maximize entropy subject 

to the constraints of the data. LR software is not designed for exploratory modeling and 

does not easily handle interactions between multiple variables. Because of this, RA is 

distinctly useful for searching for novel variables and interaction effects. LR does not 

generate the lattice of structures nor provide an approach for searching this lattice 

(Zwick, 2011a). Unlike LR, but like ordinary regression, RA can also analyze continuous 

dependent variables such as total cost of hip or knee replacement surgery. 

An Overview of RA 

Almost without exception, the studies surveyed in the review of the literature 

generated models using logistic regression methods. While the models were well 

constructed and tested, there is a trend in the discussions of prior studies urging further 

testing and validation. One way to validate models is to use a different methodology on 

similar data and compare the outcomes. 

A model developed with RA will not only be an interesting test of comparison of 

methods, but will test whether additional variables may provide more predictive strength 

or whether non-hypothesized interaction effects offer additional predictive strength. For 

example, prior studies using logistic regression had found that APOE was a highly 

predictive genetic factor of Alzheimer’s disease. RA and Alzheimer researchers (Kramer, 

Westaway, Zwick & Shervais, 2012) conducted a study using RA which confirmed the 

gene APOE as highly predictive. However, RA has tentatively surfaced an additional 

factor—Education—which, when interacting with APOE, generates a model that is more 
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predictive than APOE or Education alone. This study looks at the questions of whether 

there is something similar in total hip and knee replacement surgery. 

It can be difficult to visualize what modeling actually does, especially when 

thinking about the differences between specific modeling methodologies. In the broadest 

terms, a model is intended to represent reality so as to explain, predict, or control features 

of that reality which otherwise would be too difficult to observe or manage (Krippendorff 

1981). In order to construct a model, data is collected to capture information about a 

system. Yet this data is inherently very complex, with many degrees of freedom. Using 

the data directly for prediction is likely to be flawed by overfitting, the postulation of 

predictive relations that may not be real. A model is a reduction of the data to a simpler 

structure, and simpler structures generalize better to new data. However, simplifying the 

data too much will result in a loss of critical information. This presents a tension inherent 

in the modeling process.  

The most common RA approach to modeling is to start with the independence 

model—which assumes no predictive relations between the IVs and DV—as a reference, 

and to then search the space of possible models for incremental additions of predictive 

relations. In RA, this bottom-up approach allows one to construct a model whose 

complexity is statistically justified, but is still not overly complex. 

RA developed from the early works of Ross Ashby (1964), who defined a process 

for systematically testing whether a seemingly complex constraint could be decomposed 

into several simpler constraints and then be recomposed to the original constraint without 

loss. Ashby utilized Shannon’s information theory (Shannon, 1948) because it 

generalized his constraint analysis to probabilistic systems and allowed for the creation of 
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an algebra of relations (Krippendorff, 2009). RA was then further developed by Broekstra 

(1979), Cavallo (1979), Conant (1981), Jones (1985), Klir (1976), Krippendorff (1981), 

Zwick (2001), and others. 

RA assesses hyper-graph structures using either set theoretic (SRA) or 

information theoretic (IRA) modeling. RA is a data mining method that searches for 

relations in data, especially nonlinear and higher-order relations. These relations between 

the variables in the data can have high ordinality, and one need not assume any 

hypothetical relationship prior to RA. For example, in a study applying RA to genomic 

data, researchers found that RA can detect gene-gene interactions that other methods 

could not detect (Shervais, Kramer, Westaway, Cox & Zwick, 2010). 

RA resembles log-linear statistical methods in the social sciences, and has diverse 

applications including time-series analysis, classification, decomposition, compression, 

pattern recognition, prediction, control, and decision analysis (Zwick, 2004). RA handles 

multivariate data with discrete values for nominal variables. Continuous data can be 

handled by discretizing (binning) into discrete binary or multi-valued states. There are 

multiple methods for binning data (e.g., rational binning, obvious clustering, and equal 

sample size). The more states of an IV, the better it can predict the outcome, but the 

number of states of a variable increases the sample size required, and a trade-off is 

necessary. 

In this study, the information-theoretic (IRA) version is used. IRA turns input data 

into frequency and probability distributions. IRA decomposes frequency distributions 

into projections, several of which taken together define a model, which is then assessed 

for statistical significance. The model maximizes entropy subject to the constraints of the 
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model structure. Maximum entropy solutions are often identical to maximum likelihood 

solutions of other methods. 

A “saturated model” represents the data without simplification and assumes the 

highest ordinality of relations amongst the variables. The “independence model” is the 

least complex of all models and assumes no predictive relations between the IVs and the 

DV. For example, a system with three IVs and one DV may be represented as ABCZ (the 

saturated model), where A, B, and C are the IVs and Z is the DV. No interaction between 

the IVs and the DVs is called the independence model and would here be characterized 

by the model ABC:Z. The model ABC:Z is the simplest model possible and signifies that 

the DV is not predicted by the IVs. Another possible model of the data ABCZ might be 

ABC:AZ:BZ:CZ where A, B, and C again are the independent variables and Z is the 

dependent variable. In the model ABC:AZ:BZ:CZ, A has an effect on Z, B has an effect 

on Z, and C has an effect on Z, but there is no interaction effect between the independent 

variables A, B, and C. In the independence model ABC:Z there are no relations between 

the IVs and the DV at all, so this model may be said to contain no information. The DV 

has maximum uncertainty. As used for prediction, an RA model is a conditional 

probability distribution of the DV, given the IVs. In the present case, for example, this 

might be expressed as Pmodel (Zl | AiBjCh). 

With four variables, as in the example ABCZ, multiple relations are possible. 

Each of these possible relations is a structure, without concern for order within or 

between the relations. There are 19 specific structures for three IVs and one DV. The 

lattice of structures for four variables is presented in Figure 1 below where the variables 

are lines and the relations are boxes. Increasing the number of IVs to four results in 167 
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specific structures, and increasing the number of IVs to five results in 7,580 specific 

structures. Data with hundreds of possible IVs will generate a massive lattice of 

structures. In this study, RA will search through the lattice of structures until it finds IVs 

that are informative about the probability of a specific outcome. 

 

Figure 1.  Lattice of structures for 3 IVs and 1 DV. 

 



 

- 35 - 

Continuing with the previous example, assume ABC:Z is the independence model 

for a directed system. The independence model will be the starting model (assuming 

no relations), and an ascending search will be performed, looking for models through the 

lattice of structures until difference from independence model and each increase in 

complexity are not statistically significant. For example, one of the possible model 

structures in this example search is model ABC:ABZ:CZ. In this model, the A and B 

variables in the (ABZ) component represent an interaction effect. Every interaction effect 

will be investigated further to interpret how the input variables combine to predict the 

output variable. 

Looking at multiple models relative to each other offers choices based on 

predictive strength versus simplicity. Maximally predictive models may be traded in for a 

simpler, less predictive model. Models that yield high information also are complex and 

have high degrees of freedom relative to models with less complex structures containing 

less information and lower degrees of freedom. The “best model” is often somewhere in 

the middle since overly complex models will do poorly when confronted with new data; 

this is known as “overfitting.”  

To avoid overfitting, a good model will capture a maximum amount of the 

information (the constraint) in the data while still being as simple as possible. After the 

best models are obtained through an exploratory search, the actual contents of this 

model—how it predicts the DV given the IV states—must be examined in detail. In 

Occam, the RA software used in this project, this latter detailed examination is called 

“fit,” to be distinguished from the first step which is called “search.” Several RA software 

applications exist, such as the Construct and Spectral applications (Krippendorff, 1981), 
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SAPS (Cellier & Yandell, 1987, Klir (1976), EDA (Conant, 1988) and Occam (Zwick, 

2000). For this project, the third version of the Occam software application is used, 

Occam3 (Willett & Zwick, 2004). 

Another approach is available which is finer-grained than the variable-based 

models previously described (Figure 2). Jones (1989) looked at systems in terms of states 

instead of variables. In variable-based RA, the structures are subsets of ABC:Z while in 

state-based RA, structures specify particular states of one or more variables. In the 

example of ABC:Z, where the component ABC does not predict Z, it may still be that a 

combination of specific states of A, B and C do in fact predict Z where the model may be 

depicted as ABC:Z:A1B1C1Z. This more detailed, and in principle more powerful, 

analysis can be done using state-based RA (Zwick & Johnson, 2004).  

Two levels of refinement in RA will be used in this study: variable-based RA 

without loops and variable-based RA with loops. The more refined the approach, the 

more predictive the model may be. It is possible that a more predictive fine-grained 

model will not have greater complexity (i.e., degrees of freedom) than the coarser-

grained variable-based models. These levels will be discussed in greater detail in the 

methodology chapter. 
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Figure 2.  Levels of refinement in RA. 

 

There are different criteria that can be used for model selection. In this project, 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are both 

used. AIC is a measure of the goodness of fit of a model that trades off the complexity of 

an estimated model against how much of the information in the data the model captures. 

BIC is a slightly different way of doing the same thing. BIC is more conservative than 

AIC and is thus generally preferred over AIC for selecting the best model. Another 

measure that will be considered when assessing the quality of a model is its information 

content. In RA, information is a measure of the constraint captured in a model. Since the 

data always contains 100% information, and models of the data decompose the relations 

into smaller components, one must test how far the data can be decomposed while still 

holding onto enough information to be predictive. While information is scaled from 0–1, 

the percent reduction of uncertainty of the dependent variable, represented as %ΔH(DV), 

is the actual reduction of uncertainty achieved by any model and is the actual predictive 

power of the model. The information measure indicates how much of the information in 

the data is incorporated into the model, yet the information in the data itself can be small 
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or large. This uncertainty reduction measure is calculated by multiplying the information 

content with the percent reduction of uncertainty of the data. For directed systems, the 

ability to quantify how predictable the outcome is, given the presence or absence of IVs, 

is expressed as the reduction of the entropy of Z (outcome), knowing A, B and C (3 IVs). 

For IRA, entropy reduction is derived from the conditional probability distribution of the 

model. Both information and entropy reduction measures do not involve a sample size 

and are therefore themselves non-statistical (Zwick, 2011a). The reduction in uncertainty 

is a central measure of RA and something that is not possible with other methods. 

A third criterion, the incremental p-value, will supplement AIC and BIC in order 

to select the model that reduces uncertainty the most, from which every incremental step 

from the independence model has an acceptable p-value. Knowing the sample size 

provides for the calculation of the likelihood ratio test (chi-squared, or 2), which then 

allows the researcher to determine the p-value for entropy reduction, relative to either 

independence or some other simpler model as reference. This is one of the measures that 

is used when assessing the trade-off between information and complexity in model 

selection (Zwick, 2011a). This p-value is the probability, if one has rejected the null 

hypothesis (that the model is the same as the reference model), that one is incorrect in 

that rejection. This project will apply RA using the independence model as the reference, 

where smaller p-values are preferred. As the search continues, new reference models are 

generated and an incremental p-value will show the statistical significance at each step 

through the lattice of possible model structures (Zwick, 2004). 

In this project, the lattice of all possible models will be searched using a 

bottom-up approach where the reference model is the independence model. With the 
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independence model as the reference, the search up the lattice of structures is an attempt 

to see if the data justifies a model with more complexity (degrees of freedom) than the 

independence model. Additionally, many types of models may be assessed in Occam, 

depending on the specification of search parameters. Going up the lattice, RA generates 

“parents” of the models at each level in the lattice of structures. A search “width” can be 

specified, which restricts the number of models retained at each level in the lattice. The 

maximum number of levels to be searched can also be specified, using the search “levels” 

parameter.  

The literature shows that RA has been validated as a supplementary method, 

strengthening research when used concurrently with other methods. A problem identified 

by researchers of the Neural Networks (NNs) methodology is that NNs are often applied 

on data without knowing what variables are the most valuable as inputs to the NN model, 

thus resulting in overly complex models. For example, Chambless, Lendaris, and Zwick 

(2001) applied RA to data and successfully “prestructured” the data, picking out the most 

important and predictive variables to reduce the neural network’s complexity  without 

significant loss of predictive accuracy. Cangur (2009) used RA as a method to augment 

LR in forecasting mortgage loan statuses. In this study, Cangur was able to improve on 

what had previously been known to be predictive of mortgage delinquencies, 

prepayments, defaults, and losses by detecting additional states as well as interaction 

effects. These interaction effects improved the accuracy of LR models used in the field of 

loan forecasting. Carletti (2004) generated an RA model that detects complex interactions 

and predicts health status more effectively than multiple linear regression. Carletti used 

state-based RA, surfacing literacy level in combination with occupational status and 
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intensity of performing strenuous activities as predictive of health status. Mist (2007) also 

has augmented LR with RA in an application predicting a Chinese Medicine diagnosis 

from patient pre-treatment questionnaires. In this study, both variable-based and state-

based RA were used and interaction effects found. These interaction terms were then 

introduced into a previously constructed LR model, resulting in an improvement of 

prediction for three of the most common Chinese Medicine diagnoses. 

What this literature demonstrates is that RA can do more than offer a 

confirmatory role in validating the results of previous studies; it can provide a 

complimentary approach to other methods, using multiple methods in tandem to 

strengthen each other. Furthermore, the past studies discussed in this review of the 

literature have shown that RA provided novel and valuable predictions undetected by the 

more standard and common statistical modeling techniques, and can be valuable as a 

stand-alone exploratory method. 
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Chapter 3. Methods  

This chapter starts with an overview of the data and provides the definitions of the 

independent and dependent variables used in this project. Procedural descriptions are 

provided describing how the data was transformed into the format used in the data 

analysis. After this overview of the data, the LR and the RA methods as applied in this 

project are described, as well as explanations of additional calculations used to augment 

the core methodologies. 

The Data 

Data used in this study derives from patients who underwent inpatient surgical 

procedures of either total hip replacement or total knee replacement at one of seven 

inpatient hospitals within an integrated healthcare system in a single state. Participant 

data consists of both hospital billing data and electronic health record system clinical 

data. Clinical and cost data were matched on the patient’s episode identifier, then 

de-identified and transformed into the variables used in this research project. This project 

has been granted exempt status from the Portland State University Institutional Review 

Board. 

Effective October 1, 2007, the hospital Uniform Bill (UB) requires hospital 

claims data to include a present on admit (POA) indicator for each diagnosis field. 

Diagnosis fields are represented by codes called the International Classification of 

Diseases, Ninth Revision (ICD-9). ICD-9 codes are created by the World Health 

Organization, and are the official classification system for surgical, diagnostic, and 

therapeutic procedures. In this project, ICD-9 codes are used to classify the procedure of 
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an elective total hip replacement (ICD-9 code 81.51) or an elective total knee 

replacement procedure (81.54). ICD-9 codes are also used in this project to classify the 

Comorbidity IVs and the DV Complication occurring for each hip and knee procedure.  

The data was divided into two data sets based on procedure type. The resulting 

knee data set and hip data set share the same variables, with some differences in 

comorbidities present. There were 3,205 cases in the hip data set, and 4,336 cases in the 

knee data set. Because the administrative claims database includes variables that are 

collected in diverse health systems across the nation, the resulting predictive models 

developed in this project have the potential for widespread use. 

Multiple analyses were conducted in this project, and two combinations of 

independent variables were assessed: All IVs and Comorbidity IVs. All IVs include the 

patient Comorbidity IVs as well as Non-Comorbidity IVs. 

Comorbidity IVs 

Diagnosis ICD-9 codes and corresponding POA status and rank were merged in 

order to create the set of Comorbidity IVs. If a diagnosis code appeared as present on 

admit and rank equaled 1, this was the primary diagnosis and was not included as a 

comorbidity. For example, it is common to see osteoarthritis as the diagnosis POA with 

rank = 1. If a diagnosis code was present on admit with a rank > 1, then this was 

considered to be a comorbidity. Each comorbidity present in the data was then turned into 

a binary variable with the possible states of present (1) or absent (0). If a diagnosis code 

was present in the data but was not present on admit, then this ICD-9 diagnosis code 

indicates a complication and was mapped into a complication grouping schema. 
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There were 912 individual comorbidity independent variables (Table 103). While 

the RA method can in principle utilize this many IVs, the data set would need to have a 

much larger sample size if one wanted to detect interaction effects involving very many 

IVs. 

In the hip data set, 643 of 912 comorbidities occurred in at least 1 of the 3,205 

cases, and 270 of these comorbidities were not present in any of the cases. There is a 

chi-squared rule of thumb that argues for a minimal average cell count of at least 5. There 

were 473 comorbidities that occurred in < 5 cases and 170 comorbidities that occurred in 

5–1464 cases (the comorbidity that showed up in 1,464 cases was essential hypertension). 

The final culled hip data set included 3,205 cases with these 170 Comorbidity IVs.  

In the knee data set, 671 of the 912 comorbidities were present in at least 1 case. 

Using the same rationale as the hip data set, the 483 Comorbidity IVs that were present in 

< 5 cases were removed, reducing the total number of Comorbidity IVs to 188 that 

occurred in 5–2,373 cases (the comorbidity essential hypertension showed up in 2,373 

cases). Thus the final knee data set contained 4,336 cases with these 188 Comorbidity 

IVs. 

The independent variable called number of risks (Nrb) is tallied by adding up any 

of the 912 Comorbidity IVs that are indicated as present on admit. While the full 912 IVs 

are not used in either data set, the Nrb variable in fact is dependent on the presence or 

absence one or many of the original 912 Comorbidity IVs. In other words, it was 

“possible” for the total number of risks for a patient to equal 912, even though fewer than 

200 comorbidities were retained in the hip and knee data sets. Table 1 shows a sample 
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subset of the individual patient Comorbidity IVs. A full list of Comorbidity IVs is 

available in Table 103. 

Table 1.  Subset of Comorbidity IVs (Comorbidity IVs from Tier 1 Predictors). 

ID IV Name 

Rhd Other chronic pulmonary heart diseases 

Ruh Other and unspecified hyperlipidemia 

Rrd Unspecified hypertensive renal disease 

Rgp Repair of cystocele with graft or prosthesis 

Rug Unspecified glaucoma 

Rca Coronary atherosclerosis of native coronary artery 

Rku Chronic kidney disease, unspecified 

Rci Chronic ischemic heart disease 

Rhf Heart failure 

Rcj Contracture of joint, lower leg 

Rco Chronic obstructive asthma 

Rmd Other persistent mental disorders due to conditions classified elsewhere 

Rpl Hyperplasia of prostate 

 

Non-Comorbidity IVs 

An additional eight independent variables were included that represent, 

non-binary patient risk factors (age, number of risks, and admit diagnosis) as well as 

variables suggested as important variables in the literature (Dall et al., 2009; Schroer 

WC, 2008) describing the delivery system (location, surgeon, surgeon volume, financial 

class, and day of admission).  
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Table 2.  Subset of All IVs: Non-Comorbidity Variable Descriptions and IDs. 

All IVs       

Non-Comorbidity 

IVs Variable Description (Knee) Variable Description (Hip) ID 

Location, 

multivalued 

Location documented as 1 of 7 

inpatient hospitals within a single 

integrated health system Same as Knee L 

Principal 

Surgeon, 

multivalued  

One of 64 primary attending 

physicians as determined in the 

patient's medical chart  

Same as Knee, except 43 primary 

attending physicians  S 

Surgeon Volume, 

Continuous 

Total number of procedures per 

surgeon over the entire time period 

in the data set. Surgeon total volume 

ranged from 1 - 1,449 cases. 

Same as Knee, except volume 

ranged from 1 - 1,191 cases. 

Sv 

(binned 

to create 

Svb, 

below) 

Surgeon Volume, 

binned 

Surgeon volume counts were binned 

into 12 equal sample sized bins, 

then rebinned into 3 bins:  

[1(1,2,3,4);2(5,6,7,8);3(9,10,11,12)] 

Surgeon volume counts were 

binned into 10 equal sample sized 

bins, then rebinned into 3 bins:  

[1(1,2,3,4);2(5,6,7);3(8,9,10)] Svb 

Day of Admit, 

multivalued 

Monday (1), Tuesday (2), 

Wednesday (3), Thursday (4), or 

Friday (5) 

Monday (1), Tuesday (2), 

Wednesday (3), Thursday (4), or 

Friday (5), Saturday (6) Da 

Financial Class, 

multivalued 

Medicare (1), Commercial (2), 

Medicaid (3), Workers Comp (4), 

Other Government (5), Self or Other 

(6)  Same as Knee  Fc 

Age, continuous 

Patient age at time of admission to 

hospital. Age ranges from 32-94 

years old.  

Same as Knee, except Age ranges 

from 15-96 years old.  

Age 

(binned 

to create 

Ageb, 

below) 

Age, binned 

Data was first binned into 12 equal 

sample size bins, then re-binned into 

3 equal size bins as follows: 

[1(1,2,3,4);2(5,6,7,8);3(9,10,11,12)] Same as Knee Ageb 

Admit Diagnosis, 

multivalued 

This is the primary (coded) 

diagnosis present on admit.  Same as Knee  Ad 

Number of Risks, 

continuous 

Individual diagnosis codes coded as 

present on admit = Y. Total number 

of risks per case ranged from 0 to 

18.  

Same as Knee, except risks per case 

ranged from 0 to 19.  

Nr 

(binned 

to create 

Nrb, 

below) 

Number of Risks, 

binned 

Number of risks were binned into 8 

equal sample sized bins, then 

rebinned into 3 equal sample size 

bins as follows: 

[1(1,2);2(3,4);3(5,6,7,8)] Same as Knee Nrb 

This project uses de-identified data and does not use or disclose specific names of 

these variables. Location or surgeon names, in combination with other variables, could be 
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used to identify a patient and can be considered protected health information (HIPAA, 

2009). 

Binning Continuous IVs 

Not only are there different sets of individual patient comorbidities present in the 

hip and knee populations, but the average age for knee patients is higher at 67.1 years 

versus 64.72 years for hip. The knee patients had an average of 3 patient comorbidities, 

while the hip patients averaged 2.81. Due to the differences in hip and knee populations, 

binning of the IVs was performed independently per data set. The independent variables 

age (Age), surgeon volume (Sv), and number of risks (Nr) were continuous variables that 

were discretized into the binned variables Ageb, Svb, and Nrb. These IVs were divided 

into three equal sample-sized bins, which will allow for the detection of nonlinear effects, 

within the hip data set, and then again in the knee data set as shown in Table 3 below. 

Table 3. Binned IVs for the Continuous Variables: 

Number of Risks, Age, and Surgeon Volume. 

Number of Risks Binned (Nrb) 

Knee Hip 

Bin Range Frequency Bin Range Frequency 

1 0-1 1309 1 0-1 1,111 

2 2-3 1474 2 2-3  1,081 

3 4-18 1553 3 4-19 1,013 

Age Binned (Ageb) 

Knee Hip 

Bin Range Frequency Bin Range Frequency 

1 32-62 1,490 1 15-59 1,090 

2 63-71 1,411 2 60-69 1,027 

3 72-95 1,435 3 70-96 1,088 

Surgeon Volume Binned (Svb) 

Knee Hip 

Bin Range Frequency Bin Range Frequency 

1 1-479 1,444 1 1-461 1,067 

2 550-922 1,518 2 479-778 761 

3 987-1449 1,374 3 779-1191 1,377 
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The primary purpose of the age variable in this project is to determine whether 

age has an effect at all. The standard practice to test if an IV is predictive is to use 

uniformly sampled bins. The more uniform an IV distribution is, the more predictive or 

explanatory it can be. So the question asked in this dissertation is whether age makes a 

difference. A subsequent question, not pursued in this project, could be to look at whether 

using bin definitions more common in the field (e.g., binning age by non-enrollment or 

enrollment in Medicare) might provide more useful or enhanced predictions. 

Dependent Variables (DVs) 

Four DVs were constructed for this project and are summarized below in Table 4. 

These DVs include adverse events Complication and Readmissions, and high cost 

indicators of Skilled Nursing Facility discharges and Total Cost. 

Table 4. Description of the Original Dependent Variables 

and Subsequent Transformed (binned) Final Dependent Variables. 

Dependent 

Variables (DVs): Variable Description (Knee) Variable Description (Hip) ID 

Complication 
Any (coded) diagnosis that was not 

present on admit.  
Same as Knee.  Cp 

Discharge 

Disposition 

Home Self (1), SNF (2), Home 

Health (3), Swing Bed (4), IP 

Rehab (5), ICF (6), Short Hospital 

(7), Expired (8), AMA (9) 

Same as Knee, except no AMA 

state 

(used to 

create 

DV SNF) 

Skilled Nursing 

Facility (SNF) 

Discharge 

No SNF = 1, SNF = 2 

[1(1,3,4,5,6,7,8,9);2(2)] 

No SNF = 1, SNF = 2 

[1(1,3,4,5,6,7,8);2(2)] 
SNF 

Readmission, 

multivalued 

(within 90 days) 

Readmission (Yes/No) according to 

Premier inpatient quality reporting 

system. There were 113 total 

readmissions within 90 days to the 

same hospital as original surgery. 

Same as Knee, except 87 total 

readmissions within 90 days to the 

same hospital as original surgery. 

Re 

Total Cost 

(continuous) 

Hospital costed “total cost per 

case.” Range $5,945 - $96,880 per 

case.  

Same as Knee, except Range 

$11,147 - $71,264 per case.  

(used to 

create 

DV Tcb) 

Total Cost 

(binned) 

Total Cost was binned first into 12 

equal sample sized bins, then 

rebinned into 3 bins as follows: 

[1(1,2,3,4);2(5,6,7,8);3(9,10,11,12)] 

Same as Knee Tcb 
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The DV Complication, represented by the ID “Cp” (Table 4) was created by 

looking at the ICD-9 diagnosis codes with a POA indicator of 0, indicating the diagnosis 

was acquired after admission to the hospital. The knee data set contained 913 individual 

complications across 205 cases. The complication rate for the knee data set is then 

205/4336 or 4.7%. In the hip data set, there were 790 complications present across 164 

cases with a rate of 5.2%. 

The Skilled Nursing Facility (SNF) DV is constructed from the discharge 

disposition filed in the administrative database. There are nine possible discharge 

locations in the data: home health, skilled nursing facility (SNF), home self-care, 

inpatient rehab, swing bed, short term hospital, intermediate care facility (ICF), expired, 

and AMA (knee only). If the discharge location was SNF, then the DV SNF was assigned 

a 2. If the discharge location was any of the other locations, the value of the DV was 

assigned a 1. In the knee data, 17.6% of patients were discharged to a SNF and 14.3% of 

hip patients were discharged to a SNF. 

The Readmission DV is reported out of a nationally standardized quality reporting 

database called Premier. Premier utilizes a methodology for counting related 

readmissions. Premier is a common quality reporting system for hospitals across the 

nation and therefore provides reproducible analysis for readmissions (Grosso, 2012). 

While easily reproducible, this methodology of counting readmissions is limited in that it 

is counting only readmissions to an inpatient stay at the same hospital as discharge and 

therefore does not include visits to the ED or admissions to a different inpatient hospital 

than originally discharged from. For this project’s Readmission DV, if a patient had one 

or more readmissions within 90 days to the same hospital as discharge, then this case was 



 

- 49 - 

assigned a 1. If no readmission was detected, then the case was assigned a 0. This method 

results in many fewer readmissions counted and a very sparse DV with 2.6% of knee 

patients readmitted within 90 days from discharge and 2.7% of hip patients. Premier is 

adopting a new readmission methodology which will look across inpatient hospitals. In 

this new method, it will be possible to count readmissions that occurred at locations 

different from the discharging location. 

Binning the Total Cost DV and Calculating Expected Values 

Total Cost is a continuous DV with dollar amounts that ranged from $8,553 to 

$96,880. There was an average Total Cost of $18,502 in the knee data, and a range of 

$11,147 to $71,264, with an average of $18,593, in the hip data. Total Cost was binned 

into three equal sample-size bins (low, medium, high).  

Table 5. Binned IV (Tcb) for Total Cost Variable. 

Knee, Total Cost Binned (Tcb) 

Bin Min Cost Max Cost Average Cost Frequency 

1 $8,553 $16,780 $15,269 1446 

2 $16,781 $19,139 $17,922 1445 

3 $19,140 $96,880 $22,318 1445 

Hip, Total Cost Binned (Tcb) 

Bin Min Cost Max Cost Average Cost Frequency 

1 $11,147  $16,768  $15,244  1068 

2 $16,772  $19,192  $17,997  1069 

3 $19,195  $71,264  $22,534  1068 

 

Each of these bins has an average cost, and along with the product of the 

probabilities of each bin, an expected value is calculated and used in the interpretation of 

the results for the Total Cost DV. Binning the DV in this way is referred to as 

“b-systems” analysis, where continuous values are derived from a binned DV (Zwick, 

Fusion, & Wilmot). The model’s conditional probability distribution includes the 
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calculated probability of each of the model’s IV states for the low-cost (bin 1), mid-cost 

(bin 2), and high cost (bin 3) bins. The product of the probabilities of each bin and each 

bin’s average Total Cost was used to calculate an Expected Value (predicted Total Cost) 

for each IV state: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =  
𝑝(Tcb1) × 𝐴𝑣𝑔(Bin1) + 𝑝(Tcb2) × 𝐴𝑣𝑔(Bin2) + 𝑝(Tcb3) × 𝐴𝑣𝑔(Bin3)

100
  

Associations between the DVs 

A preliminary analyses was performed looking at the amount of uncertainty 

reduced for each of the DVs, given the other DVs (set as IVs). There is some association 

between the DVs. For example, in the knee data set, Total Cost (Tcb) reduces the 

uncertainty (ΔH) of Complication (Cp) by 8.67% (Table 6). 

Table 6. Association of DVs by %ΔH in Knee Data Set 

Complication (Cp) 

MODEL Δdf ΔBIC %ΔH 

Tcb Cp 2 125.95 8.67 

SNF Cp 1 47.93 3.42 

Re Cp 1 0.38 0.53 

Skilled Nursing (SNF) 

Tcb SNF 2 119.75 3.39 

Cp SNF 1 47.93 1.40 

Re SNF 1 12.78 0.53 

Readmission (Re) 

Tcb Re 2 6.02 2.17 

SNF Re 1 12.78 2.02 

Cp Re 1 0.38 0.84 

Total Cost (Tcb) 

Cp Tcb 2 125.95 1.50 

SNF Tcb 2 119.75 1.43 

Re Tcb 2 6.02 0.24 

 

In the hip data set, Total Cost (Tcb) also has an association with Complication 

(Cp) with a %ΔH of 7.93, and with Skilled Nursing Facility (SNF) with a %ΔH of 7.37 

(Table 7). 



 

- 51 - 

Table 7. Association of DVs by %ΔH in Hip Data Set 

Complication (Cp) 

MODEL Δdf ΔBIC %ΔH 

Tcb Cp 2 85.57 7.93 

SNF Cp 1 27.50 2.77 

Re Cp 1 -6.65 0.11 

Skilled Nursing (SNF) 

Tcb SNF 2 176.61 7.37 

Cp SNF 1 27.50 1.36 

Re SNF 1 -6.17 0.07 

Readmission (Re) 

Tcb Re 2 -0.91 1.91 

SNF Re 1 -6.17 0.24 

Cp Re 1 -6.65 0.18 

Total Cost (Tcb) 

SNF Tcb 2 176.61 2.74 

Cp Tcb 2 85.57 1.45 

Re Tcb 2 -0.91 0.22 

 

Formatting Files for Input into Occam Software 

The data files were transformed into a format accepted by the Occam software. 

These Occam input files specify the variables and include the data to be analyzed. The 

data file is a plain-text ASCII file saved in a “.txt” format. Initial input files were created 

for both hip and knee separately. The All IVs and the DVs looked the same; however, the 

specifications of the Comorbidities are different, as the data sets have different sets of 

Comorbidity IVs and of course the data itself is different in each. Below is an example of 

one of the input files. After the variable name, the first number indicates the cardinality 

(number of states) of the variable (e.g., there are 7 Location states); the second number is 

1 for an IV, 2 for a DV, and 0 for “ignore this variable”; the third string of characters is a 

short name for the variable; for some variables, a rebinning string specifies aggregation 

of multiple states into fewer rebinned states (e.g., for Age binned, previous bins 1,2,3,4 

are collapsed into new bin 1). 
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Table 8. Example of an Input File for Occam. 

:nominal 

     Location ,7,1,l 

    Principal Surgeon ,43,1,s 

    Day of admit ,6,1,da 

    Financial Class ,6,1,fc 

    Age binned ,12,1,ageb, [1(1,2,3,4);2(5,6,7,8);3(9,10,11,12)] 

Surgeon Volume Binned ,10,1,svb,  [1(1,2,3,4);2(5,6,7);3(8,9,10)] 

 Admit Diagnosis ,39,1,ad 

    Number of Risks Binned ,7,1,nrb,  [1(1,2);2(3,4);3(5,6,7)] 

 Complication  ,2,2,cp 

    Skilled Nursing Facility ,8,0,dd,  [1(1,3,4,5,6,7,8);2(2)] 

  Total Cost Binned ,12,0,tcb 

    Readmission 90 Days 

     RISK_185 ,2,1,Rnp 

    RISK_238.75 ,2,1,Rmp 

    RISK_244 ,2,1,Rh 

    RISK_255.41 ,2,1,Rgd 

    RISK_266.2 ,2,1,Rbc 

    RISK_268.2 ,2,1,Rou 

    RISK_268.9 ,2,1,Rvd 

    RISK_272 ,2,1,Rli 

    
      :no-frequency  

 

:data 

     #nrb cp Rnp Rmp Rh Rhy 

6 1 0 0 0 0 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

5 0 0 0 0 0 

7 0 0 0 0 0 

1 0 0 0 0 0 

4 0 0 0 0 0 

 

Variable Reduction per DV 

As discussed above, the criterion of occurrence in at least five cases was used to 

reduce the IVs to188 in the knee data and 170 in the hip data. Preliminary analyses 

indicated that a further reduction of IVs was necessary, since even simple models 

included many IV states with zero or very low frequencies. To do this additional variable 

reduction, a level = 1 loopless search was performed to assess the predictive strengths, 

expressed in %ΔH reduction, of the 188 and 170 IVs. A single predicting IV was 
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considered to have predictive value if its p-value was ≤.05. An overview of IV selection, 

and the resulting number of IVs per analysis, is provided in each of the results sections. 

Additionally, sorting these predictive IVs by greatest %ΔH to least showed the single 

predicting IVs with the greatest value. This variable reduction method was performed for 

hip and knee data sets for each of the DVs. IVs that were found to have predictive value 

in the literature were retained for the searches as well, and are summarized in Table 9 

below. 

Table 9. Literature-based IVs Retained in all RA Exploratory Searches. 

ICD-9 Code ICD-9 Description ID Knee Hip 

RISK 250 Diabetes mellitus Rdi yes yes 

RISK 250.4 Diabetes with renal manifestations Rdr yes no 

RISK 250.5 Diabetes with ophthalmic manifestations Rdo yes no 

RISK 250.6 Diabetes with neurological manifestations Rdn yes yes 

RISK 278 Overweight, obesity and other hyperalimentation Roo yes yes 

RISK 278.01 Morbid obesity Rmo yes yes 

RISK 278.02 Overweight Rov yes yes 

RISK 401.1 Benign essential hypertension Rbe yes yes 

RISK 401.9 Unspecified essential hypertension Rhe yes yes 

RISK 414 Other forms of chronic ischemic heart disease Rci yes yes 

RISK 414.01 Coronary atherosclerosis of native coronary artery Rca yes yes 

RISK 428 Heart failure Rhf yes yes 

RISK 428.3 Diastolic heart failure Rdh yes yes 

RISK 428.32 Chronic diastolic heart failure Rdf yes no 

RISK 443 Other peripheral vascular disease Rpe yes yes 

RISK 443.9 Peripheral vascular disease, unspecified Rpv yes yes 

RISK 491.2 Obstructive chronic bronchitis Rcb yes no 

RISK 491.9 Unspecified chronic bronchitis Rbh yes no 

RISK 492.8 Other emphysema Rem yes yes 

RISK 493 Asthma Ras yes no 

RISK 493.2 Chronic obstructive asthma Rco yes yes 

RISK 493.9 Asthma unspecified Rua yes yes 

RISK 496 Chronic airway obstruction, not elsewhere classified Rao yes yes 

 

Rationale for No Training/Test Split 

Preliminary analyses were conducted with training/test splits, but these resulted in 

changes to the %correct measure that were small and misleading. While performing 
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training/test splits is common in machine learning research, it is often done with larger 

sample sizes and fewer variables.  This project’s primary objective was exploratory 

modeling, in which it does not seek to report definitive results, but offers variables and 

models which should be subjected to subsequent confirmatory testing. Training/test splits 

were thus not considered to be a necessary component of this project, and were not 

pursued further. 

Logistic Regression Analysis 

Prior to using RA for exploratory modeling and selecting the best predictive 

models, a preliminary comparison of RA with LR was conducted.  Using LR, the 

researcher can specify the predictor variables expected to be useful in predicting the 

outcome. This is considered a confirmatory, and not an exploratory, approach. In this 

project, LR (as programed in R) was used in a confirmatory approach in order to validate 

both the data used in this project and the RA method. In this analysis, binomial LR 

analysis was performed to recreate a previous study where the outcomes assessed were 

binary DVs. The goal of this analysis was confirmatory—to test an a priori hypothesis of 

the predictive strength of a model that includes predictor IVs predetermined from the 

literature to be useful in predicting postoperative complications and non-homebound 

discharge. 

Next, the relatively modest exploratory capabilities of LR were used to compare 

the relative abilities of LR and RA in finding the most predictive models. This analysis 

was conducted using a stepwise approach. In the “backward stepwise” (versus forward) 

method of LR exploratory analysis, the saturated model (all variables) is used with no 
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specifications of interactions. This stepwise LR approach is more comparable than purely 

confirmatory LR modeling to the exploratory modeling using RA.  

Regular Logistic Regression 

In order to evaluate the logistic regression models, the “stats” package from R 

was used (R. Core Team., 2016). The variables included in the LR analysis were 

converted into “factors” in order for R to treat them as nominal variables. 

LR falls within a broader category of models called “general linear models” that 

includes ordinary regression, log-linear regression, and ANOVA. In this analysis, the 

“glm” (used to fit “general linear models”) function in R was used. The “glm” function is 

specified through the use of arguments. Arguments specified under family functions 

allowed the creation of models in the binomial family and of the “logit” type. 

A reference point, in this case the “null model,” was created as an object from the 

data. In this reference model the DV was specified, but no predicting variables were 

specified. The “null model” as reference allowed for the calculations of measures 

necessary for comparison across LR and RA methods, such as df. For comparison, the 

reference models are shown for both Occam and R: 

 R:  Tcb ~ 1 

 Occam: IV : Tcb 

A second model was then created as a model object from the data. This second 

model was the model to evaluate against the reference model. Here, the predictor IVs 

were specified, including any hypothesized interaction terms. Again, here are models 

written in both forms: 
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 R:   Tcb ~ Rdi + Rdn + Roo + Rmo 

 Occam:  IV : RdiTcb : RdnTcb : RooTcb : RmoTcb 

With the null model as the reference, and the model to evaluate defined, the 

following measures were calculated: 

 df: take the difference in DF values of the two models. 

 AIC: take the difference in AIC values of the two models. 

 LR: take the difference in deviance values of the two models. 

 alpha: calculate an “ANOVA” table for the two models with test type 

“Chisq” and select the desired value from the resulting table. 

 

Stepwise Logistic Regression 

The previous method measures a specified model to the null reference model, but 

does not explore or propose additional models. In order to find a new and perhaps more 

predictive model, a stepwise search, using the “step” function from the R “stats” package, 

was used. This function can search either upward or downward, adding or removing 

components from a model within specified boundaries (described below). In this stepwise 

approach, the search considered all single steps that could be made from the model and 

then selected the best of those by the specified metric. This process was repeated until no 

better models were found, or a boundary or other termination condition was met. The 

stepwise search in R is similar to the Occam searches with the parameter “width” = 1, but 

only considering LR models and not Occam’s loopless or all-models searches. 

To begin a stepwise search for an LR model, models were prepared as described 

previously, using the “glm” and the binomial family arguments. Using this stepwise 

method, search direction can be upward from the null model (independence), or 

downward from the model containing all the variables (saturated model), or searching in 

both directions from some model “in the middle” that contains some of the variables in 
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the data. In the LR analysis for this project, both upward and downward searchers were 

performed.  

The “step” function uses AIC by default as its criterion for model comparison; 

however, the function can also be modified to instead select based on BIC. Additionally, 

an upper boundary for the search scope was specified by providing a model; for instance, 

a model that includes all variables of interest but excludes others in the data. The lower 

boundary was also be specified, either as the null model (the default) or another model. 

The stepwise search then results in the model that has been found through this series of 

single-variable additions and/or subtractions (steps), with the best value for AIC. 

Determining the Best RA Models 

In order to search for the most predictive models for each of the DVs, the 

reference model used was always the bottom, or the “independence model,” with a search 

direction of “up.” This method allows for moving up the lattice of structures, away from 

independence (no relations) toward a more complex model. Unjustified complexity 

results in large cumulative or incremental alphas that indicate the search has gone too far. 

In this project, cumulative p-values  ≥ 0.05 indicated the model was more complex than 

warranted, and a model lower in the lattice was subsequently selected.   

Models without loops, and models allowing for loops, were both considered and 

are provided in the model search results. During the search process, models were sorted 

by BIC, with a preference for larger values.  Each search was initially specified to keep 

three models at each level, and to search up to seven levels in the lattice for both loopless 

searches (coarse models), and searches allowing for models with loops (fine-grained 
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searches). For the loopless search, a seven-level search means that models with 

interaction effects involving up to seven IVs could in principle be considered. For the 

search that allows loops, models that add seven steps of complexification of the 

independence model are considered, where a step is either adding another variable to an 

interaction effect that is already being modeled or adding an additional predicting 

component to the model. 

If the search results indicated the best model by either BIC or AIC criterion was at 

the topmost level (Level 7 according to the initial settings) then additional searches were 

conducted looking higher than seven levels. The number of levels varied per search, but 

the protocol used always added levels until it was certain that the best models by BIC or 

AIC were not at the highest level that was examined. Additionally, a similar protocol was 

used for determining the width of the searches. Once a level was determined, width was 

increased to see if a better model was found. Once a model remained unchanged, either 

by increasing search levels or search widths, then this was considered the “best model” 

for that search. 

The best models that are the primary results of this project are selected according 

to BIC. The benefit of using the conservative BIC model selection criterion—as opposed 

to, say, using the AIC criterion—is that overfitting is unlikely; in being conservative, 

however, it is possible that the models selected were not aggressive enough, with a 

consequence of missing real interactions. (AIC was, however, used in RA-LR 

comparisons, because the LR software used this criterion.) BIC models are always 

“cumulatively” statistically significant; i.e., their difference from independence is always 

significant. In addition, in all of the BIC models reported there is always a path where 
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every step of increasing complexity from independence to the model is statistically 

significant, the significance of each step being given by the Occam measure Incremental 

Alpha.    

Fitting the RA Models to the Data & Identifying Important Model IV States 

The “fit” action of Occam displays the model’s internal structure, the conditional 

probability distribution for the DV, given the predicting IVs. In this project, best models 

were obtained for 16 searches, each resulting in a conditional probability distribution. 

Each distribution shows the conditional DV % for each of the IV composite states for the 

model and include frequencies and observed probabilities calculated from the data, as 

well as the calculated probabilities from the model. The frequency of all the IV states 

observed in the data, the data’s marginal probabilities, and the calculated IV conditional 

probabilities of the model are used for selecting important IV states, discussed further in 

the next section. 

The model fit analysis also displays the individual model component’s projections 

and is frequently informative. Each individual component may be a single variable, or 

more than one variable if a relation (interaction term) was found in the model.  

For both the model’s full table and the individual components’ tables, if the 

conditional probabilities for particular IV states are higher or lower than the margins, 

then the IVs have provided new (predictive) information. In this project, conditional 

probabilities that appear different from the margins are indicted by the blue and orange 

shaded cells. Whether or not this effect size is significant is assessed by a chi-square 

p-value, calculated from the margins, the IV state’s conditional probabilities, and the 
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frequencies for that IV state. This p-value indicates the statistical significance of the 

difference between the conditional distribution for particular IV states, namely q(DV|IV), 

and the sample margins, namely p(DV). The important IV states for each of the models is 

then communicated in a decision tree when possible. If the number of variables and their 

number of states make the decision tree too large for inclusion, then the decision tree is 

omitted. The decision trees provide a more intuitive visualization of the model’s 

predictors and their effect on the DV.  

Selection Criteria for Important Model IV States 

All observed IV states for each of the models are included in the original RA 

output from Occam. In this project, a criterion is used that considers only IV states that 

occur in 10 or more cases (freq ≥ 10). This decision is suggested by the Chi-square rule 

of thumb that calls for on average at least five values per cell. For DVs with cardinalities 

of two, requiring at least 10 cases doubles this guideline and imposes it on every IV state; 

this implements a conservative position on making assertions from the model conditional 

probability distribution. The position thus adopted here thus is that a p-value is assessed 

only if an IV state occurs in 10 or more cases. If p ≤ 0.05, then the IV state is retained; 

otherwise the IV state is omitted. 

Of these remaining IV states, a “risk ratio” is then calculated. If the IV state has a 

ratio ≥ 1.10, it is considered to be a higher-risk state, and if the ratio is ≤ 0.90, then it is 

considered to be a lower-risk state. Any IV state that is between 0.91 and 1.09 is 

considered to have a small effect size and is thus not considered an important IV state. 

These risk ratios are a primary measure of effect size, and while 5% is often considered 
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standard for an important effect size, this project doubles it to 10%, which is another 

conservative choice. 

Calculating Risk Ratios 

The risk ratio of an IV state is a measure of its effect size, whereas the p-value 

assesses the statistical significance of the difference between the conditional probability 

of the IV and the margins. This ratio will be used as part of the selection criteria for 

selecting important IV states in the model, as discussed in the next section, Results. 

Risk ratios help explain effect size, as does the reduction of uncertainty (ΔH), but 

provide a different way to look at the effect. For ΔH, even small uncertainty reductions 

could be large in effect size (like 1:1 to 2:1). The measure ΔH is like %variance 

explained, with the major exception that low %variance explained means the effect size is 

ignorable. However, for ΔH, even small numbers can have large effect sizes (this is 

because there is a log). The following example is used to help explain what the risk ratio 

means. This is important because the risk ratio is the primary measure by which 

decreased or increased risk is assessed. 

In this example, the season can be either summer or winter, and the possibilities 

for weather can be either rain or no rain (Figure 3 below). If you do not know what 

season it is, then you face maximum uncertainty with a 1:1 chance of no-rain to rain. 

However, if you know the season, the uncertainty is reduced. If you know it is winter, 

then there is a 1:2 odds of no rain:rain. If you know it is summer, then there is a 2:1 odds 

of no rain:rain. Knowing the season changes the odds. This is a big effect size and 

correlates to a %ΔH of 8.   
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 Figure 3. Knowing the Season Reduces the Uncertainty 

of the No-Rain:Rain from 1:1 to 2:1 or 1:2 odds. 

 

In a decision tree with probabilities, this would look like Figure 4. 

Figure 4. Decision Tree Illustrating How Knowing the Season 

Reduces the Uncertainty of the No-Rain:Rain from 1:1 to 2:1 or 1:2 Odds. 

 

In this example, the risk ratio is the probability of an outcome (e.g., rain) for a 

particular IV state (e.g., summer) divided by the marginal probability of the outcome 

(maximum uncertainty): 

.33 or .67 

.5  .5 

  

For the three binary DVs (Complication, SNF, and Readmission), the risk ratio is 

the probability of an outcome for a particular adverse IV state divided by the marginal 

probability of this outcome for the whole sample. For the DV Total Cost, however, the 
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ratio is instead the Expected Value of an IV state divided by the average cost for the total 

sample.  

Trying out many models in an exploratory modeling approach can lead to false 

positives, and it is valuable to try to guard against this. In this project, decisions were 

made that were systematically conservative by (a) dropping Comorbidity IVs that were 

infrequent in the data, (b) requiring a frequency ≥ 10 for each of the IV states in the 

model, (c) using ΔBIC as model selection criterion, and (d) establishing the effect size of 

at least 10% in the Risk Ratio of IV states. 

The general LR and RA methodologies were described in the Literature Review 

chapter, and project-specific applications and extensions of these methods are described 

above in this Methodology chapter. In the following chapter, the LR and RA analysis is 

performed, and the results are presented. 
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Chapter 4.  Results 

In the last chapter, an overview of the data and methods was provided. In this 

chapter, the first research objective aims to connect this project to the literature, and then 

compare Logistic Regression (LR) and Reconstructability Analysis (RA) in both 

confirmatory and exploratory modes. The second research question aims to find 

predictive models with RA. This chapter describes the analyses and presents the results in 

detail. These results are then summarized in the following Discussion chapter.  

Preliminary Research Objective: LR & RA Comparison  

To establish a connection to results from the literature, results are presented from 

an LR analysis of this project’s data, using a limited set of variables. Then, to address the 

question whether RA and LR give the same results for equivalent models, results are 

presented for the comparison of RA to LR using the same limited set of variables. To 

answer the question whether exploratory RA can provide better or novel models 

compared to LR, results are presented from an exploratory RA analysis, first on the 

limited data set and then on a larger subset of variables. This larger subset of variables is 

also analyzed with stepwise LR for comparison. These analyses provide a sequence of 

(limited) connections from LR results in the literature, to LR results from this project’s 

data, to RA results on this project’s data. 

Connecting to Previous LR Results from the Literature 

Prior to LR and RA comparisons, the results of a previously published study that 

used LR was re-created, also using LR, on this project’s data. The re-creation of this past 
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study confirmed that this data set was comparable to the data set used in that study, thus 

validating this project’s data. 

Previous research has assessed the effect of comorbidities (hypertension (H), 

diabetes (D), obesity (O), and their combinations) on postoperative complications and 

non-homebound discharge for patients with hip and knee arthroplasty (Jain et al., 2005). 

In the Jain study, LR was used to determine that postoperative complications were more 

likely in patients with hypertension (H), diabetes (D), or obesity (O) as compared with 

patients without these individual comorbidities. Jain et al, used the large National 

Inpatient Sample (NIS) database to create a data set of over a million joint replacement 

cases—a much larger sample than the data set used in this project. However, the 

procedure and diagnosis coding methodology and the way DVs postoperative 

complications and non-homebound discharges were determined are identical. The 

similarity of patient cohort and variable definitions makes it possible to validate the data 

used in this project. 

The hip and knee data sets used in this project were transformed into a combined 

data set (n = 6,612) similar to the data set used in the Jain study (Jain et al., 2005). The 

statistical software package R was used to perform LR and obtain odds ratios to quantify 

effect sizes and p-values to assess significance. Results demonstrate that odds ratios 

determined from this project’s data are comparable to findings of the Jain study. 

The Jain study (Jain et al., 2005) showed that hypertension had an effect on 

postoperative complications with an odds ratio (OR) of 1.07. Results of the new LR 

analysis (Table 10) show a slightly higher odds ratio at 1.18, although this result was not 

significant (p = 0.18). Previous results showed that for patients with the comorbidity of 
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obesity, there was a 31% greater chance of developing postoperative complications 

(OR = 1.31), while in the new LR analysis an odds ratio of 1.39 was found with a 

significant p-value of 0.03. Previous results indicate that diabetes increased risk of a 

postoperative complication by 6% (Jain et al., 2005), while patients with diabetes in this 

new analysis were 2.9 times more likely to have a postoperative complication than their 

non-diabetic counterparts (p = 0.00). The odds of diabetes are much higher in the new LR 

analysis than the previous results, yet the rate of diabetes is similar in both cohorts. There 

was a prevalence of diabetes of 10.04% in the Jain study cohort compared with 12.66% 

in the new LR analysis cohort.   

Table 10. Previous Results Reported in (Jain et al., 2005), and 

Results from New LR Analysis on This Project’s Data. 

Δdf, ΔLR, and ΔAIC values are given in the table for later comparisons with RA calculations. 

    
Previous Study 

Results 
New (LR) 

Comorbidity (IV) Outcome OR p-value OR p-value Δdf ΔLR ΔAIC 

Hypertension 

Postoperative 

Complications 
1.07 <0.001 1.18 0.18 1 1.78 -0.22 

Nonhomebound 

Discharge 
1.12 <0.001 1.07 0.17 1 1.85 -0.15 

Obesity 

Postoperative 

Complications 
1.31 <0.001 1.39 0.03 1 4.48 2.48 

Nonhomebound 

Discharge 
1.45 <0.001 1.22 0.00 1 9.38 7.38 

Diabetes 

Postoperative 

Complications 
1.06 0.010 2.90 0.00 1 49.56 47.56 

Nonhomebound 

Discharge 
1.30 <0.001 1.48 0.00 1 27.58 25.58 

 

The likelihood of a non-homebound discharge was 12% greater for patients with 

hypertension in the previous study (OR = 1.12), and 7% greater in the new LR analysis 

(p = 0.17) (Table 10).  Previous results showed that patients with diabetes had a 45% 

greater chance of a non-homebound discharge, while new LR results showed a 22% 

greater chance (p = 0.00). Diabetes was a comorbidity that increased likelihood of a 
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non-homebound discharge in both previous and current LR analysis, with a 30% greater 

chance (OR = 1.30) in previous results compared to a 48% greater chance in the new LR 

results. While there were differences in the effect sizes, the odds ratios were roughly 

comparable. The lack of significance in the effect size for hypertension on both DVs in 

the new LR analysis could be due to the much smaller cohort. 

The previous study (Jain et al., 2005) also looked at patients who had 

combinations of two comorbidities. These were not hypothesized interaction terms to be 

analyzed, but rather three new variables created. Again, the new LR analysis showed 

comparable results in terms of odds ratios with most results being significant (Table 11).  

Table 11. Previous Results Reported in (Jain et al., 2005) for 3 IVs, 

and Results from New LR Analysis on this Project’s Data. 

    
Previous Study 

Results 
New LR 

    

From Table 4, 

(Jain et al., 

2005) 

IVs recoded into new variables 

1=(both risks), 0=(not both risks) 

Comorbidity (IV) Outcome OR p-value OR p-value Δdf ΔLR ΔAIC 

Hypertension + 

Diabetes 

Postoperative 

Complications 
1.04 0.280 1.96 0.00 1 13.02 11.02 

Non-homebound 

Discharge 
1.30 <0.001 1.24 0.01 1 6.09 4.09 

Hypertension + 

Obesity 

Postoperative 

Complications 
1.27 <0.001 1.33 0.13 1 2.34 0.34 

Non-homebound 

Discharge 
1.45 <0.001 1.24 0.01 1 7.21 5.21 

Diabetes + 

Obesity 

Postoperative 

Complications 
1.22 0.020 2.32 0.00 1 13.13 11.13 

Non-homebound 

Discharge 
1.75 <0.001 1.51 0.00 1 12.59 10.59 

 

Do RA and LR give the same results for equivalent models? 

Results from the previous LR analysis were reproduced using the RA method 

instead. Here, RA was not used for exploratory modeling, but rather used in a 

confirmatory mode starting with the hypothesized model that was recreated in the LR 
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analysis. In this comparison, RA as programmed in the software “Occam” was used in a 

confirmatory mode starting with the models used in the LR study. RA generated identical 

results to LR, demonstrating that where the methods overlap, they are equivalent. The 

ΔAIC and Alpha measures are identical between LR and RA (Table 10 and Table 12, 

respectively).  

Table 12. Similar RA Results Using this Project’s Data. 

    New Results (RA in “Occam”) 

Comorbidity (IV) Outcome OR Alpha %ΔH(DV) Δdf ΔLR ΔAIC 

Hypertension 

Postoperative 

Complications 
1.18 0.18 0.08 1 1.78 -0.22 

Non-homebound 

Discharge 
1.07 0.18 0.02 1 1.85 -0.16 

Obesity 

Postoperative 

Complications 
1.39 0.03 0.20 1 4.48 2.48 

Non-homebound 

Discharge 
1.22 0.00 0.10 1 9.38 7.38 

Diabetes 

Postoperative 

Complications 
2.90 0.00 2.19 1 49.56 47.56 

Non-homebound 

Discharge 
1.48 0.00 0.30 1 27.58 25.58 

 

Results from RA are summarized as conditional probability distributions, which 

were transformed into joint probability distributions from which the odds ratios were 

calculated. The odds ratios are identical to those calculated by LR. RA provides an 

additional measure of effect size in the percent reduction of uncertainty of the dependent 

variable given the comorbidity IV states: %ΔH(DV), as seen in Table 12. This reduction 

of uncertainty is a unique and central feature in the RA methodology and will be 

emphasized in the upcoming exploratory modeling section. It might be viewed as a way 

of summarizing several odds ratios in a single measure. Uncertainty is the nominal 

variable “equivalent” of variance, and so a %reduction of uncertainty resembles a 

%variance explained. (For Gaussian distributions, there is in fact an equation that directly 
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relates the two.) However, uncertainty reduction numbers that are small can still represent 

large effect sizes, because of the logarithm term in the expression for uncertainty 

(Shannon entropy). 

Using RA to generate results for patients who had two comorbidities again 

resulted in identical ΔAIC, alpha, and odds ratio numbers (Table 13). However, the 

%ΔH(DV) is rather low, with the largest reduction in uncertainty at 0.57%. Perhaps there 

were other IVs that would have provided more information about the DV. The fact that 

even low reductions of uncertainty can correspond to odds ratio values whose difference 

from 1 is statistically significant should be kept in mind when uncertainty reduction 

values are reported in the next section.  

Table 13. Similar RA Results Using this Project’s Data with 3 New IVs. 

    New Results (RA) 

Comorbidity (IV) Outcome OR Alpha %ΔH(DV) Δdf ΔLR ΔAIC 

Hypertension + 

Diabetes 

Postoperative 

Complications 
1.96 0.00 0.57 1 13.02 11.02 

Non-homebound 

Discharge 
1.24 0.01 0.07 1 6.09 4.09 

Hypertension + 

Obesity 

Postoperative 

Complications 
1.33 0.13 0.10 1 2.34 0.34 

Non-homebound 

Discharge 
1.24 0.01 0.08 1 7.21 5.21 

Diabetes + 

Obesity 

Postoperative 

Complications 
2.32 0.00 0.58 1 13.13 11.13 

Non-homebound 

Discharge 
1.51 0.00 0.14 1 12.59 10.59 

 

Does exploratory RA provide better or novel models compared to LR? 

This preliminary comparison was then expanded, and RA was then used in an 

exploratory mode, providing an initial example of the type of unique results that are 

possible from using RA. This question is first answered using a simple RA exploratory 

search using the limited variable set from the above LR and RA analysis. Then, to further 
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demonstrate RA’s exploratory search capabilities, a larger subset of the data with 17 IVs 

was analyzed with LR and RA.  

Using this simplified data set with only four variables—the IVs, hypertension (H), 

diabetes (D), and obesity (O), and the DV, complications (C), shows a simple example of 

RA exploratory modeling, which in this case can evaluate the complete set of all possible 

models. In Table 14 below, the bottom row shows the independence model, where there 

is no relation or constraint between the IVs and the DVs with zero reduced DV 

uncertainty (%ΔH(DV) = 0.00). Moving up the table, or up the lattice of structures of all 

possible models for this four-variable system, the top row shows the data, the “saturated 

model,” which has information = 1 and maximum complexity (Δdf = 7). The models in 

between independence and the data were all considered by RA. While by the AIC 

criterion the best model was determined to be IV:HDC, there was an opportunity to 

consider models with loops, such as those highlighted in orange in Table 14 below. In 

this simple analysis, the model chosen did not have a loop, but in other situations, 

a model with loops may be the best model by AIC or another criterion. Note that IV:DC 

has information of 0.81, and adding HC (to give model IV:DC:HC) does not increase this 

value, but going up and adding a genuine interaction effect (to give model IV:HDC) 

increases the information to 0.98. Note also that although O predicts C better than 

H predicts C, the HD interaction predicts C better (information = 0.98, uncertainty 

reduction = 2.67%) than the DO interaction (information = 0.83, uncertainty 

reduction = 2.24%). 
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Table 14. Directed RA Search for DV Complication for 4 Variables. 

(Best Model by AIC in Bold.) 

MODEL Level Δdf ΔLR Inf %ΔH(DV) ΔAIC Alpha 

HDOC (Data) 7 7 61.44 1.00 2.71 47.44 0.00 

IV:HDC:HOC:DOC 6 6 61.12 0.99 2.69 49.12 0.00 

IV:HDC:DOC 5 5 61.11 0.99 2.69 51.11 0.00 

IV:HDC:OC 4 4 60.80 0.99 2.68 52.80 0.00 

IV:HDC:HOC 5 5 60.80 0.99 2.68 50.80 0.00 

IV:HDC 3 3 60.47 0.98 2.67 54.47 0.00 

IV:HOC:DOC 5 5 51.29 0.83 2.26 41.29 0.00 

IV:HC:DOC 4 4 50.89 0.83 2.24 42.89 0.00 

IV:DOC 3 3 50.85 0.83 2.24 44.85 0.00 

IV:HOC:DC 4 4 50.48 0.82 2.23 42.48 0.00 

IV:HC:DC:OC 3 3 49.88 0.81 2.20 43.88 0.00 

IV:DC:OC 2 2 49.82 0.81 2.20 45.82 0.00 

IV:HC:DC 2 2 49.57 0.81 2.19 45.57 0.00 

IV:DC 1 1 49.56 0.81 2.18 47.56 0.00 

IV:HOC 3 3 5.83 0.09 0.26 -0.17 0.12 

IV:HC:OC 2 2 5.37 0.09 0.24 1.37 0.07 

IV:OC 1 1 4.48 0.07 0.20 2.48 0.03 

IV:HC 1 1 1.78 0.03 0.08 -0.22 0.18 

IV:C (Independence model) 0 0 0.00 0.00 0.00 0.00 1.00 

MODEL Level Δdf ΔLR Inf %ΔH(DV) ΔAIC Alpha 

 

RA Exploratory and Stepwise LR 

This previous example illustrated a very simple comparison where LR had been 

used in its most standard form.  In the next example, an exploratory “stepwise” approach 

was used that illustrates a more typical research approach. This stepwise LR approach is 

more comparable than confirmatory modeling to the exploratory modeling using RA. 

In this example, the literature was surveyed in order to select a set of variables 

that have been reported to have an effect on outcomes similar to those in this study.  The 

resulting 17 literature-based predictors became the IVs used in this analysis. With these 

17 IVs, LR (as implemented in R) was then used in both its regular and stepwise 

variations. Without any additional hypothesis, the best models using LR are presented. 

RA as implemented in “Occam” is then used with the same 17 IVs. RA looked at models 
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not considered in the LR stepwise approach. The models from each method are compared 

and discussed.  

In the first example, 17 Comorbidity IVs were selected that have been found to be 

potentially predictive of cost from the literature, and were included in the hip or knee data 

sets used in the RA exploratory searches. This example analysis was performed on the 

hip data set for the DV Total Cost (Tcb). While total cost was binned into three states for 

RA exploratory modeling in the next results section, Tcb is binned into two states in 

order to perform a simple LR comparison. (LR can be used with the DV having more 

than two states, but the analysis is cumbersome.) 

 Single IV Predictors 

First, a single predicting search was performed with the 17 IVs specified. As is 

seen in Table 15, RA and LR produced identical results. In this single predicting search, 

six IVs were individually predictive with p < 0.05. 
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Table 15. LR & RA Comparison of Results for Single Predicting Search. 

(Δdf=1 for every model in this table.) 

Logistic Regression Results   RA Results 

MODEL ΔAIC ΔLR Alpha 

 

MODEL ΔAIC %ΔH ΔLR % C Alpha 

17 IVs 

(single 

predicting)       

17 IVs 

(single 

predicting)           

Rmo Tcb 47.11 49.11 0.00 Rmo Tcb  47.11 1.11 49.11 52.48 0.00 

Rdi Tcb 8.19 10.19 0.00 Rdi Tcb  8.19 0.23 10.19 51.64 0.00 

Rhf Tcb 5.07 7.07 0.01 Rhf Tcb  5.07 0.16 7.07 50.58 0.01 

Rdh Tcb 4.94 6.94 0.01 Rdh Tcb  4.94 0.16 6.94 50.14 0.01 

Rao Tcb 2.81 4.81 0.03 Rao Tcb  2.81 0.11 4.81 50.61 0.03 

Rua Tcb 2.75 4.75 0.03 Rua Tcb  2.75 0.11 4.75 50.92 0.03 

Roo Tcb 1.46 3.46 0.06 Roo Tcb  1.46 0.08 3.46 50.92 0.06 

Rpv Tcb 0.52 2.52 0.11 Rpv Tcb  0.52 0.06 2.52 50.23 0.11 

Rhe Tcb 0.38 2.38 0.12 Rhe Tcb  0.38 0.05 2.38 51.36 0.12 

Rci Tcb 0.24 2.24 0.13 Rci Tcb  0.24 0.05 2.24 50.42 0.13 

Rov Tcb -0.30 1.70 0.19 Rov Tcb  -0.30 0.04 1.70 50.14 0.19 

Rbe Tcb -0.35 1.65 0.20 Rbe Tcb  -0.35 0.04 1.65 50.11 0.20 

Rco Tcb -0.70 1.30 0.25 Rco Tcb  -0.70 0.03 1.30 50.17 0.25 

Rca Tcb -1.09 0.91 0.34 Rca Tcb  -1.09 0.02 0.91 50.36 0.34 

Rem Tcb -1.10 0.90 0.34 Rem Tcb  -1.10 0.02 0.90 50.11 0.34 

Rdn Tcb -1.30 0.70 0.40 Rdn Tcb  -1.30 0.02 0.70 50.08 0.40 

Rpe Tcb -1.91 0.09 0.76 Rpe Tcb  -1.91 0.00 0.09 50.02 0.76 

 

Looking at all 17 of the IVs together results in a ΔAIC of 51.85, as seen in 

Table 16. Looking at a model that includes only the six IVs that were individually 

predictive of total cost with alpha < 0.05 resulted in the LR model Rmo Tcb : Rdi Tcb : 

Rhf Tcb : Rdh Tcb :  Rao Tcb : Rua Tcb with a ΔAIC of 60.51 (Table 16), which is an 

improvement over the model with all 17 IVs. 

Table 16. Confirmatory LR Results for all 17 IVs and 6 IVs with p < 0.05. 

Model Δdf ΔAIC ΔLR Alpha 

All 17 variables 

  17 51.85 85.85 0.00 

Model Δdf ΔAIC ΔLR Alpha 

Model with the 6 IVs variables that individually have p < 0.05 

Rmo Tcb : Rdi Tcb :  Rhf Tcb :   Rdh Tcb :  Rao Tcb :  Rua Tcb   6 60.51 72.51 0.00 
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Using the same 17 IVs, a stepwise LR approach yielded model Rdi Tcb : Roo 

Tcb : Rmo Tcb : Rov Tcb : Rhf Tcb : Rdh Tcb : Rua Tcb : Rao Tcb with a ΔAIC of 

62.66 (Table 17), an improvement over the previous best LR model from Table 16.  

Table 17. Stepwise LR Approach with 17 IVs. 

Model Δdf ΔAIC ΔLR Alpha 

Best model from a stepwise search using AIC 

Rdi Tcb: Roo Tcb: Rmo Tcb : Rov Tcb : Rhf Tcb : Rdh Tcb : 

Rua Tcb : Rao Tcb 
8 62.66 78.66 0.00 

 

While the researcher must specify interaction terms for an LR analysis, even with 

17 IVs, RA (as implemented in Occam) automatically considers these models in its 

standard search. In addition, RA considers models that include multivariate interaction 

effects that are not possible with LR. The best fine-grained model by ΔAIC in the 

17-variable search using RA was Rd Rao Tcb : Roo Rpv Tcb : Rmo Rci Tcb : Rmo Rao 

Tcb : Rov Rua Tcb : Rhf Rua Tcb : Rdh Tcb with a ΔAIC of 66.57 (Table 18), an 

improvement over the model from the LR stepwise search in Table 17.   

Table 18. RA Exploratory Search Results with 17 IVs (no interaction terms specified in advance). 

MODEL Δdf ΔAIC %ΔH ΔLR % C alpha Variable description 

FINE, best models (with loops) 

ΔAIC (best model) 

RdiRaoTcb : 

RooRpvTcb : 

RmoRci Tcb : 

RmoRaoTcb : 

RovRuaTcb : 

RhfRuaTcb : 

RdhTcb 

16 66.57 2.22 98.57 55.69 0.08 

Diabetes mellitus (RISK 250) + Chronic 

airway obstruction, not elsewhere 

classified (RISK 496), Overweight, 

obesity and other hyperalimentation 

(RISK 278) +  Peripheral vascular 

disease, unspecified (RISK 443.9), 

Morbid obesity (RISK 278.01) + Other 

forms of chronic ischemic heart disease 

(RISK 414), Morbid obesity (RISK 

278.01) + Chronic airway obstruction, 

not elsewhere classified (RISK 496), 

Overweight (RISK 278.02) + Asthma 

unspecified (RISK 493.9), Heart failure 

(RISK 428) + Asthma unspecified 

(RISK 493.9), Diastolic heart failure 

(RISK 428.3) 
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RA has previously been used by several researchers to detect interaction terms 

that are then specified for LR analysis (Cangur, 2009; Carletti, 2004; Mist, 2007). The 

RA analysis detected interaction effects and in fact, each predicting component in the 

best model by AIC from the RA search had an interaction term (Table 18). In this 

analysis, the RA exploratory search appears to be more capable of finding predictive 

interactions. When using the 10 IVs (out of the original 17 IVs) that are present in the 

best model from the RA search (with no interaction terms), an LR analysis resulted in a 

ΔAIC of 61.67 (Table 19). However, RA found a more interesting and informative 

(ΔAIC = 66.57) model that LR could not find, because RA automatically searches for 

significant interaction effects. 

Table 19. LR Analysis with the 10 IVs present in the Best RA Model. 

Model Δdf ΔAIC ΔLR Alpha 

Model with 10 variables that are present in Occam's “best model by AIC” 

Rdi Tcb : Rao Tcb : Roo Tcb : Rpv Tcb : Rmo Tcb : Rci Tcb : 

Rov Tcb : Rua Tcb : Rhf Tcb : Rdh Tcb 
10 61.67 81.67 0.00 

 

In this example looking at just 17 IVs, RA generated models with quantifiable 

additional predictive power by considering models that were not considered in the LR 

analysis. Note that RA and LR looked at the same set of IVs. The higher AIC value for 

the RA model means that its additional complexity (the RA model in Table 18 is twice as 

complex as the LR model in Table 17) is more than justified by the increase in predictive 

efficacy that it gives. 

In the next section, a much larger set of IVs is considered when looking at each of 

the dependent variables of this study. In addition to the previously known predicting IVs, 

RA may detect something novel, particularly through the form of an interaction term. 
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These combination effects may add predictive strength relative to the set of known single 

predicting IVs available in the current literature and may even detect surprising IVs.  

The first example in this preliminary comparison section recreated a previous 

study and addressed any concern of whether RA is approximately similar to LR where 

they overlap methodologically. This validated RA as a method and confirmed the results 

from a previous LR study. The second example showed that RA can provide novel 

predictions and better relative performance, and therefore RA was shown to have value as 

a method to augment or supplant LR. 

Main Research Objective: Find predictive models with RA 

In this results section, a series of best models whose measure of goodness is 

% reduction of uncertainty of the DV are proposed and analyzed in detail for the 

following DVs: (a) Complication, (b) (discharge to) Skilled Nursing Facility, 

(c) Readmission, and (d) Total Cost, for both Knee and Hip replacement data. In each of 

these eight studies, searches were performed looking at (a) All IVs together, and (b) only 

the Comorbidity IVs. 

DV: Complication (Cp) 

Knee Analysis 

 All IVs 

o Coarse Searches (Models without Loops) 

First, loopless models were examined for the dependent variable Complication 

(Cp). These loopless models were sorted from the most predictive to the least predictive, 
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and models were selected with single IV predictors having p  0.05, which resulted in 

marking 53 IVs to keep for the next round of searches. In addition to these single 

predicting variables, IVs were retained that were found to be predictive in the literature 

on similar outcome variables. In this literature, there were 25 variables that were 

predictive of complications or discharge destination that were retained in the data; 16 of 

these literature-based IVs also had a p value < 0.05 in the single predicting search, while 

nine of the literature-based variables had p values > 0.05. The search results for the top 

10 models are included in Table 20. Additional single predicting IVs are provided in 

Table 20 if the IV was not listed in the top 10 but was included in one of the best models 

by the BIC or AIC criterion. In results tables where p values always equaled zero to two 

significant figures (i.e., p < 0.005), the column indicating p value was omitted. A model 

in the table specifies IVs (e.g., Nrb, Rku) that predict the DV (here, Cp). It is followed 

first by df = df(model) – df(reference), the difference between the degrees of freedom of 

the model and the reference or independence model. The next value is 

BIC = BIC(reference) – BIC(model), for which improvements in the model compared 

to the reference are reflected in larger values. The next measurement is  %H = H(DV) –

 H(DV|IV), the %reduction of uncertainty of the DV given the IVs. The reduction of 

uncertainty measure indicates how predictive the IVs are. The BIC measure indicates 

how efficient the prediction is; i.e., how predictive the IVs are, given their complexity 

(degrees of freedom). Best models are chosen based on their BIC measures, which results 

in a highly conservative choice of models. Table 18 summarizes the results of single and 

multiple predictors in loopless and all-model (with loops) searches.  
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Table 20. Summary of Search Results (Knee) for All IVs. 

Search covers coarse and fine models. All p-values = 0. 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, single predictors (top 10) 

S Cp 62 -412.74 6.45 Surgeon 

Nrb Cp 2 77.29 5.69 Number of risks (binned) 

Rrd Cp 1 43.04 3.11 Unspecified hypertensive renal disease (403.9) 

Rku Cp 1 39.63 2.91 Chronic kidney disease, unspecified (585.9) 

Ruh Cp 1 33.56 2.54 Other and unspecified hyperlipidemia (272.4) 

L Cp 6 -9.04 2.50 Location 

Ad Cp 27 -185.33 2.47 Admission diagnosis 

Ageb Cp 2 14.61 1.90 Age (binned) 

Raf Cp 1 11.46 1.20 Atrial fibrillation (427.31) 

Rhf Cp 1 10.79 1.16 Heart failure (428) 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rhd Cp (rank 12) 1 9.90 1.11 Other chronic pulmonary heart disease (416.8) 

Rro Cp (rank 18) 1 3.22 0.70 Rosacea (695.3) 

Reg Cp (rank 20) 1 1.95 0.63 Esophagitis (530.1) 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Nrb Rku Cp 5 83.23 7.58 
Number of risks (binned), Chronic kidney disease, 

unspecified (585.9) 

Inc.P & ΔAIC (same best model) 

Nrb Rhd Rku Cp 11 52.71 8.77 
Number of risks (binned), Other chronic pulmonary heart 

disease (416.8), Chronic kidney disease (585.9) 

MODEL Δdf ΔBIC %ΔH Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

Ageb Cp : Nrb Cp : 

Ruh Cp:Rhd Cp : 

Rku Cp : Rro Cp 

8 104.71 10.40 

Age (binned), Number of risks (binned), Other and 

unspecified hyperlipidemia (272.4), Other chronic 

pulmonary heart disease (416.8), Chronic kidney disease, 

unspecified (585.9), Rosacea (695.3) 

Inc.P & ΔAIC  (same best model) 

Ageb Cp : Nrb Cp : 

Ruh Cp: Rhd Cp : 

Reg Cp : Rku Cp : 

Rro Cp 

9 104.23 10.88 

Age (binned), Number of risks (binned), Other and 

unspecified hyperlipidemia (272.4), Other chronic 

pulmonary heart disease (416.8), Esophagitis (530.1), 

Chronic kidney disease, unspecified (585.9), Rosacea 

(695.3) 

 

Knowing the surgeon who performed the surgery (S) reduces uncertainty by 

6.45% (Table 20). Likewise, knowing only if the patient had unspecified hypertensive 

renal disease (Rrd) reduces uncertainty by 3.11%, and knowing that the patient had 

unspecified chronic kidney disease (Rku) reduces uncertainty by 2.91%. The best coarse 
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model in Table 20 shows that, for this data set, simply knowing the total number of 

comorbidities a patient had (Nrb) along with chronic kidney disease (Rku) reduces the 

uncertainty in predicting if Complication (Cp) occurred by 7.58%. 

o Fine Searches (Models with Loops) 

The next type of search considers models with loops, which allows for multiple 

components that predict the DV. Within each component, there may be interaction effects 

among the IVs in their prediction of the DV, just as an interaction effect was observed in 

the best BIC model, Nrb Rku Cp, and the best loopless IncrP/AIC model, Nrb Rhd Rku 

Cp, as shown in Table 20. 

Note that some single predicting variables do not show up in the best coarse or 

fine models, indicating that the IVs are not independent from each other. There are six 

single predicting variables in the best BIC fine-grained model: Ageb Cp : Nrb Cp : Ruh 

Cp : Rhd Cp : Rku Cp : Rro Cp. Five of these variables—Ageb, Nrb, Ruh, Rhd, and 

Rku—also appear in the top 10 single predicting components, while Rro is the 18th  in 

the list of single predicting components (Appendix C). This apparently low-value 

variable was included when the RA search methodology sought to improve a model 

already containing the better individual predictors Ageb, Nrb, Ruh, Rhd, and Rku. Rro 

was found to be the variable that added more additional information to that model, 

relative to any of the better singly-predicting IVs above it.  

The best single predictor, S (surgeon) does not appear in the best fine-grained 

model, presumably in part because S has high cardinality and the information added by S 

is not worth the complexity of including it in the model, and perhaps in part also because 
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the predictive effect of S is already provided by the Ageb, Nrb, Ruh, Rhd, and/or Rku 

predictors. Similarly, Ageb, Nrb, Ruh, Rhd, and Rku contain the information offered by 

the other single predictors all the way down to Rro. The third-best single predictor, Rrd, 

also does not appear in the best fine-grained model. Again, the information added by Rrd 

is presumably not worth the additional complexity to be added to the model. This 

explanation is supported by the fact that if Rrd were the DV, it is well predicted by Ageb, 

Nrb, Ruh, Rhd, and Rku. In fact, Rku alone predicts Rrd with a %ΔH of 53.14%, 

demonstrating significant overlap between Rku and Rrd. Nrb and other variables also 

explain information in Rrd, as seen in Table 21. This demonstrates the lack of 

independence between the IVs, which is analogous to collinearity among IVs in 

regression analysis. 

Table 21. IV Rku Predicts Rrd (as DV), 

Demonstrating IV Overlap. 

MODEL Δdf %ΔH(DV) ΔBIC 

Rku Rrd 1 53.14 548.21 

Rkd 1 18.64 186.83 

Rhe Rrd 1 17.45 174.39 

Nrb Rrd 2 17.13 162.69 

S Rrd 62 11.42 -399.60 

Fc Rrd 5 4.63 6.64 

Ageb Rrd 2 4.31 28.43 

Rdi Rrd 1 4.19 35.46 

Ruh Rrd 1 4.16 35.20 

Ad Rrd 27 3.43 -190.21 

 

Recall that the IV Nrb is a binned variable that tallies up the number of 

comorbidities a patient has upon admission, and says nothing about the specific 

comorbidities and their effects. The Nrb IV is tallied based on the presence or absence of 

the 912 potential Comorbidity IVs present in the original data set. Because the specific 

effect of individual or interactive Comorbidities are of interest, the Comorbidity only 
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search excludes Nrb and other All IVs and thus focuses explicitly on the potential effects 

of each individual comorbidity.  

 Comorbidity IVs 

o Coarse Searches (Models without Loops) 

In the next search, Comorbidity IVs alone were considered as possible predictors. 

The two predicting All IVs [Number of Risks Binned (Nrb) and Age Binned (Ageb)] from 

Table 20 are thus not included in the results from this search (Table 22). The 

Comorbidities IVs from Table 20 also show up—in the same order as in Table 20—as the 

most predictive single predictive IVs, and two additional single predicting IVs appear: 

aortic valve disorders (Rav), and coronary atherosclerosis of native coronary artery 

(Rca). 

While the results of the search including both All IVs resulted in the best model 

Nrb Cp by the BIC criterion with a %ΔH of 6.73 (Table 20), the results of this search 

yielded a best model in which other and unspecified hyperlipidemia (Ruh) and 

unspecified hypertensive renal disease (Rrd) together predict Complication (Cp) with a 

%ΔH of 5.04 Table 22 below. 

Table 22. Summary of Search Results (Knee) for Comorbidity IVs. 

Search covers directed coarse and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors           

Rrd Cp 1 43.04 3.11 0.00 Unspecified hypertensive renal disease (403.9) 

Rku Cp 1 39.63 2.91 0.00 Chronic kidney disease, unspecified (585.9) 

Ruh Cp 1 33.56 2.54 0.00 Other and unspecified hyperlipidemia (272.4) 

Raf Cp 1 11.46 1.20 0.00 Atrial fibrillation (427.31) 

Rhf Cp 1 10.79 1.16 0.00 Heart failure (428) 

Rhd Cp 1 9.90 1.11 0.00 Other chronic pulmonary heart disease (416.8) 

Ros Cp 1 9.81 1.10 0.00 Obstructive sleep apnea (327.23) 

Rdi Cp 1 8.45 1.02 0.00 Diabetes mellitus (250) 

Rav Cp 1 6.54 0.90 0.00 Aortic valve disorders (RISK 424.1) 
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MODEL Δdf ΔBIC %ΔH Alpha Variable description 

Rca Cp 1 6.48 0.90 0.00 
Coronary atherosclerosis of native coronary 

artery (RISK 414.01) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rro Cp (rank 18) 1 3.22 0.70 0.00 Rosacea (695.3) 

Rmo Cp (rank 19) 1 2.72 0.67 0.00 Morbid Obesity (278.01) 

Reg Cp (rank 20) 1 1.95 0.63 0.00 Esophagitis (530.1) 

Rlb Cp (rank 21) 1 1.95 0.63 0.00 Legal blindness (369.4) 

Rkd Cp (rank 22) 1 1.84 0.62 0.00 Chronic kidney disease, unspecified (585.9) 

Ruu Cp (rank 28) 1 -0.13 0.50 0.00 
Other disorders of urethra and urinary tract 

(599) 

Rpn Cp (rank 32) 1 -1.44 0.42 0.01 
Unspecified hereditary and idiopathic peripheral 

neuropathy (356.9) 

Rcb Cp (rank 36) 1 -2.59 0.35 0.02 Obstructive chronic bronchitis (491.2) 

Rpy Cp (rank41) 1 -3.11 0.32 0.02 Polymyalgia rheumatica (725) 

Rhe Cp (rank42) 1 -3.14 0.32 0.02 Unspecified essential hypertension (401.9) 

Rsy Cp (rank 44) 1 -3.33 0.31 0.02 Other synovitis and tenosynovitis (727.09) 

Rs Cp (rank 46) 1 -3.40 0.30 0.03 Sarcoidosis (135) 

Rtu Cp (rank 47) 1 -3.48 0.30 0.03 Tobacco use disorder (305.1) 

Rdf Cp (rank 48) 1 -4.05 0.26 0.04 Chronic diastolic heart failure (428.32) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model 

(loopless)           

ΔBIC (best model) 

Ruh Rrd Cp 3 58.21 5.04 0.00 
Other and unspecified hyperlipidemia (272.4), 

Unspecified hypertensive renal disease (403.9) 

ΔAIC (best model) 

Ruh Ros Raf Rku Cp 15.0 4.62 7.89 0.00 

Other and unspecified hyperlipidemia (272.4) + 

Obstructive sleep apnea (327.23) + Atrial 

fibrillation (427.31) + Chronic kidney disease, 

unspecified (585.9) 

Inc.P (best model) 

Ruh Ros Raf Rku Cp 15.0 4.62 7.89 0.00 

Other and unspecified hyperlipidemia (272.4) + 

Obstructive sleep apnea (327.23) + Atrial 

fibrillation (427.31) + Chronic kidney disease, 

unspecified (585.9) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

FINE, best models 

(with loops)           

ΔBIC (best model) 

Ruh Raf Cp : Ros Cp : Rhd 

Cp : Rav Cp : Reg Cp : Rku 

Cp : Ruu Cp : Rro Cp 

10 87.76 10.39 0.00 

Other and unspecified hyperlipidemia (272.4) + 

Atrial fibrillation (427.31), Obstructive sleep 

apnea (327.23), Other chronic pulmonary heart 

disease (416.8), Aortic valve disorders (424.1), 

Esophagitis (530.1), Chronic kidney disease, 

unspecified (585.9), Other disorders of urethra 

and urinary tract (599), Rosacea (695.3) 
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MODEL Δdf ΔBIC %ΔH Alpha Variable description 

Inc.P & ΔAIC (same best model) 

Rs Cp : Ruh Raf Cp : Rmo 

Cp : Rtu Raf Cp : Ros Rhd 

Cp : Rpn Raf Cp : Rlb Cp : 

Rhe Rro Cp : Rhe Rsy Cp : 

Rca Cp : Rav Cp : Rdf Cp : 

Rcb Cp : Reg Cp : Rkd Cp : 

Rku Cp : Ruu Cp : Rpy Cp 

27 87.02 16.57 0.00 

Sarcoidosis (135), Other and unspecified 

hyperlipidemia (272.4) + Atrial fibrillation 

(427.31), Morbid Obesity (278.01), Tobacco use 

disorder (305.1) + Atrial fibrillation (427.31), 

Obstructive sleep apnea (327.23) + Other 

chronic pulmonary heart disease (416.8), 

Unspecified hereditary and idiopathic peripheral 

neuropathy (356.9) + Atrial fibrillation (427.31), 

Legal blindness (369.4), Unspecified essential 

hypertension (401.9) + Rosacea (695.3), 

Unspecified essential hypertension (401.9) + 

Other synovitis and tenosynovitis (727.09), 

Coronary atherosclerosis of native coronary 

artery (414.01), Aortic valve disorders (424.1), 

Chronic diastolic heart failure (428.32), 

Obstructive chronic bronchitis (491.2), 

Esophagitis (530.1), Chronic kidney disease, 

Stage III (585.3), Chronic kidney disease 

(585.9), Other disorders of urethra and urinary 

tract (599), Polymyalgia rheumatica (725) 

 

o Fine Searches (Models with Loops) 

Performing a search that allowed for loops with only Comorbidity IVs (Table 22) 

resulted in the best BIC model Ruh Raf Cp : Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku 

Cp : Ruu Cp : Rro Cp, with a corresponding reduction in uncertainty of 10.39%, a very 

slight improvement over the model in Table 20, namely Ageb Cp : Nrb Cp : Ruh Cp : 

Rhd Cp : Rky Cp : Rro Cp, at a cost of an increase of complexity: Δdf = 10, compared 

to 8. The first component of this model, Ruh Raf Cp shows an interaction effect between 

Ruh and Raf in their combined effect on the DV. Thus, in the best model found that using 

Comorbidities IVs, other and unspecified hyperlipidemia (Ruh) and atrial fibrillation 

(Raf) form one predictive component, followed by obstructive sleep apnea (Ros), other 

chronic pulmonary heart disease (Rhd), aortic valve disorders (Rav), esophagitis (Reg), 
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chronic kidney disease, unspecified (Rku), other disorders of urethra and urinary tract 

(Ruu), and rosacea (Rro). 

Similar to the results from Table 20, the best model from Table 21, Ruh Raf Cp : 

Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp, also excludes Rrd 

(the top single predicting variable in the Comorbidity only search). Just like the model in 

Table 20, the other variables in the model presumably cover the information in Rrd. 

 Comparing Search Results (Knee, Cp) 

The All IVs and the Comorbidity IVs searches yield two sets of results that can be 

compared to each other and interpreted with a 3-tiered classification of results, as 

described below and summarized in Table 23. 

Table 23. The 3-Tiered Classification of 

Predicting Variables for DV: 

Complication, Knee Analysis 

Tier Variables 

Tier 1 – Most Important Nrb, Ageb, Ruh, Rhd, Rku 

Tier 2 Reg, Raf, Ros, Rav, Ruu 

Tier 3 Rro 

 

Tier 1 contains variables from the best-by-BIC model from the dataset All IVs. 

This is the most complete search, and the one that provides the most conservative 

predictors. The selected variables (Nrb, Ageb, Ruh, Rhd, Rku, Rro) are shown in the first 

row of Table 23, and are considered the most important predicting variables.  

Tier 2 contains variables not in Tier1, but found in the AIC (less conservative) 

model of All IVs AND in the BIC model of Comorbidity IVs. For the Knee Analysis of 

DV Complication, this selects the variables Reg, Raf, Ros, Rav, Ruu as the next-most 

important predicting variables. These are shown in the second row of Table 23. 
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Finally, this classification places into Tier 3 any variables present elsewhere in the 

best model search results, but not included in Tier 1 or Tier 2. That is, any variables 

unique to one of the two searches: variables in the AIC model of All IVs but not in the 

BIC model of Comorbidity IVs, as well as variables in the BIC model of Comorbidity IVs 

but not in the AIC model from All IVs. In this case, there were no variables that met these 

specifications. Strictly speaking, by the criteria set forth for Tier 1, Rro should have been 

included, but it has been “demoted” to Tier3 for reasons that will be explained below. 

 Model FIT 

Having found a best model, the next step is to analyze its detailed content; i.e., the 

conditional probability distribution for the DV, given the predicting IVs. This distribution 

is shown in Table 24 below, for the best fine-grained model from the search with All IVs, 

namely Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. The columns of the 

table are: the model number, to be able to refer to models easily; the six IVs in the model 

and their different states; the frequency of each particular IV (vector) state; the 

conditional probability p(Cp = 0|IV) and p(Cp = 1|IV) in the data given as percentages 

(so they add up to 100%); these two conditional probabilities in the model (which is an 

approximation to the data) written as q(Cp = 0|IV) and q(Cp = 1|IV); the “risk ratio” of 

q(Cp = 1|IV) / q(Cp = 1); i.e., the probability of complications for a particular IV state 

divided by the marginal probability of complications for the whole sample. So, for 

example, the first row specifies the IV state (Ageb, Nrb, Ruh, Rhd, Rku, Rro) = 

(1,1,0,0,0,0), which occurs 502 times in the sample, for which the conditional 

probabilities for the data (p) and the model (q) are given in percent, where ratio 
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0.19 = 0.89/4.73, and where the p-value for the comparison of (99.11, 0.89) to the 

margins (95.27, 4.73) is 0. The “risk ratio” conveys the effect size, while the p-value 

conveys the significance of the effect size. The p-values are important and are used to 

retain significant results only; however, it is the ratio—the effect size—that is used in 

selecting the states that result in an effect, either protective (blue) or risky (orange), 10% 

above or below the risk ratio of 1. 

Table 24. Full Fit Table (Knee) All IVs for Best Model: 

Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

IVs Data Model 

 

  

obs. p(DV|IV) calc. q(DV|IV) 

 # Ageb Nrb Ruh Rhd Rku Rro freq Cp=0 Cp=1 Cp=0 Cp=1 ratio p(margin) 

1 1 1 0 0 0 0 502 99.00 1.00 99.11 0.89 0.19 0.00 

2 1 1 1 0 0 0 1 100.00 0.00 98.46 1.54 0.33 0.88 

3 1 2 0 0 0 0 457 98.69 1.31 97.77 2.24 0.47 0.01 

4 1 2 0 0 0 1 1 100.00 0.00 80.86 19.14 4.05 0.50 

5 1 2 0 0 1 0 2 100.00 0.00 91.86 8.14 1.72 0.82 

6 1 2 0 1 0 0 1 0.00 100.00 87.38 12.62 2.67 0.71 

7 1 2 1 0 0 0 34 91.18 8.82 96.17 3.83 0.81 0.81 

8 1 3 0 0 0 0 380 96.05 3.95 95.90 4.10 0.87 0.56 

9 1 3 0 0 0 1 1 100.00 0.00 69.34 30.66 6.48 0.22 

10 1 3 0 0 1 0 8 100.00 0.00 85.80 14.20 3.00 0.24 

11 1 3 0 1 0 0 2 100.00 0.00 78.75 21.25 4.49 0.27 

12 1 3 1 0 0 0 96 89.58 10.42 93.07 6.93 1.47 0.31 

13 1 3 1 0 0 1 1 100.00 0.00 56.47 43.53 9.21 0.07 

14 1 3 1 0 1 0 3 66.67 33.33 77.61 22.39 4.74 0.15 

15 1 3 1 1 0 0 1 0.00 100.00 68.01 31.99 6.77 0.20 

16 2 1 0 0 0 0 421 99.29 0.71 98.78 1.22 0.26 0.00 

17 2 1 0 1 0 0 1 100.00 0.00 92.78 7.22 1.53 0.91 

18 2 1 1 0 0 0 6 100.00 0.00 97.90 2.10 0.44 0.76 

19 2 2 0 0 0 0 420 96.91 3.10 96.96 3.04 0.64 0.10 

20 2 2 1 0 0 0 50 90.00 10.00 94.82 5.18 1.10 0.88 

21 2 3 0 0 0 0 349 93.98 6.02 94.47 5.53 1.17 0.48 

22 2 3 0 0 0 1 3 33.33 66.67 62.26 37.74 7.98 0.01 

23 2 3 0 0 1 0 10 60.00 40.00 81.51 18.49 3.91 0.04 

24 2 3 0 1 0 0 3 66.67 33.33 73.00 27.00 5.71 0.07 

25 2 3 0 1 1 0 1 100.00 0.00 41.10 58.90 12.46 0.01 

26 2 3 1 0 0 0 137 95.62 4.38 90.74 9.26 1.96 0.01 

27 2 3 1 0 1 0 9 44.44 55.56 71.66 28.34 5.99 0.00 

28 2 3 1 1 0 0 1 100.00 0.00 60.80 39.21 8.29 0.11 

29 3 1 0 0 0 0 376 97.87 2.13 98.11 1.90 0.40 0.01 
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30 3 1 1 0 0 0 2 50.00 50.00 96.74 3.26 0.69 0.92 

31 3 2 0 0 0 0 447 95.08 4.92 95.32 4.68 0.99 0.96 

32 3 2 0 0 0 1 1 0.00 100.00 66.30 33.71 7.13 0.17 

33 3 2 0 0 1 0 7 100.00 0.00 84.01 15.99 3.38 0.19 

34 3 2 1 0 0 0 54 94.44 5.56 92.11 7.89 1.67 0.27 

35 3 3 0 0 0 0 341 90.62 9.38 91.60 8.41 1.78 0.00 

36 3 3 0 0 0 1 2 100.00 0.00 51.29 48.71 10.30 0.00 

37 3 3 0 0 1 0 28 75.00 25.00 73.77 26.23 5.55 0.00 

38 3 3 0 1 0 0 7 57.14 42.86 63.31 36.70 7.76 0.00 

39 3 3 0 1 1 0 1 100.00 0.00 30.81 69.19 14.63 0.00 

40 3 3 1 0 0 0 148 87.84 12.16 86.21 13.79 2.92 0.00 

41 3 3 1 0 0 1 1 0.00 100.00 37.65 62.35 13.19 0.01 

42 3 3 1 0 1 0 18 66.67 33.33 61.74 38.26 8.09 0.00 

43 3 3 1 1 0 0 2 50.00 50.00 49.74 50.26 10.63 0.00 

       
4336 95.27 4.73 95.27 4.73 1.00 

 
# Ageb Nrb Ruh Rhd Rku Rro freq Cp=0 Cp=1 Cp=0 Cp=1 ratio p(margin) 

  

The values for the All IVs: number of risks binned (Nrb) and age binned (Ageb) 

are either states 1, 2, or 3 and are the three bins that the data was discretized to. Bin 

ranges and frequencies are summarized in Table 25 and Table 26 below. With three states 

possible for each of Ageb and Nrb, and two states possible for each of Ruh, Rhd, Rku and 

Rro, one might expect to see 144 rows—one row for each possible combination of states. 

However, fit tables don’t show rows for IV states that did not occur in the data. In 

Table 24, for example, instead of 144 rows there are 43 rows. Additionally, fit tables in 

the remainder of the results section will include only the rows that meet the protocol of 

this project, which requires a frequency of 10 or more and a p(margin) of 0.05 or less. 

Table 25. Number of Risks (Nrb) 

Bin Range & Frequency (Knee) 

Bin Range Frequency 

1 0-1 1309 

2 2-3 1474 

3 4-18 1553 
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Table 26. Age Binned (Ageb) Bin Range 

& Frequency (Knee). 

Bin Range Frequency 

1 32-62 1,490 

2 63-71 1,411 

3 72-95 1,435 

 

For the independence model, which is the reference, we do not know the state of 

Ageb or Nrb or if a comorbidity was present, so all of the uncertainty of the DV comes 

from its marginal distribution, which is the last line of the table, for which the data and 

model conditional probabilities are the same. For the calculated model, knowing the bin 

states of All IVs (Nrb, Ageb) or the presence or absence of the individual Comorbidity IVs 

(Ruh, Rhd, Rku, Rro) tells us about the probability of Cp occurring. The model 

conditional probabilities are more appropriate to use than the observed (data) conditional 

probabilities because the model is simpler than the data and thus generalizes better.  

Each of the model’s components, namely Ageb Cp or Nrb Cp or Ruh Cp or Rhd 

Cp or Rku Cp or Rro Cp, has an individual conditional probability distribution and is 

individually informative.  Table 27 is a compressed table summarizing the conditional 

probability distributions for one component only. For example, looking only at Age 

(Table 27), the conditional probability of Cp = 1 given Ageb = 1 is 2.82% with the risk 

ratio of 0.60 (row 9), Ageb = 2 has a neutral risk ratio close to 1 and was excluded, and 

Ageb = 3 shows increased risk with a ratio = 1.52 (row 6). In other words, knowing only 

Ageb, regardless of the states of the other IVs in the model, there is a significant 

difference in the probability of Cp = 1; i.e., a significant difference in the probability of 

complications between the Ageb values—a decrease in risk for the low bin and an 

increase in risk for the high bin. 
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The individual model component’s projections alone do not explain the DV as 

fully as the joint probability distribution (the calculated distribution of the entire model). 

Table 27 shows that Ageb high (bin = 3) predicts an increase in risk; yet in the table for 

the model that combines these components (Table 24), Ageb = 3 appears in row 29 along 

with Nrb = 1 and Ruh, Rhd, Rku and Rro all absent that has a significantly reduced risk 

ratio of 0.40. This is supported by Table 28, which looks at the Nrb Cp component alone, 

which suggests that when Nrb = 1, the risk is reduced (ratio = 0.27) as compared to when 

Nrb = 3 and the risk is increased (ratio = 1.82). On the other hand, when Ruh, Rhd, Rku 

and Rro are present, the risk increases with a sizeable effect, as seen in the condensed 

component table (Table 29) for the model’s comorbidity components (ratio = 2.29, 7.40, 

5.59, and 8.46, respectively).   

Table 27.  Component Fit Table for IVAgeb in (Knee) All IVs Best Model: 

Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 
IV Data obs. p(DV|IV) 

  
# Ageb freq Cp=0 Cp=1 Ratio p(margin) 

1 1 1490 97.18 2.82 0.60 0.00 

3 3 1435 92.82 7.18 1.52 0.00 

  
4336 95.27 4.73 1.00 

 
 

Table 28. Component Fit Table for IV Nrb in (Knee) All IVs Best Model: 

Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 
IV Data obs. p(DV|IV) 

  
# Nrb freq Cp=0 Cp=1 Ratio p(margin) 

1 1 1309 98.70 1.30 0.27 0.00 

2 2 1474 96.34 3.66 0.77 0.05 

3 3 1553 91.37 8.63 1.82 0.00 

  
4336 95.27 4.73 1.00 
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Table 29. Condensed Fit Table of Comorbidity Components for 

IVs Ruh, Rhd, Rku, Rro in (Knee) All IVs Best Model: 

Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

  
Data obs. p(DV|IV) 

  
IV State freq Cp=0 Cp=1 Ratio p(margin) 

Ruh 0 3772 96.18 3.82 0.81 0.01 

Ruh 1 564 89.18 10.82 2.29 0.00 

Rhd 1 20 65.00 35.00 7.40 0.00 

Rku 1 87 73.56 26.44 5.59 0.00 

Rro 1 10 60.00 40.00 8.46 0.00 

  
4336 95.27 4.73 1.00 

 
 

The marginal distribution (last line) of the integrated Table 24 above shows that 

in the total population of 4,336 knee replacement cases, Complication (Cp) was actually 

present (observed) in 4.73% and was absent in 95.27% of the cases. If the conditional 

probabilities for particular IV states are higher or lower than the margins, then the IVs 

have provided new (predictive) information. Looking at the conditional probabilities of 

the model in Table 24 shows a number of rows whose calculated probabilities appear 

very different from the margins (the blue and orange shaded cells).  

For Table 24, rows are highlighted with p(margin) ≤ 0.05 and frequency > 10. 

The distribution for Cp is highly skewed, since Cp = 1 occurs in only 4.73% of the cases; 

therefore, only if a model predicts more than 50% chance of Cp = 1 will the prediction 

rule be to predict “yes” for Cp. This occurs only for IV states where the frequencies are 

1 or 2 (rows 25, 39, and 41), and predictions with such low frequencies are here judged 

not significant even if their calculated p-values are under the typical 0.05 threshold 

(because of their extreme difference from the margins). In fact, in the tiered search results 

(Table 23) Rro had been demoted from Tier 1 to Tier 3 precisely for this reason. Rro did 

not appear in any of the IV states after the removal of IV states with a frequency < 10 
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even though the p-value had been significant. Aside from these very low-frequency IV 

states, the model distribution always predicts Cp = 0, which is just what the marginal 

distribution predicts even without any IV information. What the model predicts beyond 

the independence model is the risk of occurrence. While there were no IV states with 

sizeable frequencies that predicted greater than 50% probability of Cp = , there are 

probabilities that are significantly different than the margins, which demonstrate either 

a protective effect (< 4.73%) or a higher risk of Cp = 1 (> 4.73%). These effects are 

indicated in the column labeled “ratio” which is model q(DV|IV) for Cp = 1 divided by 

its marginal q(DV) value. It is the probability of a complication for a type of patient 

divided by probability of complication for the full sample. When this ratio is < 0.90 

(and is statistically significant), risk is reduced (blue cells); when the ratio is > 1.10 

(and statistically significant), risk is increased (orange cells). 

Row 1 (Table 24), for example, shows a protective effect of age binned 

(Ageb) < 63 (bin = 1) and number of risks binned (Nrb) is low (bin = 1) with number of 

risks ≤ 1 with the probability of Cp = 1 at 0.89% (ratio = 0.19), markedly lower than the 

margin of 4.73%. Row 16 shows a similar protective effect, where even with Ageb range 

63–71 (bin 2), as long as Nrb < 1 (bin 1), the probability is 1.22%, which is lower than 

the margin (ratio = 0.26). Row 29 (Table 24) also offers a protective effect where even 

with Ageb range 72–95 (bin3) as long as Nrb < 1 (bin 1), then the probability of Cp = 1 

is still lower than the margin at 2.13% (ratio = 0.40). Row 3 (Table 24) shows that even 

where there is an increase in number of comorbidities with Nrb = 2 or 3 (bin 2), when 

Ageb = 1, there is still a protective effect with probability of Cp = 1 of 2.24% 

(ratio = 0.47). 
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In each of these three cases where there was a protective effect, the four 

Comorbidity IVs, Ruh, Rhd, Rku and Rro, were all absent. To recapitulate: the results 

show that if these Comorbidity IVs are absent and Nrb = 1, then Ageb can be in any of its 

three potential states and the risk is still low. Risk is also reduced if Ruh, Rhd, Rku and 

Rro are not present, even if there are more comorbidities present (Nrb = 2), if the age is 

low (Ageb = 1). 

Row 35 (Table 24) shows IV states that predict higher risk of Cp = 1. With Ageb 

72–95 (bin 3), and Nrb between 4 and 18 (bin 3), there is a higher probability of Cp at 

8.41% (ratio = 1.78). In this state, there was no presence of one of the four Comorbidity 

IVs (Ruh, Rhd, Rku & Rro). In row 23, however, with the presence of Rku and with lower 

Ageb 63–71 (bin 2), and with Nrb again between 4 and 18 (bin 3), the risk of Cp is 

18.49% (ratio = 3.91). 

Compare row 35 also with row 37 in Table 24 (freq = 28), where again Ageb = 3 

and Nrb = 3, but Rku is present and we get a much higher risk ratio of 5.5, a 0.2623 

probability of Cp = 1 which is over five times the risk of the whole sample. 

One way of summarizing the model predictions is through the use of a decision 

tree. The decision tree provides an operational branching of questions one could ask, and 

the answers that result. Before looking at the decision tree for model Ageb Cp : Nrb Cp : 

Ruh Cp : Rhd Cp : Rku Cp : Rro Cp, three decision trees are shown for a much simpler 

model in order to explain the meaning of the decision tree and show how these decision 

trees will be constructed for the remainder of the analyses. In this example, the best BIC 

model from the All IVs loopless model search (Table 20) is used: Nrb Rku Cp. The fit 

table for this model is shown in Table 30 below. 
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Table 30. Fit Table (Knee) All IVs for Best Coarse Model: Nrb Rku Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(IV states with frequency < 10 are not highlighted.) 

 IVs Data Model  

   obs. p(DV|IV) calc. q(DV|IV)  

# Nrb Rku freq Cp=0 Cp=1 Cp=0 Cp=1 ratio p(margin) 

1 1 0 1309 98.70 1.30 98.70 1.30 0.27 0.00 

2 2 0 1465 96.31 3.69 96.31 3.69 0.78 0.06 

3 2 1 9 100.00 0.00 100.00 0.00 0.00 0.53 

4 3 0 1475 92.48 7.53 92.48 7.53 1.59 0.00 

5 3 1 78 70.51 29.49 70.51 29.49 6.24 0.00 

 

  

4336 95.27 4.73 95.27 4.73 1.00 

  

These results from the fit table can be communicated in a decision tree. The full 

decision tree, showing all possible combinations of IV states, is not included in this 

project as the relevance and size are prohibitive. The decision trees used in this project 

omit IV states that are not observed (Nrb = 1, Rku = 1) or whose distribution is not 

significantly different from the marginal distribution. The protocol in this project selects 

only scenarios with a frequency ≥ 10 and a p(margin) ≤ 0.05, and these rows were 

excluded in the fit tables as well as the corresponding branching on the decision trees. 

The simplified version of the decision tree from Table 30 is illustrated below in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Simplified Decision Tree for DV Any Comp (Knee) All IVs, 

for Best Coarse Model Nrb Rku Cp. 
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The decision tree for model Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : 

Rro Cp (Table 24) is shown in Figure 6. Note that while Rro appears in the BIC model, 

none of the IV states in this table involving Rro = 1 meets the criterion of p-value < 0.05 

and freq  10.  For this reason, Rro does not appear in the decision tree (Figure 6). 

 

Figure 6. Decision Tree for DV Any Comp (Knee) All IVs for Best Model 

Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. 

 

The decision tree in Figure 6 shows clearly that regardless of Age (Ageb = 1, 2, 

or 3), as long as number of risks are low (Nrb = 1) then the risk of Complication Cp is 

substantially lower than 1. If a patient has two or three comorbidities (Nrb = 2), there is 
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still lower risk as long as the patient is in the lowest age group (Ageb = 1), which is 62 

and younger.  

The details of the best fine BIC model from the Comorbidity only search, 

Ruh Raf Cp : Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp 

(Table 22), are given in Table 31. The Comorbidity IVs, Ruh, Ros, Rhd, Rav, Raf, Reg, 

Rku, Ruu, Rro, are listed in the nine IV columns. As discussed with Table 24, the 

probabilities of Cp = 1 may differ significantly from the model’s marginal probabilities. 

Each of the IVs is either 0 (comorbidity absent) or 1 (comorbidity present). In Table 31, 

only p(margin) < .05 are shown due to the size of the table.  

Row 1 (Table 31) is the case where all of the Comorbidity IVs are absent, with a 

frequency of 3,311. Having none of these comorbidities lowers the risk ratio to 0.57, 

where having any one of the comorbidities increases the risk of Cp. There are a few cases 

where having a particular comorbidity increases risk of Cp = 1 substantially, such as is 

seen in rows 4 (ratio = 3.07), 6 (ratio = 1.9), 9 (ratio = 2.88), 24 (ratio = 7.32), and 29 

(ratio = 3.57). 
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Table 31. Fit Table (Knee) with Comorbidity IVs for Best Model 

Ruh Raf Cp : Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

IVs Data Model  

  obs. p(DV|IV) calc. q(DV|IV)  

# 
R 
u 
h 

R 
o 
s 

R 
h 
d 

R 
a 
v 

R 
a 
f 

R 
e 
g 

R 
k 
u 

R 
u 
u 

R 
r 
o 

freq Cp=0 Cp=1 Cp=0 Cp=1 ratio p(margin) 

1 0 0 0 0 0 0 0 0 0 3311 97.37 2.63 97.30 2.70 0.57 0.00 

2 0 0 0 0 0 0 1 0 0 45 82.22 17.78 85.46 14.54 3.07 0.00 

3 0 0 0 0 1 0 0 0 0 184 92.39 7.61 91.03 8.97 1.90 0.01 

4 1 0 0 0 0 0 0 0 0 442 92.08 7.92 92.07 7.93 1.68 0.00 

5 1 0 0 0 0 0 1 0 0 25 64.00 36.00 65.41 34.59 7.32 0.00 

6 1 1 0 0 0 0 0 0 0 35 82.86 17.14 83.11 16.89 3.57 0.00 

          
4336 95.27 4.73 95.27 4.73 1.00 

 
 

 The decision tree for Table 31 (Figure 7) shows that when unspecified 

hyperlipidemia (Ruh) is present, regardless of the states of the other Comorbidity IVs in 

the model, there is an increased risk of Cp. In fact, the only protective effect offered 

against Cp occurring is to have none of the Comorbidity IVs. Having only 1 on the 

Comorbidity IVs Ruh, Rku, Ros, or Raf results in an increased risk ratio. The presence of 

both Ruh and Rku leads to the highest risk ratio of 7.32.  
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Figure 7. Decision Tree for DV Any Comp (Knee) with Comorbidity IVs for Best Model 

Ruh Raf Cp : Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp. 

 

Each of the model’s components (Ruh, Ros, Rhd, Rav, Raf, Reg, Rku, Ruu, Rro), 

shown below, is individually informative in its conditional probability distribution. To 

illustrate with one of these components, Table 32 shows that when both Ruh and Raf 

(one component with two IVs, showing an interaction effect) are absent, there is a 

protective effect with a risk ratio of 0.71. The risk ratio of Cp increases when either Ruh 

or Raf is present (2.3 and 2.45, respectively), and when they are both present (2.2). It 

might seem odd that the ratio is lower when both are present than when only one is 

present, but the differences between these ratio values are probably not statistically 

significant.  Table 33 shows the conditional probability distribution, with highest risk 

ratio at the top, of the other components in the model. 
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Table 32. Component Fit Table for IVs Ruh Raf (Knee) Comorbidity IVs Best Model  

Ruh Raf Cp : Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

 IVs Data obs. p(DV|IV)   

# Ruh Raf freq Cp=0 Cp=1 ratio p(margin) 

1 0 0 3565 96.63 3.37 0.71 0.00 

2 0 1 207 88.41 11.59 2.45 0.00 

3 1 0 516 89.15 10.85 2.30 0.00 

4 1 1 48 89.58 10.42 2.20 0.06 

   
4336 95.27 4.73 1.00 

 
 

Table 33. Condensed Component Fit Table for IVs Ruh Raf (Knee) Comorbidity IVs 

Best Model Ruh Raf Cp : Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp. 

Orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

   Data obs. p(DV|IV)   

# IV IV State freq Cp=0 Cp=1 ratio p(margin) 

1 Reg 1 6 50 50 10.58 0.00 

2 Rro 1 10 60 40 8.46 0.00 

3 Ruu 1 8 62.5 37.5 7.93 0.00 

4 Rhd 1 20 65 35 7.4 0.00 

5 Rku 1 87 73.56 26.44 5.59 0.00 

6 Rav 1 33 75.76 24.24 5.13 0.00 

7 Ros 1 225 88.44 11.56 2.44 0.00 

   
4336 95.27 4.73 1 

 
 

Hip Analysis 

In this portion of the results section, a similar series of results to the knee analysis 

are presented. Here, two sets of results are again produced: (a) All IVs and 

(b) Comorbidity IVs. The hip data set contains the same eight administrative All IVs but a 

different set of Comorbidity IVs. 

 All IVs 

o Coarse Searches (Models without Loops) 

The hip data set, with 3,205 cases, originally had 170 Comorbidity IVs. A loopless 

search for individually predictive variables provided the rationale in reducing the total 
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Comorbidity IVs. Individually predictive variables were kept in addition to the 

Comorbidity IVs that were found to be predictive in the literature. The resulting data set 

consisted of 45 variables. The top 10 predicting variables are below in Table 34. 

Table 34. Summary of Search Results for All IVs for DV Complication (Hip). 

Search covers directed coarse and fine models. All p values = 0. 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, single predictors (top 10) 

Nrb Cp 2 70.88 6.72 Number of risks (binned) 

S Cp 42 -272.10 5.17 Surgeon 

Ad Cp 38 -246.01 4.69 Admit diagnosis 

Ageb Cp 2 38.11 4.19 Age (binned) 

Rrd Cp 1 38.60 3.61 Unspecified hypertensive renal disease (403.9) 

Fc Cp 5 1.35 3.22 Financial class 

Rca Cp 1 27.91 2.78 
Coronary atherosclerosis of native coronary artery 

(414.01) 

Ruh Cp 1 27.11 2.72 Other and unspecified hyperlipidemia (272.4) 

Rku Cp 1 21.67 2.30 Chronic kidney disease, unspecified (585.9) 

Rpl Cp 1 19.16 2.10 Hyperplasia of prostate (600) 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rhd Cp (rank 11) 1 14.76 1.76 Other chronic pulmonary heart disease (416.8) 

Rgp Cp (rank 25) 1 -0.25 0.60  Repair of cystocele with graft or prosthesis (70.54) 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Nrb Rrd Cp 5 71.05 8.61 
Number of risks (binned), Unspecified hypertensive 

renal disease (403.9) 

Inc.P & ΔAIC (same best model) 

Ageb Nrb Cp 2 66.21 10.10 Age (binned), Number of risks (binned) 

MODEL Δdf ΔBIC %ΔH Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

Ageb Cp : Nrb Cp : Rrd Cp : 

Rca Cp : Rhd Cp : Rpl Cp 
8 109.68 13.46 

Age (binned), Number of risks (binned), Unspecified 

hypertensive renal disease (403.9), Coronary 

atherosclerosis of native coronary artery (414.01), 

Other chronic pulmonary heart diseases (416.8), 

Hyperplasia of prostate (600) 

Inc.P & ΔAIC  (same best model) 

Ageb Cp :Nrb Cp : Rrd Cp : 

Rca Cp : Rhd Cp : Rpl Cp : 

Rgp Cp 

9 109.23 14.05 

Age (binned), Number of risks (binned), Unspecified 

hypertensive renal disease (403.9), Coronary 

atherosclerosis of native coronary artery (414.01), 

Other chronic pulmonary heart diseases (416.8), 

Hyperplasia of prostate (600), Repair of cystocele 

with graft or prosthesis (70.54) 
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Looking at the single predicting variables, simply knowing the total number of 

comorbidities a patient had (Nrb) reduces the uncertainty in predicting Complication 

(Cp) by 6.72%. Knowing only the surgeon (S) that performed the surgery reduces 

uncertainty by 5.17%, admit diagnosis (Ad) by 4.69% and age (Ageb) by 4.19%. The 

first predictive individual comorbidity is hypertensive renal disease (Rrd) which reduces 

uncertainty by 3.61%, and so on. The best loopless coarse model shows that knowing 

both Nrb and Rrd reduces the uncertainty by 8.61%.   

o Fine Searches (Models with Loops) 

As with the knee analysis, a fine-grained search has allowed for multiple 

components in the prediction of Complication (Cp). While this type of search allows for 

the detection of interaction effects, none were discovered in the best models for this 

search. There are 6 single predicting variables in the best BIC fine-grained model Ageb 

Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp. Five of these variables are in the 

top 10 as seen in Table 41 above, and the sixth, Rhd, is the 11th single predicting 

variable. While one might expect to see the more predictive of the single predicting 

variables included in the best fine-grained BIC model, the variables surgeon (S), admit 

diagnosis (Ad), financial class (Fc) and the two Comorbidity IVs hyperlipidemia (Ruh) 

and chronic kidney disease (Rku) did not make it into the best BIC model. Any predictive 

effects offered by these variables may overlap with those of the variables already in the 

model, and so be excluded, or the effects may not improve the model enough to balance 

the cost that each incurs in increased complexity. The next variable that added new 

information was chronic pulmonary heart disease (Rhd). 
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 Comorbidity IVs 

o Coarse Searches (Models without Loops) 

The most predictive Comorbidity IVs (top 10) are listed below in Table 35, which 

shows the search results including only the Comorbidity IVs. The comorbidities are in the 

same order as in Table 34 but show additional predictive comorbidities that were in a 

sense hidden by the more predictive All IVs Ageb and Nrb.  

Table 35. Summary of Search Results for Comorbidity IVs (Hip). 

Search covers directed coarse, and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single 

predictors     

  

Rrd Cp 1 38.60 3.61 0.00 Unspecified hypertensive renal disease (403.9) 

Rca Cp 1 27.91 2.78 0.00 
Coronary atherosclerosis of native coronary artery 

(414.01) 

Ruh Cp 1 27.11 2.72 0.00 Other and unspecified hyperlipidemia (272.4) 

Rku Cp 1 21.67 2.30 0.00 Chronic kidney disease, unspecified (585.9) 

Rpl Cp 1 19.16 2.10 0.00 Hyperplasia of prostate (600) 

Rhd Cp 1 14.76 1.76 0.00 Other chronic pulmonary heart diseases (416.8) 

Rdi Cp 1 13.79 1.69 0.00 Diabetes mellitus (250) 

Rkd Cp 1 11.98 1.55 0.00 
Chronic kidney disease, Stage III (moderate) 

(585.3) 

Raf Cp 1 11.35 1.50 0.00 Atrial fibrillation (427.31) 

Rck Cp 1 6.55 1.13 0.00 Anemia in chronic kidney disease (285.21) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rhe Cp (rank 12) 1 4.52 0.97 0.00 Unspecified essential hypertension (401.9) 

Rhh Cp (rank15) 1 2.96 0.85 0.00 Hyposmolality and/or hyponatremia (276.1) 

Ram Cp (rank 17) 1 1.81 0.76 0.00 Unspecified deficiency anemia (281.9) 

Rgp Cp (rank 19) 1 -0.25 0.60 0.00 Repair of cystocele with graft or prosthesis (70.54) 

Rfr Cp (rank 23) 1 -1.02 0.54 0.01 Nonunion of fracture (733.82) 

Rra Cp (rank 26) 1 -1.68 0.49 0.01 Alcohol abuse, in remission (305.03) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model 

(loopless) 

          

ΔBIC (best model) 

Rrd Rca Cp 3 52.96 5.96 0.00 

Unspecified hypertensive renal disease (403.9), 

Coronary atherosclerosis of native coronary artery 

(414.01),  

ΔAIC (best model) 

Ruh Rrd Rca Rpl Cp 15 8.98 10.05 0.00 

Other and unspecified hyperlipidemia (272.4), 

Unspecified hypertensive renal disease (403.9), 

Coronary atherosclerosis of native coronary artery 

(414.01), Hyperplasia of prostate (600) 
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With the All IVs included, the best coarse model by the BIC criterion was Nrb Rrd 

Cp, which had a %ΔH of 8.61. The best coarse model in the Comorbidity IVs search is 

Rrd Rca Cp, with a %ΔH of 5.96. Hypertensive renal disease (Rrd) in fact is the top 

single predicting comorbidity in both hip and knee searches, and is included in the best 

BIC model for loopless searches. In the knee data set, Ruh was predictive and was 

included in the best loopless model along with Rrd. Just as in the knee data set, in the hip 

data set Ruh is the third most predictive single variable. In the hip search results Ruh is 

Inc.P (best model) 

Ruh Rrd Rca Raf Rpl Cp 31 -93.15 12.14 0.01 

Other and unspecified hyperlipidemia (272.4), 

Unspecified hypertensive renal disease (403.9), 

Coronary atherosclerosis of native coronary artery 

(414.01), Atrial fibrillation (427.31), Hyperplasia 

of prostate (600) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

FINE, best models 

(with loops) 

          

ΔBIC (best model) 

Rdi Cp : Ruh Cp : Rhh 

Cp : Ram Cp : Rra Cp : 

Rhe Cp : Rrd Cp : Rca 

Cp : Rhd Cp : Rpl Cp : 

Rgp Cp : Rfr Cp 

12 101.79 15.35 0.00 

Diabetes mellitus (250), Other and unspecified 

hyperlipidemia (272.4), Hyposmolality and/or 

hyponatremia (276.1), Unspecified deficiency 

anemia (281.9), Alcohol abuse, in remission 

(305.03), Unspecified essential hypertension 

(401.9), Unspecified hypertensive renal disease 

(403.9), Coronary atherosclerosis of native 

coronary artery (414.01), Other chronic 

pulmonary heart diseases (416.8), Hyperplasia of 

prostate (600), Repair of cystocele with graft or 

prosthesis (70.54), Nonunion of fracture (733.82) 

Inc.P & ΔAIC (same best model) 

Rdi Cp : Ruh Cp : Rhh 

Cp : Ram Cp : Rra Cp : 

Rhe Cp : Rrd Cp : Rca 

Cp : Rhd Cp : Raf Cp : 

Rpl Cp : Rgp Cp : Rfr 

Cp 

13 100.13 15.84 0.01 

Diabetes mellitus (250), Other and unspecified 

hyperlipidemia (272.4), Hyposmolality and/or 

hyponatremia (276.1), Unspecified deficiency 

anemia (281.9), Alcohol abuse, in remission 

(305.03), Unspecified essential hypertension 

(401.9), Unspecified hypertensive renal disease 

(403.9), Coronary atherosclerosis of native 

coronary artery (414.01), Other chronic 

pulmonary heart diseases (416.8), Atrial 

fibrillation (427.31), Hyperplasia of prostate 

(600), Repair of cystocele with graft or prosthesis 

(70.54), Nonunion of fracture (733.82) 
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not selected by BIC but rather is selected by the AIC criterion as a predicting component 

in the loopless search. More comparisons between the hip and knee data sets within the 

DV are provided at the end of this section. 

o Fine Searches (Models with Loops) 

In the search that allows loops, the best model by BIC with Comorbidity IVs 

resulted in Rdi Cp : Ruh Cp : Rhh Cp : Ram Cp : Rra Cp : Rhe Cp : Rrd Cp : Rca Cp : 

Rhd Cp : Rpl Cp : Rgp Cp : Rfr Cp with a %ΔH of 15.35 (Table 35), a large 

improvement over the loopless model in this Comorbidity IVs search, and slight 

improvement over the best model from the prior search that included All IVs which had a 

%ΔH of 13.46 (Table 34). This best model does not have any interaction terms, and the 

comorbidities are all individually predictive of Cp. Overall, however, there is a type of 

interaction effect—not the familiar kind—due to the combination of the multiple 

components of the model (Zwick, 2011c). Each of these IVs, diabetes mellitus (Rdi) 

other and unspecified hyperlipidemia (Ruh), hyposmolality and/or hyponatremia (Rhh), 

unspecified deficiency anemia (Ram), alcohol abuse, in remission (Rra), unspecified 

essential hypertension (Rhe), unspecified hypertensive renal disease (Rrd), coronary 

atherosclerosis of native coronary artery (Rca), other chronic pulmonary heart diseases 

(Rhd), hyperplasia of prostate (Rpl), repair of cystocele with graft or prosthesis (Rgp), 

nonunion of fracture (Rfr), is examined in detail in the model’s joint conditional 

probability distribution in Table 43. 
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 Comparing Search Results (Hip, Cp) 

All IVs and the Comorbidity IVs searches yield two sets of results that can be 

compared to each other and interpreted into a three-tiered classification of predicting 

variables, as summarized in Table 36. 

Table 36. The 3-Tiered Classification of Predicting Variables for DV: 

Complication, Hip Analysis. 

Tier Variables 

Tier 1 (Most Important) Ageb, Nrb, Rrd, Rca, Rhd, Rpl 

Tier 2 Rgp 

Tier 3 Rdi, Ruh, Rhh, Ram, Rra, Rhe, Rfr 

 

Tier 1 contains variables from the best-by-BIC model from the dataset All IVs. 

This is the most complete search, and the one that provides the most conservative 

predictors. The selected variables (Ageb, Nrb, Rrd, Rca, Rhd, Rpl) are shown in the first 

row of Table 36, and are considered the most important predicting variables.  

Tier 2 contains variables not in Tier 1, but found in the AIC (less conservative) 

model of All IVs AND in the BIC model of Comorbidity IVs. For the Hip Analysis of DV 

Complication, this selects the variable Rgp as the next-most important predicting variable 

as shown in the second row of Table 36. 

Finally, this classification places into Tier 3 any variables present elsewhere in the 

best model search results, but not included in Tier 1 or Tier 2. That is, any variables 

unique to one of the two searches: variables in the AIC model of All IVs but not in the 

BIC model of Comorbidity IVs, and variables in the BIC model of Comorbidity IVs but 

not in the AIC model from All IVs. These variables (Rdi, Ruh, Rhh, Ram, Rra, Rhe, Rfr) 

are in the last row of Table 36. 
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 Model FIT  

The detailed content of the best fine-grained BIC model from the All IVs search, 

Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp, is shown as a conditional 

probability distribution in Table 37 below. This joint probability distribution contains 

many fewer rows than the distribution from the best BIC model from the knee data in 

Table 24, because rows have been excluded that either are not significant (p > 0.05) or 

have too low a frequency (< 10), to focus on more informative results. 

Table 37. Fit Table (Hip) for All IVs for Best Model 

Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 

The values for the All IVs: number of risks binned (Nrb) and age binned (Ageb) 

are the variables that number of risks and age were discretized to with possible states 

being either in bin 1, 2, or 3. The bin ranges and frequencies are summarized in Table 38 

and Table 39. 

 IVs Data Model 

        obs. p(DV|IV) calc. q(DV|IV)  

# Ageb Nrb Rrd Rca Rhd Rpl freq Cp=0 Cp=1 Cp=0 Cp=1 Ratio p(margin) 

1 1 1 0 0 0 0 475 97.90 2.11 98.49 1.52 0.30 0.00 

3 1 2 0 0 0 0 348 97.70 2.30 98.27 1.73 0.34 0.00 

13 2 1 0 0 0 0 355 98.03 1.97 98.25 1.76 0.34 0.00 

16 2 2 0 0 0 0 337 97.63 2.37 98.00 2.00 0.39 0.01 

37 3 3 0 0 0 0 312 87.82 12.18 89.66 10.34 2.02 0.00 

38 3 3 0 0 0 1 24 83.33 16.67 71.68 28.32 5.53 0.00 

40 3 3 0 1 0 0 55 78.18 21.82 79.84 20.17 3.94 0.00 

43 3 3 1 0 0 0 31 70.97 29.03 72.42 27.58 5.39 0.00 

46 3 3 1 1 0 0 11 54.55 45.46 54.53 45.47 8.89 0.00 

       
3205 94.88 5.12 94.88 5.12 1.00 
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Table 38. Number of Risks Binned (Nrb) 

Bin Range & Frequency (Hip). 

Bin Range Frequency 

1 0-1 1,111 

2 2-3 1,081 

3 4-19 1,013 

 

Table 39. Age Binned (Ageb) 

Bin Range & Frequency (Hip). 

Bin Range Frequency 

1 15-59 1,090 

2 60-69 1,027 

3 70-96 1,088 

 

Each of the component’s individual projections is informative, yet not as 

informative as the full model’s joint distribution (Table 37). In the component table 

below (Table 40) for Ageb = 2, the probability of Cp was 3.51% with a risk ratio of 0.68. 

In the model’s full joint distribution in row 13, when Ageb = 2 and when Nrb was its 

lowest in bin 1 and the comorbidities in the model are all absent, then the probability of a 

complication is essentially cut in half at 1.76%, with a risk ratio of 0.34. Row 16 shows 

almost the same scenario; however, with Nrb slightly higher (Nrb = 2), the probability of 

Cp of 2% was still lower than the overall data (the margins), with a ratio of 0.39. Once 

Ageb and Nrb get to their highest states, we see increased risk (rows 37, 38, 40, 43, 46). 

Row 37 shows that when Ageb and Nrb were both in bin 3, and the individual 

comorbidities were absent, the risk of Cp increased to 10.34%, much higher than the 

complication rate for the whole sample, with a risk ratio of 2.02. Introduce the presence 

of Rpl (hyperplasia of prostate), and the risk more than doubles, with a probability of 

Cp = 28.32% and a ratio of 5.53 (row 38). With Ageb and Nrb each in bin 3, the presence 

of Rca (coronary atherosclerosis of native coronary artery) alone nearly doubled the risk 
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to 20.17%, with a ratio of 3.94 (row 40). The presence of just Rrd (hypertensive renal 

disease) with Ageb and Nrb each in bin 3 increased risk of Cp to 7.58% with a ratio of 

5.39 (row 43). When either hyperplasia of prostate (Rpl), coronary atherosclerosis of 

native coronary artery (Rca), or hypertensive renal disease (Rrd) were present along with 

high Ageb and a higher total number of risks in total (Nrb), then the probability of 

developing a complication increased at least four times that of the probability of entire 

sample. Row 46 shows what happens when an additional comorbidity, Rca, is present in 

the model when Ageb = 3, Nrb = 3, and Rrd is present. In cases where these states occur, 

the patient had a 45.47% (ratio 8.89) probability of Complication (Cp) occurring. 

The decision tree version of the conditional probability distribution provides a 

different perspective of the same results (Figure 8). 
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Figure 8. Decision Tree for DV Any Comp (Hip) All IVs for Best Model 

Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp. 

  

Each component of the model has its own individual probability distribution. 

Table 40 shows the conditional probability of Cp = 1 given Ageb = 1 is 2.57%, with a 

risk ratio of 0.50; when Ageb = 2, the probability of Cp = 1 is 3.51%; and when 

Ageb = 3, the risk increased with the probability of Cp = 1 at 9.19%, with a risk ratio of 

1.80. As was seen with the knee data, lower age offered a protective effect while higher 

age increased risk of Cp. Additional model components are listed in Table 41 and 

Table 42, but are self-explanatory.  
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Table 40. Component Fit Table for IVAgeb in (Hip) All IVs Best Model: 

Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

 
IV Data obs. p(DV|IV) 

  
# Ageb freq Cp=0 Cp=1 ratio p(margin) 

1 1 1090 97.43 2.57 0.50 0.00 

2 2 1027 96.50 3.51 0.68 0.02 

3 3 1088 90.81 9.19 1.80 0.00 

  
3205 94.88 5.12 1.00 

 
 

Table 41. Component Fit Table for IV Nrb in (Hip) All IVs Best Model: 

Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

 
IV Data obs. p(DV|IV) 

  
# Nrb freq Cp=0 Cp=1 ratio p(margin) 

1 1 1111 97.84 2.16 0.42 0.00 

2 2 1081 97.04 2.96 0.58 0.00 

3 3 1013 89.34 10.66 2.08 0.00 

  
3205 94.88 5.12 1.00 

 
 

Table 42. Condensed Component Fit Table for IVs Rhd, Rrd, Rpl and Rca in (Hip) 

All IVs Best Model: Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

  
Data obs. p(DV|IV) 

  
IV IV States freq Cp=0 Cp=1 Ratio p(margin) 

Rhd 1 10 40.00 60.00 11.73 0.00 

Rrd 0 3128 95.46 4.54 0.89 0.14 

Rrd 1 77 71.43 28.57 5.58 0.00 

Rpl 1 77 77.92 22.08 4.31 0.00 

Rca 0 3039 95.56 4.44 0.87 0.09 

Rca 1 166 82.53 17.47 3.41 0.00 

  
3205 94.88 5.12 1.00 

 
 

The joint probability distribution below in Table 43 show the details for the best 

fine model from the hip Comorbidity IVs search Rdi Cp : Ruh Cp : Rhh Cp : Ram Cp : 

Rra Cp : Rhe Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp : Rgp Cp : Rfr Cp. In this 

distribution, each of the IVs are either 0 (comorbidity absent) or 1 (comorbidity present). 

Row 1 is the case where all of the comorbidities included in the model are absent, which 
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lowers the risk of Complication (Cp) from 5.12% (the model’s marginal probability) to 

1.92%, with a ratio of 0.37. 

Table 43. Fit Table (Hip) for Comorbidity IVs for Best Model Rdi Cp : Ruh Cp : Rhh Cp : 

Ram Cp : Rra Cp : Rhe Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp : Rgp Cp : Rfr Cp. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

(Variables Rhh, Ram, Rra, Rhd, Rgp, and Rfr only take value 0 for these rows.) 

 

IVs Data Model 

 

 

obs. p(DV|IV) calc. q(DV|IV)     

# 
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freq Cp=0 Cp=1 Cp=0 Cp=1 Ratio p(margin) 

1 0 0 0 0 0 0 0 0 0 0 0 0 1414 98.16 1.84 98.09 1.92 0.37 0.00 

13 0 0 1 0 0 0 0 0 0 0 0 0 893 96.42 3.58 96.60 3.40 0.66 0.02 

31 0 1 0 1 0 0 0 0 0 0 0 0 10 100.00 0.00 79.03 20.97 4.10 0.02 

37 0 1 1 0 0 1 1 1 1 1 1 1 10 90.00 10.00 76.53 23.47 4.59 0.01 

39 0 1 1 0 1 0 0 0 0 0 0 0 26 76.92 23.08 83.37 16.63 3.25 0.01 

51 1 0 1 0 1 0 0 0 0 0 0 0 15 73.33 26.67 80.68 19.32 3.78 0.01 

57 1 1 1 0 0 0 0 0 0 0 0 0 49 87.76 12.25 86.98 13.02 2.55 0.01 

   
          3205 94.88 5.12 94.88 5.12 1.00 

 
 

Having only the comorbidity Rhe (essential hypertension) still keeps the risk 

lower, with a ratio of 0.66 (row 13). However, with the additional presence of either Rdi 

(diabetes mellitus), Ruh (hyperlipidemia), Rca (coronary atherosclerosis of native 

coronary artery) or Rpl (Hyperplasia of prostate), the risk increases. Row 37 shows that 

in addition to the presence of Rhe (essential hypertension), the presence of Ruh 

(hyperlipidemia) and Rpl (Hyperplasia of prostate) increases risk of Cp to 23.47% 

(ratio = 4.59). Row 39 shows that with Rhe and Ruh present, but with the additional Rca 

comorbidity, the probability of Cp = 16.63% (ratio = 3.25). Row 51 shows that with Rhe 

present again, but this time along with Rdi and Rca, the probability of Cp = 19.32% 

(ratio = 3.78), and with Rhe and Rdi both present, but with Ruh, the probability of 

Cp = 13.0% (ratio = 2.55). Risk is also increased over Hypertension alone when even a 

single other comorbidity is present, as with diabetes mellitus (Rdi), hyperlipidemia (Ruh), 
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coronary atherosclerosis of native coronary artery (Rca), and/or hyperplasia of prostate 

(Rpl). For these cases, the risk of Complication (Cp) increases from the marginal 

probability of 5.12% to between 13.02% and 23.47%. 

The decision tree for the conditional probability distribution for model Rdi Cp : 

Ruh Cp : Rhh Cp : Ram Cp : Rra Cp : Rhe Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp : 

Rgp Cp : Rfr Cp (Figure 9) offers perhaps a simplified way of looking at how the 

presence or absence of each Comorbidity IV, and their combinations, lead to increased or 

decreased risk of Complication (Cp).  

 
Figure 9. Decision Tree for DV Any Comp (Hip) with Comorbidity IVs for Best Model Rdi Cp : Ruh 

Cp : Rhh Cp : Ram Cp : Rra Cp : Rhe Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp : Rgp Cp : Rfr Cp. 

 

 The individual components of the model each have a fit table, condensed into a 

single table below (Table 44). 
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Table 44. Condensed Component Fit Table for IVs Rhd, Ram, Rhh, Rgp, Rfr, Rra, 

Rrd, and Rpl in (Hip) Comorbidity IVs Best Model: Rdi Cp : Ruh Cp : Rhh Cp : 

Ram Cp : Rra Cp : Rhe Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp : Rgp Cp : Rfr Cp. 

Orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

   Data obs. p(DV|IV)   

# IV IV State freq Cp=0 Cp=1 Ratio p(margin) 

1 Rhd 1 10 40.00 60.00 11.73 0.00 

2 Ram 1 6 50.00 50.00 9.77 0.00 

3 Rhh 1 10 60.00 40.00 7.82 0.00 

4 Rgp 1 8 62.50 37.50 7.33 0.00 

5 Rfr 1 9 66.67 33.33 6.51 0.00 

6 Rra 1 10 70.00 30.00 5.86 0.00 

7 Rrd 1 77 71.43 28.57 5.58 0.00 

8 Rpl 1 77 77.92 22.08 4.31 0.00 

9 Rca 1 166 82.53 17.47 3.41 0.00 

10 Rdi 1 305 88.53 11.48 2.24 0.00 

11 Ruh 1 466 88.63 11.37 2.22 0.00 

12 Rhe 1 1464 93.37 6.63 1.29 0.01 

   
3205 94.88 5.12 1.00 

 
 

Hip & Knee Summary of Results for Complication 

The most important IVs are summarized in Table 45. The IVs that show up in 

both searches are number of risks (Nrb), age (Ageb), chronic pulmonary heart disease 

(Rhd), and hyperlipidemia (Ruh).  

Table 45. Summary of Most Important IVs by Tier 

across Hip and Knee for Complication. 

  Complication (Cp) 

Tier Knee Hip 

1 Nrb, Ageb, Ruh, Rhd, Rku Ageb, Nrb, Rrd, Rca, Rhd, Rpl 

2 Reg, Raf, Ros, Rav, Ruu Rgp 

3 Rro Rdi, Ruh, Rhh, Ram, Rra, Rhe, Rfr 

 

DV: Skilled Nursing Facility (SNF) 

Knee Analysis 

In this results section, the analysis is conducted with the same knee data set as 

with DV Complication (Cp), but using the DV Skilled Nursing Facility (SNF) instead. 
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SNF is a binary variable, with a patient either being discharged to a SNF or not. SNF 

occurs much more frequently in the data than DV Cp, with approximately 17% of 

patients discharged to a SNF after a knee replacement compared to the occurrence of DV 

Cp of 4.7%. In this analysis, a new series of best models, whose measure of goodness is 

also % reduction of uncertainty, are described and analyzed in detail. This analysis also 

looks at (a) All IVs, and (b) only the Comorbidity IVs. 

(This SNF analysis results section is briefer than that provided above for DV Cp, 

with less discussion of the methodology. To the extent that each results section uses the 

same methodology, the detailed discussion given for Cp can be used for reference, as can 

the RA methodology portion of the Methods chapter.) 

 All IVs 

o Coarse Searches (Models without Loops) 

 The final knee data set for SNF contained 67 IVs. The variable reduction method 

of performing a loopless search for single predicting variables found 55 IVs to be 

individually predictive of SNF with p ≤ 0.05. Of these 55 IVs, 12 were also found to be 

predictive of similar outcomes in the literature. However, the literature had found 12 IVs 

to be predictive that were not found to be individually predictive in the loopless search 

conducted in this project. These 12 IVs were retained in the knee data set for this 

analysis. 

In the prior analysis section, the search to predict Complication (Cp) in the knee 

data found the best single predictor to be surgeon (S) with a %ΔH of 6.45. The top single 

predicting IV of SNF is financial class (Fc) with a %ΔH of 10.55 (Table 46). The top 10 
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single predicting IVs for SNF are listed below in Table 46 and are ordered smallest to 

largest for alpha, which is the inverse of %ΔH. 

Age (Ageb) reduces uncertainty of SNF by 10.5% and by simply knowing the 

surgeon (S) there is a %ΔH of 7.18. Number of risks (Nrb) has a %ΔH of 2.57, hospital 

location (L) a %ΔH of 2.14, and admit diagnosis (Ad) a %ΔH of 1.03. The first 

individual patient Comorbidity IV that is predictive of SNF is heart failure (Rhf), with a 

%ΔH of 0.95, followed by glaucoma (Rug), with a value of 0.9, and then persistent 

mental disorders (Rmd) at 0.85. 
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Table 46. Summary of Search Results for Knee data, DV SNF. 

Includes both All IVs for coarse and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors (top 10) 

Fc SNF 5 383.00 10.55 0.00 Financial class 

Ageb SNF 2 406.13 10.50 0.00 Age binned 

S SNF 62 -229.95 7.18 0.00 Surgeon 

Nrb SNF 2 86.87 2.57 0.00 Number of risks binned 

L SNF 6 35.81 2.14 0.00 Location 

Ad SNF 27 -184.59 1.03 0.04 Admit diagnosis 

Rhf SNF 1 29.93 0.95 0.00 Heart Failure (428) 

Rug SNF 1 27.95 0.90 0.00 Unspecified glaucoma (365.9), 

Rmd SNF 1 26.03 0.85 0.00 Persistent mental disorders (294.8) 

Svb SNF 2 15.18 0.79 0.00 Surgeon volume binned 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rpa SNF (rank 21) 1 2.99 0.28 0.00 Parkinson's disease (332) 

Rbp SNF (rank 26) 1 1.06 0.23 0.00 Other and unspecified bipolar disorders (296.8) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Ageb Nrb SNF 8 451.49 12.87 0.00 Age binned + Number of risks binned 

ΔAIC & Inc.P (same best model) 

AgebNrbRmdSNF 
17 401.43 13.50 0.00 

Age binned + Number of risks binned + persistent 

mental disorders (294.8) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

L SNF : Fc SNF : 

Ageb SNF : Svb 

SNF : Nrb SNF : 

Rmd SNF: Rug 

SNF: Rhf SNF 

20 635.69 19.94 0.00 

location, financial class, age binned, surgeon 

volume binned, number of risks binned, persistent 

mental disorders (294.8), Unspecified glaucoma 

(365.9),  Heart Failure (428) 

Inc.P & ΔAIC  (same best model) 

L SNF : Fc SNF : 

Ageb SNF : Svb 

SNF : Nrb SNF 

:Rmd SNF: Rbp 

SNF : Rpa SNF : 

Rug SNF : Rhf 

SNF 

22 634.61 20.33 0.00 

location, financial class, age binned, surgeon 

volume binned, number of risks binned, persistent 

mental disorders (294.8), Other and unspecified 

bipolar disorders (296.8),  Parkinson's disease 

(332), Unspecified glaucoma (365.9), Heart Failure 

(428) 

  

The best coarse model allowing for more than one IV (but not allowing for loops) 

is Ageb Nrb SNF, with a corresponding %ΔH of 12.87 and a Δdf of 8. Financial class 

(Fc), while individually predictive, is not included as it does not provide additional 

information worth the complexity over the combined IVs of Ageb and Nrb. Ageb and 
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Nrb form a conventional interaction effect that is different from the simple combination 

of two separate components (i.e., Ageb SNF : Nrb SNF).  

o Fine Searches (Models with Loops) 

Allowing for multiple components and loops, the best model by BIC found 8 IVs 

in the model L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF : Rmd SNF : Rug SNF : 

Rhf SNF. All 8 of these IVs are also listed in the top 10 single predicting IVs of 

Table 46. Similar to the search results for Cp, surgeon (S) is individually predictive but 

does not appear in the best fine-grained model, presumably because of the high 

cardinality of S (63 states). Location (L), financial class (Fc), age binned (Ageb), 

surgeon volume binned (Svb), number of risks binned (Nrb), persistent mental disorders 

(Rmd), unspecified glaucoma (Rug), and heart failure (Rhf) reduce uncertainty of SNF 

by 19.94% with a Δdf of 20.  

Both the coarse and fine-grained searches were dominated by the effects of the 

non-comorbidity variables present in All IVs. In order to look only at the effect of the 

patient’s individual comorbidities, a Comorbidity IVs search is performed. 

 Comorbidity IVs 

o Coarse Searches (Models without Loops) 

Considering only Comorbidity IVs as predictors, the most predictive individual 

comorbidities are uncovered, yet no single comorbidity has a %ΔH over 1 (Table 47). 

Individual comorbidities alone do not seem very predictive of discharge to SNF. 
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Table 47. Summary of Search Results (Knee) for Comorbidity IVs for SNF. 

Search covers directed coarse, and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors 

Rhf SNF 1 29.93 0.95 0.00 Heart failure (428) 

Rug SNF 1 27.95 0.90 0.00 Unspecified glaucoma (365.9), 

Rmd SNF 1 26.03 0.85 0.00 Persistent mental disorders (294.8) 

Rku SNF 1 21.81 0.75 0.00 Chronic kidney disease (585.9) 

Rrd SNF 
1 19.04 0.68 0.00 

Unspecified hypertensive renal disease 

(403.9) 

Rbn SNF 1 16.49 0.62 0.00 Other disorders of bone and cartilage (733) 

Rin SNF 1 13.77 0.55 0.00 Urinary incontinence (788.3) 

Rhy SNF 1 12.34 0.51 0.00 Hypothyroidism (244.9) 

Rhd SNF 
1 9.67 0.45 0.00 

Other chronic pulmonary heart diseases 

(416.8) 

Rau SNF 1 9.04 0.43 0.00 Anemia, unspecified (285.9) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rhe SNF (rank 14) 1 5.06 0.33 0.00 Essential hypertension (401.9) 

Rpa SNF (rank 15) 1 2.99 0.28 0.00 Parkinson's disease (332) 

MODEL Δdf ΔBIC %ΔH 
 

Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

RugRhf SNF 3 50.72 1.88 0.00 
Unspecified glaucoma (365.9) +  Heart 

Failure (428) 

ΔAIC (best model) 

RmdRugRhfRku SNF 15 9.20 3.35 0.00 

persistent mental disorders (294.8) + 

Unspecified glaucoma (365.9) +  Heart 

Failure (428) + Chronic kidney disease 

(585.9) 

Inc.P (best model) 

RmdRugRhfRkuRbn SNF 31 -98.97 3.99 0.02 

persistent mental disorders (294.8) + 

Unspecified glaucoma (365.9) +  Heart 

Failure (428) + Chronic kidney disease 

(585.9) + Other disorders of bone and 

cartilage (733) 

MODEL Δdf ΔBIC %ΔH 
 

Variable description 

FINE, best models (with loops) 

ΔBIC, Inc.P & ΔAIC (same best model) 

Rhy SNF : Rau SNF : 

Rmd SNF : Rpa SNF : 

Rug SNF : Rhe SNF : 

Rhf SNF : Rku : 

Rbn SNF : Rin SNF 

10 138.61 5.52 0.00 

Hypothyroidism (244.9), Anemia (285.9),  

persistent mental disorders (294.8), 

Parkinson's disease (332),  Unspecified 

glaucoma (365.9), Essential hypertension 

(401.9), Heart failure (428),  Chronic 

kidney disease (585.9), Other disorders of 

bone and cartilage (733), Urinary 

incontinence (788.3) 
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The results of a coarse search allowing for multiple IVs yields a best BIC model 

Rug Rhf SNF. Together, Rug and Rhf have a %ΔH of 1.88, close to what adding their 

separate effects of 0.9 and 0.95 would give. 

o Fine Searches (Models with Loops) 

In a search that allows for loops, the best BIC model is Rhy SNF : Rau SNF : 

Rmd SNF : Rpa SNF : Rug SNF : Rhe SNF : Rhf SNF : Rku SNF : Rbn SNF : Rin SNF, 

with a corresponding reduction in uncertainty of 5.52% and a Δdf of 10. Hypothyroidism 

(Rhy), anemia (Rau), persistent mental disorders (Rmd), Parkinson’s disease (Rpa), 

unspecified glaucoma (Rug), essential hypertension (Rhe), heart failure (Rhf), chronic 

kidney disease (Rku), other disorders of bone and cartilage (Rbn), and urinary 

incontinence (Rin) are not nearly as predictive as the model that allowed for All IVs.  

 Comparing Search Results (Knee, SNF) 

All IVs and the Comorbidity IVs searches yield two sets of results that can be 

compared to each other and interpreted into a three-tiered classification of predicting 

variables, as shown in Table 48.  

Table 48. The 3-Tiered Classification of Predicting 

Variables for DV SNF, Knee Analysis. 

Tier Variables 

Tier 1 (Most Important) L, Fc, Ageb, Svb, Nrb, Rmd, Rug, Rhf 

Tier 2 Rpa 

Tier 3 Rbp, Rhy, Rau, Rhe, Rku, Rbn, Rin 

 

As with earlier analyses, the Tier 1 variables are those from the BIC model from 

All IVs. This is the most complete and conservative search, and these are deemed the 

most important predicting variables: L, Fc, Ageb, Svb, Nrb, Rmd, Rug, and Rhf. 
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The Tier 2 variables are those not in Tier 1, but still found in the best models of 

both searches: the AIC (less conservative) model of All IVs, and the BIC model of 

Comorbidity IVs. This selects Rpa as the best IV by Tier 2. 

Finally, Tier 3 contains the variables in only one of the best models (the same as 

with Tier 2), but not in both. For DV SNF, these lowest-tier predicting variables are: 

Rbp, Rhy, Rau, Rhe, Rku, Rbn, and Rin. 

 Model FIT 

The best fine-grained model, L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb 

SNF : Rmd SNF : Rug SNF : Rhf SNF, is explained in detail by the joint conditional 

probability distribution in Table 49 below. 
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Table 49. Fit Table (Knee) for All IVs for Best Model L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb 

SNF : Rmd SNF : Rug SNF : Rhf SNF. Blue rows indicate ratio < 0.90 and orange rows indicate ratio 

> 1.10. (Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 

IVs Data Model 

 

 obs. p(DV|IV) calc. q(DV|IV)  

# L Fc Ageb Svb Nrb Rmd Rug Rhf freq SNF =1 SNF =2 SNF =1 SNF =2 Ratio p(margin) 

1 1 2 1 2 1 0 0 0 55 100.00 0.00 97.89 2.11 0.12 0.00 

2 2 1 2 1 3 0 0 0 41 78.05 21.95 66.44 33.56 1.91 0.01 

3 2 1 2 2 3 0 0 0 52 63.46 36.54 66.08 33.92 1.93 0.00 

5 2 1 3 1 1 0 0 0 20 70.00 30.00 64.65 35.35 2.01 0.04 

6 2 1 3 1 2 0 0 0 62 66.13 33.87 55.08 44.92 2.56 0.00 

7 2 1 3 1 3 0 0 0 41 46.34 53.66 44.47 55.53 3.16 0.00 

11 2 1 3 2 1 0 0 0 30 63.33 36.67 64.28 35.73 2.04 0.01 

12 2 1 3 2 2 0 0 0 62 51.61 48.39 54.68 45.32 2.58 0.00 

14 2 1 3 2 3 0 0 0 70 47.14 52.86 44.07 55.93 3.19 0.00 

18 2 1 3 3 2 0 0 0 134 68.66 31.34 69.97 30.04 1.71 0.00 

19 2 1 3 3 3 0 0 0 84 64.29 35.71 60.34 39.66 2.26 0.00 

22 2 2 1 1 1 0 0 0 49 97.96 2.04 96.38 3.62 0.21 0.01 

23 2 2 1 1 2 0 0 0 61 93.44 6.56 94.70 5.30 0.30 0.01 

24 2 2 1 2 1 0 0 0 55 98.18 1.82 96.33 3.67 0.21 0.01 

25 2 2 1 2 2 0 0 0 77 96.10 3.90 94.62 5.38 0.31 0.01 

26 2 2 1 2 3 0 0 0 68 89.71 10.29 91.99 8.01 0.46 0.04 

27 2 2 1 3 1 0 0 0 119 99.16 0.84 98.06 1.94 0.11 0.00 

28 2 2 1 3 2 0 0 0 118 95.76 4.24 97.14 2.86 0.16 0.00 

29 2 2 1 3 3 0 0 0 73 93.15 6.85 95.69 4.32 0.25 0.00 

30 2 2 2 3 1 0 0 0 35 97.14 2.86 97.06 2.94 0.17 0.03 

31 2 2 2 3 2 0 0 0 55 92.73 7.27 95.67 4.33 0.25 0.01 

33 3 1 3 1 3 0 0 0 84 58.33 41.67 70.84 29.16 1.66 0.01 

36 3 1 3 2 3 0 0 0 55 70.91 29.09 70.51 29.49 1.68 0.02 

39 3 2 1 1 1 0 0 0 40 100.00 0.00 98.78 1.22 0.07 0.01 

40 3 2 1 1 2 0 0 0 63 96.83 3.18 98.19 1.81 0.10 0.00 

41 3 2 1 1 3 0 0 0 49 100.00 0.00 97.25 2.75 0.16 0.01 

42 3 2 1 2 1 0 0 0 22 100.00 0.00 98.76 1.24 0.07 0.04 

43 3 2 1 2 2 0 0 0 34 100.00 0.00 98.16 1.84 0.10 0.02 

44 3 2 1 2 3 0 0 0 32 100.00 0.00 97.21 2.79 0.16 0.03 

45 3 2 1 3 1 0 0 0 21 100.00 0.00 99.35 0.65 0.04 0.05 

46 3 2 1 3 2 0 0 0 23 100.00 0.00 99.04 0.96 0.05 0.04 

47 3 2 1 3 3 0 0 0 37 100.00 0.00 98.54 1.47 0.08 0.01 

48 4 1 2 2 3 0 0 0 24 83.33 16.67 63.34 36.66 2.09 0.01 

52 4 1 3 2 1 0 0 0 21 76.19 23.81 61.47 38.53 2.20 0.01 

53 4 1 3 2 2 0 0 0 25 36.00 64.00 51.69 48.31 2.75 0.00 

54 4 1 3 2 3 0 0 0 46 34.78 65.22 41.14 58.86 3.35 0.00 

56 6 1 2 1 1 0 0 0 37 94.60 5.41 94.70 5.30 0.30 0.05 

         
4336 82.45 17.55 82.45 17.55 1.00 

 
# L Fc Ageb Svb Nrb Rmd Rug Rhf freq SNF =1 SNF =2 SNF =1 SNF =2 Ratio p(margin) 

 

Financial class (Fc) at first seemed that it might be redundant with age. However, 

financial class = 1 (Medicare) can cover patients who are age 65 and over, or those 
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younger than 65 and receiving disability benefits. Moreover, the age bins do not line up 

along age requirements for Medicare, and the highest age bin has a minimum age of 72 

(Table 50). 

Table 50. Age bin distribution. 

Bin Range Frequency 

1 32-62 1,490 

2 63-71 1,411 

3 72-95 1,435 

 

There is some association between financial class (Fc) and age binned (Ageb), 

which is supported by the finding that when Fc is made the DV, its single best predictor 

is Ageb with %ΔH(Fc) of 38.37. However, the best model selected to predict SNF 

includes both Fc and Ageb, which indicates that each of these IVs offers additional 

information worth the added complexity. 

For the calculated model, knowing the states of All IVs (L, Fc, Ageb, Svb, Nrb) or 

the presence or absence of the individual Comorbidity IVs (Rmd, Rug, Rhf) tells us about 

the probability of SNF occurring. Each of the model’s components, namely L SNF or Fc 

SNF or Ageb SNF or Svb SNF or Nrb SNF or Rmd SNF or Rug SNF or Rhf SNF, has 

an individual conditional probability distribution and is individually informative.  For 

example, looking only at location (L) (Table 51), the conditional probability of SNF 

given location 1 is 12.3%, with the risk ratio of 0.70. Additional locations that seem with 

low projected discharges to SNF include locations 3, 6, and 7, with risk ratios 0.69, 0.62, 

and 0.17. Locations 2 and 4 show increased risk with ratios (1.15 and 1.67 respectively). 

Location 5 has a neutral risk ratio, with the projected discharge to SNF similar to that of 

the observed rate in the data with a risk ratio of 0.96. In other words, knowing only the 
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location of the surgery, regardless of the states of the other IVs in the model, there is a 

significant difference in the probability of SNF = 2 between the locations.  

Table 51. Component Fit Table for IV L in (Knee) All IVs Best Model 

L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF : Rmd SNF : Rug SNF : Rhf SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 IV Data obs. p(DV|IV)   

# L freq SNF=1 SNF=2 Ratio p(margin) 

1 1 244 87.71 12.30 0.70 0.03 

2 2 2143 79.75 20.25 1.15 0.00 

3 3 1138 87.87 12.13 0.69 0.00 

4 4 349 70.77 29.23 1.67 0.00 

6 6 267 89.14 10.86 0.62 0.00 

7 7 34 97.06 2.94 0.17 0.03 

  
4336 82.45 17.55 1.00 

 
 

Knowing only the financial class (Fc) is individually informative as well. 

Financial class 1 is Medicare, and patients with Medicare have 26.89% chance of 

discharging to SNF compared to 17.55% overall, with a risk ratio of 1.53. Patients with 

financial class 2 (commercial payers) have a very low projection of discharging to a SNF 

at 4.4% and a risk ratio of 0.25. Patients with financial class 3 (Medicaid) had an 

increased risk of SNF at 21.13%, with a ratio of 1.2. Both financial classes 4 and 5 

(Workers Comp and Other Government) offered decreased risk of SNF with risk ratios of 

0.19 and 0. Perhaps financial class 4 and 5 payers did not offer a skilled nursing facility 

benefit, something worth looking into in any future confirmatory analysis. The individual 

component table for Fc is below in Table 52, while the remainder of the individual 

component tables are available in Appendix I: Supplementary Tables. 
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Table 52. Component Fit Table for IV Fc in (Knee) All IVs Best Model  

L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF : Rmd SNF : Rug SNF : Rhf SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

 IV Data obs. p(DV|IV)   

# Fc freq SNF=1 SNF=2 Ratio p(margin) 

1 1 2484 73.11 26.89 1.53 0.00 

2 2 1727 95.60 4.40 0.25 0.00 

3 3 71 78.87 21.13 1.20 0.43 

4 4 30 96.67 3.33 0.19 0.04 

5 5 17 100.00 0.00 0.00 0.07 

6 6 7 85.71 14.29 0.81 0.83 

  
4336 82.45 17.55 1.00 

 
 

The cardinality of the All IVs for this knee analysis search and fit for SNF are 

many-valued, with seven possible states for location (L), six possible states for financial 

class (Fc), and three possible states each for age binned (Ageb), surgeon volume binned 

(Svb), and number of risks binned (Nrb). Therefore, the combinations of IVs that are 

summarized above in Table 49 resulted in a very large decision tree. However, one can 

determine blue or orange by looking at Fc alone. For Fc = 1, one gets orange. For Fc = 2, 

one gets blue. There is only one exception to this in line 56, which has Fc = 1 and is blue 

(Table 49). Decision trees have two purposes in the present context: (1) to distinguish 

coarsely between blue and orange (between decreased risk and increased risk IV states), 

and (2) to distinguish more finely between degrees of protectiveness or riskiness, as 

shown by the ratio values.  

The details from the best fine model from the Comorbidity IVs search, Rhy SNF : 

Rau SNF : Rmd SNF : Rpa SNF : Rug SNF : Rhe SNF : Rhf SNF : Rku SNF : 

Rbn SNF : Rin SNF, are provided in Table 53 below and also in the decision tree in  

Figure 10 below. Again, each comorbidity is either present or absent. The absence of all 

of the comorbidities offers a protective effect against SNF with a risk ratio of 0.66. 
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With only the presence of essential hypertension (Rhe), there is still a slight protective 

effect with ratio = 0.90.  

Table 53. Fit Table (Knee) for Comorbidity IVs, for Best Model, Rhy SNF : Rau SNF : 

Rmd SNF : Rpa SNF : Rug SNF : Rhe SNF : Rhf SNF : Rku SNF : Rbn SNF : Rin SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 

IVs   Data Model   

 
 

 
obs. p(DV|IV) calc. q(DV|IV)   

# 
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freq SNF=0 SNF=1 SNF=0 SNF=1 ratio p(margin) 

1 0 0 0 0 0 0 0 0 0 0 1501 88.61 11.39 88.44 11.56 0.66 0.00 

2 0 0 0 0 0 0 0 1 0 0 43 74.42 25.58 68.89 31.11 1.77 0.02 

3 0 0 0 0 0 1 0 0 0 0 1771 84.30 15.70 84.27 15.73 0.90 0.05 

4 0 0 0 0 0 1 0 0 0 1 21 52.38 47.62 59.91 40.09 2.28 0.01 

5 0 0 0 0 0 1 0 0 1 0 51 62.75 37.26 69.83 30.17 1.72 0.02 

6 0 0 0 0 0 1 1 0 0 0 41 60.98 39.02 60.66 39.34 2.24 0.00 

7 0 0 0 0 1 1 0 0 0 0 31 58.07 41.94 59.20 40.80 2.32 0.00 

8 0 1 0 0 0 1 0 0 0 0 41 65.85 34.15 70.14 29.86 1.70 0.04 

9 1 0 0 0 0 0 0 1 0 0 18 50.00 50.00 59.81 40.19 2.29 0.01 

10 1 0 0 0 0 1 0 0 0 0 329 78.42 21.58 78.26 21.74 1.24 0.05 

11 1 0 0 0 0 1 0 0 1 0 16 50.00 50.00 60.87 39.13 2.23 0.03 

12 1 1 0 0 0 1 0 0 0 0 13 84.62 15.39 61.22 38.78 2.21 0.05 

           
4336 82.45 17.55 82.45 17.55 

  
 

 These results show that the occurrence of one or more of the Comorbidity IVs—

hypothyroidism (Rhy), anemia (Rau), persistent mental disorders (Rmd), Parkinson’s 

disease (Rpa), unspecified glaucoma (Rug), heart failure (Rhf), chronic kidney disease 

(Rku), other disorders of bone and cartilage (Rbn), and urinary incontinence (Rin)—

increases the risk of discharge to a skilled nursing facility (SNF). The model 

component’s individual fit table is provided in Appendix I: Supplementary Tables. 

Another view of the combinations of these comorbidities is presented in the decision tree 

in  

Figure 10 below. 
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Figure 10. Decision Tree for DV SNF (Knee) with Comorbidity IVs for Best Model Rhy SNF : 

Rau SNF : Rmd SNF : Rpa SNF : Rug SNF : Rhe SNF : Rhf SNF : Rku SNF : Rbn SNF : Rin SNF. 

 

Hip Analysis 

As in the Knee Analysis presented for SNF above, this section analyzes the hip 

data seen previously in the analysis of DV Cp, but with the DV Skilled Nursing Facility 

(SNF) instead. SNF is a binary variable, and the positive value marks cases where a 

patient has been discharged to a skilled nursing facility after a hip replacement. The 

occurrence of SNF is more common than with the DV Cp, present in approximately 14% 

of cases, while DV Cp had positive occurrence of approximately 5% (Table 37). As 

before, new searches were conducted with Occam to select best models, considering the 
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combined All IVs, and then separately the Comorbidity IVs alone. The set of eight 

administrative All IVs remains the same for these analyses. 

All IVs 

o Coarse Searches (Models without Loops) 

The hip data set used for SNF analysis contained 71 IVs, selected through the 

same variable reduction method described in previous sections. That is, variables found 

to be individually predictive with p ≤ 0.05 were retained, as were a subset of IVs from the 

literature. The results of searching for predictive models with this data set are 

summarized in Table 54. As with other analyses presented here, the summary first 

presents the ten variables that best predict SNF individually. The best of these is financial 

class (Fc), with a reduction of uncertainty (%ΔH) of 12.57%. This IV was also the top 

single predictor for the Knee Analysis of DV SNF. The other top single predictors are 

listed as well, sorted by the reduction in uncertainty for each model. The top seven of 

these predictors are all Hospital IVs, and only two of the ten are Comorbidity IVs. 
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Table 54. Summary of Search Results (Hip) for All IVs for SNF. 

Search covers coarse and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors (top 10) 

Fc SNF 5 289.60 12.57 0.00 Financial class 

Ageb SNF 2 299.44 12.02 0.00 Age binned 

S SNF 42 -32.63 11.67 0.00 Surgeon 

Svb SNF 2 181.53 7.53 0.00 Surgeon volume binned 

L SNF 6 86.84 5.15 0.00 Location 

Nrb SNF 2 78.28 3.60 0.00 Number of risks binned 

Ad SNF 38 -219.99 3.30 0.00 Admit diagnosis 

Rhy SNF 1 30.41 1.47 0.00 Unspecified acquired hypothyroidism (244.9) 

Da SNF 5 -2.44 1.44 0.00 Day of admit 

Rhe SNF 1 25.46 1.28 0.00 Unspecified essential hypertension (401.9) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rnr SNF (rank 15) 1 11.29 0.74 0.00 
Aseptic necrosis of head and neck of femur 

(733.42) 

Rhd SNF (rank 24) 1 4.82 0.49 0.00 Acquired hypothyroidism (244) 

Rml SNF (rank 29) 1 2.84 0.42 0.00 Memory loss (780.93) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Ageb Svb SNF 8 445.91 19.44 0.00 Age binned, Surgeon volume binned 

Inc.P & ΔAIC  (same best model) 

Ageb Svb Rhy Rmo SNF 35 297.19 22.08 0.00 

Age binned, Surgeon volume binned, Unspecified 

acquired hypothyroidism (244.9), Morbid obesity 

(278.01) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

Fc SNF : Ageb SNF : 

Svb SNF :Nrb SNF 
11 531.17 23.61 0.00 

Financial class, Age binned, Surgeon volume 

binned, Number of risks binned 

Inc.P & ΔAIC  (same best model) 

Fc SNF : Ageb SNF : 

Svb SNF : Nrb SNF : 

Rhd SNF : Rnr SNF : 

Rml SNF 

14 527.73 24.41 0.01 

Financial class, Age binned, Surgeon volume 

binned, Number of risks binned, Acquired 

hypothyroidism (244), Aseptic necrosis of head and 

neck of femur (733.42), Memory loss (780.93) 

 

After the single-predictor models, the next models to consider are those also 

selected by coarse (or loopless) search, but now also allowing for multiple predicting 

variables in the single component. (These are given in Table 54, under “COARSE, best 

model (loopless)”). The best of these models, selected by the ΔBIC criterion, is Ageb Svb 

SNF, where the IVs Age binned (Ageb) and Surgeon volume binned (Svb) predict SNF 
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with a of %ΔH 19.44. As in other searches, the best model selected does not necessarily 

reflect the top single-predicting variables, indicating that the included variables (Ageb 

and Svb) together balanced the reduction of uncertainty and increase in complexity (here, 

a Δdf = 8) better than other IV combinations. 

o Fine Searches (Models with Loops) 

When allowing for multiple predicting components (that is, models with loops), 

the search for best model selects a model with four components: Fc SNF : Ageb SNF : 

Svb SNF : Nrb SNF. This model is the best by the BIC criterion for predicting the 

DV SNF in the Hip data set of All IVs. This model reduces uncertainty by 23.61% 

(%ΔH), using 11 degrees of freedom (Δdf). All four of the IVs included in this model are 

All IVs: Financial class (Fc), Age binned (Ageb), Surgeon volume binned (Svb), Number 

of risks binned (Nrb). The best model under the less conservative criterion of ΔAIC also 

includes three Comorbidity IVs, and is more complex as a result, with Δdf of 14. In the 

similar results for Knee analysis of DV SNF, Comorbidity IVs were included in the 

models selected by each criterion. 

 Comorbidity IVs Only 

o Coarse Searches (Models without Loops) 

When considering only the variables in the Comorbidity IVs data set, the most 

predictive models are substantially different. The results given in Table 54 above include 

relatively more of the All IVs and few of the Comorbidity IVs, so the list of the ten best 

single predictors in Table 55 is mostly different by necessity. (The reductions in 

uncertainty (%ΔH) for these predictors are also lower than the best values in Table 54, or 
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else they would have been included in that table.) The best single predictor of the 

Comorbidity IVs by uncertainty reduction is unspecified acquired hypothyroidism (Rhy), 

with a %ΔH of 1.47. 

Table 55. Summary of Search Results (Hip) for Comorbidity IVs for SNF. 

Search covers both coarse and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors 

Rhy SNF 1 30.41 1.47 0.00 Unspecified acquired hypothyroidism (244.9) 

Rhe SNF 1 25.46 1.28 0.00 Unspecified essential hypertension (401.9) 

Rav SNF 1 15.99 0.92 0.00 Aortic valve disorders (424.1) 

Rrd SNF 1 15.89 0.91 0.00 Unspecified hypertensive renal disease (403.9) 

Rao SNF 1 15.61 0.90 0.00 Chronic airway obstruction (496) 

Rhf SNF 1 12.87 0.80 0.00 Heart failure (428) 

Rnr SNF 
1 11.29 0.74 0.00 

Aseptic necrosis of head and neck of femur 

(733.42) 

Rbn SNF 1 10.25 0.70 0.00 Other disorders of bone and cartilage (733) 

Rhh SNF 1 7.98 0.61 0.00 Hyposmolality and/or hyponatremia (276.1) 

Rkd SNF 1 7.80 0.60 0.00 Chronic kidney disease, Stage III (585.3) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rin SNF (rank 12) 1 6.36 0.55 0.00 Urinary incontinence (788.3) 

Rse SNF (rank 13) 1 6.08 0.54 0.00 Senile osteoporosis (733.01) 

Rug SNF (rank 19) 1 3.21 0.43 0.00 Unspecified glaucoma (365.9) 

Rml SNF (rank 21) 1 2.84 0.42 0.00 Memory loss (780.93) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Rhy Rhe Rrd SNF 7 46.95 3.94 0.00 

Unspecified acquired hypothyroidism (244.9), 

Unspecified essential hypertension (401.9), 

Unspecified hypertensive renal disease (403.9) 

ΔAIC (best model) 

Rhy Rhe Rrd Rao SNF 15 7.77 4.91 0.00 

Unspecified acquired hypothyroidism (244.9), 

Unspecified essential hypertension (401.9), 

Unspecified hypertensive renal disease (403.9), 

Chronic airway obstruction (496) 

Inc.P (best model) 

Rhy Rhe Rrd Rbn Rin 

SNF 
31 -95.30 5.90 0.03 

Unspecified acquired hypothyroidism (244.9), 

Unspecified essential hypertension (401.9), 

Unspecified hypertensive renal disease (403.9), 

Other disorders of bone and cartilage (733), 

Urinary incontinence (788.3) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 
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FINE, best models (with loops) 

ΔBIC (best model) 

Rhy SNF : Rhh SNF : 

Rug SNF : Rhe SNF : 

Rrd SNF : Rav Rbn 

SNF : Rao SNF : Rse 

SNF : Rnr SNF 

11 111.97 7.65 0.00 

Unspecified acquired hypothyroidism (244.9), 

Hyposmolality and/or hyponatremia (276.1), 

Unspecified glaucoma (365.9), Unspecified 

essential hypertension (401.9), Unspecified 

hypertensive renal disease (403.9), Aortic valve 

disorders (424.1) + Other disorders of bone and 

cartilage (733), Chronic airway obstruction (496), 

Senile osteoporosis (733.01), Aseptic necrosis of 

head and neck of femur (733.42) 

Inc.P & ΔAIC (same best model) 

Rhy SNF : Rhh SNF : 

Rug SNF : Rhe SNF : 

Rrd SNF : Rav Rbn 

SNF : Rao SNF : Rse 

SNF : Rnr SNF : Rml 

SNF : Rin SNF 

13 110.79 8.22 0.01 

Unspecified acquired hypothyroidism (244.9), 

Hyposmolality and/or hyponatremia (276.1), 

Unspecified glaucoma (365.9), Unspecified 

essential hypertension (401.9), Unspecified 

hypertensive renal disease (403.9), Aortic valve 

disorders (424.1) + Other disorders of bone and 

cartilage (733), Chronic airway obstruction (496), 

Senile osteoporosis (733.01), Aseptic necrosis of 

head and neck of femur (733.42), Memory loss 

(780.93), Urinary incontinence (788.3) 

 

When the coarse search is widened to include more than one predicting variable 

in its (loopless) models, the best model by ΔBIC is Rhy Rhe Rrd SNF. This model 

combines the IVs unspecified acquired hypothyroidism (Rhy), unspecified essential 

hypertension (Rhe), and unspecified hypertensive renal disease (Rrd), resulting in a %ΔH 

of only 3.94. This is much lower than the value for the model above that included All IVs 

(Ageb Svb SNF), which reduced uncertainty by 19.44%. 

o Fine Searches (Models with Loops) 

The final step in the Hip analysis of the Comorbidity IVs data set is to allow for 

the inclusion of models with loops. Like the search for loopless models with this data set, 

the results continue to show that the Comorbidity IVs do not predict as well as the All IVs 

do. The best model by ΔBIC (Rhy SNF : Rhh SNF : Rug SNF : Rhe SNF : Rrd SNF : 

Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF) includes 10 IVs in nine components, but 
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only reduces uncertainty by 7.65%. This model uses 11 degrees of freedom, which is also 

the Δdf of the best model from the All IVs data set, though that model achieved a %ΔH of 

23.61 for the same complexity, with four predicting variables. 

 Comparing Search Results (Hip, SNF) 

All IVs and the Comorbidity IVs searches yield two sets of results that can be 

compared to each other and interpreted into a three-tiered classification of predicting 

variables for DV SNF. These three sets of IVs are shown in Table 56. 

Table 56. The 3-Tiered Classification of 

Predicting Variables for DV SNF, Hip Analysis. 

Tier Variables 

Tier 1 – Most Important Fc, Ageb, Svb, Nrb 

Tier 2 Rhy, Rur 

Tier 3 Rml, Rhh, Rug, Rhe, Rrd, Rav, Rnn, Rao, Rse 

 

The first tier includes the most important predicting variables, which are those 

that were included in the best model by BIC in the All IVs data set: Fc, Ageb, Svb, and 

Nrb.  

The Tier 2 variables are those that appeared both in the best model by AIC in the 

combined All IVs search, and in the best model by BIC in the Comorbidity IVs search. 

This tier adds the two Comorbidity IVs, Rhy and Rur.  

Tier 3 includes those variables that occur in either of the two searches from Tier 2 

but not both. This tier includes nine Comorbidity IVs Rml, Rhh, Rug, Rhe, Rrd, Rav, 

Rnn, Rao, and Rse. 
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 Model FIT  

The best fine-grained model for All IVs, Fc SNF : Ageb SNF : Svb SNF : 

Nrb SNF, which reduced uncertainty by 23.61%, is explained in detail by the conditional 

probability distribution in Table 57 below. When Financial class (Fc) = 1, one tends to 

get orange, and when Fc = 2, one tends to get blue, but there are some exceptions on lines 

16, 17, 25, 26 (Table 57). Note that in this composite table one gets only Fc = 1 or 2; 

Fc can also be 3, 4, 5, 6, but these other states have much lower frequencies, so one 

doesn’t see them in a composite table. 
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Table 57. Fit Table (Hip) for All IVs for Best Model 

Fc SNF : Ageb SNF : Svb SNF : Nrb SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 IVs Data Model     

     
 

obs. p(DV|IV) calc. q(DV|IV) 
  

# Fc Ageb Svb Nrb freq SNF=0 SNF=1 SNF=0 SNF=1 Ratio p(margin) 

15 1 2 2 3 56 71.43 28.57 73.48 26.52 1.86 0.01 

16 1 2 3 1 43 97.67 2.33 98.27 1.73 0.12 0.02 

17 1 2 3 2 53 100.00 0.00 97.58 2.42 0.17 0.01 

19 1 3 1 1 85 71.77 28.24 75.77 24.23 1.70 0.01 

20 1 3 1 2 128 69.53 30.47 69.00 31.00 2.17 0.00 

21 1 3 1 3 172 60.47 39.54 55.69 44.31 3.11 0.00 

22 1 3 2 1 94 61.70 38.30 67.29 32.71 2.29 0.00 

23 1 3 2 2 114 56.14 43.86 59.41 40.59 2.85 0.00 

24 1 3 2 3 142 47.89 52.11 45.25 54.75 3.84 0.00 

25 1 3 3 1 83 97.59 2.41 94.41 5.59 0.39 0.02 

26 1 3 3 2 110 91.82 8.18 92.32 7.68 0.54 0.05 

28 2 1 1 1 131 99.24 0.76 97.56 2.45 0.17 0.00 

29 2 1 1 2 95 97.90 2.11 96.60 3.40 0.24 0.00 

31 2 1 2 1 127 98.43 1.58 96.33 3.67 0.26 0.00 

32 2 1 2 2 104 97.12 2.89 94.92 5.08 0.36 0.01 

34 2 1 3 1 160 99.38 0.63 99.54 0.46 0.03 0.00 

35 2 1 3 2 116 99.14 0.86 99.35 0.65 0.05 0.00 

36 2 1 3 3 85 98.82 1.18 98.86 1.14 0.08 0.00 

37 2 2 1 1 51 98.04 1.96 97.11 2.89 0.20 0.02 

38 2 2 1 2 46 93.48 6.52 95.99 4.01 0.28 0.05 

40 2 2 2 1 48 93.75 6.25 95.67 4.33 0.30 0.05 

43 2 2 3 1 90 98.89 1.11 99.45 0.55 0.04 0.00 

44 2 2 3 2 91 98.90 1.10 99.23 0.77 0.05 0.00 

45 2 2 3 3 54 98.15 1.85 98.65 1.35 0.09 0.01 

     
3204 85.74 14.26 85.74 14.26 1.00 

 
# Fc Ageb Svb Nrb freq SNF=0 SNF=1 SNF=0 SNF=1 Ratio p(margin) 

 

Each of the component’s individual projections is somewhat informative, yet not 

as informative as the full model’s joint distribution. These components are provided in 

the Appendix I: Supplementary Tables, Table 111 through Table 117.  

The joint probability distribution below in Table 58 shows the details for the best 

fine model from the hip Comorbidity IVs search Rhy SNF : Rhh SNF : Rug SNF : 

Rhe SNF : Rrd SNF : Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF. In this 

distribution, each of the IVs is either 0 (comorbidity absent) or 1 (comorbidity present). 
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Row 1 is the case where all of the comorbidities included in the model are absent, which 

lowers the risk of Skilled Nursing Facility (SNF) from 14.26% (the model’s marginal 

probability) to 7.85%, with a ratio of 0.55 

Table 58. Fit Table (Hip) for Comorbidity IVs for Best Model Rhy SNF : 

Rhh SNF : Rug SNF : Rhe SNF : Rrd SNF : Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF . 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

  IVs Data Model     

 

                      obs. p(DV|IV) calc. q(DV|IV)     

# R
h

y
 

R
h

h
 

R
u

g
 

R
h

e 

R
rd

 

R
av

 

R
ao

 

R
b

n
 

R
se

 

R
n

r 

freq SNF=0 SNF=1 SNF=0 SNF=1 ratio p(margin) 

1 0 0 0 0 0 0 0 0 0 0 1371 92.34 7.66 92.15 7.85 0.55 0.00 

10 0 0 0 0 1 0 0 0 0 0 42 71.43 28.57 74.60 25.40 1.78 0.04 

18 0 0 0 1 0 0 0 0 0 1 49 73.47 26.53 68.93 31.07 2.18 0.00 

20 0 0 0 1 0 0 0 1 0 0 43 79.07 20.93 75.02 24.98 1.75 0.04 

22 0 0 0 1 0 0 1 0 0 0 26 76.92 23.08 72.01 27.99 1.96 0.05 

26 0 0 0 1 0 1 0 0 0 0 10 50.00 50.00 44.64 55.37 3.88 0.00 

50 1 0 0 0 1 0 0 0 0 0 14 78.57 21.43 59.33 40.67 2.85 0.01 

53 1 0 0 1 0 0 0 0 0 0 171 74.85 25.15 75.84 24.16 1.69 0.00 

56 1 0 0 1 0 0 0 1 0 0 12 66.67 33.33 59.87 40.13 2.81 0.01 

           
3204 85.74 14.26 85.74 14.26 

  
 

The additional IV states show if one or more of the comorbidities from the model 

are present, the risk is increased. This is illustrated in the decision tree below in 

Figure 11. 
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Figure 11. Decision Tree for DV SNF (Hip) with Comorbidity IVs, 

for Best Model, Rhy SNF : Rhh SNF : Rug SNF :Rhe SNF : 

Rrd SNF : Rav Rbn SNF : Rao SNF :  Rse SNF : Rnr SNF. 

 

Hip & Knee Summary of Results for SNF 

 The most important IVs are summarized in Table 59. The IVs that are important 

across both hip and knee searches are number of risks (Nrb), age (Ageb), surgeon volume 

(Svb), financial class (Fc), glaucoma (Rug), essential hypertension (Rhe), and acquired 

hypothyroidism (Rhy)  

Table 59. Summary of Most Important IVs by Tier across Hip and Knee for SNF. 

Tier Knee Hip 

1 L, Fc, Ageb, Svb, Nrb, Rmd, Rug, Rhf Fc, Ageb, Svb, Nrb 

2 Rpa Rhy, Rur 

3 Rbp, Rhy, Rau, Rhe, Rku, Rbn, Rin Rml, Rhh, Rug, Rhe, Rrd, Rav, Rnn, Rao, Rse 
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DV: Readmission (Re) 

Knee Analysis 

In this results section, another series of best models are proposed and analyzed in 

detail. This section looks both at (a) All IVs together, and (b) only the Comorbidity IVs. 

 All IVs 

o Coarse Searches (Models without Loops) 

The original 188 patient Comorbidity IVs were reduced to 35 IVs, of which 17 

had p ≤ 0.05 in a single predicting search for the dependent variable Readmission (Re), 

18 were literature-based but not individually predictive in the search, and five were found 

both in the literature and in the single predicting search. The search results for the top 10 

models are listed in Table 60. 
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Table 60. Summary of Search Results (Knee) for All IVs for Readmission (Re). Search covers coarse 

and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors (top 10) 

Fc Re 5 -28.66 1.26 0.02 Financial class 

Nrb Re 2 -4.02 1.22 0.00 Number of risks binned 

L Re 6 -37.85 1.18 0.05 Location 

Rco Re 1 3.88 1.17 0.00 Chronic obstructive asthma (493.2) 

Rgp Re 1 1.73 0.96 0.00 Repair of cystocele with graft or prosthesis (70.54) 

Rcj Re 1 0.66 0.86 0.00 Contracture of joint, lower leg (718.46) 

Rci Re 1 -0.43 0.76 0.00 Other forms of chronic ischemic heart disease (414) 

Rhf Re 1 -1.58 0.65 0.01 Heart failure (428) 

Rca Re 1 -1.83 0.63 0.01 
Coronary atherosclerosis of native coronary artery 

(414.01) 

Rdf Re 1 -1.87 0.62 0.01 Chronic diastolic heart failure (428.32) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rep Re (Rank 12) 1 -2.54 0.56 0.02 Epilepsy (345.9) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Rco Re 1 3.88 1.17 0.00 Chronic obstructive asthma (493.2) 

Inc.P & ΔAIC  (same best model) 

Rco Rcj Rin Re 
7 -23.56 3.35 0.01 

Chronic obstructive asthma (493.2) + Contracture of 

joint, lower leg (718.46) + Urinary incontinence (788.3) 

FINE, best models (with loops) 

ΔBIC (best model) 

Rci Re : Rco Re : 

Rgp Re : Rcj Re 
4 6.00 3.77 0.00 

Other forms of chronic ischemic heart disease (414), 

Chronic obstructive asthma (493.2), Repair of cystocele 

with graft or prosthesis (70.54), Contracture of joint, 

lower leg (718.46) 

Inc.P & ΔAIC  (same best model) 

Rep Re : Rci Re : 

Rca Re : Rdf Re : 

Rco Re : Rgp Re : 

Rcj Re 

7 42.78 5.42 0.02 

Epilepsy (345.9), Other forms of chronic ischemic heart 

disease (414), Coronary atherosclerosis of native 

coronary artery (414.01), Chronic diastolic heart failure 

(428.32), Chronic obstructive asthma (493.2), Repair of 

cystocele with graft or prosthesis (70.54), Contracture of 

joint, lower leg (718.46) 

 

Knowing the financial class (Fc) of the patient is the most predictive single 

variable, reducing uncertainty (%ΔH) by 1.26%. Number of risks (Nrb) followed with a 

%ΔH of 1.22 and then location (L) at a %ΔH of 1.18 (Table 60). The Comorbidity IV 

that is individually the post predictive of Readmission (Re) is chronic obstructive 

asthma (Rco) with a %ΔH of 1.17, with additional comorbidities listed in Table 60. The 
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best coarse model by ΔBIC is the top Comorbidity IV single predictor, Rco Re with a 

%ΔH of 1.17.  

o Fine Searches (Models with Loops) 

In this next search, models with loops are considered. The best fine model by 

ΔBIC is Rci Re : Rco Re : Rgp Re : Rcj Re with a %ΔH of 3.77 and Δdf =4 (Table 60). 

In this model, chronic ischemic heart disease (Rci), chronic obstructive asthma (Rco), 

repair of cystocele with graft or prosthesis (Rgp), and contracture of joint, lower leg 

(Rcj) provide the most information balanced by their complexity (Δdf). While this project 

uses the ΔBIC criterion for model selection, it is interesting to see that even with the AIC 

criterion, the best model selected contains only Comorbidity IVs, and not the top three 

single predicting variables, which were the All IVs financial class (Fc), number of risks 

(Nrb), and location (L). 

 Comorbidity IVs 

o Coarse Searches (Models without Loops)  

In the next search, only Comorbidity IVs are considered. These search results 

exclude the three All IVs from the previous search, and therefore an additional three 

Comorbidity IVs are included in the top 10 single predictors in Table 61. The best models 

by BIC are the exact same models selected from the prior search. In other words, the best 

coarse model is Rco Re with a %ΔH of 1.17.  
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Table 61. Summary of Search Results (Knee) for Comorbidity IVs for DV Readmission (Re). 

Search covers coarse and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors 

Rco Re 1 3.88 1.17 0.00 Chronic obstructive asthma (493.2) 

Rgp Re 1 1.73 0.96 0.00 Repair of cystocele with graft or prosthesis (70.54) 

Rcj Re 1 0.66 0.86 0.00 Contracture of joint, lower leg (718.46) 

Rci Re 1 -0.43 0.76 0.00 Other forms of chronic ischemic heart disease (414) 

Rhf Re 1 -1.58 0.65 0.01 Heart failure (428) 

Rca Re 1 -1.83 0.63 0.01 
Coronary atherosclerosis of native coronary artery 

(414.01) 

Rdf Re 1 -1.87 0.62 0.01 Chronic diastolic heart failure (428.32) 

Rse Re 1 -2.44 0.57 0.01 Senile osteoporosis (733.01) 

Rep Re 1 -2.54 0.56 0.02 Epilepsy (345.9) 

Ros Re 1 -2.92 0.52 0.02 Obstructive sleep apnea (327.23) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Rco Re 1 3.88 1.17 0.00 Chronic obstructive asthma (493.2) 

Inc.P & ΔAIC (same best model) 

Rco Rcj Rin Re 7 -23.56 3.35 0.01 
Chronic obstructive asthma (493.2) + Contracture of 

joint, lower leg (718.46) +  Urinary incontinence (788.3) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

Rci Re : Rco Re : 

Rgp Re : Rcj Re 
4 6.00 3.77 0.00 

Other forms of chronic ischemic heart disease (414), 

Chronic obstructive asthma (493.2), Repair of cystocele 

with graft or prosthesis (70.54), Contracture of joint, 

lower leg (718.46) 

Inc.P & ΔAIC (same best model) 

Rep Re : Rci Re : 

Rca Re : Rdf Re : 

Rco Re : Rgp Re : 

Rcj Re 

7 -1.84 5.42 0.02 

Epilepsy (345.9), Other forms of chronic ischemic heart 

disease (414), Coronary atherosclerosis of native 

coronary artery (414.01), Chronic diastolic heart failure 

(428.32), Chronic obstructive asthma (493.2), Repair of 

cystocele with graft or prosthesis (70.54), Contracture of 

joint, lower leg (718.46) 

 

o Fine Searches (Models with Loops) 

The Comorbidity IVs search provided no additional best model beyond what was 

previously identified in the Hospital-Based + Comorbidities search. The best fine-grained 

BIC model is again Rci Re : Rco Re : Rgp Re : Rcj Re with a %ΔH of 3.77 (Table 61). 
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 Comparing Search Results (Knee, Re) 

All IVs and the Comorbidity IVs searches yield two sets of results that can be 

compared to each other and interpreted into a three-tiered classification of results, as 

described below and summarized in Table 62. 

Table 62. The 3-Tiered Classification of 

Predicting Variables for DV: Re, Knee Analysis. 

Tier Variables 

Tier 1 – Most Important Rci, Rco, Rgp, Rcj 

Tier 2 None 

Tier 3 Rep, Rca, Rdf 

 

Tier 1 contains variables from the best-by-BIC model from the dataset All IVs. 

This is the most complete search, and the one that provides the most conservative 

predictors. The selected variables Rci, Rco, Rgp, and Rcj are shown in the first row of 

Table 62, and are considered the most important predicting variables.  

 Tier 2 contains variables not in Tier1, but found in the AIC (less conservative) 

model of All IVs AND in the BIC model of Comorbidity IVs. For the Knee Analysis of 

DV Readmission, there are no additional predictors. These are shown in the second row 

of Table 62.  

Finally, this classification places into Tier 3 any variables present elsewhere in the 

best model search results, but not included in Tier 1 or Tier 2; that is, any variables 

unique to one of the two searches—variables in the AIC model of All IVs but not in the 

BIC model of Comorbidity IVs, and variables in the BIC model of Comorbidity IVs but 

not in the AIC model from All IVs. The next most important predicting variables are Rep, 

Rca, and Rdf as summarized in row 3 of Table 62. 
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 Model FIT  

The best models for both All IVs search and the Comorbidity IVs search yielded 

the same best model of Rci Re : Rco Re : Rgp Re : Rcj Re. The detailed content of this 

model is shown below in the joint conditional probability distribution of the model 

(Table 63). Rows with a frequency < 10 and p > 0.05 are excluded. 

Table 63. Full Fit Table (Knee) for both All IVs search and Comorbidity IVs 

search for Best Model: Rci Re : Rco Re : Rgp Re : Rcj Re. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 IVs Data Model     

       obs. p(DV|IV) calc. q(DV|IV)     

# Rci Rco Rgp Rcj freq Re=0 Re=1 Re=0 Re=1 ratio p(margin) 

2 0 0 0 1 22 86.36 13.64 84.44 15.56 5.97 0.00 

4 0 1 0 0 38 86.84 13.16 85.73 14.27 5.48 0.00 

6 1 0 0 0 141 93.62 6.38 93.29 6.71 2.57 0.00 

     
4334 97.39 2.61 97.39 2.61 1.00 

 
 

The presence of contracture of joint, lower leg (Rcj) increases the chance of 

readmission (Re) from 2.61% to 15.56%, with a risk ratio of 5.97 (Table 63). Chronic 

obstructive asthma (Rco) increases readmission (Re) to 14.27%, with a ratio of 5.48, and 

chronic ischemic heart disease (Rci) increases risk of readmission to 6.71%, with a ratio 

of 2.57. This is shown clearly in the decision tree below in Figure 12. 
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Figure 12. Decision Tree for DV Readmit (Knee) for 

Best Model Rci Re : Rco Re : Rgp Re : Rcj Re. 

 

Hip Analysis 

In this portion of the results section, a similar series of results to the knee analysis 

are presented for the dependent variable Readmission (Re). Here, two sets of results are 

again produced: (a) All IVs, and (b) Comorbidity IVs. The hip data set contains the same 

eight administrative All IVs but a different set of Comorbidity IVs. 

 All IVs 

o Coarse Searches (Models without Loops) 

A single predicting search reduced the IVs in the Hip data set to 30, of which 14 

were found to be predictive with p ≤ 0.05, 16 were retained as literature-based IVs, and 

only one IV in common. 

The top 10 individual predicting variables are listed below in Table 64. The most 

predictive IV is surgeon (S) with a %ΔH of 8.41 and a Δdf of 42. The day of admit (Da) 

interestingly is the next single predictor with %ΔH of 2.03 and a Δdf of 5. The best 
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loopless coarse model by the ΔBIC criterion is the independence model, meaning that 

nothing predicts Readmission (Re). 

Table 64. Summary of Search Results (Hip) for All IVs for DV Readmit (Re). 

Search covers directed coarse, and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors (top 10) 

S Re 42 -271.92 8.41 0.01 Surgeon 

Da Re 5 -24.18 2.03 0.01 Day of admit 

Nrb Re 2 -3.19 1.62 0.00 Number of risk binned 

Ageb Re 2 -5.14 1.38 0.00 Age binned 

Svb Re 2 -7.91 1.03 0.02 Surgeon volume binned 

Rdd Re 1 -0.29 0.97 0.01 Dysthymic disorder (300.4) 

Rer Re 1 -0.95 0.89 0.01 Esophageal reflux (530.81) 

Rki Re 1 -1.03 0.88 0.01 Chronic kidney disease, Stage II (585.2) 

Rhp Re 1 -1.70 0.80 0.01 Hypopotassemia (276.8) 

Rys Re 1 -1.70 0.80 0.01 Cardiac dysrhythmias (427) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rep (rank 11) 1 -2.04 0.75 0.01 Epilepsy (345.9) 

Rpa (rank 12) 1 -2.75 0.67 0.02 Parkinson's disease (332) 

Rhe (rank 13) 1 -3.11 0.62 0.03 Essential hypertension (401.9) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Re 0 0.00 0.00 0.00 * Independence model is the best model 

ΔAIC (best model) 

Rep Rer Re 3 -7.53 2.09 0.00 Epilepsy (345.9) + Esophageal reflux (530.81) 

Inc.P (best model) 

S Re 42 -272.01 8.38 0.01 Surgeon 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

Re 0 0.00 0.00 0.00 * Independence model is the best model 

ΔAIC (best model) 

Rhp Re : Rdd 

Re : Rpa Re : 

Rep Re : Rhe 

Re : Rys Re : 

Rki Re 

7 -12.33 5.53 0.04 

Hypopotassemia (276.8), Dysthymic disorder (300.4), 

Parkinson's disease (332), Epilepsy (345.9), Essential 

hypertension (401.9), Cardiac dysrhythmias (427), 

Chronic kidney disease, Stage II (585.2) 

Inc.P (best model) 

S Re 42 -272.01 8.38 0.01 Surgeon 
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o Fine Searches (Models with Loops) 

The best fine-grained search allowing for multiple components and models with 

loops by BIC is simply shown as Re, saying again that nothing predicts better than the 

independence model (Table 64). In the hip data, the occurrence of readmission was 

comparable to the knee data readmission rate at 2.72%. For purposes of the readmission 

analysis, the AIC model will be used. The best fine-grained model by AIC, Rhp Re : 

Rdd Re : Rpa Re : Rep Re : Rhe Re : Rys Re : Rki Re, is less conservative but suggests 

that hypopotassemia (Rhp), dysthymic disorder (Rdd), Parkinson's disease (Rpa), 

epilepsy (Rep), essential hypertension (Rhe), cardiac dysrhythmias (Rys), and chronic 

kidney disease (Rki) reduce the uncertainty of readmission with %ΔH of 5.53 and 

Δdf = 7.  

 Comorbidity IVs 

o Coarse Searches (Models without Loops) 

The top 10 variables from a search only considering the Comorbidity IVs are 

shown in Table 65. The top single predicting comorbidity for Readmission (Re) is 

dysthymic disorder (Rdd) followed by additional comorbidities listed in the table below.  
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Table 65. Summary of Search Results (Hip) for Comorbidity IVs. 

Search covers directed coarse, and fine models. 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors 

Rdd Re 1 -0.29 0.97 0.01 Dysthymic disorder (300.4) 

Rer Re 1 -0.95 0.89 0.01 Esophageal reflux (530.81) 

Rki Re 1 -1.03 0.88 0.01 Chronic kidney disease, Stage II (585.2) 

Rhp Re 1 -1.71 0.80 0.01 Hypopotassemia (276.8) 

Rys Re 1 -1.71 0.80 0.01 Cardiac dysrhythmias (427) 

Rep Re 1 -2.06 0.75 0.01 Epilepsy (345.9) 

Rpa Re 1 -2.76 0.66 0.02 Parkinson's disease (332) 

Rhe Re 1 -3.09 0.62 0.03 Essential hypertension (401.9) 

Rcm Re 1 -4.17 0.49 0.05 Other primary cardiomyopathies (425.4) 

Rvi Re 1 -4.44 0.45 0.06 Venous (peripheral) insufficiency (459.81) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Re 0 0.00 0.00 0.00 * Independence model is the best model 

ΔAIC (best model) 

Rep Rca Rer Re 7 -27.76 3.60 0.02 

Epilepsy (345.9) + Coronary atherosclerosis of 

native coronary artery (414.01) + Esophageal 

reflux (530.81) 

Inc.P (best model) 

Rpa Rep Rca Rer Re 15 -78.88 5.28 0.04 

Parkinson's disease (332) + Epilepsy (345.9) + 

Coronary atherosclerosis of native coronary artery 

(414.01) + Esophageal reflux (530.81) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

Re 0 0.00 0.00 0.00 * Independence model is the best model 

Inc.P & ΔAIC (same best model) 

Rdd Re : Rpa Re : 

Rep Re : Rhe Re : 

Rys Re : Rer Re : 

Rki Re 

7 -12.40 5.52 0.03 

Dysthymic disorder (300.4), Parkinson's disease 

(332), Epilepsy (345.9), Essential hypertension 

(401.9), Cardiac dysrhythmias (427), Esophageal 

reflux (530.81), Chronic kidney disease, Stage II 

(585.2) 

 

o Fine Searches (Models with Loops) 

In the search that allows for loops, and as was seen with the prior search results, 

the best model by BIC is the independence model, and therefore the best model by AIC 

will be used for additional analysis. The AIC model is slightly different: Rdd Re : 

Rpa Re : Rep Re : Rhe Re : Rys Re : Rer Re : Rki Re, with a %ΔH of 5.52. Unlike the 
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best AIC from the prior search, this model includes esophageal reflux (Rer) and excludes 

hypopotassemia (Rhp). 

 Comparing Search Results (Hip, Re) 

All IVs and the Comorbidity IVs searches yield 2 sets of results that can be 

compared to each other and interpreted into a 3-tiered classification of results, as follows.   

Table 66. The 3-Tiered Classification of Predicting 

Variables for DV: Readmission, Hip Analysis. 

Tier Variables 

Tier 1 (Most Important) *Independence model 

Tier 2 None 

Tier 3 Rhp, Rdd, Rpa, Rep, Rhe, Rys, Rki 

 

Tier 1 contains variables from the best-by-BIC model from the dataset All IVs. 

This is the most complete search, and the one that provides the most conservative 

predictors. In the Readmission analysis for Hip, there were no predictors better than the 

independence model according to BIC.   

Tier 2 contains variables not in Tier1, but found in the AIC (less conservative) 

model of All IVs AND in the BIC model of Comorbidity IVs. For the Hip Analysis of DV 

Readmission, there were no variables that remained. 

Finally, this classification places into Tier 3 any variables present elsewhere in the 

best model search results, but not included in Tier 1 or Tier 2; that is, any variables 

unique to one of the two searches—variables in the AIC model of All IVs but not in the 

BIC model of Comorbidity IVs, and variables in the BIC model of Comorbidity IVs but 

not in the AIC model from All IVs. Tier 3 is the only classification that shows the 

predictors for Readmission (Rhp, Rdd, Rpa, Rep, Rhe, Rys, and Rki). 
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 Model FIT  

The detailed content of the best fine-grained AIC model from the All IVs search, 

Rhp Re : Rdd Re : Rpa Re : Rep Re : Rhe Re : Rys Re : Rki Re, is shown as a 

conditional probability distribution in Table 67. 

Table 67. Fit Table (Hip) for All IVs for Best Model Rhp Re : 

Rdd Re : Rpa Re : Rep Re : Rhe Re : Rys Re : Rki Re. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Frequencies < 10 and ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 

IVs Data Model     

 
 

 
obs. p(DV|IV) calc. q(DV|IV) 

  
# Rhp Rdd Rpa Rep Rhe Rys Rki freq Re=0 Re=1 Re=0 Re=1 ratio p(margin) 

1 0 0 0 0 0 0 0 1680 98.10 1.91 98.26 1.75 0.64 0.01 

2 0 0 0 1 0 0 0 12 91.67 8.33 86.89 13.11 4.82 0.03 

3 0 1 0 0 1 0 0 27 81.48 18.52 87.04 12.96 4.77 0.00 

        
3200 97.28 2.72 97.28 2.72 1 

 
 

This resulted in a conditional probability distribution where after deleting rows 

with p > 0.05 and freq < 10, only three rows remained. Table 67 and the following 

decision tree in Figure 13 show that when none of the comorbidities are present, there is a 

protective effect relative to the margins with a risk of readmission at 1.75% and a risk 

ratio of 0.64, compared to 2.72% observed in the data. When epilepsy (Rep) alone is 

present, or dysthymic disorder (Rdd) along with essential hypertension (Rhe), the risk 

increases to 13.11% and 12.96% (ratio 4.82 and 4.77). 
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Figure 13. Decision Tree for DV Readmit (Hip) All IVs for Best AIC Model 

Rhp Re : Rdd Re : Rpa Re : Rep Re : Rhe Re : Rys Re : Rki Re. 
 

The individual components of the model each have a fit table, condensed into a 

single table below (Table 68). 

Table 68. Condensed Fit Table of Components (Hip) All IVs 

Best Model Rhp Re : Rdd Re : Rpa Re : Rep Re : Rhe Re : Rys Re : Rki Re. 

Orange rows indicate ratio > 1.10. 

(Frequencies < 10 are indicated in gray). 

   Data obs. p(DV|IV)   

# IV State freq Re=0 Re=1 ratio p(margin) 

1 Rhp 1 7 71.43 28.57 10.51 0.00 

2 Rdd 1 58 89.66 10.35 3.80 0.00 

3 Rpa 1 9 77.78 22.22 8.17 0.00 

4 Rep 1 19 84.21 15.79 5.81 0.00 

5 Rhe 1 1462 96.58 3.42 1.26 0.10 

6 Rys 1 7 71.43 28.57 10.51 0.00 

7 Rki 1 6 66.67 33.33 12.26 0.00 

   
3200 97.28 2.72 1.00 

 
 

The Comorbidity IVs model, Rdd Re : Rpa Re : Rep Re : Rhe Re : Rys Re : 

Rer Re : Rki Re, resulted in a conditional probability distribution where after deleting 

rows with p > 0.05 and freq < 10, only two rows remained (Table 69). 
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Table 69. Fit Table (Hip) for Comorbidity IVs for Best Model Rdd Re : 

Rpa Re : Rep Re : Rhe Re : Rys Re : Rer Re : Rki Re. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

 IVs Data Model   

  
 

obs. p(DV|IV) calc. q(DV|IV)   

# Rdd Rpa Rep Rhe Rys Rer Rki freq Re=0 Re=1 Re=0 Re=1 ratio p(margin) 

1 0 0 0 0 0 0 0 1462 98.36 1.64 98.39 1.61 0.59 0.01 

2 1 0 0 1 0 0 0 18 83.33 16.67 89.21 10.79 3.97 0.04 

        3200 97.28 2.72 97.28 2.72 1.00 
 

 

The decision tree providers a very simple explanation where the occurrence of 

dysthymic disorder (Rdd) along with essential hypertension (Rhe) result in increased risk 

of readmission with a ratio of 3.97, and the absence of the comorbidities result in a 

reduced risk with ratio 0.59.   

 
Figure 14. Decision Tree for DV Readmit (Hip) with Comorbidity IVs 

for Best AIC Model Rdd Re : Rpa Re : Rep Re : 

Rhe Re : Rys Re : Rer Re : Rki Re Re. 
 

The individual components of the model each have a fit table, condensed into a 

single table below (Table 70). 
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Table 70. Condensed Fit Table of Components (Hip) All IVs 

Best AIC Model Rdd Re : Rpa Re : Rep Re : Rhe Re : Rys Re : Rer Re : Rki Re Re. 

Orange rows indicate ratio > 1.10. (Frequencies < 10 are indicated in gray). 

   Data obs. p(DV|IV)   

# IV State freq Re=0 Re=1 ratio p(margin) 

1 Rdd 1 58 89.66 10.35 3.80 0.00 

2 Rpa 1 9 77.78 22.22 8.17 0.00 

3 Rep 1 19 84.21 15.79 5.81 0.00 

4 Rhe 1 1462 96.58 3.42 1.26 0.10 

5 Rys 1 7 71.43 28.57 10.51 0.00 

6 Rer 1 554 95.49 4.51 1.66 0.01 

7 Rki 1 6 66.67 33.33 12.26 0.00 

   
3200 97.28 2.72 1.00 

 
 

Hip & Knee Summary for Readmissions 

The most important IVs are summarized in Table 71. The only IV that shows up 

in both searches is epilepsy (Rep). 

Table 71. Summary of Most Important IVs by Tier Across Hip and Knee for Readmission. 

  Readmission (Re) 

Tier Knee Hip 

1 Rci, Rco, Rgp, Rcj *Independence model  

2 None None 

3 Rep, Rca, Rdf Rhp, Rdd, Rpa, Rep, Rhe, Rys, Rki 

 

DV Total Cost (Tcb) 

Knee Analysis 

 All IVs 

o Coarse Searches (Models without Loops) 

After examining loopless models for the dependent variable Total Cost Binned 

(Tcb), single predicting variables with p ≤ 0.05 were retained, resulting in 57 IVs to keep 

for the next round of searches. The reduced data set contained 68 IVs in total, of which 
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57 were individually predictive with p ≤ 0.05. Of the 23 literature-based IVs, 11 were not 

found individually predictive but were retained regardless, and 12 literature-based IVs 

were found to be in common with the individually predictive IVs. The top 10 predicting 

variables are below in Table 72. 

Table 72. Summary of Search Results (Knee) for All IVs for Total Cost Binned (Tcb). Search covers 

coarse and fine models.  

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, single predictors (top 10) 

S Tcb 124 1220.44 23.71 0.00 Surgeon 

L Tcb 12 408.12 5.34 0.00 Location 

Svb Tcb 4 406.28 4.62 0.00 Surgeon volume binned 

Da Tcb 8 200.53 2.81 0.00 Day of admit 

Ad Tcb 54 -190.79 2.74 0.00 Admit diagnosis 

Nrb Tcb 4 140.10 1.82 0.00 Number of risks binned 

Rmo Tcb 2 31.17 0.50 0.00 Morbid obesity (278.01) 

Ros Tcb 2 19.72 0.38 0.00 Obstructive sleep apnea (327.23) 

Rde Tcb 2 17.37 0.36 0.00 Depressive disorder (311) 

Ruh Tcb 2 12.95 0.31 0.00 Hyperlipidemia (272.4) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rht Tcb (rank 29) 2 -6.68 0.11 0.01 Heart disease (429.9) 

Rnn Tcb (rank 30) 2 -7.00 0.10 0.01 Nephritis and nephropathy (583.81) 

Rmn Tcb (rank 40) 2 -8.16 0.09 0.01 Mononeuritis (355.9) 

Rug Tcb (rank 46) 2 -9.01 0.08 0.02 Glaucoma (365.9) 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

COARSE, best model (loopless) 

ΔBIC, Inc.P & ΔAIC   (same best model) 

S Tcb 124 1220.44 23.71 0.00 Surgeon 

MODEL Δdf ΔBIC %ΔH Alpha Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

S Tcb : Nrb Tcb 128 1322.66 25.13 0.00 Surgeon, Number of Risks Binned 

Inc.P & ΔAIC  (same best model) 

S Tcb : Nrb Tcb : 

Rmo Tcb : Rmn Tcb : 

Rug Tcb : Rht Tcb : 

Rnn Tcb 

138 1296.32 25.74 0.01 

Surgeon, Number of Risks Binned, 

Morbid obesity (278.01), Mononeuritis 

(355.9), Glaucoma (365.9), Heart disease 

(429.9), Nephritis and nephropathy 

(583.81) 

 

 Simply knowing the surgeon (S) reduces the uncertainty in predicting Total Cost 

Binned (Tcb) by 23.71% (Table 72). This is a very substantial %ΔH, the relevance of 

which will be discussed further in the discussion chapter. Because surgeon (S) has 64 
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possible states, the Δdf is quite large. Location (L) is the next most individually 

predictive, with a %ΔH of 5.34, followed by surgeon volume binned (Svb) with %ΔH at 

4.62. In fact, the most predictive single variables with a %ΔH greater than 1% are in 

All IVs. Day of admit (Da), admit diagnosis (Ad), and number of risks binned (Nrb) all 

have %ΔH > 1 at 2.81, 2.74, and 1.82 respectively (Table 72). In coarse searches that 

allow for more than one predicting IV, the best model, S Tcb, still has only one predictor, 

namely the top single predicting variable S. 

o Fine Searches (Models with Loops) 

The fine-grained search allows for multiple components as well as interaction 

effects, but none were found in any of the fine-grained models, regardless of selection 

criteria used for picking the best model. There is an improvement in %ΔH with the 

addition of number of risks binned (Nrb), resulting in the best fine-grained model by BIC 

of S Tcb : Nrb Tcb with a %ΔH of 25.13. In the single predicting variable search, Nrb 

was the sixth most individually predictive, but in the fine-grained model Nrb added the 

most information relative to its added complexity than the four All IVs that were 

individually more predictive of Tcb (L, Svb, Da, and Ad).  

 Comorbidity IVs 

o Coarse Searches (Models without Loops) 

The most predictive comorbidity, in the Comorbidity IVs search is morbid obesity 

(Rmo), which was the seventh most predictive individual variable with a %ΔH of 0.50. 

Obstructive sleep apnea (Ros), depressive disorder (Rde), and hyperlipidemia (Ruh) are 

then the next most predictive Comorbidity IVs, but with relatively small predictive value 
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on Tcb compared to the All IVs. Additional predictive single Comorbidity IVs are listed 

in Table 73. 

Table 73. Summary of Search Results (Knee) for Comorbidity IVs 

for DV Total Cost Binned (Tcb). Search covers coarse and fine models. 

All p values = 0. 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, single predictors 

Rmo Tcb 2 31.17 0.50 Morbid obesity (278.01) 

Ros Tcb 2 19.72 0.38 Obstructive sleep apnea (327.23) 

Rde Tcb 2 17.37 0.36 Depressive disorder (311) 

Ruh Tcb 2 12.95 0.31 Hyperlipidemia (272.4) 

Rrd Tcb 2 7.54 0.25 Hypertensive renal disease (403.9) 

Rcp Tcb 2 5.55 0.23 Chronic pain (338.29) 

Rad Tcb 2 5.11 0.23 Anxiety, dissociative and somatoform disorders (300) 

Rer Tcb 2 4.44 0.22 Esophageal reflux (530.81) 

Rhe Tcb 2 0.29 0.18 Essential hypertension (401.9) 

Rdi Tcb 2 -0.01 0.18 Diabetes mellitus (250) 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

Rmo Tcb 2 31.17 0.50 Morbid obesity (278.01) 

ΔAIC (best model) 

Ruh Rmo Rde Ros Tcb 30 -104.39 1.54 

Hyperlipidemia (272.4) + Morbid obesity (278.01) + 

Depressive disorder (311) + Obstructive sleep apnea 

(327.23) 

Inc.P (best model) 

Ruh Rmo Rde Ros Rhe 

Tcb 
62 -319.60 2.10 

Hyperlipidemia (272.4) + Morbid obesity (278.01) + 

Depressive disorder (311) + Obstructive sleep apnea 

(327.23) + Essential hypertension (401.9) 

MODEL Δdf ΔBIC %ΔH Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

Ruh Tcb : Rmo Tcb : 

Rde Tcb : Ros Tcb : 

Rhe Tcb 

10 60.11 1.51 

Hyperlipidemia (272.4) + Morbid obesity (278.01) + 

Depressive disorder (311) + Obstructive sleep apnea 

(327.23) + Essential hypertension (401.9) 

Inc.P & ΔAIC (same best model) 

Ruh Tcb : Rmo Tcb : 

Rad Tcb : Rde Tcb : 

Ros Tcb : Rcp Tcb : 

Rhe Tcb 

14 56.49 1.82 

Hyperlipidemia (272.4) + Morbid obesity (278.01) + 

Anxiety, dissociative and somatoform disorders (300) + 

Depressive disorder (311) + Obstructive sleep apnea 

(327.23) + Chronic pain (338.29) + Essential 

hypertension (401.9) 

 

o Fine Searches (Models with Loops) 

The best model by BIC for Comorbidity IVs is Ruh Tcb : Rmo Tcb : Rde Tcb : 

Ros Tcb : Rhe Tcb, with a %ΔH of 1.51 (Table 73) and a Δdf of 10. 
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 Comparing Search Results (Knee, Tcb) 

The All IVs and the Comorbidity IVs searches yield two sets of results that can be 

compared to each other and interpreted with a three-tiered classification of results, as 

described below and summarized in Table 74. 

Table 74. The 3-Tiered Classification of Predicting 

Variables for DV: Total Cost, Knee Analysis 

Tier Variables 

Tier 1 – Most Important S, Nrb 

Tier 2 Rmo 

Tier 3 Rmn, Rug, Rht, Rnn, Ruh, Rde, Ros, Rhe 

 

Tier 1 contains variables from the best-by-BIC model from the dataset All IVs. 

This is the most complete search, and the one that provides the most conservative 

predictors. The selected variables (S, Nrb) are shown in the first row of Table 74, and are 

considered the most important predicting variables.  

Tier 2 contains variables not in Tier1, but found in the AIC (less conservative) 

model of All IVs AND in the BIC model of Comorbidity IVs. For the Knee Analysis of 

DV Total Cost Binned (Tcb), this selects the variable Rmo as the next-most important 

predicting variable. These are shown in the second row of Table 74. 

Finally, this classification places into Tier 3 any variables present elsewhere in the 

best model search results, but not included in Tier 1 or Tier 2; that is, any variables 

unique to one of the two searches—variables in the AIC model of All IVs but not in the 

BIC model of Comorbidity IVs, and variables in the BIC model of Comorbidity IVs but 

not in the AIC model from All IVs. This criterion shows the next most important 

predicting variables (Rmn, Rug, Rht, Rnn, Ruh, Rde, Ros, and Rhe) as seen in row 3 of 

Table 74. 
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 Model FIT  

The detailed content of the best BIC model from the All IVs search, S Tcb : Nrb 

Tcb, is shown as a conditional probability distribution in Table 76 below. The values for 

Total Cost were discretized into 3 bins. The bin ranges, averages, and frequencies are 

below in Table 75. 

Table 75. Bin values for DV Total Cost. 

Bin Min Cost Max Cost Average Cost Frequency 

1 $8,553 $16,780 $15,269 1446 

2 $16,781 $19,139 $17,922 1445 

3 $19,140 $96,880 $22,318 1445 

 

In the conditional probability distribution below, the ratio is based on the 

Expected Value column. Here, the ratio is calculated by taking the expected cost for a 

row and dividing it by the expected cost for the marginal distribution. 

Table 76. Full Fit Table (Knee) All IVs for Best Model: S Tcb : Nrb Tcb. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10 

(ratios between 0.91 and 1.09 are close to the margins and are indicated in gray). 

 

IVs Data Model     

    obs. p(DV|IV) calc. q(DV|IV)     

# S Nrb freq Tcb=1 Tcb=2 Tcb=3 Tcb=1 Tcb=2 Tcb=3 Exp. Value Ratio rule p(margin) 

1 1 1 32 96.88 3.13 0.00 96.84 3.16 0.00 $15,353.04 0.83 1 0.00 

2 1 2 21 100.00 0.00 0.00 95.66 4.34 0.00 $15,384.34 0.83 1 0.00 

3 1 3 16 87.50 12.50 0.00 93.26 6.74 0.00 $15,448.07 0.83 1 0.00 

5 2 2 21 0.00 23.81 76.19 2.41 22.46 75.13 $21,160.63 1.14 3 0.00 

6 2 3 24 4.17 12.50 83.33 1.01 14.98 84.01 $21,588.06 1.17 3 0.00 

8 4 1 10 0.00 40.00 60.00 0.00 36.03 63.97 $20,733.93 1.12 3 0.05 

9 4 2 11 0.00 27.27 72.73 0.00 33.56 66.44 $20,842.54 1.13 3 0.04 

10 4 3 16 0.00 25.00 75.00 0.00 23.16 76.84 $21,299.87 1.15 3 0.00 

14 8 1 28 67.86 25.00 7.14 71.40 22.16 6.44 $16,311.11 0.88 1 0.00 

15 8 2 32 65.63 31.25 3.13 63.64 27.46 8.90 $16,624.95 0.90 1 0.00 

17 9 1 32 12.50 0.00 87.50 26.00 12.45 61.55 $19,937.71 1.08 3 0.00 

18 9 2 12 33.33 25.00 41.67 18.74 12.48 68.78 $20,448.31 1.11 3 0.03 

19 9 3 17 23.53 23.53 52.94 8.43 8.94 82.63 $21,330.66 1.15 3 0.00 

24 12 3 21 0.00 14.29 85.71 1.57 22.62 75.81 $21,212.89 1.15 3 0.00 

28 14 1 35 51.43 37.14 11.43 56.22 34.58 9.21 $16,835.67 0.91 1 0.00 

29 14 2 32 53.13 37.50 9.38 47.41 40.55 12.04 $17,193.74 0.93 1 0.04 

32 15 2 37 13.51 43.24 43.24 12.82 49.56 37.62 $19,235.69 1.04 2 0.02 

35 16 2 37 10.81 35.14 54.05 14.37 34.70 50.93 $19,780.04 1.07 3 0.03 

36 16 3 53 9.43 26.42 64.15 6.98 26.88 66.14 $20,644.05 1.12 3 0.00 
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37 17 1 203 20.20 11.33 68.47 20.04 11.19 68.78 $20,413.64 1.10 3 0.00 

41 18 2 95 24.21 36.84 38.95 21.23 46.99 31.78 $18,756.09 1.01 2 0.01 

42 18 3 98 13.27 47.96 38.78 11.73 41.37 46.91 $19,672.84 1.06 3 0.00 

43 19 1 23 65.22 30.44 4.35 73.04 21.17 5.79 $16,239.04 0.88 1 0.00 

44 19 2 29 72.41 20.69 6.90 65.54 26.41 8.06 $16,537.72 0.89 1 0.00 

47 21 1 41 2.44 51.22 46.34 6.82 59.03 34.15 $19,242.29 1.04 2 0.00 

48 21 2 73 6.85 56.16 36.99 4.81 57.86 37.33 $19,435.38 1.05 2 0.00 

49 21 3 110 2.73 50.91 46.36 2.45 46.87 50.69 $20,085.28 1.09 3 0.00 

53 23 1 19 0.00 42.11 57.90 0.00 42.12 57.89 $20,466.61 1.11 3 0.01 

54 24 1 24 12.50 62.50 25.00 8.85 45.80 45.35 $19,680.98 1.06 2 0.05 

55 24 2 34 5.88 41.18 52.94 6.19 44.58 49.22 $19,921.44 1.08 3 0.00 

56 24 3 26 0.00 23.08 76.92 2.97 34.04 63.00 $20,612.53 1.11 3 0.00 

58 26 1 30 6.67 56.67 36.67 1.91 59.77 38.32 $19,555.86 1.06 2 0.00 

59 26 2 67 0.00 68.66 31.34 1.32 57.54 41.13 $19,695.28 1.06 2 0.00 

60 26 3 83 0.00 37.35 62.65 0.65 45.19 54.15 $20,285.32 1.10 3 0.00 

61 27 1 44 18.18 72.73 9.09 31.31 60.27 8.42 $17,461.73 0.94 2 0.00 

62 27 2 47 27.66 57.45 14.89 24.43 65.38 10.19 $17,722.09 0.96 2 0.00 

63 27 3 43 25.58 62.79 11.63 15.68 66.86 17.46 $18,273.95 0.99 2 0.00 

73 32 1 50 96.00 4.00 0.00 90.10 7.13 2.77 $15,653.51 0.85 1 0.00 

74 32 2 38 89.47 5.26 5.26 86.38 9.50 4.12 $15,811.37 0.85 1 0.00 

75 32 3 21 57.14 28.57 14.29 76.77 13.46 9.77 $16,314.99 0.88 1 0.00 

79 35 1 48 85.42 12.50 2.08 74.95 20.74 4.31 $16,123.06 0.87 1 0.00 

80 35 2 84 66.67 27.38 5.95 67.85 26.10 6.05 $16,387.88 0.89 1 0.00 

81 35 3 100 50.00 36.00 14.00 54.02 33.12 12.86 $17,054.47 0.92 1 0.00 

87 37 3 34 5.88 41.18 52.94 5.51 36.62 57.88 $20,320.42 1.10 3 0.00 

90 38 3 18 5.56 5.56 88.89 4.48 2.99 92.53 $21,870.39 1.18 3 0.00 

96 41 1 163 73.01 22.09 4.91 69.06 23.09 7.84 $16,434.82 0.89 1 0.00 

97 41 2 190 60.00 29.47 10.53 60.94 28.33 10.73 $16,777.31 0.91 1 0.00 

98 41 3 112 41.07 33.04 25.89 45.22 33.51 21.27 $17,657.72 0.95 1 0.01 

101 44 1 146 70.55 27.40 2.06 72.01 23.99 4.01 $16,187.92 0.87 1 0.00 

102 44 2 217 62.21 32.26 5.53 64.54 29.89 5.57 $16,454.65 0.89 1 0.00 

103 44 3 163 55.22 31.29 13.50 50.80 37.50 11.70 $17,089.05 0.92 1 0.00 

105 45 2 68 29.41 50.00 20.59 27.15 52.44 20.40 $18,098.80 0.98 2 0.00 

106 45 3 81 14.82 55.56 29.63 16.43 50.58 32.99 $18,936.35 1.02 2 0.00 

115 49 3 36 11.11 38.89 50.00 8.92 29.92 61.17 $20,374.21 1.10 3 0.00 

118 51 2 12 0.00 0.00 100.00 0.00 6.58 93.42 $22,028.56 1.19 3 0.00 

119 51 3 44 0.00 6.82 93.18 0.00 4.03 95.97 $22,140.51 1.20 3 0.00 

120 52 1 15 0.00 20.00 80.00 4.92 31.97 63.11 $20,565.84 1.11 3 0.03 

121 52 2 22 0.00 27.27 72.73 3.34 30.19 66.47 $20,755.05 1.12 3 0.00 

122 52 3 36 5.56 27.78 66.67 1.46 21.01 77.53 $21,291.19 1.15 3 0.00 

127 54 3 72 19.44 27.78 52.78 21.13 31.01 47.86 $19,465.04 1.05 3 0.02 

142 60 2 17 0.00 11.77 88.24 2.76 16.75 80.49 $21,387.00 1.16 3 0.00 

143 60 3 14 0.00 14.29 85.71 1.13 10.92 87.95 $21,758.27 1.18 3 0.00 

149 63 1 33 0.00 27.27 72.73 2.09 32.63 65.28 $20,736.38 1.12 3 0.00 

150 63 2 62 3.23 33.87 62.90 1.40 30.52 68.08 $20,877.44 1.13 3 0.00 

151 63 3 73 0.00 20.55 79.45 0.61 20.97 78.42 $21,353.26 1.15 3 0.00 

   
4336 33.35 33.33 33.33 33.35 33.33 33.33 $18,502.55 1.00 1 

 
# S Nrb freq Tcb=1 Tcb=2 Tcb=3 Tcb=1 Tcb=2 Tcb=3 Exp. Value Ratio rule p(margin) 
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Surgeon 1, regardless of the number of risks (Nrb) of the patient, consistently is 

expected to have low cost. This is shown in rows 1, 2, and 3 of Table 76. Surgeons 8 and 

9 also have low expected total cost, although their cases both had Nrb in states 1 or 2 

(rows 14–18). Surgeons 32 and 35, regardless of Nrb state also are predicted to have low 

expected cost (rows 73–81), although there is an increase in expected cost as the number 

of risks increase. Surgeons 41 and 44 also have consistently low expected costs 

regardless of Nrb (rows 96–103), although a couple of these rows have risk ratio under, 

but close to 1. Surgeons 52 and 63 (rows 120–122 and 149–151, respectively) have high 

expected total cost regardless of Nrb state (Table 76). 

Each component of the model is interesting, particularly in the analysis of Tcb. In 

this project, the names of the individual surgeons are not included. However, each S state 

correlates to an individual surgeon. The surgeon component table shows the observed 

p(DV|IV). In Table 77, the probability of Tcb = 1 given surgeon (S) = 1 is 95.65% 

compared to the margin projections of 33.4%. Given this surgeon, with 69 knee surgeries 

in this data set, the Expected Value (the expected total cost) per case is $15,385 

compared to the average overall for all knee patients at $18,503. Surgeon (S) = 2 has 

comparable volume (freq = 52) but only 1.92% of observed cases in the low total cost 

bin, and just over 19% in bin 2. This surgeon has 78.6% of cases in the high-cost bin, 

with an expected total cost of $21,337. The surgeon (S) with the highest Expected Value 

is surgeon 51, with 62 surgeries in the data set and an expected total cost of $22,105. 
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Table 77. Component Fit Table for IV S (Knee) All IVs 

Best Model: L Tcb : Svb Tcb : Nrb Tcb. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 

IV Data     

   obs. p(DV|IV)     

# S freq Tcb=1 Tcb=2 Tcb=3 Exp. Value Ratio rule p(margin) 

1 1 69 95.65 4.35 0.00 $15,384.61 0.83 1 0.00 

2 2 52 1.92 19.23 78.85 $21,336.88 1.15 3 0.00 

3 3 2 0.00 0.00 100.00 $22,317.68 1.21 3 0.14 

4 4 37 0.00 29.73 70.27 $21,010.96 1.14 3 0.00 

5 5 3 0.00 33.33 66.67 $20,852.60 1.13 3 0.37 

6 7 2 50.00 0.00 50.00 $18,793.47 1.02 *1 0.61 

7 8 84 61.91 27.38 10.71 $16,750.88 0.91 1 0.00 

8 9 61 19.67 11.48 68.85 $20,426.53 1.10 3 0.00 

9 10 8 0.00 25.00 75.00 $21,218.86 1.15 3 0.03 

10 11 1 100.00 0.00 0.00 $15,269.25 0.83 1 0.37 

11 12 37 2.70 27.03 70.27 $20,939.25 1.13 3 0.00 

12 13 17 0.00 35.29 64.71 $20,766.41 1.12 3 0.01 

13 14 107 44.86 40.19 14.95 $17,389.42 0.94 1 0.00 

14 15 78 12.82 47.44 39.74 $19,329.28 1.04 2 0.00 

15 16 110 11.82 30.91 57.27 $20,126.16 1.09 3 0.00 

16 17 206 19.90 11.17 68.93 $20,424.10 1.10 3 0.00 

17 18 244 18.85 44.26 36.89 $19,043.25 1.03 2 0.00 

18 19 78 62.82 26.92 10.26 $16,706.44 0.90 1 0.00 

19 20 1 0.00 100.00 0.00 $17,922.40 0.97 2 0.37 

20 21 224 4.02 52.68 43.30 $19,719.31 1.07 2 0.00 

21 22 7 0.00 57.14 42.86 $19,806.09 1.07 2 0.20 

22 23 19 0.00 42.11 57.90 $20,467.05 1.11 3 0.01 

23 24 84 5.95 41.67 52.38 $20,066.78 1.08 3 0.00 

24 25 2 50.00 50.00 0.00 $16,595.83 0.90 *1 0.61 

25 26 180 1.11 52.22 46.67 $19,944.07 1.08 2 0.00 

26 27 134 23.88 64.18 11.94 $17,813.60 0.96 2 0.00 

27 28 40 42.50 42.50 15.00 $17,454.10 0.94 *1 0.05 

28 29 20 0.00 50.00 50.00 $20,120.04 1.09 *2 0.01 

29 30 3 0.00 66.67 33.33 $19,387.48 1.05 2 0.37 

30 31 1 0.00 100.00 0.00 $17,922.40 0.97 2 0.37 

31 32 109 86.24 9.17 4.59 $15,835.96 0.86 1 0.00 

32 33 5 0.00 60.00 40.00 $19,680.51 1.06 2 0.25 

33 34 1 0.00 100.00 0.00 $17,922.40 0.97 2 0.37 

34 35 232 63.36 28.02 8.62 $16,620.23 0.90 1 0.00 

35 36 35 5.71 48.57 45.71 $19,779.88 1.07 2 0.00 

36 37 57 8.77 40.35 50.88 $19,925.85 1.08 3 0.00 

37 38 28 7.14 3.57 89.29 $21,657.26 1.17 3 0.00 

38 39 40 32.50 50.00 17.50 $17,829.30 0.96 2 0.04 

39 40 2 0.00 50.00 50.00 $20,120.04 1.09 *2 0.61 

40 41 465 60.00 27.74 12.26 $16,869.28 0.91 1 0.00 

41 42 1 0.00 0.00 100.00 $22,317.68 1.21 3 0.37 

42 43 2 0.00 50.00 50.00 $20,120.04 1.09 *2 0.61 

43 44 526 62.36 30.61 7.03 $16,576.96 0.90 1 0.00 

44 45 187 24.06 50.80 25.13 $18,388.66 0.99 2 0.00 
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45 46 4 0.00 0.00 100.00 $22,317.68 1.21 3 0.02 

46 47 2 0.00 0.00 100.00 $22,317.68 1.21 3 0.14 

47 48 14 28.57 50.00 21.43 $18,106.23 0.98 2 0.42 

48 49 61 13.12 32.79 54.10 $19,952.20 1.08 3 0.00 

49 50 10 20.00 50.00 30.00 $18,710.35 1.01 2 0.50 

50 51 62 0.00 4.84 95.16 $22,104.99 1.19 3 0.00 

51 52 73 2.74 26.03 71.23 $20,980.59 1.13 3 0.00 

52 53 3 33.33 66.67 0.00 $17,038.03 0.92 2 0.37 

53 54 209 33.49 31.58 34.93 $18,568.96 1.00 3 0.84 

54 55 4 25.00 25.00 50.00 $19,456.75 1.05 3 0.78 

55 56 1 0.00 0.00 100.00 $22,317.68 1.21 3 0.37 

56 57 10 90.00 10.00 0.00 $15,534.57 0.84 1 0.00 

57 58 25 32.00 56.00 12.00 $17,600.83 0.95 2 0.03 

58 59 17 0.00 17.65 82.35 $21,542.04 1.16 3 0.00 

59 60 40 2.50 15.00 82.50 $21,482.18 1.16 3 0.00 

60 61 21 52.38 33.33 14.29 $17,160.56 0.93 1 0.11 

61 62 9 55.56 33.33 11.11 $16,936.78 0.92 1 0.31 

62 63 168 1.19 26.79 72.02 $21,056.48 1.14 3 0.00 

63 64 2 0.00 0.00 100.00 $22,317.68 1.21 3 0.14 

  
4336 33.35 33.33 33.33 $18,502.55 1.00 1 

 
# S freq Tcb=1 Tcb=2 Tcb=3 Exp. Value Ratio rule p(margin) 

 

The component Fit table for Nrb does not seem to show a strong effect for the Nrb 

component alone. In fact, the ratios for all of the bins of Nrb are close to the average for 

the entire sample and are within ± 0.10 of 1. So the effect size is small. However, because 

of the large frequencies of these three Nrb states, these effects are statistically significant, 

as the very small p-values indicate. 

Table 78. Component Fit Table for IV Nrb (Knee) All IVs 

Best Model: L Tcb : Svb Tcb : Nrb Tcb. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 IV Data     

   obs. p(DV|IV)     

# Nrb freq Tcb=1 Tcb=2 Tcb=3 Expected Value Ratio rule p(margin) 

1 1 1309 41.79 28.50 29.72 18119.85 0.98 1 0.00 

2 2 1474 37.31 36.09 26.59 18101.13 0.98 1 0.00 

3 3 1553 22.47 34.77 42.76 19205.40 1.04 3 0.00 

  
4336 33.35 33.33 33.33 18502.55 1.00 1 

 
  

 The Comorbidity IVs search resulted in the best model Ruh Tcb : Rmo Tcb : 

Rde Tcb : Ros Tcb : Rhe Tcb that had a relatively small reduction in uncertainty of 
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1.5%. The conditional probability distribution for this model does not provide for very 

meaningful predictions of expected total cost (Table 79). For the few rows that had a 

p(margin) ≤ 0.05 (rows 1, 2, 10, 12, and 18), the ratio is within ± 0.10 of 1, signifying 

that one would not expect a total cost much different than the average cost for the entire 

population. However, these small effects are statistically significant. These small effects 

could add up given high numbers of patients. While the ratio does indicate an important 

effect size, even small effects could have important financial impact given a large enough 

population of patients. 

Table 79. Full Fit Table (Knee) with Comorbidity IVs for Best Model: 

Ruh Tcb : Rmo Tcb : Rde Tcb : Ros Tcb : Rhe Tcb. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10 

(ratios between 0.91 and 1.09 are close to the margins and are indicated in gray). 

 IVs Data Model     

   obs. p(DV|IV) calc. q(DV|IV)     

# 

R 

u 

h 

R 

m 

o 

R 

d 

e 

R 

o 

s 

R 

h 

e 

freq Tcb=1 Tcb=2 Tcb=3 Tcb=1 Tcb=2 Tcb=3 Exp. Value Ratio rule p(margin) 

1 0 0 0 0 0 1563 37.56 30.20 32.25 37.97 30.31 31.72 $18,309.15 0.99 1 0.00 

2 0 0 0 0 1 1559 36.37 36.24 27.39 36.17 36.27 27.57 $18,174.41 0.98 2 0.00 

3 0 0 0 1 0 37 24.32 21.62 54.05 27.99 23.76 48.25 $19,300.57 1.04 3 0.15 

4 0 0 0 1 1 76 31.58 27.63 40.79 27.48 29.31 43.22 $19,092.76 1.03 3 0.18 

5 0 0 1 0 0 134 28.36 31.34 40.30 27.21 30.33 42.46 $19,066.79 1.03 3 0.07 

6 0 0 1 0 1 170 27.06 35.88 37.06 26.15 36.62 37.23 $18,865.04 1.02 3 0.14 

7 0 0 1 1 0 9 33.33 22.22 44.44 18.50 21.93 59.57 $20,049.81 1.08 3 0.29 

8 0 0 1 1 1 11 0.00 54.55 45.46 18.43 27.44 54.13 $19,812.98 1.07 3 0.32 

9 0 1 0 0 0 31 25.81 32.26 41.94 19.94 32.40 47.66 $19,487.92 1.05 3 0.18 

10 0 1 0 0 1 106 19.81 38.68 41.51 19.15 39.09 41.76 $19,249.77 1.04 3 0.01 

11 0 1 0 1 0 7 28.57 14.29 57.14 13.06 22.56 64.38 $20,405.46 1.10 3 0.26 

12 0 1 0 1 1 26 7.69 23.08 69.23 13.04 28.31 58.66 $20,154.71 1.09 3 0.02 

13 0 1 1 0 0 8 0.00 50.00 50.00 12.93 29.34 57.73 $20,116.60 1.09 3 0.29 

14 0 1 1 0 1 25 4.00 40.00 56.00 12.62 35.97 51.40 $19,846.72 1.07 3 0.06 

15 0 1 1 1 0 4 25.00 0.00 75.00 7.92 19.12 72.96 $20,918.99 1.13 3 0.23 

16 0 1 1 1 1 6 0.00 50.00 50.00 8.04 24.38 67.58 $20,679.17 1.12 3 0.18 

17 1 0 0 0 0 128 31.25 32.81 35.94 27.82 30.94 41.24 $18,996.71 1.03 3 0.15 

18 1 0 0 0 1 293 24.57 38.91 36.52 26.67 37.26 36.07 $18,800.37 1.02 2 0.05 

19 1 0 0 1 0 4 50.00 50.00 0.00 19.08 22.57 58.35 $19,981.08 1.08 3 0.57 

20 1 0 0 1 1 29 13.79 27.59 58.62 18.95 28.17 52.89 $19,744.07 1.07 3 0.07 

21 1 0 1 0 0 24 4.17 25.00 70.83 18.79 29.18 52.03 $19,710.74 1.07 3 0.12 

22 1 0 1 0 1 38 31.58 21.05 47.37 18.26 35.62 46.12 $19,465.14 1.05 3 0.11 

23 1 0 1 1 0 3 0.00 0.00 100.00 11.95 19.75 68.30 $20,607.26 1.11 3 0.43 

24 1 0 1 1 1 8 12.50 25.00 62.50 12.07 25.04 62.90 $20,366.80 1.10 3 0.19 
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25 1 1 0 0 0 8 25.00 25.00 50.00 13.32 30.17 56.51 $20,052.45 1.08 3 0.32 

26 1 1 0 0 1 17 17.65 35.29 47.06 12.96 36.88 50.16 $19,783.03 1.07 3 0.18 

27 1 1 0 1 0 2 0.00 0.00 100.00 8.23 19.81 71.97 $20,867.33 1.13 3 0.50 

28 1 1 0 1 1 2 0.00 0.00 100.00 8.33 25.20 66.48 $20,623.37 1.11 3 0.58 

29 1 1 1 0 0 1 0.00 0.00 100.00 8.28 26.17 65.56 $20,584.28 1.11 3 0.77 

30 1 1 1 0 1 6 0.00 33.33 66.67 8.20 32.56 59.24 $20,308.86 1.10 3 0.31 

31 1 1 1 1 1 1 0.00 100.00 0.00 4.97 20.98 74.06 $21,045.75 1.14 3 0.68 

      
4336 33.35 33.33 33.33 33.35 33.33 33.33 $18,502.55 1.00 1 

 

# 

R 

u 

h 

R 

m 

o 

R 

d 

e 

R 

o 

s 

R 

h 

e 

freq Tcb=1 Tcb=2 Tcb=3 Tcb=1 Tcb=2 Tcb=3 Exp. Value Ratio rule p(margin) 

 

The decision tree for the Comorbidities IVs fit table shows that when the 

individual comorbidities are all absent, or when only Rhe is present, the expected cost is 

less than the average (Figure 15). Notice that these risk ratios are all very close to 1, 

however, and while significant, the difference is small. 

 
Figure 15. Decision Tree for DV Total Cost (Knee) with Comorbidity IVs 

for Best Model Ruh Tcb : Rmo Tcb : Rde Tcb : Ros Tcb : Rhe Tcb. 
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Hip Analysis 

 All IVs 

o Coarse Searches (Models without Loops) 

In the final data set there were a total of 54 IVs retained after variable reduction 

by a single predicting search. Of these IVs, four were found to be individually predictive 

with p ≤ 0.05, 17 were from the literature and six of these 17 were in common with the 

single predicting variables from the search, while 11 IVs were found in the literature but 

did not have significant p-values in the single predicting search. The top 10 single 

predicting variables are shown in Table 80. 

Table 80. Summary of Search Results (Hip) for All IVs for Total Cost Binned (Tcb). 

Search covers directed coarse, and fine models. All p values = 0. 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, single predictors (top 10) 

S Tcb 84 1026.62 24.2 Surgeon 

L Tcb 12 849.389 13.4 Location 

Svb Tcb 4 893.509 13.1 Surgeon volume binned 

Da Tcb 10 414.476 7.03 Day of admit 

Ad Tcb 76 -333.31 3.98 Admit diagnosis 

Fc Tcb 10 -7.3465 1.04 Financial class 

Nrb Tcb 4 29.68 0.88 Number of risks binned 

Rmo Tcb 2 19.2819 0.5 Morbid obesity (278.01) 

Ageb Tcb 4 1.754 0.48 Age binned 

Rrd Tcb 2 14.5431 0.44 Hypertensive renal disease (403.9) 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, best model (loopless) 

ΔBIC 

Svb Tcb 40 1173.50 21.25 Surgeon volume binned 

Inc.P & ΔAIC (same best model) 

S Tcb 84 1026.62 24.21 Surgeon 

MODEL Δdf ΔBIC %ΔH Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

L Tcb : Svb Tcb : 

Nrb Tcb 
20 1330.92 21.19 

Location, Surgeon volume binned, Number of risks 

binned 

Inc.P & ΔAIC (same best model) 

S Tcb : Nrb Tcb 88 1084.66 25.49 Surgeon, Number of risks binned 
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Very similar to the knee analysis, the hip search results show that knowing the 

surgeon (S) reduces the uncertainty in predicting Total Cost Binned (Tcb) by 24.2% 

(Table 80), just a slight increase from the knee analysis. Location (L) is the next most 

individually predictive, with a %ΔH of 13.4, followed by surgeon volume binned (Svb) 

with %ΔH at 13.1. These are the same top three single predicting IVs as for the knee, but 

the %ΔH is quite a bit higher in the hip data. Financial class (Fc) and age (Ageb) show 

up in the top 10 single predictors with %ΔH of 1.04 and 0.48. The best coarse model that 

allows for more than one predicting component is L Svb Tcb (Table 80). Surgeon (S) is 

not in the best model selected by BIC, presumably because the complexity of the model 

(Δdf = 84) is not worth the information it adds. Apparently, surgeon volume (Svb) along 

with location (L) have enough information worth the complexity (Δdf = 40) with a %ΔH 

of 21. 25. The best coarse model allowing for more than one predicting variable 

(Table 80), L Svb Tcb (%ΔH = 21.25), has less than half the Δdf of single predicting 

model S Tcb (%ΔH  = 24.2). 

o Fine Searches (Models with Loops) 

The fine-grained search did not detect an interaction effect, but found three single 

predicting components that together resulted in a %ΔH of 21.19. This best fine-grained 

model by BIC, L Tcb : Svb Tcb : Nrb Tcb, has a slightly smaller %ΔH than the best 

coarse model L Svb Tcb of 21.25%, but the Δdf is exactly half with a Δdf of 20 rather 

than 40. This reduction in complexity more than compensates for the slightly smaller 

%ΔH. 
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 Comorbidity IVs 

o Coarse Searches (Models without Loops) 

The most predictive comorbidity in the Comorbidity IVs search is morbid obesity 

(Rmo), with a %ΔH of 0.50 (Table 81), identical to the most predictive single variable 

from the Comorbidity IVs search in the knee analysis (Table 73). The best coarse model 

that allows for more than one predicting variable adds hypertensive renal disease (Rrd), 

resulting in the best coarse model Rmo Rrd Tcb with a %ΔH of 0.97 and a Δdf of 6 

(Table 81). These are very small reductions of uncertainty. 
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Table 81. Summary of Search Results (Hip) for Comorbidity IVs for DV Total Cost Binned (Tcb). 

Search covers coarse and fine models. All p values = 0. 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, single predictors 

Rmo Tcb 2 19.28 0.50 Morbid obesity (278.01) 

Rrd Tcb 2 14.54 0.44 Hypertensive renal disease (403.9) 

Rkd Tcb 2 9.23 0.36 Chronic kidney disease, Stage III (585.3) 

Rnr Tcb 2 5.08 0.30 Aseptic necrosis of head and neck of femur (733.42) 

Rcp Tcb 2 4.17 0.29 Chronic pain (338.29) 

Raf Tcb 2 1.92 0.26 Atrial fibrillation (427.31) 

Rdi Tcb 2 1.06 0.24 Diabetes mellitus (250) 

Rog Tcb 2 -0.26 0.23 Osteoarthrosis (715.96) 

Rku Tcb 2 -1.55 0.21 Chronic kidney disease (585.9) 

Rin Tcb 2 -2.52 0.19 Urinary incontinence (788.3) 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, IVs in AIC or BIC models but not in top 10 

Rcg (rank 23) 2 -5.14 0.16 Other disorders of bone and cartilage (733.99) 

MODEL Δdf ΔBIC %ΔH Variable description 

COARSE, best model (loopless) 

ΔBIC (best model) 

RmoRrd Tcb 6 19.91 0.97 
Morbid obesity (278.01) + Hypertensive renal disease 

(403.9) 

ΔAIC (best model) 

RmoRrdRnr Tcb 14 -18.73 1.34 

Morbid obesity (278.01) + Hypertensive renal disease 

(403.9) + Aseptic necrosis of head and neck of femur 

(733.42) 

Inc.P (best model) 

RmoRcpRrdRnr Tcb 30 -121.70 1.71 

Morbid obesity (278.01) + Chronic pain (338.29) + 

Hypertensive renal disease (403.9) + Aseptic necrosis of 

head and neck of femur (733.42) 

MODEL Δdf ΔBIC %ΔH Variable description 

FINE, best models (with loops) 

ΔBIC (best model) 

Rmo Tcb : Rcp Tcb : 

Rrd Tcb : Rnr Tcb 
8 41.95 1.51 

Morbid obesity (278.01), Chronic pain (338.29), 

Hypertensive renal disease (403.9), Aseptic necrosis of 

head and neck of femur (733.42) 

Inc.P & ΔAIC (same best model) 

Rmo Tcb : Rcp Tcb : 

Rrd Tcb : Raf Tcb : 

Rog Tcb : Rnr Tcb : 

Rcg Tcb 

14 33.79 2.08 

Morbid obesity (278.01), Chronic pain (338.29), 

Hypertensive renal disease (403.9), Atrial fibrillation 

(427.31), Osteoarthrosis (715.96), Aseptic necrosis of 

head and neck of femur (733.42), Other disorders of bone 

and cartilage (733.99) 

 

o Fine Searches (Models with Loops) 

The best model by BIC for Comorbidity IVs is Rmo Tcb : Rcp Tcb : Rrd Tcb : 

Rnr Tcb, with a %ΔH of 1.51 (Δdf = 8). Morbid obesity (Rmo), chronic pain (Rcp), 
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hypertensive renal disease (Rrd), and aseptic necrosis of head and neck of femur (Rnr) 

are looked at in detail in the model’s conditional probability distribution, given below.  

 Comparing Search Results (Hip, Tcb) 

The All IVs and the Comorbidity IVs searches yield two sets of results that can be 

compared to each other and interpreted with a three-tiered classification of results, as 

described below and summarized in Table 82. 

Table 82. The 3-Tiered Classification of Predicting 

Variables for DV: Total Cost, Hip Analysis 

Tier Variables 

Tier 1 – Most Important L, Svb, Nrb 

Tier 2 None 

Tier 3 S, Rmo, Rcp, Rrd, Rnr 

 

Tier 1 contains variables from the best-by-BIC model from the dataset All IVs. 

This is the most complete search, and the one that provides the most conservative 

predictors. The selected variables (L, Svb, and Nrb) are shown in the first row of 

Table 82, and are considered the most important predicting variables. 

Tier 2 contains variables not in Tier1, but found in the AIC (less conservative) 

model of All IVs AND in the BIC model of Comorbidity IVs. For the Hip Analysis of 

DV Total Cost, there are no variables remaining. 

Finally, this classification places into Tier 3 any variables present elsewhere in the 

best model search results, but not included in Tier 1 or Tier 2l that is, any variables 

unique to one of the two searches—variables in the AIC model of All IVs but not in the 

BIC model of Comorbidity IVs, and variables in the BIC model of Comorbidity IVs but 
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not in the AIC model from All IVs. This shows the next most important predicting 

variables (S, Rmo, Rcp, Rrd, and Rnr) in the last row of Table 82. 

 Model FIT  

 The detailed joint conditional probability distribution for best model L Tcb : Svb 

Tcb : Nrb Tcb from the All IVs search is shown in Table 84. Total Cost was binned into 3 

bins, with the ranges, frequencies, and average costs shown in Table 83. 

Table 83. Total Cost Range, Average Cost, and Frequency. 

Bin Min Cost Max Cost Average Cost Frequency 

1 $11,147 $16,768 $15,244 1068 

2 $16,772 $19,192 $17,997 1069 

3 $19,195 $71,264 $22,534 1068 
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Table 84. Full Fit Table (Hip) with All IVs for Best Model: L Tcb : Svb Tcb : Nrb Tcb. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 

IVs Data Model     

     obs. p(DV|IV) calc. q(DV|IV)     

# L Svb Nrb freq Tcb=1 Tcb=2 Tcb=3 Tcb=1 Tcb=2 Tcb=3 Exp. Value Ratio rule p(margin) 

1 1 1 1 21 0.00 23.81 76.19 2.05 23.53 74.42 $21,317.04 1.15 3 0.00 

2 1 2 1 81 2.47 25.93 71.61 1.94 26.00 72.06 $21,213.25 1.14 3 0.00 

3 2 1 1 215 12.56 48.84 38.61 11.01 50.34 38.65 $19,447.72 1.05 2 0.00 

4 2 1 2 214 4.21 44.39 51.40 7.51 45.10 47.39 $19,940.50 1.07 3 0.00 

5 2 1 3 198 3.54 35.35 61.11 4.13 37.68 58.19 $20,523.33 1.10 3 0.00 

6 2 2 1 172 9.30 59.88 30.81 10.05 53.77 36.18 $19,362.02 1.04 2 0.00 

7 2 2 2 193 7.25 50.78 41.97 6.90 48.48 44.63 $19,832.19 1.07 2 0.00 

8 2 2 3 168 7.14 37.50 55.36 3.83 40.87 55.31 $20,401.00 1.10 3 0.00 

9 3 1 1 52 11.54 40.39 48.08 21.05 37.29 41.66 $19,307.42 1.04 3 0.17 

10 3 1 2 77 12.99 31.17 55.84 14.52 33.81 51.67 $19,941.54 1.07 3 0.00 

11 3 1 3 125 4.80 32.00 63.20 8.02 28.33 63.65 $20,664.32 1.11 3 0.00 

12 3 2 1 36 8.33 30.56 61.11 19.60 40.63 39.77 $19,261.82 1.04 2 0.23 

13 3 2 2 48 10.42 27.08 62.50 13.57 36.95 49.49 $19,868.89 1.07 3 0.01 

14 3 2 3 51 7.84 29.41 62.75 7.53 31.15 61.32 $20,571.98 1.11 3 0.00 

15 3 3 1 393 77.10 19.08 3.82 74.65 18.86 6.48 $16,235.60 0.87 1 0.00 

16 3 3 2 396 68.94 23.23 7.83 67.20 22.31 10.49 $16,622.80 0.89 1 0.00 

17 3 3 3 354 53.67 27.40 18.93 53.97 27.22 18.81 $17,364.37 0.93 1 0.00 

18 4 1 1 13 46.15 30.77 23.08 5.24 40.73 54.03 $20,304.03 1.09 3 0.10 

19 4 1 2 19 42.11 42.11 15.79 3.36 34.33 62.31 $20,731.58 1.12 3 0.01 

20 4 1 3 15 20.00 60.00 20.00 1.73 26.80 71.48 $21,192.62 1.14 3 0.00 

21 4 3 1 42 19.05 33.33 47.62 39.05 43.29 17.66 $17,723.28 0.95 2 0.09 

22 4 3 2 67 22.39 43.28 34.33 30.58 44.55 24.87 $18,283.50 0.98 2 0.13 

23 4 3 3 48 16.67 43.75 39.58 19.89 44.01 36.11 $19,087.69 1.03 2 0.12 

24 5 3 1 27 51.85 29.63 18.52 53.73 32.70 13.58 $17,133.84 0.92 1 0.04 

25 5 3 2 30 43.33 36.67 20.00 44.36 35.48 20.16 $17,690.49 0.95 1 0.26 

26 5 3 3 20 35.00 40.00 25.00 30.97 37.62 31.42 $18,569.76 1.00 2 0.92 

27 6 1 1 47 91.49 6.38 2.13 89.53 6.01 4.46 $15,734.15 0.85 1 0.00 

28 6 1 2 37 86.49 5.41 8.11 84.91 7.49 7.61 $16,004.23 0.86 1 0.00 

29 6 1 3 34 70.59 11.77 17.65 74.97 10.04 14.99 $16,612.93 0.89 1 0.00 

30 7 2 1 12 0.00 0.00 100.00 0.00 0.00 100.00 $22,533.93 1.21 3 0.00 

    
3205 33.32 33.35 33.32 33.32 33.35 33.32 $18,591.45 1.00 2 

 
# L Svb Nrb freq Tcb=1 Tcb=2 Tcb=3 Tcb=1 Tcb=2 Tcb=3 Exp. Value Ratio rule p(margin) 

 

 Location 1 with a lower surgeon volume (Svb) and patients with low number of 

risks (Nrb 1 or 2) has high expected costs (rows 1 and 2) as seen in Table 84. For 

location = 2, regardless of the state of Svb or Nrb, it is consistently close to the observed 

average total cost in the data, and even though p < 0.05 criteria, the ratio is within ± 0.10. 

For location 3, when Svb is low (bin 1 or 2), and Nrb is 2 or 3, the costs are expected to 
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be higher (rows 11 and 14). For that same location, when Svb is high (bin 3), Nrb is 

lower in bins 1 and 2, and the costs are expected to be lower (rows 15 and 16). In any of 

the rows for location 4 where p ≤ 0.05, the surgeon volume (Svb) is low (bin 1) and 

number of risks higher (bin 1 and 2) each time, resulting in expected higher costs. 

Rows 27–29 show that location 6, with Svb low in bin 1 and regardless of Nrb, always 

has lower expected costs (Table 84). 

 The individual component table for location (L) in Table 85 below show that 

location = 4 alone does not predict expected cost much higher than the average 

(ratio 1.02). However, when combined with surgeon volume (Svb) and number of risks 

(Nrb) in the joint distribution (Table 84), location = 4 has higher ratios (1.12 and 1.14 in 

rows 19 and 20, respectively).  

Table 85. Component Fit Table for IV L (Hip) All IVs Best Model: L Tcb : Svb Tcb : Nrb Tcb. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 IV Data obs. p(DV|IV)     

# L freq Tcb=1 Tcb=2 Tcb=3 Expected Value Ratio rule p(margin) 

1 1 102 1.96 25.49 72.55 $21,234.61 1.14 3 0.00 

2 2 1160 7.33 46.03 46.64 $19,911.36 1.07 3 0.00 

3 3 1532 52.22 25.33 22.45 $17,577.82 0.95 1 0.00 

4 4 204 23.53 41.67 34.80 $18,928.35 1.02 2 0.01 

5 5 77 44.16 35.07 20.78 $17,724.06 0.95 1 0.04 

6 6 118 83.90 7.63 8.48 $16,071.44 0.86 1 0.00 

7 7 12 0.00 0.00 100.00 $22,533.93 1.21 3 0.00 

  
3205 33.32 33.35 33.32 $18,591.45 1.00 2 

 
 

Table 86. Component Fit Table for IV Svb (Hip) All IVs Best Model: L Tcb : Svb Tcb : Nrb Tcb. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 IV Data obs. p(DV|IV)     

# Svb freq Tcb=1 Tcb=2 Tcb=3 Expected Value Ratio rule p(margin) 

1 1 1067 16.96 36.55 46.49 $19,638.90 1.06 3 0.00 

2 2 761 7.36 42.58 50.07 $20,066.20 1.08 3 0.00 

3 3 1377 60.35 25.78 13.87 $16,964.92 0.91 1 0.00 

  
3205 33.32 33.35 33.32 $18,591.45 1.00 2 
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Table 87. Component Fit Table for IV Nrb (Hip) All IVs Best Model: L Tcb : Svb Tcb : Nrb Tcb. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 IV Data obs. p(DV|IV)     

# Nrb freq Tcb=1 Tcb=2 Tcb=3 Expected Value Ratio rule p(margin) 

1 1 1111 38.52 33.30 28.17 $18,214.59 0.98 1 0.00 

2 2 1081 35.06 34.41 30.53 $18,416.77 0.99 1 0.14 

3 3 1013 25.77 32.28 41.96 $19,191.18 1.03 3 0.00 

  
3205 33.32 33.35 33.32 $18,591.45 1.00 2 

 
 

The Comorbidity IVs search resulted in the best BIC model Rmo Tcb : Rcp Tcb : 

Rrd Tcb : Rnr Tcb, whose conditional probability distribution is shown in Table 88. 

Row 11 shows that when morbid obesity (Rmo) and chronic pain (Rcp) are both present 

(freq = 11), the expected cost is $20,841, significantly higher than the margin of $18,591.  

Table 88. Full Fit Table (Hip) with Comorbidity IVs for 

Best Model: Rmo Tcb : Rcp Tcb : Rrd Tcb : Rnr Tcb. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 

IVs Data Model     

    obs. p(DV|IV) calc. q(DV|IV)     

# 

R 

m 

o 

R 

c 

p 

R 

r 

d 

R 

n 

r 

freq Tcb=1 Tcb=2 Tcb=3 Tcb=1 Tcb=2 Tcb=3 Exp. Value Ratio rule p(margin) 

1 0 0 0 0 2797 35.65 33.82 30.53 35.73 33.83 30.44 $18,394.66 0.99 1 0.00 

2 0 0 0 1 88 20.46 30.68 48.86 19.36 28.12 52.53 $19,847.44 1.07 3 0.00 

3 0 0 1 0 69 11.59 31.88 56.52 10.96 30.99 58.05 $20,329.12 1.09 3 0.00 

4 0 0 1 1 1 0.00 0.00 100.00 4.50 19.53 75.97 $21,319.72 1.15 3 0.65 

5 0 1 0 0 94 26.60 25.53 47.87 24.51 26.72 48.78 $19,535.15 1.05 3 0.01 

6 0 1 0 1 6 0.00 0.00 100.00 11.10 18.56 70.35 $20,883.27 1.12 3 0.15 

7 0 1 1 0 6 0.00 16.67 83.33 6.01 19.58 74.41 $21,207.25 1.14 3 0.09 

8 1 0 0 0 128 15.63 34.38 50.00 14.67 35.32 50.01 $19,862.43 1.07 3 0.00 

9 1 0 0 1 4 0.00 0.00 100.00 6.43 23.75 69.83 $20,988.02 1.13 3 0.28 

10 1 0 1 0 1 0.00 0.00 100.00 3.40 24.47 72.13 $21,175.72 1.14 3 0.69 

11 1 1 0 0 11 0.00 45.46 54.55 8.52 23.62 67.86 $20,841.43 1.12 3 0.04 

  
    

3205 33.32 33.35 33.32 33.32 33.35 33.32 $18,591.45 1.00 2 
 

 

 The decision tree for model Rmo Tcb : Rcp Tcb : Rrd Tcb : Rnr Tcb (Figure 16) 

shows that when Rmo and Rcp are both present, the ratio for expected cost is 1.12. 
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Table 89. Component Fit Table (Hip) for morbid obesity (Rmo) with Comorbidity IVs 

for Best Model: Rmo Tcb : Rcp Tcb : Rrd Tcb : Rnr Tcb. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 IV Data obs. p(DV|IV)     

# Rmo freq Tcb=1 Tcb=2 Tcb=3 Expected Value Ratio rule p(margin) 

1 0 3061 34.24 33.32 32.44 $18,526.04 1.00 1 0.48 

2 1 144 13.89 34.03 52.08 $19,977.69 1.07 3 0.00 

  
3205 33.32 33.35 33.32 $18,591.45 1.00 2 

 
 

Table 90. Component Fit Table (Hip) for chronic pain (Rcp) with Comorbidity IVs 

for Best Model: Rmo Tcb : Rcp Tcb : Rrd Tcb : Rnr Tcb. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 IV Data obs. p(DV|IV)     

# Rcp freq Tcb=1 Tcb=2 Tcb=3 Expected Value Ratio rule p(margin) 

1 0 3088 33.78 33.65 32.58 $18,545.18 1.00 1 0.68 

2 1 117 21.37 25.64 52.99 $19,812.92 1.07 3 0.00 

    3205 33.32 33.35 33.32 $18,591.45 1.00 2   

 

 
Figure 16. Decision Tree for DV Total Cost (Hip) with Comorbidity IVs 

for Best Model Rmo Tcb : Rcp Tcb : Rrd Tcb : Rnr Tcb. 
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Hip & Knee Summary for Total Cost 

The most important IVs across both the hip and knee searches for Total Cost 

(Tcb) are summarized in Table 91. The IVs in common are surgeon (S), number of risks 

(Nrb) and morbid obesity (Rmo).  

Table 91. Summary of Most Important IVs by Tier 

Across Hip and Knee for Total Cost. 

  Total Cost (Tcb) 

Tier Knee Hip 

1 S, Nrb L, Svb, Nrb 

2 Rmo None 

3 Rmn, Rug, Rht, Rnn, Ruh, Rde, Ros, Rhe S, Rmo, Rcp, Rrd, Rnr 

 

 In this chapter, LR and RA were compared using both confirmatory and 

exploratory modes. Then, RA was used for exploratory modeling, resulting in 16 

predictive models. These best predictors were determined, and the models themselves 

were analyzed in detail. The Results chapter looked at each DV separately. In the next 

chapter, Discussion, summaries are provided that look across the DVs. After 

summarizing predictors and risk ratios within and between DVs, conclusions are offered 

that aim to relay a few key insights resulting from this project. 
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Chapter 5.  Discussion 

This project applied Reconstructability Analysis (RA) to outcomes in hip and 

knee replacement surgery, and asked if RA could create useful models of outcomes, and 

whether these models could produce predictions complimentary to—and even stronger 

than—models produced by LR. This inquiry resulted in substantive findings of interest to 

clinical and healthcare administrative professionals as well as to researchers and data 

scientists interested in improving the methodological toolkit for predictive analytics.  

The discussion that follows summarizes the contributions of the project in the 

terms and interests of these audiences. The first section, organized around a healthcare 

perspective, includes (a) identifying important predictors of outcome variables, 

(b) distinguishing between patient-centered and delivery system-centered predictors, and 

(c) classifying patients as being of higher or lower risk for adverse outcomes. The second 

section, organized toward a methodological perspective, includes (a) relating RA, the 

primary methodology used in this project, to the more commonly used approach of 

logistic regression, and (b) augmenting the use of RA for the analysis of this type of 

biomedical data. Finally, additional discussion that addresses future research and 

applications is provided. 
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Clinical and Healthcare-Related Contributions 

Best Models 

A primary purpose of this project was to perform RA exploratory analysis and 

16 best models predictive of each of the DVs. The amount of uncertainty reduced (%ΔH) 

is the primary measure indicating prediction (similar to %variance).  The 16 models are 

listed below in Table 92. These models are sorted by %ΔH, with the most predictive 

models at the top. The IV descriptions are provided with novel IVs indicated in blue and 

any interaction terms underlined.  

Table 92. List of 16 Models sorted by %ΔH. 

Data Set MODEL %ΔH Variable description 

Knee, All 

IVs 
S Tcb : Nrb Tcb 25.13 Surgeon, Number of Risks Binned 

Hip, All 

IVs 

Fc SNF : Ageb SNF : 

Svb SNF :Nrb SNF 
23.61 

Financial class, Age binned, Surgeon volume binned, 

Number of risks binned 

Hip, All 

IVs 

L Tcb : Svb Tcb : 

Nrb Tcb 
21.19 

Location, Surgeon volume binned, Number of risks 

binned 

Knee, All 

IVs 

L SNF : Fc SNF : 

Ageb SNF : 

Svb SNF : Nrb SNF : 

Rmd SNF: Rug SNF: 

Rhf SNF 

19.94 

Location, financial class, age binned, surgeon volume 

binned, number of risks binned, persistent mental 

disorders (294.8), Unspecified glaucoma (365.9),  

Heart Failure (428) 

Hip, Como 

IVs 

Rdi Cp : Ruh Cp : 

Rhh Cp : Ram Cp : 

Rra Cp : Rhe Cp : 

Rrd Cp : Rca Cp : 

Rhd Cp : Rpl Cp : 

Rgp Cp : Rfr Cp 

15.35 

Diabetes mellitus (250), Other and unspecified 

hyperlipidemia (272.4), Hyposmolality and/or 

hyponatremia (276.1), Unspecified deficiency anemia 

(281.9), Alcohol abuse, in remission (305.03), 

Unspecified essential hypertension (401.9), 

Unspecified hypertensive renal disease (403.9), 

Coronary atherosclerosis of native coronary artery 

(414.01), Other chronic pulmonary heart diseases 

(416.8), Hyperplasia of prostate (600), Repair of 

cystocele with graft or prosthesis (70.54), Nonunion of 

fracture (733.82) 

Hip, All 

IVs 

Ageb Cp : Nrb Cp : 

Rrd Cp : Rca Cp : 

Rhd Cp : Rpl Cp 

13.46 

Age (binned), Number of risks (binned), Unspecified 

hypertensive renal disease (403.9), Coronary 

atherosclerosis of native coronary artery (414.01), 

Other chronic pulmonary heart diseases (416.8), 

Hyperplasia of prostate (600) 

Knee, All 

IVs 

Ageb Cp : Nrb Cp : 

Ruh Cp:Rhd Cp : 

Rku Cp : Rro Cp 

10.4 

Age (binned), Number of risks (binned), Other and 

unspecified hyperlipidemia (272.4), Other chronic 

pulmonary heart disease (416.8), Chronic kidney 

disease, unspecified (585.9), Rosacea (695.3) 
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Knee, 

Como IVs 

Ruh Raf Cp : 

Ros Cp : Rhd Cp : 

Rav Cp : Reg Cp : 

Rku Cp : Ruu Cp : 

Rro Cp 

10.39 

Other and unspecified hyperlipidemia (272.4) + Atrial 

fibrillation (427.31), Obstructive sleep apnea (327.23), 

Other chronic pulmonary heart disease (416.8), Aortic 

valve disorders (424.1), Esophagitis (530.1), Chronic 

kidney disease, unspecified (585.9), Other disorders of 

urethra and urinary tract (599), Rosacea (695.3) 

Hip, Como 

IVs 

Rhy SNF : Rhh SNF : 

Rug SNF :Rhe SNF : 

Rrd SNF : 

Rav Rbn SNF : 

Rao SNF : Rse SNF : 

Rnr SNF 

7.65 

Unspecified acquired hypothyroidism (244.9), 

Hyposmolality and/or hyponatremia (276.1), 

Unspecified glaucoma (365.9),  Unspecified essential 

hypertension (401.9), Unspecified hypertensive renal 

disease (403.9), Aortic valve disorders (424.1) + Other 

disorders of bone and cartilage (733), Chronic airway 

obstruction (496), Senile osteoporosis (733.01), Aseptic 

necrosis of head and neck of femur (733.42) 

Hip, All 

IVs 

Rhp Re : Rdd Re : 

Rpa Re : Rep Re : 

Rhe Re : Rys Re : 

Rki Re (by AIC, 

p=.04) 

5.53 

Hypopotassemia (276.8), Dysthymic disorder (300.4), 

Parkinson's disease (332), Epilepsy (345.9), Essential 

hypertension (401.9), Cardiac dysrhythmias (427), 

Chronic kidney disease, Stage II (585.2) 

Knee, 

Como IVs 

Rhy SNF : Rau SNF : 

Rmd SNF : Rpa 

SNF : Rug SNF : 

Rhe SNF : Rhf SNF : 

Rku : Rbn SNF : 

Rin SNF 

5.52 

Hypothyroidism (244.9), Anemia (285.9),  persistent 

mental disorders (294.8), Parkinson's disease (332),  

Unspecified glaucoma (365.9), Essential hypertension 

(401.9), Heart failure (428),  Chronic kidney disease 

(585.9), Other disorders of bone and cartilage (733), 

Urinary incontinence (788.3) 

Hip, Como 

IVs 

Rdd Re : Rpa Re : 

Rep Re : Rhe Re : 

Rys Re : Rer Re : 

Rki Re (by AIC, 

p=.03) 

5.52 

Dysthymic disorder (300.4), Parkinson's disease (332), 

Epilepsy (345.9), Essential hypertension (401.9), 

Cardiac dysrhythmias (427), Esophageal reflux 

(530.81), Chronic kidney disease, Stage II (585.2) 

Knee, All 

IVs 

Rci Re : Rco Re : 

Rgp Re : Rcj Re 
3.77 

Other forms of chronic ischemic heart disease (414), 

Chronic obstructive asthma (493.2), Repair of cystocele 

with graft or prosthesis (70.54), Contracture of joint, 

lower leg (718.46) 

Knee, 

Como IVs 

Rci Re : Rco Re : 

Rgp Re : Rcj Re 
3.77 

Other forms of chronic ischemic heart disease (414), 

Chronic obstructive asthma (493.2), Repair of cystocele 

with graft or prosthesis (70.54), Contracture of joint, 

lower leg (718.46) 

Knee, 

Como IVs 

Ruh Tcb : Rmo Tcb : 

Rde Tcb : Ros Tcb : 

Rhe Tcb 
1.51 

Hyperlipidemia (272.4), Morbid obesity (278.01), 

Depressive disorder (311), Obstructive sleep apnea 

(327.23), Essential hypertension (401.9) 

Hip, Como 

IVs 

Rmo Tcb : Rcp Tcb : 

Rrd Tcb : Rnr Tcb 
1.51 

Morbid obesity (278.01), Chronic pain (338.29), 

Hypertensive renal disease (403.9), Aseptic necrosis of 

head and neck of femur (733.42) 

 

The models listed above in Table 92 are the models selected by BIC, and do not 

readily demonstrate the importance of the individual predictors. In the next discussion, 

these predictors are discussed across the data sets and DVs.  
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Important Predictors of Outcome Variables 

One of the purposes of this research project was to determine the variables that 

were the most predictive of each of the DVs. A sample of previously known IVs was 

included in the data sets for this project, and results validated many as indeed important 

predictors, while excluding others. This finding serves to confirm the importance of 

previously known comorbidity variables. Additionally, the exploratory modeling 

approach used in this project sought to detect novel or surprising IVs that may not have 

been hypothesized previously in the literature. Indeed, a number of novel IVs were found 

to be important, and these are summarized in the following discussion. 

In the search results for each of the DVs, the best models by both BIC and AIC 

were reported (the “search” action of Occam).  While BIC was the criterion used for 

selecting the best models to analyze in detail (the “fit” action of Occam), the variables 

included in the AIC models have importance as well. Variables from both the BIC and 

AIC models were included in the three-tiered classification of results after the search 

results in each of the DV sections. In this three-tiered classification, the IVs from both 

All IVs and the Comorbidity IVs are integrated. The Tier 1 variables include the most 

important predicting variables, which are those that were included in the best model by 

BIC in the All IVs data set. The Tier 2 variables are those additional variables that 

appeared both in the best model by AIC in the combined All IVs search, and in the best 

model by BIC in the Comorbidity IVs search. Tier 3 includes those variables that 

occurred in either of the two searches from Tier 2 but not both.  

To get a better understanding of the importance of variables throughout all of the 

analyses, a simple ranking system was created as follows. Every time an IV was flagged 
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as a Tier 1 variable, it was assigned 3 points, Tier 2 IVs were assigned 2 points, and 

Tier 3 IVs were assigned 1 point. When applied across the 4 DVs and across both the hip 

and knee data sets, this simple point system shows which IVs were the most influential 

overall (Table 93). The single most influential IV is number of risks binned (Nrb), which 

shows up as a Tier 1 IV in both hip and knee searches for Complication (Cp), Skilled 

Nursing Facility (SNF), and Total Cost (Tcb).  The second most influential variable is 

patient age (Ageb), which shows up as a Tier 1 variable in both the hip and knee searches 

for Cp and SNF. The top five most influential IVs were from All IVs, which were seen to 

have significant effects in the prediction of the DVs. Of the IVs with an assigned point 

value of 5 or greater, only hypertensive renal disease (Rrd) was not shared across the hip 

and knee searches; however, Rrd is an important variable for hip cases for the DVs Cp 

(Complication), SNF (Skilled Nursing Facility), and Tcb (Total Cost Binned). 
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Table 93. Top Important IVs across Hip and Knee Data Sets, and across the 4 DVs. 

(Cp = Complication, SNF = Skilled Nursing Facility, Re = Readmit, and Tcb = Total Cost Binned.) 

Novel variables are indicated by *. 

The Shared column indicates IVs located in both hip and knee data sets. 
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IV ID Variable Name 

C
p

 

C
p

 

S
N
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R
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R
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T
cb

 

T
cb

 Shared 
Total 

Points 

Nrb Number of Risks (binned) 1 1 1 1 
  

1 1 yes 18 

Ageb Age (binned) 1 1 1 1 
    

yes 12 

Svb Surgeon volume (binned) 
  

1 1 
   

1 yes 9 

L Location 
  

1 
    

1 yes 6 

Fc Financial class 
  

1 1 
    

yes 6 

Rhd Other chronic pulmonary heart diseases 1 1 
      

yes 6 

Rhe Unspecified essential hypertension 
 

3 3 3 
 

3 3 
 

yes 5 

Ruh Other and unspecified hyperlipidemia 1 3 
    

3 
 

yes 5 

Rrd Unspecified hypertensive renal disease 
 

1 
 

3 
   

3 
 

5 

Rgp Repair of cystocele with graft or prosthesis 
 

2 
  

1 
   

yes 5 

*Rug Unspecified glaucoma 
  

1 3 
  

3 
 

yes 5 

S Surgeon 
      

1 3 yes 4 

Rca 
Coronary atherosclerosis of native coronary 

artery  
1 

  
3 

   
yes 4 

Rku Chronic kidney disease, unspecified 1 
 

3 
      

4 

Rci Chronic ischemic heart disease 
    

1 
    

3 

Rhf Heart failure 
  

1 
      

3 

Rav Aortic valve disorders 2 
  

3 
    

yes 3 

Rmo Morbid obesity 
      

2 3 yes 3 

Rcj Contracture of joint, lower leg 
    

1 
    

3 

Rco Chronic obstructive asthma 
    

1 
    

3 

*Rmd 
Other persistent mental disorders due to 

conditions classified elsewhere   
1 

      
3 

*Rpa Parkinson's disease 
  

2 
  

3 
  

yes 3 

*Rhy Unspecified acquired hypothyroidism 
  

3 2 
    

yes 3 

*Rpl Hyperplasia of prostate 
 

1 
       

3 

*Ros Obstructive sleep apnea 2 
     

3 
  

3 

Raf Atrial fibrillation 2 
        

2 

Rur Retention of urine 
   

2 
     

2 

Ruu Other disorders of urethra and urinary tract 2 
        

2 

*Rnn Nephritis and nephropathy 
   

3 
  

3 
 

yes 2 

*Rep Epilepsy unspecified 
    

3 3 
  

yes 2 

*Reg Esophagitis 2 
        

2 

*Rhh Hyposmolality and/or hyponatremia 
 

3 
 

3 
     

2 

Rdf Chronic diastolic heart failure 
    

3 
    

1 

Rht Heart disease, unspecified 
      

3 
  

1 

Rys Cardiac dysrhythmias 
     

3 
   

1 

Rdi Diabetes mellitus 
 

3 
       

1 

Rki Chronic kidney disease, Stage II (mild) 
     

3 
   

1 

Rin Urinary incontinence 
  

3 
      

1 

Rbn Other disorders of bone and cartilage 
  

3 
      

1 

Rnr Aseptic necrosis of head and neck of femur 
       

3 
 

1 
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R
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Total 

Points 

Rfr Nonunion of fracture 
 

3 
       

1 

Rmn Mononeuritis of unspecified site 
      

3 
  

1 

Rse Senile osteoporosis 
   

3 
     

1 

Rao Chronic airway obstruction 
   

3 
     

1 

Rcp Other chronic pain 
       

3 
 

1 

*Rde Depressive disorder 
      

3 
  

1 

*Rbp Other and unspecified bipolar disorders 
  

3 
      

1 

*Rdd Dysthymic disorder 
     

3 
   

1 

*Rra Alcohol abuse, in remission 
 

3 
       

1 

*Rml Memory loss 
   

3 
     

1 

*Rhp Hypopotassemia 
     

3 
   

1 

*Rau Anemia, unspecified 
  

3 
      

1 

*Ram Unspecified deficiency anemia 
 

3 
       

1 

*Rro Rosacea 3 
        

1 

IV ID Variable Name 

C
p

 

C
p

 

S
N

F
 

S
N

F
 

R
e 

R
e 

T
cb

 

T
cb

 Shared 
Total 

Points 

 

Recall that some of the IVs used in the final data sets for the exploratory searches 

were retained because they had an individual predictive value with p-value ≤ 0.05. 

Additionally, recall that there were some IVs that were kept, not because of their 

predictive value in the analysis of this project, but because they were found to be 

predictive in the literature (Table 9).  There is an extensive literature that discusses 

additional comorbidities for joint replacement and other surgeries that does not offer 

actual predictive models that include them. These were not flagged as “literature-based 

IVs” in this project, yet they are also not “surprising.” For example, in Table 93, the 

IV hypertensive renal disease (Rrd) is important for Cp, SNF, and Tcb. The IV Rrd was 

not used in any of the predictive models from the literature; however, diabetes was. 

Clinically, it is well known that diabetes is associated with, and may lead to, renal 
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disease, and therefore it is not that surprising or novel that hypertensive renal disease 

(Rrd) shows up as having an effect in the exploratory searches in this project.  

However, there are 19 predictive IVs in Table 93 that seem to be surprising and 

novel. An asterisk next to an IV name in Table 93 indicates that the IV was a novel 

variable that has not been present in the literature of hip and knee outcomes thus far. For 

example, unspecified glaucoma (Rug) is not a comorbidity found in the literature 

(Table 9) to be predictive of outcomes in hip or knee replacement, or for other surgeries. 

These novel IVs should be considered in future confirmatory research, and their clinical 

relevance should be explored.  

Patient Variables versus Delivery System Variables  

Predictive analytics in healthcare is still relatively new, but the use of predictive 

tools is going to play an increasingly important role in measuring quality and the 

provisioning of resources in care delivery. In healthcare analytics today, predictive 

analytics are often discussed as methods to predict outcomes per patient, given a set of 

patient-specific clinical diagnoses (and more recently genomic data). Without a doubt, 

personalized medicine will increase providers’ ability to diagnose with better accuracy 

and apply more appropriate targeted therapies.  

The delivery system, however, has hardly turned the lens on itself. Applying 

advanced predictive modeling techniques on patient level data, without including data 

about the way care is delivered, will miss large opportunities. This research showed that 

by looking at variables related to the delivery system (hospital, surgeon, surgeon 

volume), there is quite a bit of information that clearly shows, regardless of the patient’s 
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risk profile, that the delivery system itself is highly predictive of discharge practices and 

costly outcomes.  

In this section of the discussion, variables are now partitioned into either Patient-

Related IVs or Delivery System IVs. This partitioning of IVs is not the same as the 

All IVs and Comorbidity IVs schema. The rationale for this is to see how much of the 

predicted “risk.” per outcome, is really attributable to a patient’s risk versus the amount 

of “risk” that is actually attributable to the Delivery System itself—in other words, the 

manner in which we deliver care. 

The Comorbidity IVs were the binary, individual patient comorbidities that were 

generated from the ICD-9 diagnosis codes that were indicated as present on admit. 

All IVs contained both the individual patient Comorbidity IVs in addition to non-

comorbidity patient-related IVs and delivery system-centered IVs. The IVs from All IVs 

that are non-comorbidity patient-related are number of risks binned (Nrb), patient age 

(Ageb), and admit diagnosis (Ad). These are now considered alongside the individual 

Comorbidity IVs as Patient-Related (Figure 17). The All IVs that are delivery system-

centered are location (L), surgeon (S), surgeon volume (Svb), and day of admit (Da) and 

are now assigned as Delivery System. 

 

All IVs 

 

Comorbidity IVs 

Delivery System-Centered Non-comorbidity, Patient-Related Comorbidities 

Delivery System IVs Patient-Related IVs 

 

Figure 17. New Partition of IVs into Delivery System and Patient-Related IVs. 
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In the introduction to this project, there was a discussion of the emerging trend of 

providers (for knee and hip replacements, the surgeons) to be increasingly contracted 

under value-based payment models that reimburse for delivering high-quality outcomes, 

often without taking into consideration the differential risks posed by varying 

comorbidities (patient risk) in the patient population. One of the perceived and 

unintended side effects of this is what is called “cherry picking,” where some providers 

select patients with no or few comorbidities and therefore have healthier patient 

populations with a lower risk of adverse outcomes. Similarly, refraining from cherry 

picking behavior would result in a patient population that would have a greater risk of 

adverse outcomes than their cherry-picked peers. Often, there is a suspicion that cherry 

picking may be occurring, but little evidence is provided to support this argument. 

Regardless, one cannot make a fair or valid comparison of outcomes across providers 

without looking at patient risk. 

The results of this project show that the Delivery System itself plays a role in 

these outcomes. The surgeon, the surgeon’s volume, and the location were all very 

predictive of SNF and Tcb.  If patients seeking care are being turned away because of 

their comorbidities out of concern that they will result in higher-cost care, then the results 

that the delivery system is more predictive of the total cost than patient comorbidities has 

implications. 

The best model predicting Complication (Cp) includes IVs that are Comorbidity 

IVs as well as non-comorbidity IVs within All IVs. From the best model Ageb Cp : 

Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp, two submodels were generated; one with 

the subset of IVs that are Delivery System only, and one with IVs that are Patient-
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Related only. Separate Occam runs were then conducted, and the %ΔH of each of the 

new submodels is presented in Table 94 below. Looking at the DV Complication (Cp) 

for the knee patients, Table 94 shows that all of the information in the model (%ΔH) is 

attributed to the Patient-Related IVs. In other words, it is indeed the patient’s individual 

comorbidities that predict Complication (Cp). This is also true for the hip replacement 

patients.  

Table 94. Delivery System vs. Patient-Related Submodels 

Comparison of Reduction of Uncertainty for DV Complication (Cp). 

DV: Complication (Cp) 

Knee 

Full Model by BIC for Cp:  %ΔH (Total) 

IV:AgebCp:NrbCp:CpRuh:CpRhd:CpRku:CpRro 10.40 

Patient Related IVs: %ΔH (patient-related) 

IV:AgebCp:NrbCp:CpRuh:CpRhd:CpRku:CpRro 10.40 

Delivery System IVs: %ΔH (delivery system) 

None 0.00 

Hip 

Best Model by BIC for Cp: %ΔH (Total) 

IV:AgebCp:NrbCp:CpRrd:CpRca:CpRhd:CpRpl 13.46 

Patient Related IVs: %ΔH (patient-related) 

IV:AgebCp:NrbCp:CpRrd:CpRca:CpRhd:CpRpl 13.46 

Delivery System IVs: %ΔH (delivery system) 

None 0.00 

 

When looking at the DV Skilled Nursing Facility (SNF), there is a bit of a mix of 

Patient-Related and Delivery System IVs, although the majority of the information is 

provided by the Patient-Related IVs (Table 95). Note that the reductions of uncertainty 

are not expected to be strictly additive. For example, in the Knee values of Table 95, 

19.94 is not the sum of 16.08 + 3.14. Entropy and entropy reduction numbers are not 

expected to show linearity or additivity; they are nonlinear expressions. 
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Table 95. Delivery System vs. Patient-Related Submodels 

Comparison of Reduction of Uncertainty for DV Skilled Nursing Facility (SNF). 

DV: Skilled Nursing Facility (SNF) 

Knee 

Full Model by BIC for SNF:  %ΔH (Total) 

IV:LSNF:FcSNF:SNFAgeb:SNFSvb: 

SNFNrb:SNFRmd:SNFRug:SNFRhf 
19.94 

Patient Related IVs: %ΔH (patient-related) 

IV:FcSNF:SNFAgeb:SNFNrb:SNFRmd:SNFRug:SNFRhf 16.08 

Delivery System IVs: %ΔH (delivery system) 

IV:LSNF:SNFSvb 3.14 

Hip 

Best Model by BIC for SNF: %ΔH (Total) 

IV:FcSNF:SNFAgeb:SNFSvb:SNFNrb 23.61 

Patient Related IVs: %ΔH (patient-related) 

IV:FcSNF:SNFAgeb:SNFNrb 17.21 

Delivery System IVs: %ΔH (delivery system) 

IV:SNFSvb 7.53 

 

Readmission is not very well predicted, but when it is, the information is captured 

by Patient-Related IVs (Table 96), as there are no IVs in the model that are either 

Delivery System IVs or even All IVs.  

Table 96. Delivery System vs. Patient-Related Submodels 

Comparison of Reduction of Uncertainty for DV Readmission (Re). 

DV: Readmission (Re) 

Knee 

Full Model by BIC for Re:  %ΔH (Total) 

IV:RciRe:RcoRe:RgpRe:RcjRe 3.77 

Patient Related IVs: %ΔH (patient-related) 

IV:RciRe:RcoRe:RgpRe:RcjRe 3.77 

Delivery System IVs: %ΔH (delivery system) 

None 0.00 

Hip 

Best Model by BIC for Re: %ΔH (Total) 

IV:RhpRe:RddRe:RpaRe:RepRe:RheRe:RysRe:RkiRe 5.53 

Patient Related IVs: %ΔH (patient-related) 

IV:RhpRe:RddRe:RpaRe:RepRe:RheRe:RysRe:RkiRe 5.53 

Delivery System IVs: %ΔH (delivery system) 

None 0.00 

 

The analysis of the DV total cost differs considerably from the other DVs in the 

relative importance of Patient-Related versus Delivery System IVs. Recall the concern 

that sicker patients cost more and the subsequent cherry picking behavior. By partitioning 

the IVs, it is shown that nearly all of the information about total cost (Tcb) is attributed to 
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the Delivery System (i.e., Surgeon) and not the patient’s risk (i.e., Nrb). In fact, for the 

knee patients, the %ΔH using only the Delivery System IV surgeon (S) is 23.71 

(Table 97) and the Patient-Related IV, number of risks (Nrb), only reduces uncertainty 

by 1.82%. This predictive effect of surgeon (S) could be due to either the surgeon being a 

more efficient provider or an artifact of the surgeon “cherry picking” and selecting 

healthier patients with lesser numbers of risks (Nrb). An Occam search was thus 

performed looking at the predictive effect of Nrb on S, and the resulting %ΔH for knee 

data was 3.24 and 2.32 for hip—not a strong association. There does not appear to be 

strong evidence for cherry picking in this project’s data set. Rather, the efficiency of 

surgeons (i.e their practice patterns) is a likely culprit. Measures of surgeon efficiency 

would be good additions for an enhanced delivery-system data set. For the Hip patients it 

is a similar scenario, where the Delivery System IVs location (L) and surgeon volume 

(Svb) reduce uncertainty by 19.71%, while Patient-Related IVs number of risks (Nrb) 

reduce uncertainty by 0.88% (Table 97). Location (L) alone reduces uncertainty of Tcb 

by 13.44%, and surgeon volume (Svb) by 13.15% as seen below in Table 97. 
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Table 97. Delivery System vs. Patient-Related Submodels 

Comparison of Reduction of Uncertainty for DV Total Cost (Tcb). 

DV: Total Cost (Tcb) 

Knee 

Full Model by BIC for Tcb:  %ΔH (Total) 

IV:STcb:TcbNrb 25.13 

Patient Related IVs: %ΔH (patient-related) 

IV:TcbNrb 1.82 

Delivery System IVs: %ΔH (delivery system) 

IV:STcb 23.71 

Hip 

Best Model by BIC for Tcb:  %ΔH (Total) 

IV:LTcb:TcbSvb:TcbNrb 21.19 

Patient Related IVs: %ΔH (patient-related) 

IV:TcbNrb 0.88 

 

Delivery System IVs: %ΔH (delivery system) 

IV:LTcb:TcbSvb 19.71 

> IV:LTcb 13.44 

> IV:SvbTcb 13.15 

 

The effect of delivery system variables on total cost is sizeable. Larger and larger 

data repositories are being cultivated by health systems, and interoperability between 

electronic health record systems, in addition to the collection of patient-reported health 

data and increasing genomic data collection, will result in increasingly rich data sets. 

However, as tentatively suggested from the results of the analysis in this project, 

increasing the quantity of patient-related data may not provide better predictions. Total 

Cost in particular was predicted by variables in the domain of the delivery system. In this 

project, a very small subset of possible delivery system IVs were used. As practitioners 

move forward with developing predictive analytics in healthcare, new domains of data 

measuring how the healthcare system delivers care ought to be created and included in 

these efforts. These variables might represent surgeon efficiency (e.g., implant selection, 

dedicated OR staff, surgical time, etc.) or care delivery processes (time to ambulation, 

pain management techniques, preoperative patient education, etc.). Future research 
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should be conducted to further identify additional variables representative of the delivery 

system and tested for their effect on outcomes.   

Readmissions were not well predicted by this project’s data. Possibilities are 

either (a) that the delivery system and patient comorbidities are not the correct domains 

informative of readmissions, or (b) readmissions are unpredictable. In order to test the 

former, additional data should be generated. There is some evidence that patient social 

and demographic factors (e.g., living alone, income, education, etc.) and historic 

utilization patterns (e.g., number of ED visits in prior 12 months) are helpful in predicting 

readmissions; however, this data is not readily available by health systems. 

Classifying Patients as Higher or Lower Risk for Adverse Outcomes  

Predictive models can augment clinical decision-making by providing additional 

information. The models resulting from this research provide new information about risk 

for a sizeable proportion of the patient population. Table 98 summarizes, for all the DVs, 

the percent of patients in the sample who are at increased and decreased risk, where this 

increase or decrease of risk is defined as more than a 10% difference between the 

conditional probability of an adverse outcome given the predictors and the marginal 

probability of this outcome, where this difference is statistically significant at the 

0.05 level. 
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Table 98. Summary of Decreased and Increased IV States by DV 

(Cp=Complication, SNF=Skilled Nursing Facility, Re=Readmission, Tcb=Total Cost). 

Knee 

    Cp SNF Re Tcb 

All IVs 
Decreased Risk IV States 40.50% 25.90% 0.00% 21.86% 

Increased Risk IV States 15.73% 19.63% 4.64% 21.49% 

% Total 56.23% 45.53% 4.64% 43.35% 

Comorbidity IVs 
Decreased Risk IV States 76.36% 75.46% 0.00% 0.00% 

Increased Risk IV States 16.86% 13.93% 4.64% 0.00% 

% Total 93.22% 89.39% 4.64% 0.00% 

Hip 

    Cp SNF Re Tcb 

All IVs 
Decreased Risk IV States 47.27% 46.41% 52.50% 28.30% 

Increased Risk IV States 13.51% 24.69% 1.22% 21.53% 

% Total 60.78% 71.10% 53.72% 49.83% 

Comorbidity IVs 
Decreased Risk IV States 71.98% 42.79% 45.69% 0.00% 

Increased Risk IV States 3.43% 11.45% 0.56% 0.34% 

% Total 75.41% 54.24% 46.25% 0.34% 

 

In the summary of results that follows, all of the patients at increased or decreased 

risk, relative to the margins, across the different IV states for each model are tallied up, 

and the percent of the whole sample is calculated. Additionally, a weighted average of the 

risk ratios (weighted by the frequencies of the IV states) shows the average risk across 

the multiple IV states in the model. While the fraction of patients at increased or 

decreased risk is statistically significant, the average risk ratio has not been subjected to 

any statistical test. All models discussed in this section are from the All IVs searches, as 

individual patient comorbidities are included within All IVs.  

Complications 

For example, a complication (Cp) was observed in 4.73% (32 patients) of the 

4,336 patients in the knee data set. The simplest model based on this value, taking into 

account nothing else about the patients or delivery system, would predict that 4.73% of 

knee patients will experience complications. However, the best model from this project’s 
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analyses (Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp) identified several 

groups of patients who were at increased risk of Cp with particular combinations of IV 

states from the model (Table 24). Considering these high-risk groups together, 15.73% of 

the total patients in the sample had an increased risk of complication (Table 99).  For 

these patients at increased risk, the weighted average risk ratio is 2.41; thus 11.40% 

(or 78 patients) out of that group (15.73% of the whole) would be predicted to experience  

complications (that is, 2.41 times the observed marginal complication rate of 4.73% for 

the knee data set).  

Table 99. Increased and Decreased Risk IV States for Complication (Cp). 

Complication (Cp)     

Knee (All IVs)     

Model: Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp :  

Rku Cp : Rro Cp Freq % of Cases Ratio Average Margin 

Increased Risk IV States 682 15.73% 2.41 11.40 

Decreased Risk IV States 1756 40.50% 0.32 1.51 

No difference (by significance or frequency) 1898 43.77%     

Total 3654     4.73 

Hip (All IVs)     

Model: Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp :  

Rpl Cp Freq % of Cases Ratio Average Margin 

Increased Risk IV States 433 13.51% 2.88 14.75 

Decreased Risk IV States 1515 47.27% 0.34 1.74 

No difference (by significance or frequency) 1257 39.22%     

Total 3205     5.12 

 

Not only do the risk groups show the IV states that put patients at greater risk of 

having a complication (Cp), but they show the groups of patients who were at decreased 

risk. There were several groups of knee patients (Table 24) whose IV states for the model 

Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp predicted a decreased risk of 

Cp (blue rows). Added together, 40.50% of the knee patients were identified as at 

decreased risk of Cp (Table 99). Of these patients, 1.51% would be expected to have 

complications compared to the observed rate of 4.73% for the entire sample. 



 

- 190 - 

For the patients with hip replacements, the best model predicting a complication, 

Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp, uncovered IVs whose states 

resulted in 13.51% of the patients identified as at higher risk of Cp (Table 99). Of these, 

14.75% would be expected to have Cp, which was 2.88 times the observed rate of 5.12% 

for the entire hip data set. Of the hip patients, 47.27 would be expected to have decreased 

risk of Cp, with 1.74% expected to have Cp. 

Discharge to skilled nursing facility  

The best All IVs models predicting discharge to a skilled nursing facility (SNF) 

also presented IVs whose combination of states resulted in higher risk or lower risk 

scenarios for each specific combination of states. These IV states were analyzed in the 

models’ fit, (detailed in Table 49 and Table 57). These tables presented rows where the 

IV states of the model resulted in increased risk (orange) and decreased risk (blue). 

Considered together, the IV states can be tallied up to show the percentage of patients in 

each of the risk groups, their actual rate of discharge to SNF, as well as the average risk 

ratio per risk group.  

Table 100 summarizes the risk groups of each model for SNF across both the hip 

and the knee data sets. The best All IVs model in the knee data set for SNF resulted in 

19.63% of the total sample expected to be at increased risk with an expected SNF rate of 

39.66, much higher than the observed rate of 17.55% for the entire sample. Lower risk of 

SNF was predicted for 25.90% of knee cases, of which 3.34% would be expected to be 

discharged to a SNF (compared to the observed rate of 17.55% of the entire knee 

sample). 
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Table 100. Increased and Decreased Risk IV States for Skilled Nursing Facility (SNF) 

SNF     

Knee (All IVs)     

Model: L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF 

: Rmd SNF : Rug SNF : Rhf SNF Freq 
% of Cases 

Ratio Average Margin 

Increased Risk IV States 851 19.63% 2.26 39.66 

Decreased Risk IV States 1123 25.90% 0.19 3.34 

No difference (by significance or frequency) 2362 54.47% 
  

Total 4336 
  

17.55 

Hip (All IVs) 
  

Model: Fc SNF : Ageb SNF : Svb SNF : Nrb SNF Freq % of Cases Ratio Average Margin 

Increased Risk IV States 791 24.69% 2.71 38.65 

Decreased Risk IV States 1487 46.41% 0.19 2.71 

No difference (by significance or frequency) 926 28.90% 
  

Total 3204   
 

14.26 

 

The All IVs model for the hip data set placed 24.69% in a high-risk group and 

46.41% of patients in a lower-risk group (Table 100). Of these patients, the high-risk 

group had an expected SNF rate of 38.65% compared with the overall observed SNF rate 

for the entire hip sample of 14.26%, while the low-risk group had an expected SNF rate 

of 2.71%. 

Readmissions 

Readmissions were not as predictable as the DVs Cp and SNF. For the knee data, 

4.64% of patients were in a higher-risk group compared to the observed readmission of 

2.61% of the overall knee data set. Of the higher-risk patients identified, 9.11% had a 

predicted readmission (Re) on the basis of an average risk ratio of 3.49 (Table 101). 

There were no combinations of IV states that resulted in patients being considered at 

lower risk of Re. 
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Table 101. Increased and Decreased Risk IV States for Readmission (Re). 

Readmission     

Knee (All IVs)     

Model: Rci Re : Rco Re : Rgp Re : Rcj Re Freq % of Cases Ratio Average Margin 

Increased Risk IV States 201 4.64% 3.49 9.11 

Decreased Risk IV States 0 0.00%     

No difference (by significance or frequency) 4133 95.36%     

Total 4334     2.61 

Hip (All IVs)     

Model: Rhp Re : Rdd Re : Rpa Re : Rep Re : Rhe Re :  

Rys Re : Rki Re 
Freq % of Cases Ratio Average Margin 

Increased Risk IV States 39 1.22% 4.79 13.03 

Decreased Risk IV States 1680 52.50% 0.64 1.74 

No difference (by significance or frequency) 1481 46.28%     

Total 3200     2.72 

 

 The average readmission (Re) rate for the overall hip sample was 2.72%. The best 

models for the hip data set for readmission (Re) identified groups of patients both at 

higher risk and at lower risk of readmission with 1.22% of patients being classified into 

the higher-risk group and 52.50% of patients being classified at lower risk. Of the very 

small percent of patients placed in the higher-risk group, 13.03% of these would be 

predicted to have a readmission (Table 101). For those in the lower-risk group, 1.74% 

would be predicted to be readmitted. 

Total cost 

The best All IVs model from the knee data set identified several groups of patients 

whose particular combinations of IV states from the model S Tcb : Nrb Tcb (Table 76) 

would be expected to have higher total cost (Tcb). Considering all of these groups of 

patients together, 21.49% of the total patients (Table 102) were placed in the higher 

expected cost group, with an expected cost of $20,907.88, higher (although not tested for 
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statistical significance) than the average of the total knee data set ($18,502.55). For this 

same model, 21.86% of patients had a lower expected cost of $16,282.24.  

Table 102. Increased and Decreased Risk IV States for Total Cost (Tcb). 

Total Cost Binned (Tcb)     

Knee (All IVs)     

Model: S Tcb : Nrb Tcb Freq % of Cases Ratio Average Expected Value 

Increased Expected Cost IV States 932 21.49% 1.13 $20,907.88  

Decreased Expected Cost IV States 948 21.86% 0.88 $16,282.24  

No difference (by significance or frequency) 2456 56.64%     

Total 4336     $18,502.55  

Hip (All IVs)     

Model: L Tcb : Svb Tcb : Nrb Tcb Freq % of Cases Ratio Average Expected Value 

Increased Expected Cost IV States 690 21.53% 1.11 $20,636.51  

Decreased Expected Cost IV States 907 28.30% 0.88 $16,360.48  

No difference (by significance or frequency) 1608 50.17%     

Total 3205     $18.591.45 

 

The best model for hip (L Tcb : Svb Tcb : Nrb Tcb) also identified groups of 

patients who would be expected to have total cost (Tcb) both higher and lower than the 

average of $18,591.45. Of the hip patients, 21.53% were calculated to have an expected 

cost of $20,636.51, while 28.30% would be expected to have a total cost of $16,360.48 

(Table 102). 

Methodological Considerations 

In addition to the clinical impacts, this project provides two primary 

methodological contributions. The first of these is the comparison of Reconstructability 

Analysis (the primary methodology of this project) to the more common approach of 

logistic regression. The second contribution is the demonstration of multiple techniques 

that exemplify and augment the use of RA for the analysis of biomedical data. 
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Relating RA to LR 

RA, as implemented in the Occam software package, was shown to produce 

equivalent results to LR models implemented in the R programming language, for those 

cases where the two methods overlap. This equivalency was verified with the measures 

Alpha (p-value), Δdf, ΔLR, ΔAIC, and odds ratios (OR) calculated from the RA model’s 

conditional probability distributions. RA detected novel variables and interaction effects 

that were not found in the LR analysis. RA was demonstrated to provide a distinct and 

useful approach for searching for novel variables and interaction effects that resulted in 

stronger predictions. LR does not consider the full lattice of structures that RA does, nor 

does LR, as normally implemented in software, provide an approach for searching this 

lattice. The information-theoretic RA used in this research project generated an entropy 

reduction (%ΔH), useful in interpreting the results, but not available with other methods. 

The LR model augmented with interactions found by RA provided for an 

interesting test of the methods; it showed that non-hypothesized interaction effects 

discovered by RA offered additional predictive strength when added to LR models 

(Table 18). The models generated as the primary results of this project are therefore 

likely to be either equivalent or more predictive than an LR analysis could have 

generated. RA is useful as a standalone method and has the potential to generate more 

predictive models than is possible using the LR methodology. 
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Augmenting RA Occam Results   

This project supplemented Occam’s standard outputs with existing nominal 

variable techniques that may be useful to researchers using the RA method in future 

analysis of biomedical data. The use of risk ratios, expected value calculations, tiered 

classifications of variables, and decision trees are all techniques that served to help make 

RA results visible and comprehensible. 

Tiered Classification System of Important Predicting Variables 

In this project, the importance of the IVs was assessed according to a multi-tiered 

classification system. This system allowed the identification and communication of 

important variables both within and across multiple models. RA yielded multiple models, 

which differed in how aggressively or conservatively they asserted predictive relations. 

While the models selected to look at in greater detail in the results section of this project 

were selected by the more conservative BIC criterion, the models and their variables that 

were selected by the less conservative AIC criterion are also relevant. While Tier 1 best 

predicting variables included only those from the best BIC models from All IVs, Tier 2 

expanded and included variables detected as important predictors from the AIC selection. 

Decision Trees to Summarize Fit Results 

Each model’s variables show the IVs and IV relationships that are important, but 

it is the model’s internal structure, namely its conditional probability distribution 

(Occam’s “fit” output), that allows the actual predictions of the model. These conditional 

probability distributions require some further analysis in order to determine the IV states 

of the model that are most important. In this research project, IV states with a frequency 
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≥ 10 and a p-value ≤ 0.05 were selected as thresholds, and IV states that did not meet 

these thresholds were removed from further analysis. Even with this reduction in the 

model IV states, the number of IVs, and the number of states for each of these IVs, 

resulted in fairly large tables, and the combinations of IV states that were important were 

not always readily comprehensible. Displaying combinations of important IV states in 

decision trees provides a visualization of results that is easily understood by a variety of 

audiences, allowing complex predictive models to offer descriptive insights from each 

model. 

Generating Continuous Predictions 

In this research project, continuous expected value predictions were generated for 

total cost with the b-systems approach (Zwick, Fusion, & Wilmot). RA as programmed in 

Occam calculated probabilities of the DV in low-cost, mid-cost, and high-cost bins, 

conditioned on the model’s IV states. These probabilities were used as weights on the 

expected value of each bin (the average value of each bin) to calculate the expected value 

for each of the IV states. Instead of using the bin with the highest probability to make a 

prediction, ignoring other bins whose probabilities, though smaller, may still not be 

negligible, this project used a weighted average which took into account how much the 

model predicted for the probability of each bin. Instead of picking one out of three bins 

for each of the IV states of the model, this method allowed for a finer-grained continuous 

prediction, with the ability to predict more accurately. Other augmentations of RA can be 

used to generate continuous predictions, which will be discussed in the Future Research 
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section to follow. Such continuous predictions could in principle be compared to the 

prediction of regression methods. 

Risk Ratios  

Recall that each predictive model had an associated conditional probability 

distribution for all the DV states for each of the IV states that were observed. Each 

probability of an adverse DV state given a particular IV state was then divided by 

probability of the adverse outcome for the full sample. This calculated ratio conveyed the 

effect size, while the p-value for that IV state assessed the significance of this effect size, 

more precisely the statistical significance of the deviation of the IV conditional 

probabilities from the margins. This ratio allowed for the effect size of each predictive 

model to be compared across hip and knee data sets, for All IVs and Comorbidity IVs, and 

across each of the four DVs. The risk ratios from the individual model results were then 

averaged by the weighted frequency, thus allowing comprehensible and comparable 

average risk ratios for higher-risk and lower-risk IV states. Additionally, when multiplied 

by the margin of the overall sample, the risk ratio allowed for a new calculation of the 

expected rate of the outcome (Cp, SNF, and Re) and the expected value (Tcb) for the 

higher-risk and lower-risk IV states. 

In this project, an effect size of 10% (a ratio ≥ 1.10 or ≤ 0.90) was considered to 

be a meaningful effect size. The selection of effect size depended on what was justifiable 

in the clinical and financial context of hip and knee replacement. At the time this research 

project was conducted, the largest payer of hip and knee replacements, Center for 

Medicare and Medicaid Services (CMS), had just implemented the first year of a 
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five-year bundled payment model for hip and knee replacements. In this program, 

hospitals stand to gain or lose based on a percentage of CMS’s contracted price (target 

price). In year one of this program, gains (upside risk) and losses (downside risk) are 

capped at 5%, but will increase to 20% in the remainder of the program. At the same time 

that the risk is increased, the reimbursement prices will also be declining. This places 

hospitals at increasing risk of owing money back to CMS. 

The following is a rough example of what the effect size looks like in terms of 

total cost. Looking at the higher-risk IV states (with the 10% or greater effect size) results 

in 324 hip patients at increased risk of higher expected total cost. Overall, the expected 

total cost for these 324 patients is $6,780,339. If these same 324 patients were instead 

expected to have the average total cost, this would be approximately $6,023,629—

a difference of $756,709, or about $2,335 per patient. This difference is a real opportunity 

if care could be tailored for these patients so that costs for them could be reduced. If only 

half of the opportunity is realized in terms of cost savings, that is still about $1,167 per 

patient. The 5% reduction in payment (CMS pricing based on total average cost) is about 

$930 in reduced payments, so this $1,167 would more than offset the reduction of CMS 

reimbursement.  The clinical impacts, one could argue, are even more meaningful. 

Complications and readmissions are certainly costly, but the effect on the patients can be 

profound. 
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Future Research & Applications   

Future research should be performed in order to (a) address limitations of the 

current project, and (b) facilitate the real-world application of these models. There are at 

least three primary areas for future research that should be considered to address the 

limitations of this project: (1) The data used in this project must be updated according to 

new diagnosis coding standards and claims data availability; (2) data sets should be 

divided into training and test splits; and (3) additional RA techniques should be explored 

that may create more powerful analyses. 

Potential applications of this research for hip and knee replacement surgery 

include enhancing value through measuring quality and implementing real-time risk 

prediction. Additional potential applications of the RA methodology used in this project 

are both desirable and feasible in clinical services beyond orthopedics, such as 

cardiovascular interventions.  

RA Analysis 

This project did not exhaust the RA methodological toolbox. Future research 

could use state-based RA modeling to create more powerful analyses. Additionally, other 

techniques for dealing with the continuous DV Total Cost should be explored, such as 

“K-systems” and “U-systems” analysis (Zwick, 2011b). Lastly, training and test splits of 

the data would allow for comparisons of sensitivity and specificity. 

State-based Models 

Taking only the most important predictor variables, state-based modeling would 

allow for the detection of interaction effects at a finer resolution. This ultra-fine-grained 
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view may pick out subtle interaction effects that went undetected in the coarse and fine-

grained exploratory searches that were used in this project. It is possible that the state-

based model will provide a larger reduction in uncertainty (% ΔH) and better %correct 

than the best variable-based model with loops generated in this project.  

K-systems and U-systems Analysis 

This project derived continuous values for the binned DV Total Cost using 

expected value calculations, which is referred to as b-systems analysis in the literature 

(Zwick, 2011b). There are other RA techniques that are available for the analysis of 

continuous functions (i.e., total cost), such as k-systems and u-systems analysis. In 

k-systems analysis, continuous function values are treated as pseudo frequencies, whereas 

in u-systems they are treated as the expected value of a lottery (Zwick, 2011b).  

Training/Test Splits 

This project was exploratory in nature. Although an optimal confirmatory test of 

results found by exploratory modeling requires the availability of new data, a kind of 

confirmatory test is accomplished via the use of training and test splits of the data. The 

training portion of the data is used to find and fit the predictive models, and the test 

portion is used to validate these models. Ideally, multiple training/test splits should be 

used to obtain a probability distribution of test data outcomes, including but not limited to 

%correct. This standard measure would allow easy comparisons of RA with other 

prediction methods.  Test data can be used to calculate additional useful measures, such 

as sensitivity and specificity and their tradeoff in the ROC curve. 
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Binning 

In this project, binning (e.g., of the IVs age and surgeon volume and the DV total 

cost) was done, wherever possible, with equally sampled bins, which is mathematically 

optimal for prediction; this is as opposed to binning according to field-specific 

substantive conventions. While the use of three bins allows for detection of nonlinearities 

and a uniform distribution allows for optimal predicting power, other binning rules could 

be tested in future work. For example, when age was binned into three equal-sample-

sized bins, the age for enrollment onto Medicare was not selected as one of the bin 

boundaries. Binning according to the commonly used age groups in health outcomes 

research may change the predictions, which could be informative and could also have 

implications for healthcare policy. 

Enhancing the Data 

Updating Coded Data 

The primary procedure codes used in this project—both those indicating hip or 

knee replacement procedures and those indicating patient comorbidities—were 

constructed from ICD-9 diagnosis codes. Effective October 2015, new ICD-10 coding 

standards were introduced. These new coding standards are not simply an updated 

version of the previous coding schema. There are more than ten times as many procedure 

codes and five times as many diagnosis codes in ICD-10 than in its ICD-9 predecessor. 

This update allows for a much more detailed system of coding. A single diagnosis code in 

ICD-9 may now be broken down into much more specific diagnosis codes. Most certainly 

this finer resolution of coding will provide for new discoveries as to the most predictive 
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patient comorbidity variables. While dual coding for ICD-9 and ICD-10 is still occurring 

in order for existing initiatives to be sustained, there is no doubt that ICD-9 coding will 

soon be phased out completely. 

Social Determinants of Health 

Social determinants of health, such as poverty, access to healthcare services, and 

racism, may be important predictors of differences in health outcomes. Widespread 

collection and measurement of social determinants would need to be initiated in order to 

have consistent and available data for predictive models. 

Adding Post-Discharge Data 

Additional enrichment to the data could be performed to enhance the dependent 

variables used in this project. One limitation in this project is in the DV Total Cost. The 

DV Total Cost only captures costs associated with the inpatient procedure, and does not 

include post-discharge costs. These post-discharge costs may be incurred by the 

utilization of a skilled nursing facility (SNF) as well as by Readmissions and other post-

discharge services (i.e., outpatient therapy, home health visits, etc.). Payer claims data 

would allow for Total Cost to extend beyond the inpatient stay, and beyond that, a DV 

representative of a 90-day episode could be constructed. Additionally, the DV 

Complication only captured complications that occurred within the inpatient stay, and 

does not include events post-discharge. Joint replacement patients may do well in the 

hospital but suffer complications post-discharge that indicate poor quality and incur 

additional costs. Bundled payments (such as the 90-day CJR model) will increasingly 
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drive healthcare systems to be able to capture costs and outcomes that extend beyond the 

initial inpatient surgical encounter. 

As health systems form Accountable Care Organizations (ACOs) and as CMS 

reimbursement models increase, access to claims data is more feasible than was the case 

historically. ACOs and CMS have rich data sources with very detailed claims data. 

Claims data provides an effective way to look at the utilization in services and could be 

used to create more meaningful and stronger predictions. At this time, however, detailed 

claims data is not available for all patients. Additionally, uncertainty about how claims 

data can be used often results in restrictions that block the ACO and CMS data from 

being part of the healthcare organization’s larger data repositories. The propensity for 

healthcare systems to treat analysis of data as a research effort, rather than a quality 

improvement and patient care effort, prevents most analytical efforts—and certainly 

anything referred to as “exploratory” analysis—from occurring. However, as the terms 

“big data” and “predictive analytics” become a more mainstream part of the vocabulary 

of healthcare delivery systems, ACO and CMS claims data will have the potential to 

become part of the larger data environment with greater access for use in predictive 

analytics. 

Adding the Delivery System Data Domain  

Currently, the handful of predictive analytics tools that exist use only patient 

comorbidity IVs. This project also utilized delivery system variables, but only a subset of 

the potential variables that may impact predictions. The small number of delivery system 

IVs that were used in this project turned out to be very important predictors in a number 
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of the models. In order to enhance value through better predictions, healthcare systems 

will need to look at the processes of care, including the clinicians, locations, medications, 

implants, and other supplies used in those processes as potentially predictive of patient 

outcomes and cost. 

Reimbursement & Allocation of Payments 

Hip and knee replacements are the first set of procedures in the bundled payment 

Comprehensive Care for Joint Replacement (CJR) model. As discussed in the 

introduction to this project, this model includes fixed payments to the delivery system 

based on DRG. If these payments exceed the cost of the episode, the leftover dollars are 

eligible to be paid out in collaborator “cost savings” or “gainsharing” payments. In these 

collaborator agreements, it is often the surgeon who is identified as the collaborator, and 

how the payments are allocated is determined by the hospital. Such payments can serve 

as an incentive to reward surgeons not only for low-cost care, but for quality outcomes as 

well. Incorporating risk into the projection of expected outcomes can help drive better 

care without penalizing surgeons for taking on sicker patients. As delivery systems 

determine how to allocate savings among surgeon collaborators under the CJR model, 

using a quality measure (discussed below) that adequately accounts for predicted patient 

risk would be worth considering. 
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Translating Predictions into Value 

Real-Time Risk Prediction 

In the introduction to this project, a primary justification for this research was that 

predictive models have utility both for retrospectively predicting risks and outcomes for 

quality measurement, and—potentially—also for real-time prediction. 

Many total joint replacement patients prefer to be in and out of the hospital as 

quickly as possible, and hospitals (and outpatient surgery centers) are now marketing 

short-stay joint procedures as a way to attract healthy patients. However, this preference 

must be considered alongside patient risk and clinical appropriateness, and the risk 

algorithms for determining which patients may qualify for these short stays are lacking. 

In other instances, healthy patients who may qualify as short-stay candidates request to 

stay in the hospital as long as possible with expectations to be discharged to a skilled 

nursing facility. Under a fee-for-service reimbursement model, patients and providers had 

no incentive to guard against patient preference as the primary driver of length of stay or 

discharge setting. As fee-for-service comes to an end in joint replacement, patient 

preference or physician practice patterns alone can no longer be the primary driver of 

appropriate care. Assessing patient risk in real time could in principle augment clinical 

decision-making and provide additional evidence supporting a short-stay care pathway 

for low-risk patients, or a more resource-intensive care pathway for high-risk patients. 

Furthermore, increasing the education of patients about their individual risks can help set 

expectations about their individualized care pathways. 
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Retrospective analysis is much simpler than developing and operationalizing a 

near-real-time risk-prediction solution in a healthcare organization. To make predictions 

in near real time, one would need access to or integration with an electronic health record 

(EHR) system or another data aggregation system overlaying the EHR. This additional 

application layer would need to access the patient’s clinical data and transform the data 

into a structured format according to predefined rules similar to the procedures used to 

create the data sets used in this project. Predictive models would have to be updated and 

calibrated on a continuing basis, to improve the models based on their performance in 

prediction and to keep up with clinical coding schema changes. 

Not only would models need to be integrated with the clinical electronic health 

record system, but the model predictions would need to be accessible within the EHR in 

order for the clinicians at the point of care to utilize the output to support real-time 

decision making. Recent advances in machine learning and AI techniques have increased 

focus on the development of the algorithms but have given less attention to how 

predictions made by algorithms might inform patient care in real-time clinical work 

streams. Great predictions do not help if no action is taken. 

Integrating predictions into the everyday workflows of clinical staff is much more 

than a technical feat. It is an organizational undertaking that would require the buy-in of 

health system leadership and of the clinical teams. The development of predictive models 

is only a first step. Few health systems currently use predictive analytics at scale to 

influence health care delivery, and strategies that successfully implement predictive risk 

algorithms into clinical practice must still be identified (Parikh, Kakad & Bates, 2016). 



 

- 207 - 

Measuring Quality & Outcomes 

With value defined as outcomes achieved per dollar spent, an increasing focus of 

concern will be the optimization of that ratio. Deploying predictive analytics at the point 

of care can help improve this ratio by focusing costly resources on higher-risk patients. 

Tailoring patient care with increased precision thus has the potential not only to lower the 

overall cost of care, but to improve outcomes by ensuring that higher-risk patients are 

provided the extra care necessary to ensure good outcomes. In addition to optimizing care 

in real time, the demonstration of value requires the measurement of outcomes. 

Adequately measuring the quality of the outcome achieved is essential both for fair 

measurement of hospital or physician quality and for identifying the causes of variation 

in care, both of which will be required in order to strategically focus quality improvement 

initiatives. A widely-accepted measurement of quality across healthcare providers is an 

observed versus expected ratio. The denominator of this ratio is the sum of predicted risk 

of a given outcome while the numerator is the actual observed occurrences of this 

outcome. In the field of cardiac surgery, the Society of Thoracic Surgeons (STS) Risk 

Score (Shahian et al., 2009) generates an O/E ratio for mortality in addition to a number 

of specific complications. The resulting scores from the O/E ratios are used as measures 

of quality both at a hospital and a surgeon level. For example, if Dr. A’s patients were 

predicted to have a higher risk of complications given their comorbidity IVs, and 

subsequently the observed complications were calculated, then an observed versus 

expected ratio could be constructed and used as a measure of quality. If the cohort of 

patients had fewer complications than predicted, then the ratio would be less than one, 

and this distance from one could be considered a measure indicating higher quality 
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outcomes. If the ratio is greater than one, then this would indicate surgeon performance 

was worse than expected. The result of this observed versus predicted ratio can then be 

assessed across physicians in a relatively fair, “apples-to-apples” comparison. Similar to 

cardiac surgery, joint replacement surgeons are considered the most accountable for the 

quality and outcomes of the joint replacement procedure. However, unlike cardiac 

surgery, there is no widely accepted observed versus expected risk score in joint 

replacement. 

Value Beyond Orthopedics 

 A primary justification for this project was that better predictions, utilized for 

quality measurement and real-time predictive analytics, could enhance value in 

healthcare. This project demonstrated that Reconstructability Analysis (RA) can create 

useful models of outcomes in hip and knee replacements. Hip and knee replacements are 

the first procedures mandated under a bundled payment model by CMS. Other payers are 

coming to the payment reform table as well, and the list of conditions and procedures that 

CMS and other payers will be transitioning to innovative reimbursement models is 

extensive. In fact, CMS has set a goal, for both public and private payers, to shift 80% of 

their populations into value-based alternative payment models in the next five years 

(Rajkumar, Conway & Tavenner, 2014). The drive to achieve greater value across 

multiple clinical domains is now an imperative for healthcare systems.  

CMS has passed legislation for two cardiac bundled payments set to launch in 

2018 which will cover Acute Myocardial Infarction (AMI) and Coronary Artery Bypass 

Graft (CABG) procedures (Song & Blumenthal, 2016). Similar to joint replacement 
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procedures, these cardiac procedures have high variation in cost and outcomes. Unlike 

the field of orthopedics, the cardiovascular field has been collecting data and measuring 

quality and outcomes utilizing risk models for decades. In fact, cardiovascular procedures 

are some of the most well studied procedures, with highly validated risk models. The 

Society of Thoracic Surgeons’ (STS) Cardiac Surgery Risk Model has been developed 

over a 20-year period, and is continuously updated based on STS registry data (Shahian 

et al., 2009). The data that is used for this model is manually abstracted from patient 

charts by clinicians and hand-entered into a certified STS database. This curated registry 

data is then submitted to the national STS registry, and model updates are performed. 

Standard Logistic Regression (LR) has been the primary method for STS model 

development, with the most recent updates to the model using backwards stepwise LR for 

feature selection in order to determine predictor variables for model updates. The updated 

STS model is considered to have excellent performance, but it is certainly plausible the 

performance could be improved.  

Literature in cardiac risk prediction confirms LR to be the standard approach 

within the broader cardiac field (Nilsson, Algotsson, Höglund, Lührs & Brandt, 2006; 

Thalji, Suri, Greason & Schaff, 2014). However, researchers view more recent techniques 

such as Neural Networks (NNs) as holding promise. Nilsson et al., (2006) discuss NNs as 

a method that could improve risk prediction given their capacity to model complex, 

nonlinear relationships, but concede that only a few studies have been done in this area 

and that further investigation is required. As discussed in the literature review of this 

project, NNs are promising, but their “black box” nature results in models that lack 

explainability. This lack of transparency can pose a problem with clinician buy-in during 
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implementation in a clinical setting. Perhaps the need for explainability will diminish 

over time as NNs prove their worth, and trust in these models increases. 

Reconstructability Analysis (RA) has both the capacity to model complex, 

nonlinear relationships, and the ability to produce models that are transparent and 

intuitive to understand. This project showed that RA was able to find a more predictive 

model than stepwise LR, and included additional predictor variables and interaction terms 

not detected using stepwise LR. It would be of great interest to cardiac clinicians and 

researchers if RA could improve on the STS Risk Score predictions. If RA can provide 

new insights with stronger predictions in the cardiovascular domain, it is likely the 

methodology would be able to add value across the full spectrum of clinical service lines. 

The field of cardiovascular risk prediction may benefit from additional analytical 

approaches used in this project, beyond potentially detecting novel predictor variables 

and interaction effects. This project demonstrated the importance of delivery system IVs 

in predicting outcomes. Currently, the risk prediction efforts in the cardiovascular domain 

limit predictors to patient-related comorbidity IVs. Additionally, the use of risk ratios 

would be intuitive and meaningful to clinicians in understanding—beyond simply the 

significance of the prediction—the magnitude of the expected effect. The use of tiered 

analysis of predictors may reveal common predictors across cardiac and joint 

replacement surgeries and allow for a broader implementation of predictive analytics in 

clinical care and the measurement of quality across clinical domains. 

Enhancing value through better predictions is an increasing imperative across 

multiple clinical domains. As demonstrated in this project, Reconstructability Analysis is 

an approach that may strengthen or augment existing predictions and even perhaps 
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replace existing methods. With risk and outcomes adequately predicted, areas for 

potential improvement become clearer, and focused changes can be made to drive 

improvements in patient care. Better predictions, such as those resulting from the 

Reconstructability Analysis methodology, can thus support improvement in value—better 

outcomes at a lower cost. As reimbursement increasingly evolves into value-based 

programs, understanding the outcomes achieved and customizing patient care to reduce 

unnecessary costs while improving outcomes will be active areas for clinicians, 

healthcare administrators, researchers, and data scientists for many years to come. 

  



 

- 212 - 

References 

Amarasingham, R. (2012). Applying Data Analytics And Information Exchange To 

Improve Care For Patients. Health Affairs, 31(12), 2785–2786. 

http://doi.org/10.1377/hlthaff.2012.1114 

Andrew, J. G., Palan, J., Kurup, H. V., Gibson, P., Murray, D. W., & Beard, D. J. (2008). 

Obesity in total hip replacement. Journal of Bone & Joint Surgery, British Volume, 

90-B(4), 424–429. http://doi.org/10.1302/0301-620X.90B4.20522 

Ash AS, E. R. (2012). Risk-adjusted payment and performance assessment for primary 

care. Medical Care, 50(8), 643–53. 

Ashby, R. (1964). Constraint analysis of many-dimensional relations. General Systems 

Yearbook, 9, 99–105. 

Barsoum, W. K., Murray, T. G., Klika, A. K., Green, K., Miniaci, S. L., Wells, B. J., & 

Kattan, M. W. (2010). Predicting Patient Discharge Disposition After Total Joint 

Arthroplasty in the United States. The Journal of Arthroplasty, 25(6), 885–892. 

http://doi.org/10.1016/j.arth.2009.06.022 

Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big Data In 

Health Care: Using Analytics To Identify And Manage High-Risk And High-Cost 

Patients. Health Affairs, 33(7), 1123–1131. http://doi.org/10.1377/hlthaff.2014.0041 

Bellows, J., Patel, S., & Young, S. S. (2014). Use of IndiGO individualized clinical 

guidelines in primary care. Journal of the American Medical Informatics 

Association, 21(3), 432–437. http://doi.org/10.1136/amiajnl-2012-001595 

Berbari, E. F., Hanssen, A. D., Duffy, M. C., Steckelberg, J. M., Ilstrup, D. M., Harmsen, 

W. S., & Osmon, D. R. (1998). Risk Factors for Prosthetic Joint Infection: Case-

Control Study. Clinical Infectious Diseases, 27(5), 1247–1254. 

http://doi.org/10.1086/514991 

Berbari, E. F., Osmon, D. R., Lahr, B., Eckel-Passow, J. E., Tsaras, G., Hanssen, A. D., 

… Thompson, R. (2012). The Mayo prosthetic joint infection risk score: implication 

for surgical site infection reporting and risk stratification. Infection Control and 

Hospital Epidemiology: The Official Journal of the Society of Hospital 

Epidemiologists of America, 33(8), 774–781. http://doi.org/10.1086/666641 

Bjorgul, K., Novicoff, W. M., & Saleh, K. J. (2010). Evaluating comorbidities in total hip 

and knee arthroplasty: available instruments. Journal of Orthopaedics and 

Traumatology, 11(4), 203–209. http://doi.org/10.1007/s10195-010-0115-x 



 

- 213 - 

Bolognesi, M. P., Marchant, M. H., Viens, N. A., Cook, C., Pietrobon, R., & Vail, T. P. 

(2008). The Impact of Diabetes on Perioperative Patient Outcomes After Total Hip 

and Total Knee Arthroplasty in the United States. The Journal of Arthroplasty, 

23(6), 92–98. http://doi.org/10.1016/j.arth.2008.05.012 

Bozic, K. J., Ong, K., Lau, E., Berry, D. J., Vail, T. P., Kurtz, S. M., & Rubash, H. E. 

(2012). Estimating Risk in Medicare Patients With THA: An Electronic Risk 

Calculator for Periprosthetic Joint Infection and Mortality. Clinical Orthopaedics 

and Related Research®, 471(2), 574–583. http://doi.org/10.1007/s11999-012-

2605-z 

Bozic, K. J., Smith, A. R., & Mauerhan, D. R. (2007). Pay-For-Performance in 

Orthopedics: Implications for Clinical Practice. The Journal of Arthroplasty, 22(6, 

Supplement), 8–12. http://doi.org/10.1016/j.arth.2007.04.015 

Bozic, K. J., Wagie, A., Naessens, J. M., Berry, D. J., & Rubash, H. E. (2006). Predictors 

of Discharge to an Inpatient Extended Care Facility After Total Hip or Knee 

Arthroplasty. The Journal of Arthroplasty, 21(6), 151–156. 

http://doi.org/10.1016/j.arth.2006.04.015 

Broekstra, G. (1979). Nonprobabilistic constraint analysis and a two-stage approximation 

method of structure identification. In Proceedings of teh 23rd Annual SGSR 

Meeting, Houston. 

Cangur, O. (2009). Modeling Subprime Mortgage Delinqency, Default, Prepayment and 

Loss. 

Caracciolo, B., & Giaquinto, S. (2005). Determinants of the subjective functional 

outcome of total joint arthroplasty. Archives of Gerontology & Geriatrics, 41(2), 

169–176. http://doi.org/10.1016/j.archger.2005.01.005 

Caring for High-Need, High-Cost Patients — An Urgent Priority — NEJM. (n.d.). 

Retrieved May 6, 2017, from 

http://www.nejm.org/doi/full/10.1056/NEJMp1608511#t=article 

Carletti, R. (2004). A Study of the Relationship Between Education, Literacy, and Health. 

Cavallo, R. E. (1979). The role of systems methodology in social science research. 

Cellier, F. E., & Yandell, D. W. (1987). SAPS-II: A NEW IMPLEMENTATION OF 

THE SYSTEMS APPROACH PROBLEM SOLVER. International Journal of 

General Systems International Journal of General Systems, 13(4), 307–322. 



 

- 214 - 

Centers for Medicare & Medicaid Services. Comprehensive care for joint replacement 

model. (2015). 

Centers for Medicare & Medicaid Services (CMS), HHS. (2011). Medicare program; 

Medicare Shared Savings Program: Accountable Care Organizations. Final rule. 

Federal Register, 76(212), 67802–67990. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/22046633 

Chambless, B., Lendaris, G. G., & Zwick, M. (2001). An information theoretic 

methodology for prestructuring neural networks (Vol. 1, pp. 365–370 vol.1). 

http://doi.org/10.1109/IJCNN.2001.939047 

Clague, J. E., Craddock, E., Andrew, G., Horan, M. A., & Pendleton, N. (2002). 

Predictors of outcome following hip fracture. Admission time predicts length of stay 

and in-hospital mortality. Injury, 33(1), 1–6. Retrieved from 

http://www.injuryjournal.com/article/S0020-1383(01)00142-5/abstract 

Conant, R. C. (1981). Set-Theoretic Structure Modeling. International Journal of 

General Systems, 7, 93–107. 

Conant, R. C. (1988). EXTENDED DEPENDENCY ANALYSIS OF LARGE 

SYSTEMS∗. International Journal of General Systems International Journal of 

General Systems, 14(2), 97–123. 

Cram P, L. X. (2011). CLinical characteristics and outcomes of medicare patients 

undergoing total hip arthroplasty, 1991-2008. JAMA, 305(15), 1560–1567. 

http://doi.org/10.1001/jama.2011.478 

Dall, G. F., Ohly, N. E., Ballantyne, J. A., & Brenkel, I. J. (2009). The influence of pre-

operative factors on the length of in-patient stay following primary total hip 

replacement for osteoarthritis A MULTIVARIATE ANALYSIS OF 2302 

PATIENTS. Journal of Bone & Joint Surgery, British Volume, 91-B(4), 434–440. 

http://doi.org/10.1302/0301-620X.91B4.21505 

Dauty, M., Schmitt, X., Menu, P., Rousseau, B., & Dubois, C. (2012). Using the Risk 

Assessment and Predictor Tool (RAPT) for patients after total knee replacement 

surgery. Annals of Physical and Rehabilitation Medicine, 55(1), 4–15. 

http://doi.org/10.1016/j.rehab.2011.10.006 

Doyle, J., Graves, J., & Gruber, J. (2015). Uncovering Waste in U.S. Healthcare. 

Retrieved from http://www.nber.org/papers/w21050 



 

- 215 - 

Eddy, D. M., Adler, J., & Morris, M. (2012). The “Global Outcomes Score”: A Quality 

Measure, Based On Health Outcomes, That Compares Current Care To A Target 

Level Of Care. Health Affairs, 31(11), 2441–2450. 

http://doi.org/10.1377/hlthaff.2011.1274 

Everhart, J. S., Altneu, E., & Calhoun, J. H. (2013). Medical Comorbidities Are 

Independent Preoperative Risk Factors for Surgical Infection After Total Joint 

Arthroplasty. Clinical Orthopaedics and Related Research. 

http://doi.org/10.1007/s11999-013-2923-9 

Fehring, T. K., Odum, S. M., Troyer, J. L., Iorio, R., Kurtz, S. M., & Lau, E. C. (2010). 

Joint Replacement Access in 2016: A Supply Side Crisis. The Journal of 

Arthroplasty, 25(8), 1175–1181. http://doi.org/10.1016/j.arth.2010.07.025 

Fisher, E. S. (2003). The Implications of Regional Variations in Medicare Spending. Part 

1: The Content, Quality, and Accessibility of Care. Annals of Internal Medicine, 

138(4), 273. http://doi.org/10.7326/0003-4819-138-4-200302180-00006 

Gandhi, R., Dhotar, H., Razak, F., Tso, P., Davey, J. R., & Mahomed, N. N. (2010). 

Predicting the longer term outcomes of total knee arthroplasty. Knee, 17(1), 15–18. 

http://doi.org/10.1016/j.knee.2009.06.003 

Gholson, J. J., Pugely, A. J., Bedard, N. A., Duchman, K. R., Anthony, C. A., & 

Callaghan, J. J. (2016). Can We Predict Discharge Status After Total Joint 

Arthroplasty? A Calculator to Predict Home Discharge. The Journal of Arthroplasty, 

31(12), 2705–2709. http://doi.org/10.1016/j.arth.2016.08.010 

Goroll AH, & Schoenbaum SC. (2012). Payment reform for primary care within the 

accountable care organization: A critical issue for health system reform. JAMA, 

308(6), 577–578. http://doi.org/10.1001/jama.2012.8696 

Head, S. J., Osnabrugge, R. L. J., Howell, N. J., Freemantle, N., Bridgewater, B., Pagano, 

D., & Kappetein, A. P. (2013). A systematic review of risk prediction in adult 

cardiac surgery: considerations for future model development. European Journal of 

Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-

Thoracic Surgery, 43(5), e121–129. http://doi.org/10.1093/ejcts/ezt044 

Hines Al, Barrett Ml, Jiang Hj, & Steiner Ca. (2011). Conditions With the Largest 

Number of Adult Hospital Readmissions by Payer, 2011: Statistical Brief #172. 

Retrieved from http://europepmc.org/abstract/med/24901179 



 

- 216 - 

HIPAA. (2009, September). HIPAA “Protected Health Information”: What Does PHI 

Include? Retrieved from https://www.hipaa.com/hipaa-protected-health-

information-what-does-phi-include/ 

Hosmer, D.W, Lemeshow, S. (2005). Applied logistic regression (second edi). John 

Wiley & Sons Inc. 

Jacobs JP, J. M. (2009). Stratification of complexity improves the utility and accuracy of 

outcomes analysis in a Multi-Institutional Congenital Heart Surgery Database: 

Application of the Risk Adjustment in Congenital Heart Surgery (RACHS-1) and 

Aristotle Systems in the Society o. Pediatric Cardiology, 30(8), 1117–30. 

Jafari, S. M., Huang, R., Joshi, A., Parvizi, J., & Hozack, W. J. (2010). Renal Impairment 

Following Total Joint Arthroplasty: Who Is at Risk? The Journal of Arthroplasty, 

25(6, Supplement), 49–53.e2. http://doi.org/10.1016/j.arth.2010.04.008 

Jain, N. B., Guller, U., Pietrobon, R., Bond, T. K., & Higgins, L. D. (2005). 

Comorbidities Increase Complication Rates in Patients Having Arthroplasty. 

Clinical Orthopaedics and Related Research, &NA;(435), 232–238. 

http://doi.org/10.1097/01.blo.0000156479.97488.a2 

Jones, B. (1985). Reconstructability analysis for general functions. International Journal 

of General Systems, 11, 133–142. 

Jones, B. (1989). A PROGRAM FOR RECONSTRUCTABILUY ANALYSIS. 

International Journal of General Systems, 15(3), 199–205. 

http://doi.org/10.1080/03081078908935045 

Klir, G. (1976). IDENTIFICATION OF GENERATIVE STRUCTURES IN 

EMPIRICAL DATA†. Int. J. of General Systems International Journal of General 

Systems, 3(2), 89–104. 

Kramer, P., Westaway, S. K., Zwick, M., & Shervais, S. (2012). Reconstructability 

analysis of genetic loci associated with Alzheimer disease. In The 6th International 

Conference on Soft Computing and Intelligent Systems, and The 13th International 

Symposium on Advanced Intelligence Systems (pp. 2104–2110). Ieee. 

http://doi.org/10.1109/SCIS-ISIS.2012.6505196 

Krippendorff, K. (2009). No TitleRoss Ashby’s information theory: a bit of history, some 

solutions to problems, and what we face today. International Journal of General 

Systems, 38(2), 189–212. 



 

- 217 - 

Krippendorff, K. (1981). An algorithm for identifying structural models of multivariate 

data. International Journal of General Systems, 7(1), 63–79. 

Kurtz S, O. K. (2007). Projections of primary and revision hip and knee arthroplasty in 

the United States from 2005 to 2030. The Journal of Bone and Joint Surgery. 

American Volume, 89(4), 780–5. 

Lawrence, R. C., Helmick, C. G., Arnett, F. C., Deyo, R. A., Felson, D. T., Giannini, E. 

H., … Hunder, G. G. (1998). Estimates of the Prevalence of Arthritis and Selected 

Musculoskeletal Disorders in the United States. ARTHRITIS AND RHEUMATISM -

ATLANTA-, 41(5), 778–799. 

Lippmann, R. P., Kukolich, L., & Shahian, D. (1995). Predicting the Risk of 

Complications in Coronary Artery Bypass Operations Using Neural Networks. 

Advances in Neural Information Processing Systems., (7), 1055. 

Lippmann RP, S. D. (1997). Coronary artery bypass risk prediction using neural 

networks. The Annals of Thoracic Surgery, 63(6), 1635–43. 

Lorenzoni, L., Belloni, A., & Sassi, F. (2014). Health-care expenditure and health policy 

in the USA versus other high-spending OECD countries. The Lancet, 384(9937), 

83–92. http://doi.org/10.1016/S0140-6736(14)60571-7 

Luft, H. S. (2009). Economic Incentives to Promote Innovation in Healthcare Delivery. 

Clinical Orthopaedics and Related Research®, 467(10), 2497–2505. 

http://doi.org/10.1007/s11999-009-0930-7 

Maciejewski, M. L., & Liu, C.-F. (2005). The Performance of Administrative and Self-

Reported Measures for Risk Adjustment of Veterans Affairs Expenditures. Health 

Services Research, 40(3), 887–904. 

Md, C. A. H., Karim Elsharkawy MD, M., Ms, A. K. K., Bs, M. B., & Md, W. K. B. 

(2011). 2010 Mid-America Orthopaedic Association Physician in Training Award: 

Predictors of Early Adverse Outcomes after Knee and Hip Arthroplasty in Geriatric 

Patients. Clinical Orthopaedics and Related Research®, 469(5), 1391–1400. 

http://doi.org/10.1007/s11999-011-1804-3 

Medicare, C. for. (2016, December). National Health Accounts Historical. Retrieved 

May 7, 2017, from https://www.cms.gov/Research-Statistics-Data-and-Systems/ 

Statistics-Trends-and-Reports/NationalHealthExpendData/ 

NationalHealthAccountsHistorical.html 



 

- 218 - 

Meding, J. B. (2007). The Prescreening History and Physical in Elective Total Joint 

Arthroplasty. The Journal of Arthroplasty., 22(2), 21. 

Memtsoudis, S. G., González Della Valle, A., Besculides, M. C., Esposito, M., 

Koulouvaris, P., & Salvati, E. A. (2010). Risk Factors for Perioperative Mortality 

After Lower Extremity Arthroplasty: A Population-Based Study of 6,901,324 

Patient Discharges. The Journal of Arthroplasty, 25(1), 19–26. 

http://doi.org/10.1016/j.arth.2008.11.010 

Memtsoudis, S. G., Ma, Y., Chiu, Y. L., Walz, J. M., Voswinckel, R., & Mazumdar, M. 

(2010). Perioperative Mortality in Patients with Pulmonary Hypertension 

Undergoing Major Joint Replacement. Anesthesia & Analgesia, 111(5), 1110–1116. 

http://doi.org/10.1213/ANE.0b013e3181f43149 

Miller, D. C., Gust, C., Dimick, J. B., Birkmeyer, N., Skinner, J., & Birkmeyer, J. D. 

(2011). Large Variations In Medicare Payments For Surgery Highlight Savings 

Potential From Bundled Payment Programs. Health Affairs, 30(11), 2107–2115. 

http://doi.org/10.1377/hlthaff.2011.0783 

Mist, S. D. (2007). Prediction of Traditional Chinese Medicine from Psychosocial 

Questionnaires. 

Munin MC, K. C. (1995). Predicting discharge outcome after elective hip and knee 

arthroplasty. American Journal of Physical Medicine & Rehabilitation / Association 

of Academic Physiatrists, 74(4). 

Nichols, L. M., & O’Malley, A. S. (2006). Hospital payment systems: will payers like the 

future better than the past? Health Affairs (Project Hope), 25(1), 81–93. 

http://doi.org/10.1377/hlthaff.25.1.81 

Nilsson, J., Algotsson, L., Höglund, P., Lührs, C., & Brandt, J. (2006). Comparison of 19 

pre-operative risk stratification models in open-heart surgery. European Heart 

Journal, 27(7), 867–874. http://doi.org/10.1093/eurheartj/ehi720 

Obama, B. (2016). United States Health Care Reform: Progress to Date and Next Steps. 

JAMA, 316(5), 525–532. http://doi.org/10.1001/jama.2016.9797 

Oldmeadow, L. B., McBurney, H., & Robertson, V. J. (2003). Predicting risk of extended 

inpatient rehabilitation after hip or knee arthroplasty. The Journal of Arthroplasty, 

18(6), 775–779. http://doi.org/10.1016/S0883-5403(03)00151-7 



 

- 219 - 

Parikh, R. B., Kakad, M., & Bates, D. W. (2016). Integrating Predictive Analytics Into 

High-Value Care: The Dawn of Precision Delivery. JAMA, 315(7), 651–652. 

http://doi.org/10.1001/jama.2015.19417 

Patient Protection and Affordable Care Act of 2010. (2010). Public Law 111, 48. 

Polanczyk, C. A., Marcantonio, E., Goldman, L., Rohde, L. E. P., Orav, J., Mangione, C. 

M., & Lee, T. H. (2001). Impact of Age on Perioperative Complications and Length 

of Stay in Patients Undergoing Noncardiac Surgery. Annals of Internal Medicine, 

134(8), 637–643. http://doi.org/10.7326/0003-4819-134-8-200104170-00008 

Porter, M. E. (2010). What Is Value in Health Care? New England Journal of Medicine, 

363(26), 2477–2481. http://doi.org/10.1056/NEJMp1011024 

Porter, M. E., & Teisberg, E. O. (2006). Redefining Health Care: Creating Value-based 

Competition on Results. Harvard Business Press. Retrieved from 

https://books.google.com/books?id=Kp5fCkAzzS8C 

Powers, B., & Chaguturu, S. (2016). Not All High-Risk Populations Are the Same. New 

England Journal of Medicine, Catalyst. 

Pulido L, P. J. (2008). In hospital complications after total joint arthroplasty. The Journal 

of Arthroplasty, 23(6), 139–45. 

R. Core Team. (2016). R: A Language and Environment for Statistical Computing. 

Vienna, Austria: R Foundation for Statistical Computing; 2014. R Foundation for 

Statistical Computing. 

Radcliff, K. E., Orozco, F. R., Quinones, D., Rhoades, D., Sidhu, G. S., & Ong, A. C. 

(2012). Preoperative Risk Stratification Reduces the Incidence of Perioperative 

Complications After Total Knee Arthroplasty. The Journal of Arthroplasty, 27(8, 

Supplement), 77–80.e8. http://doi.org/10.1016/j.arth.2012.03.026 

Rajkumar, R., Conway, P. H., & Tavenner, M. (2014). CMS—Engaging Multiple Payers 

in Payment Reform. JAMA, 311(19), 1967–1968. 

http://doi.org/10.1001/jama.2014.3703 

Romine, L. B., May, R. G., Taylor, H. D., & Chimento, G. F. (2013). Accuracy and 

Clinical Utility of a Peri-Operative Risk Calculator for Total Knee Arthroplasty. The 

Journal of Arthroplasty, 28(3), 445–448. http://doi.org/10.1016/j.arth.2012.08.014 

 



 

- 220 - 

Rozell, J. C., Courtney, P. M., Dattilo, J. R., Wu, C. H., & Lee, G.-C. (2016). Should All 

Patients Be Included in Alternative Payment Models for Primary Total Hip 

Arthroplasty and Total Knee Arthroplasty? The Journal of Arthroplasty, 31(9), 45–

49. http://doi.org/10.1016/j.arth.2016.03.020 

Schroer WC, C. G. (2008). Effects of increased surgical volume on total knee 

arthroplasty complications. The Journal of Arthroplasty, 23(6), 61–7. 

Shahian, D. M., O’Brien, S. M., Filardo, G., Ferraris, V. A., Haan, C. K., Rich, J. B., … 

Anderson, R. P. (2009). The Society of Thoracic Surgeons 2008 Cardiac Surgery 

Risk Models: Part 1—Coronary Artery Bypass Grafting Surgery. The Annals of 

Thoracic Surgery, 88(1), S2–S22. http://doi.org/10.1016/j.athoracsur.2009.05.053 

Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System 

Technical Journal, 27, 379–423 and 623–656. 

Shervais, S., Kramer, P. L., Westaway, S. K., Cox, N. J., & Zwick, M. (2010). 

Reconstructability Analysis as a Tool for Identifying Gene-Gene Interactions in 

Studies of Human Diseases. Statistical Applications in Genetics & Molecular 

Biology, 9(1), 1–25. Retrieved from 

http://stats.lib.pdx.edu/proxy.php?url=http://search.ebscohost.com/login.aspx?direct

=true&db=a9h&AN=48991209&site=ehost-live 

Song, Z., & Blumenthal, D. M. (2016). Expanding Payment Reform in Medicare: The 

Cardiology Episode-Based Payment Model. JAMA, 316(19), 1973–1974. 

http://doi.org/10.1001/jama.2016.16146 

Suleiman, L. I., Ortega, G., Ong’uti, S. K., Gonzalez, D. O., Tran, D. D., Onyike, A., … 

Fullum, T. M. (2012). Does BMI affect perioperative complications following total 

knee and hip arthroplasty? The Journal of Surgical Research, 174(1), 7–11. 

http://doi.org/10.1016/j.jss.2011.05.057 

Thalji, N. M., Suri, R. M., Greason, K. L., & Schaff, H. V. (2014). Risk assessment 

methods for cardiac surgery and intervention. Nature Reviews Cardiology, 11(12), 

704–714. http://doi.org/10.1038/nrcardio.2014.136 

Tomek, I. M., Sabel, A. L., Froimson, M. I., Muschler, G., Jevsevar, D. S., Koenig, K. 

M., … Weinstein, J. N. (2012). A Collaborative Of Leading Health Systems Finds 

Wide Variations In Total Knee Replacement Delivery And Takes Steps To Improve 

Value. Health Affairs, 31(6), 1329–1338. http://doi.org/10.1377/hlthaff.2011.0935 

 



 

- 221 - 

Tu JV, W. M. (1998). Predicting mortality after coronary artery bypass surgery: what do 

artificial neural networks learn? The Steering Committee of the Cardiac Care 

Network of Ontario. Medical Decision Making : An International Journal of the 

Society for Medical Decision Making, 18(2). 

Weiner, J. P., Trish, E., Abrams, C., & Lemke, K. (2012). Adjusting For Risk Selection 

In State Health Insurance Exchanges Will Be Critically Important And Feasible, But 

Not Easy. Health Affairs, 31(2), 306–315. http://doi.org/10.1377/hlthaff.2011.0420 

Willett, K., & Zwick, M. (2004). A software architecture for reconstructability analysis. 

Kybernetes: The International Journal of Systems & Cybernetics, 33(5/6), 997–

1008. 

Zwick, M. (2000). OCCAM: organization complexity computation and modeling. 

Portland State University Systems Science Program Internal Document. 

Zwick, M. (2001). Wholes and parts in general systems methodology. In The character 

concept in evolutionary biology (pp. 237–256). 

Zwick, M. (2004). An overview of reconstructability analysis. Kybernetes: The 

International Journal of Systems & Cybernetics, 33(5/6), 877–905. 

Zwick, M. (2011a). Reconstructability Analysis of Epistasis. Annals of Human Genetics, 

75(1), 157–171. http://doi.org/10.1111/j.1469-1809.2010.00628.x 

Zwick, M. (2011b). Reconstructability analysis of epistasis. Annals of Human Genetics, 

75(1), 157–71. http://doi.org/10.1111/j.1469-1809.2010.00628.x 

Zwick, M. (2011c). Reconstructability Analysis of Epistasis: Reconstructability Analysis 

of Epistasis. Annals of Human Genetics, 75(1), 157–171. 

http://doi.org/10.1111/j.1469-1809.2010.00628.x 

Zwick, M., & Johnson, M. S. (2004). State-based reconstructability analysis. Kybernetes, 

33(5/6), 1041–1052. http://doi.org/10.1108/03684920410534092 

 

  



- 222 -

Appendix: Supplementary Tables 

Table 103. Full List of IVs in Hip and Knee Data Sets with Variable IDs. 

# ICD-9 Code ICD-9 Description Variable ID 

1 RISK 135 Sarcoidosis Rs 

2 RISK 174.9 Malignant neoplasm of breast (female), unspecified Rb 

3 RISK 185 Malignant neoplasm of prostate Rnp 

4 RISK 202.8 Other malignant lymphomas Rly 

5 RISK 204.1 Lymphoid leukemia chronic Rle 

6 RISK 238.75 Myelodysplastic syndrome, unspecified Rmp 

7 RISK 242 Thyrotoxicosis with or without goiter Rth 

8 RISK 244 Acquired hypothyroidism Rh 

9 RISK 244.9 Unspecified acquired hypothyroidism Rhy 

10 RISK 246.9 Unspecified disorder of thyroid Rtd 

11 RISK 250 Diabetes mellitus Rdi 

12 RISK 250.4 Diabetes with renal manifestations Rdr 

13 RISK 250.5 Diabetes with ophthalmic manifestations Rdo 

14 RISK 250.6 Diabetes with neurological manifestations Rdn 

15 RISK 253.6 Other disorders of neurohypophysis Rne 

16 RISK 255.41 Glucocorticoid deficiency Rgd 

17 RISK 257.2 Other testicular hypofunction Rte 

18 RISK 266.2 Other B-complex deficiencies Rbc 

19 RISK 268.2 Osteomalacia, unspecified Rou 

20 RISK 268.9 Unspecified vitamin D deficiency Rvd 

21 RISK 272 Disorders of lipoid metabolism Rli 

22 RISK 272.1 Pure hyperglyceridemia Rhg 

23 RISK 272.2 Mixed hyperlipidemia Rmh 

24 RISK 272.4 Other and unspecified hyperlipidemia Ruh 

25 RISK 274.9 Gout, unspecified Rg 

26 RISK 275.03 Disorders of phosphorus metabolism Rpm 

27 RISK 275.49 Other disorders of calcium metabolism Rcd 

28 RISK 276.1 Hyposmolality and/or hyponatremia Rhh 

29 RISK 276.8 Hypopotassemia Rhp 

30 RISK 277.7 Dysmetabolic syndrome X Rdy 

31 RISK 278 Overweight, obesity and other hyperalimentation Roo 

32 RISK 278.01 Morbid obesity Rmo 

33 RISK 278.02 Overweight Rov 

34 RISK 280 Iron deficiency anemias Ria 

35 RISK 280.9 Iron deficiency anemia, unspecified Rid 

36 RISK 281.9 Unspecified deficiency anemia Ram 

37 RISK 285.1 Acute posthemorrhagic anemia Rph 

38 RISK 285.21 Anemia in chronic kidney disease Rck 

39 RISK 285.29 Anemia of other chronic disease Ran 

40 RISK 285.9 Anemia, unspecified Rau 

41 RISK 287.5 Thrombocytopenia, unspecified Rtc 

42 RISK 289.81 Primary hypercoagulable state Rhs 

43 RISK 294.8 
Other persistent mental disorders due to conditions classified 

elsewhere 
Rmd 

44 RISK 295.9 Unspecified schizophrenia Rsc 

45 RISK 296.8 Other and unspecified bipolar disorders Rbp 

46 RISK 300 Anxiety, dissociative and somatoform disorders Rad 
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# ICD-9 Code ICD-9 Description Variable ID 

47 RISK 300.01 Panic disorder with agoraphobia Rpd 

48 RISK 300.02 Generalized anxiety disorder Rga 

49 RISK 300.4 Dysthymic disorder Rdd 

50 RISK 303.9 Other and unspecified alcohol dependence Rup 

51 RISK 303.91 Other and unspecified alcohol dependence, continuous Rah 

52 RISK 303.93 Other and unspecified alcohol dependence, in remission Rrn 

53 RISK 304 Drug dependence Rdg 

54 RISK 304.01 Opioid type dependence continuous use Rop 

55 RISK 305 Nondependent abuse of drugs Rab 

56 RISK 305.03 Alcohol abuse, in remission Rra 

57 RISK 305.1 Tobacco use disorder Rtu 

58 RISK 309.81 Posttraumatic stress disorder Rps 

59 RISK 311 Depressive disorder, not elsewhere classified Rde 

60 RISK 314 Hyperkinetic syndrome of childhood Rhk 

61 RISK 314.01 Attention deficit disorder with hyperactivity  Rat 

62 RISK 327.23 Obstructive sleep apnea Ros 

63 RISK 331 Other cerebral degenerations Rce 

64 RISK 332 Parkinson's disease Rpa 

65 RISK 333.94 Restless legs syndrome Rrl 

66 RISK 338.29 Other chronic pain Rcp 

67 RISK 338.4 Chronic pain syndrome Rpc 

68 RISK 340 Multiple sclerosis Rms 

69 RISK 345.9 Epilepsy unspecified Rep 

70 RISK 346.9 Migraine unspecified Rmu 

71 RISK 355.9 Mononeuritis of unspecified site Rmn 

72 RISK 356.9 Unspecified hereditary and idiopathic peripheral neuropathy Rpn 

73 RISK 357.2 Polyneuropathy in diabetes Rpo 

74 RISK 357.6 Polyneuropathy due to drugs Rpp 

75 RISK 362.01 Background diabetic retinopathy Rba 

76 RISK 362.5 Degeneration of macula and posterior pole of retina Rdm 

77 RISK 365.9 Unspecified glaucoma Rug 

78 RISK 366.9 Unspecified cataract Rcr 

79 RISK 369.4 Legal blindness, as defined in USA Rlb 

80 RISK 369.6 Profound vision impairment one eye Rip 

81 RISK 369.8 Unqualified visual loss, one eye Rvl 

82 RISK 386 
Vertiginous syndromes and other disorders of vestibular 

system 
Rve 

83 RISK 388.3 Tinnitus Rti 

84 RISK 389.9 Unspecified hearing loss Rhl 

85 RISK 397 Diseases of other endocardial structures Res 

86 RISK 401.1 Benign essential hypertension Rbe 

87 RISK 401.9 Unspecified essential hypertension Rhe 

88 RISK 403.9 Unspecified hypertensive renal disease Rrd 

89 RISK 413.9 Other and unspecified angina pectoris Rap 

90 RISK 414 Other forms of chronic ischemic heart disease Rci 

91 RISK 414.01 Coronary atherosclerosis of native coronary artery Rca 

92 RISK 414.8 Other specified forms of chronic ischemic heart disease Rsf 

93 RISK 416.8 Other chronic pulmonary heart diseases Rhd 

94 RISK 424 Other diseases of endocardium Rec 

95 RISK 424.1 Aortic valve disorders Rav 

96 RISK 425.4 Other primary cardiomyopathies Rcm 
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# ICD-9 Code ICD-9 Description Variable ID 

97 RISK 426.11 First degree atrioventricular block Rfd 

98 RISK 426.3 Other left bundle branch block Rol 

99 RISK 426.4 Right bundle branch block Rrb 

100 RISK 427 Cardiac dysrhythmias Rys 

101 RISK 427.31 Atrial fibrillation Raf 

102 RISK 427.32 Atrial flutter Rfl 

103 RISK 427.69 Other premature beats Rpb 

104 RISK 427.89 Other specified cardiac dysrhythmias  Rod 

105 RISK 427.9 Cardiac dysrhythmia, unspecified Ruc 

106 RISK 428 Heart failure Rhf 

107 RISK 428.3 Diastolic heart failure Rdh 

108 RISK 428.32 Chronic diastolic heart failure Rdf 

109 RISK 429.9 Heart disease, unspecified Rht 

110 RISK 433.1 Occlusion and stenosis of carotid artery Roc 

111 RISK 441.4 Abdominal aneurysm without mention of rupture Raa 

112 RISK 443 Other peripheral vascular disease Rpe 

113 RISK 443.9 Peripheral vascular disease, unspecified Rpv 

114 RISK 457.1 Other lymphedema Roe 

115 RISK 458.9 Hypotension, unspecified Rho 

116 RISK 459.81 Venous (peripheral) insufficiency, unspecified Rvi 

117 RISK 477 Allergic rhinitis Rar 

118 RISK 477.9 Allergic rhinitis, cause unspecified Ral 

119 RISK 491.2 Obstructive chronic bronchitis Rcb 

120 RISK 491.9 Unspecified chronic bronchitis Rbh 

121 RISK 492.8 Other emphysema Rem 

122 RISK 493 Asthma Ras 

123 RISK 493.2 Chronic obstructive asthma Rco 

124 RISK 493.9 Asthma unspecified Rua 

125 RISK 496 Chronic airway obstruction, not elsewhere classified Rao 

126 RISK 515 Postinflammatory pulmonary fibrosis Rpf 

127 RISK 518.89 Other diseases of lung, not elsewhere classified Rld 

128 RISK 530.1 Esophagitis Reg 

129 RISK 530.11 Reflux esophagitis Rre 

130 RISK 530.81 Esophageal reflux Rer 

131 RISK 530.85 Barrett's esophagus Rbr 

132 RISK 553.3 
Diaphragmatic hernia without mention of obstruction or 

gangrene 
Rhw 

133 RISK 555.9 Regional enteritis of unspecified site Rrg 

134 RISK 556.9 Ulcerative colitis, unspecified Rcl 

135 RISK 558.9 
Other and unspecified noninfectious gastroenteritis and 

colitis 
Rng 

136 RISK 562.1 Diverticula of colon Rdv 

137 RISK 564 Functional digestive disorders not elsewhere classified Rfu 

138 RISK 564.09 Other constipation Rcs 

139 RISK 564.1 Irritable bowel syndrome Rir 

140 RISK 571.8 Other chronic nonalcoholic liver disease Rnl 

141 RISK 583.81 
Nephritis and nephropathy, not specified as acute or chronic, 

in diseases classified elsewhere  
Rnn 

142 RISK 585.2 Chronic kidney disease, Stage II (mild) Rki 

143 RISK 585.3 Chronic kidney disease, Stage III (moderate) Rkd 

144 RISK 585.4 Chronic kidney disease, Stage IV (severe) Rks 
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# ICD-9 Code ICD-9 Description Variable ID 

145 RISK 585.9 Chronic kidney disease, unspecified Rku 

146 RISK 593.9 Unspecified disorder of kidney and ureter Rud 

147 RISK 596 Other disorders of bladder Rdb 

148 RISK 599 Other disorders of urethra and urinary tract Ruu 

149 RISK 600 Hyperplasia of prostate Rpl 

150 RISK 600.01 
Hypertrophy (benign) of prostate and urinary obstruction and 

lower urinary tract symptoms 
Ruo 

151 RISK 600.9 Hyperplasia of prostate unspecified Rpu 

152 RISK 601.9 Prostatis, unspecified Rpt 

153 RISK 607.84 Impotence of organic origin Rim 

154 RISK 625.6 Stress incontinence, female Rsi 

155 RISK 695.3 Rosacea Rro 

156 RISK 696 Psoriasis and similar disorders Rsd 

157 RISK 696.1 Other psoriasis Rsr 

158 RISK 70.54 Repair of cystocele with graft or prosthesis Rgp 

159 RISK 70.7 Other Repair of Vagina Rrv 

160 RISK 710 Diffuse diseases of connective tissue Rct 

161 RISK 710.2 Sicca syndrome Rss 

162 RISK 712.36 Chondrocalcinosis, unspecified lower leg Rcu 

163 RISK 714 
Rheumatoid arthritis and other inflammatory 

polyarthropathies 
Rrh 

164 RISK 715.15 Osteoarthrosis, localized, primary, pelvic region and thigh Rlp 

165 RISK 715.25 Osteoarthrosis, localized, secondary, pelvic region and thigh Roh 

166 RISK 715.35 
Osteoarthrosis, localized, not specified whether primary or 

secondary, pelvic region and thigh 
Roa 

167 RISK 715.36 
Osteoarthrosis, localized, not specified whether primary or 

secondary, lower leg 
Rll 

168 RISK 715.9 Osteoarthrosis unspecified whether generalized or localized Rgo 

169 RISK 715.95 
Osteoarthrosis, unspecified whether generalized or localized, 

pelvic region and thigh 
Rgt 

170 RISK 715.96 
Osteoarthrosis, unspecified whether generalized or localized, 

lower leg 
Rog 

171 RISK 716.16 Traumatic arthropathy, lower leg Rta 

172 RISK 716.95 Arthropathy, unspecified, pelvic region and thigh Ray 

173 RISK 716.96 Arthropathy, unspecified, lower leg Rul 

174 RISK 717.6 Loose body in knee Rlo 

175 RISK 717.7 Chondromalacia of patella Rch 

176 RISK 718.45 Contracture of joint, pelvic region and thigh Rjc 

177 RISK 718.46 Contracture of joint, lower leg Rcj 

178 RISK 719.06 Effusion of joint, lower leg Rej 

179 RISK 719.46 Pain in joint, lower leg Rjp 

180 RISK 721 Spondylosis and allied disorders Rso 

181 RISK 721.3 Lumbosacral spondylosis without myelopathy Rls 

182 RISK 721.9 Spondylosis of unspecified site Rsu 

183 RISK 722.4 Degeneration of cervical intervertebral disc Ric 

184 RISK 722.52 Degeneration of lumbar or lumbosacral intervertebral disc Rdl 

185 RISK 724 Other and unspecified disorders of back Rdu 

186 RISK 724.02 
Spinal stenosis, lumbar region, without neurogenic 

claudication 
Rsp 

187 RISK 724.2 Lumbago Rlu 

188 RISK 724.3 Sciatica Rsa 
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# ICD-9 Code ICD-9 Description Variable ID 

189 RISK 724.5 Backache, unspecified Rbu 

190 RISK 725 Polymyalgia rheumatica Rpy 

191 RISK 726.5 Enthesopathy of hip region Ren 

192 RISK 727 Other disorders of synovium tendon and bursa Rst 

193 RISK 727.09 Other synovitis and tenosynovitis Rsy 

194 RISK 728.87 Muscle weakness (generalized) Rmw 

195 RISK 729.1 Myalgia and myositis, unspecified Rma 

196 RISK 731 
Oseitis deformans and osteopathies associated with other 

disorders classified elsewhere 
Rot 

197 RISK 732.1 Juvenile osteochondrosis of hip and pelvis Rjo 

198 RISK 733 Other disorders of bone and cartilage Rbn 

199 RISK 733.01 Senile osteoporosis Rse 

200 RISK 733.2 Cyst of bone Rcy 

201 RISK 733.29 Other bone cyst Rob 

202 RISK 733.4 Aseptic necrosis of bone Rnb 

203 RISK 733.42 Aseptic necrosis of head and neck of femur Rnr 

204 RISK 733.82 Nonunion of fracture Rfr 

205 RISK 733.9 Other and unspecified disorders of bone and cartilage Rdc 

206 RISK 733.99 Other disorders of bone and cartilage Rcg 

207 RISK 736.6 Other acquired deformities of knee Raq 

208 RISK 736.79 Other acquired deformities of ankle and foot Rak 

209 RISK 736.81 Unequal leg length (acquired) Rla 

210 RISK 736.89 Other acquired deformity of other parts of limb Rdp 

211 RISK 737.3 Kyphoscoliosis and scoliosis Rky 

212 RISK 738.4 Acquired spondylolisthesis Rsl 

213 RISK 755.63 Other congenital deformity of hip (joint) Rhj 

214 RISK 780.4 Dizziness and giddiness Rdz 

215 RISK 780.52 Insomnia, unspecified Riu 

216 RISK 780.57 Unspecified sleep apnea Rae 

217 RISK 780.93 Memory loss Rml 

218 RISK 782.3 Edema Red 

219 RISK 784 Symptoms involving head and neck Rhn 

220 RISK 785 Symtoms involving cardiovascular system Rcv 

221 RISK 785.2 Undiagnosed cardiac murmurs Rum 

222 RISK 788.2 Retention of urine Rur 

223 RISK 788.3 Urinary incontinence Rin 

224 RISK 788.31 Urge incontinence Rit 

225 RISK 788.41 Urinary frequency Ruf 

226 RISK 790.29 Other abnormal glucose Rgl 

227 RISK 790.92 Abnormal coagulation profile Rpr 

228 RISK E932.0 
Adrenal cortical steroids causing adverse effects in 

therapeutic use 
Ref 

229 RISK E933.1 
Antineoplastic and immunosuppressive drugs causing 

adverse effects in therapeutic use 
Rai 

230 RISK V08 
Asymptomatic human immunodeficiency virus (HIV) 

infection status 
Rhi 

231 RISK V85.4 Body mass index 40 and over, adult Rmi 
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Table 104. Literature-based IVs Retained for Hip and Knee Data Sets after Variable Reduction. 

# ICD-9 Code ICD-9 Description Var. ID 

Literature-

based IVs 

(Bozic/Jain 

Study) 

IV in 

Knee 

IV in 

Hip 

1 RISK 250 Diabetes mellitus Rdi yes yes yes 

2 RISK 250.4 Diabetes with renal manifestations Rdr yes yes no 

3 RISK 250.5 Diabetes with ophthalmic manifestations Rdo yes yes no 

4 RISK 250.6 Diabetes with neurological manifestations Rdn yes yes yes 

5 RISK 278 
Overweight, obesity and other 

hyperalimentation 
Roo yes yes yes 

6 RISK 278.01 Morbid obesity Rmo yes yes yes 

7 RISK 278.02 Overweight Rov yes yes yes 

8 RISK 401.1 Benign essential hypertension Rbe yes yes yes 

9 RISK 401.9 Unspecified essential hypertension Rhe yes yes yes 

10 RISK 414 Other forms of chronic ischemic heart disease Rci yes yes yes 

11 RISK 414.01 
Coronary atherosclerosis of native coronary 

artery 
Rca yes yes yes 

12 RISK 428 Heart failure Rhf yes yes yes 

13 RISK 428.3 Diastolic heart failure Rdh yes yes yes 

14 RISK 428.32 Chronic diastolic heart failure Rdf yes yes no 

15 RISK 443 Other peripheral vascular disease Rpe yes yes yes 

16 RISK 443.9 Peripheral vascular disease, unspecified Rpv yes yes yes 

17 RISK 491.2 Obstructive chronic bronchitis Rcb yes yes no 

18 RISK 491.9 Unspecified chronic bronchitis Rbh yes yes no 

19 RISK 492.8 Other emphysema Rem yes yes yes 

20 RISK 493 Asthma Ras yes yes no 

21 RISK 493.2 Chronic obstructive asthma Rco yes yes yes 

22 RISK 493.9 Asthma unspecified Rua yes yes yes 

23 RISK 496 
Chronic airway obstruction, not elsewhere 

classified 
Rao yes yes yes 
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Table 105. 62 Single Predicting IVs for DV SNF (Hip data). 

MODEL dDF dLR Alpha %dH(DV) dAIC dBIC Inc.Alpha p < 0.05 Keep Lit 

Rhy 1 38.48 0.00 1.47 36.48 30.41 0.00 yes 
 

Rhe 1 33.53 0.00 1.28 31.53 25.46 0.00 yes yes 

Rav 1 24.07 0.00 0.92 22.07 15.99 0.00 yes 
 

Rrd 1 23.96 0.00 0.91 21.96 15.89 0.00 yes 
 

Rao 1 23.68 0.00 0.90 21.68 15.61 0.00 yes yes 

Rhf 1 20.94 0.00 0.80 18.94 12.87 0.00 yes yes 

Rnr 1 19.36 0.00 0.74 17.36 11.29 0.00 yes 
 

Rbn 1 18.32 0.00 0.70 16.32 10.25 0.00 yes 
 

Rhh 1 16.05 0.00 0.61 14.05 7.98 0.00 yes 
 

Rkd 1 15.87 0.00 0.60 13.87 7.80 0.00 yes 
 

Rdi 1 15.85 0.00 0.60 13.85 7.77 0.00 yes yes 

Rin 1 14.43 0.00 0.55 12.43 6.36 0.00 yes 
 

Rse 1 14.15 0.00 0.54 12.15 6.08 0.00 yes 
 

Raf 1 13.66 0.00 0.52 11.66 5.59 0.00 yes 
 

Rci 1 13.22 0.00 0.50 11.22 5.15 0.00 yes yes 

Rhd 1 12.89 0.00 0.49 10.89 4.82 0.00 yes 
 

Rau 1 12.38 0.00 0.47 10.38 4.31 0.00 yes 
 

Rku 1 11.28 0.00 0.43 9.28 3.21 0.00 yes 
 

Rug 1 11.28 0.00 0.43 9.28 3.21 0.00 yes 
 

Rdh 1 10.91 0.00 0.42 8.91 2.84 0.00 yes yes 

Rml 1 10.91 0.00 0.42 8.91 2.84 0.00 yes 
 

Rop 1 9.80 0.00 0.37 7.80 1.73 0.00 yes 
 

Rdm 1 8.66 0.00 0.33 6.66 0.59 0.00 yes 
 

Rld 1 8.58 0.00 0.33 6.58 0.51 0.00 yes 
 

Rsi 1 8.38 0.00 0.32 6.38 0.30 0.00 yes 
 

Rca 1 8.37 0.00 0.32 6.37 0.29 0.00 yes yes 

Rhl 1 7.46 0.01 0.28 5.46 -0.62 0.01 yes 
 

Rod 1 7.38 0.01 0.28 5.38 -0.69 0.01 yes 
 

Rph 1 6.97 0.01 0.27 4.97 -1.11 0.01 yes 
 

Rvi 1 6.75 0.01 0.26 4.75 -1.32 0.01 yes 
 

Rec 1 6.75 0.01 0.26 4.75 -1.32 0.01 yes 
 

Rhj 1 6.34 0.01 0.24 4.34 -1.73 0.01 yes 
 

Rmd 1 6.19 0.01 0.24 4.19 -1.88 0.01 yes 
 

Rpc 1 6.19 0.01 0.24 4.19 -1.88 0.01 yes 
 

Ruu 1 6.19 0.01 0.24 4.19 -1.88 0.01 yes 
 

Rog 1 5.80 0.02 0.22 3.80 -2.27 0.02 yes 
 

Rcg 1 5.58 0.02 0.21 3.58 -2.49 0.02 yes 
 

Rip 1 5.58 0.02 0.21 3.58 -2.49 0.02 yes 
 

Rad 1 5.08 0.02 0.19 3.08 -2.99 0.02 yes 
 

Rh 1 4.94 0.03 0.19 2.94 -3.13 0.03 yes 
 

Rdl 1 4.77 0.03 0.18 2.77 -3.30 0.03 yes 
 

Rsp 1 4.64 0.03 0.18 2.64 -3.43 0.03 yes 
 

Rrn 1 4.32 0.04 0.16 2.32 -3.75 0.04 yes 
 

Ram 1 4.30 0.04 0.16 2.30 -3.77 0.04 yes 
 

Rap 1 4.30 0.04 0.16 2.30 -3.77 0.04 yes 
 

Ray 1 4.30 0.04 0.16 2.30 -3.77 0.04 yes 
 

Ria 1 4.30 0.04 0.16 2.30 -3.77 0.04 yes 
 

Rem 1 4.18 0.04 0.16 2.18 -3.89 0.04 yes yes 

Rpn 1 4.16 0.04 0.16 2.16 -3.91 0.04 yes 
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MODEL dDF dLR Alpha %dH(DV) dAIC dBIC Inc.Alpha p < 0.05 Keep Lit 

Rpo 1 4.02 0.05 0.15 2.02 -4.05 0.05 yes 
 

Roc 1 3.98 0.05 0.15 1.98 -4.09 0.05 yes 
 

Rra 1 3.98 0.05 0.15 1.98 -4.09 0.05 yes 
 

Rde 1 3.76 0.05 0.14 1.76 -4.32 0.05 yes 
 

Rbe 1 3.08 0.08 0.12 1.08 -4.99 0.08 
 

yes 

Rpv 1 2.85 0.09 0.11 0.85 -5.22 0.09 
 

yes 

Rdn 1 2.78 0.10 0.11 0.78 -5.29 0.10 
 

yes 

Roo 1 1.28 0.26 0.05 -0.72 -6.79 0.26 
 

yes 

Rpe 1 1.26 0.26 0.05 -0.74 -6.81 0.26 
 

yes 

Rco 1 1.05 0.30 0.04 -0.95 -7.02 0.30 
 

yes 

Rov 1 0.86 0.35 0.03 -1.14 -7.21 0.35 
 

yes 

Rmo 1 0.68 0.41 0.03 -1.32 -7.39 0.41 
 

yes 

Rua 1 0.32 0.57 0.01 -1.68 -7.76 0.57 
 

yes 

 

Component Fit Tables for Knee SNF (All IVs) 

Table 106. Component Fit Table for IV Ageb in (Knee) All IVs 

Best Model L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF : Rmd SNF : Rug SNF : Rhf SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

 IV Data obs. p(DV|IV)   

# Ageb freq SNF=1 SNF=2 Ratio p(margin) 

 1 1 1490 94.50 5.50 0.31 0.00 

 2 2 1411 86.11 13.89 0.79 0.00 

 3 3 1435 66.34 33.66 1.92 0.00 

    4336 82.45 17.55 1.00   

 

Table 107. Component Fit Table for IV Svb in (Knee) All IVs 

Best Model L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF : Rmd SNF : Rug SNF : Rhf SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 IV Data obs. p(DV|IV)   

# Svb freq SNF=1 SNF=2 Ratio p(margin) 

1 2 1518 78.33 21.67 1.23 0.00 

2 3 1374 86.25 13.76 0.78 0.00 

    4336 82.45 17.55 1.00   
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Table 108. Component Fit Table for IV Nrb in (Knee) All IVs 

Best Model L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF : Rmd SNF : Rug SNF : Rhf SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 IV Data obs. p(DV|IV)   

# Nrb freq SNF=1 SNF=2 Ratio p(margin) 

1 1 1309 89.61 10.39 0.59 0.00 

2 3 1553 75.34 24.66 1.41 0.00 

    4336 82.45 17.55 1.00   

 

Table 109. Condensed Component Fit Table for Rmd, Rug, and Rhf for (Knee) All IVs for IV Rmd. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

     Data obs. p(DV|IV)     

IV State freq SNF=1 SNF=2 Ratio p(margin) 

Rmd 1 19 21.05 78.95 4.50 0 

Rug 1 86 54.65 45.35 2.58 0 

Rhf 1 87 54.02 45.98 2.62 0 

    4336 82.45 17.55 1.00   

 

Component Fit Tables for Knee (Comorbidity IVs Only) 

Table 110. Condensed Component Fit Table for IVs Rmd, Rpa, Rug, Rhe, Rhe, Rhf, 

Rku, Rbn, and Rin for (Knee) Comorbidity IVs  

Best Model Rhy SNF : Rau SNF : Rmd SNF : Rpa SNF : Rug SNF : Rhe SNF : 

Rhf SNF : Rku SNF : Rbn SNF : Rin SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

    Data obs. p(DV|IV) 

 

  

IV State freq SNF=1 SNF=2 ratio p(margin) 

Rmd 1 19 21.05 78.95 4.50 0.00 

Rpa 1 26 53.85 46.15 2.63 0.00 

Rug 1 86 54.65 45.35 2.58 0.00 

Rhe 0 1963 84.77 15.23 0.87 0.01 

Rhe 1 2373 80.53 19.47 1.11 0.01 

Rhf 1 87 54.02 45.98 2.62 0.00 

Rku 1 87 57.47 42.53 2.42 0.00 

Rbn 1 149 65.77 34.23 1.95 0.00 

Rin 1 40 50.00 50.00 2.85 0.00 

    4336 82.45 17.55 1.00   
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Component Fit Tables for Hip SNF (All IVs) 

Table 111. Component Fit Table for IV Fc in (Hip) All IVs 

Best Model Fc SNF : Ageb SNF : Svb SNF : Nrb SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Frequencies < 10 are excluded and ratios between 0.91 and 1.09 

are close to the margins and are excluded.) 

 IV Data obs. p(DV|IV)   

# Fc freq SNF=1 SNF=2 Ratio p(margin) 

1 1 1598 75.78 24.22 1.70 0.00 

2 2 1501 96.67 3.33 0.23 0.00 

3 3 61 70.49 29.51 2.07 0.00 

6 6 19 100.00 0.00 0.00 0.08 

    3204 85.74 14.26     

 

Table 112. Component Fit Table for IV Ageb in (Hip) All IVs 

Best Model Fc SNF : Ageb SNF : Svb SNF : Nrb SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

 IV Data obs. p(DV|IV)   

# Ageb freq SNF=1 SNF=2 Ratio p(margin) 

1 1 1089 95.23 4.78 0.33 0.00 

2 2 1027 92.11 7.89 0.55 0.00 

3 3 1088 70.22 29.78 2.09 0.00 

    3204 85.74 14.26 1.00   

 

Table 113. Component Fit Table for IV Svb in (Hip) All IVs 

Best Model Fc SNF : Ageb SNF : Svb SNF : Nrb SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

 IV Data obs. p(DV|IV)   

# Svb freq SNF=1 SNF=2 Ratio p(margin) 

1 1 1067 82.19 17.81 1.25 0.00 

2 2 1053 78.16 21.84 1.53 0.00 

3 3 1084 96.59 3.41 0.24 0.00 

    3204 85.74 14.26 1.00   

 

Table 114. Component Fit Table for IV Nrb in (Hip) All IVs 

Best Model Fc SNF : Ageb SNF : Svb SNF : Nrb SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 IV Data obs. p(DV|IV)   

# Nrb freq SNF=1 SNF=2 Ratio p(margin) 

1 1 1111 91.81 8.19 0.57 0.00 

2 3 1012 77.17 22.83 1.60 0.00 

    3204 85.74 14.26 1.00   
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Table 115. Fit Table (Hip) for Comorbidity IVs for 

Best Model Rhy SNF : Rhh SNF : Rug SNF :Rhe SNF : Rrd SNF : 

Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF. 

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10. 

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.) 

 

IVs Data Model   

   obs. p(DV|IV) calc. q(DV|IV)   

# Rhy Rhh Rug Rhe Rrd Rav Rao Rbn Rse Rnr freq SNF=1 SNF=2 SNF=1 SNF=2 Ratio p(margin) 

1 0 0 0 0 0 0 0 0 0 0 1371 92.34 7.66 92.15 7.85 0.55 0.00 

10 0 0 0 0 1 0 0 0 0 0 42 71.43 28.57 74.60 25.40 1.78 0.04 

18 0 0 0 1 0 0 0 0 0 1 49 73.47 26.53 68.93 31.07 2.18 0.00 

20 0 0 0 1 0 0 0 1 0 0 43 79.07 20.93 75.02 24.98 1.75 0.04 

22 0 0 0 1 0 0 1 0 0 0 26 76.92 23.08 72.01 27.99 1.96 0.05 

26 0 0 0 1 0 1 0 0 0 0 10 50.00 50.00 44.64 55.37 3.88 0.00 

50 1 0 0 0 1 0 0 0 0 0 14 78.57 21.43 59.33 40.67 2.85 0.01 

53 1 0 0 1 0 0 0 0 0 0 171 74.85 25.15 75.84 24.16 1.69 0.00 

56 1 0 0 1 0 0 0 1 0 0 12 66.67 33.33 59.87 40.13 2.81 0.01 

 3204 85.74 14.26 85.74 14.26   

 

Table 116. Condensed Component Fit Table for Comorbidity IVs in (Hip) 

Best Model, Rhy SNF : Rhh SNF : Rug SNF :Rhe SNF : Rrd SNF : 

Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF. 

Orange rows indicate ratio > 1.10. 

(Frequencies < 10 and ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

  Data obs. p(DV|IV)   

IV State freq SNF=1 SNF=2 Ratio p(margin) 

Rhy 1 386 74.61 25.39 1.78 0.00 

Rhh 1 10 30.00 70.00 4.91 0.00 

Rug 1 48 66.67 33.33 2.34 0.00 

Rhe 1 1464 81.83 18.17 1.27 0.00 

Rrd 1 77 63.64 36.36 2.55 0.00 

Rao 1 86 65.12 34.88 2.45 0.00 

Rse 1 11 36.36 63.64 4.46 0.00 

Rnr 1 99 68.69 31.31 2.20 0.00 

  
 

3204 85.74 14.26 1.00 
 

 

Table 117. Component Fit Table for Interaction Rav Rbn in (Hip) 

Best Model Rhy SNF : Rhh SNF : Rug SNF :Rhe SNF : Rrd SNF : 

Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF. 

Orange rows indicate ratio > 1.10. 

(Frequencies < 10 and ratios between 0.91 and 1.09 are close to the margins and are excluded.) 

 IVs Data obs. p(DV|IV)  

# Rav Rbn freq SNF=1 SNF=2 Ratio p(margin) 

1 0 1 147 72.11 27.89 1.96 0.00 

2 1 0 25 40.00 60.00 4.21 0.00 

   
3204 85.74 14.26 1.00 
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