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Abstract

Legislative reforms aimed at slowing growth of US healthcare costs are focused
on achieving greater value, defined specifically as health outcomes achieved per dollar
spent. To increase value while payments are diminishing and tied to individual outcomes,
healthcare must improve at predicting risks and outcomes.

One way to improve predictions is through better modeling methods. Current
models are predominantly based on logistic regression (LR). This project applied
Reconstructability Analysis (RA) to data on hip and knee replacement surgery, and
considered whether RA could create useful models of outcomes, and whether these
models could produce predictions complimentary to or even stronger than LR models.

RA is a data mining method that searches for relations in data, especially non-
linear and higher ordinality relations, by decomposing the frequency distribution of the
data into projections, several of which taken together define a model, which is then
assessed for statistical significance. The predictive power of the model is expressed as the
percent reduction of uncertainty (Shannon entropy) of the dependent variable (the DV)
gained by knowing the values of the predictive independent variables (the 1Vs).

Results showed that LR and RA gave the same results for equivalent models, and
showed that exploratory RA provided better models than LR. Sixteen RA predictive
models were then generated across the four DVs: complications, skilled nursing
discharge, readmissions, and total cost. While the first three DVs are nominal, RA
generated continuous predictions for cost by calculating expected values. Models
included novel comorbidity variables and non-hypothesized interaction terms, and often
resulted in substantial reductions in uncertainty.



Predictive variables consisted of both delivery system variables and binary patient
comorbidity variables. Complications were predicted by the total number of patient
comorbidities. Skilled nursing discharges were predicted both by patient-related factors
and delivery system variables (location, surgeon volume), suggesting practice patterns
influence utilization of skilled nursing facilities. Readmissions were not well predicted,
suggesting the data used in this project lacks the right variables or that readmissions are
simply unpredictable. Delivery system variables (surgeon, location, and surgeon volume)
were found to be the predominant predictors of total cost.

Risk ratios were generated as an additional measure of effect size. These risk
ratios were used to classify the IV states of the models as indicating higher or lower risk
of adverse outcomes. Some 1V states showed nearly 25% of patients at increased risk,
while other 1V states showed over 75% of patients at decreased risk. In real time, such
risk predictions could support clinical decision making and custom-tailored utilization of
services.

Future research might address the limitations of this project’s data and employ
additional RA techniques and training-test splits. Implementation of predictive models is
also discussed, with considerations for data supply lines, maintenance of models,
organizational buy-in, and the acceptance of model output by clinical teams for use in
real-time clinical practice.

If outcomes and risk are adequately predicted, areas for potential improvement
become clearer, and focused changes can be made to drive improvements in patient care.
Better predictions, such as those resulting from the RA methodology, can thus support
improvement in value—Dbetter outcomes at a lower cost. As reimbursement increasingly



evolves into value-based programs, understanding the outcomes achieved, and
customizing patient care to reduce unnecessary costs while improving outcomes, will be
an active area for clinicians, healthcare administrators, researchers, and data scientists for

many years to come.
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Chapter 1. Introduction

Transitioning to Value and the Role of Predictive Analytics

Healthcare in the United States is facing unprecedented challenges. The trajectory
of spending in US healthcare costs is unsustainable. This has led to a national dialogue
that is currently under way among the federal government, insurance payers, healthcare
delivery systems, and patient advocates—all calling for substantial changes to the current
system in order to improve the value of healthcare.

One example where this challenge is clearly evident is in the field of orthopedics.
The population in the United States that is age 65 and older is more active than in
previous generations and expects to maintain a quality of life dependent on mobility. The
demand for total joint replacement procedures is increasing. At the same time, Federal
and state funding of Medicare and Medicaid services is in decline, and reimbursement
rates are decreasing for these procedures.

The Patient Protection and Affordable Care Act of 2010 has already resulted in
significant changes in how Medicare pays providers. These payment reforms are
designed to slow the growth in costs and push improvements in quality of healthcare
delivery. The Centers for Medicare and Medicaid Services (CMS) has already
implemented a mandatory bundled payment for hip and knee replacements, with other
condition groups soon to follow. In 2015, the Medicare Access and CHIP
Reauthorization Act (MACRA) was passed, which changes the way CMS pays
physicians for Medicare covered patients and includes programs such as The Merit-based

Incentive Payment System (MIPS) and Advanced Alternative Payment Models (APMs),
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specifically tying payments to quality. In the last decade, the activation of healthcare
reform is increasingly reflected in the policies and practices of both government and
private health insurance payers and healthcare providers.

Bundled payments, and other new models of reimbursement, are now charged
with finding ways to assess physician performance and create payment systems that
determine what physicians should be paid for what they actually do. These new payment
models will simultaneously include increased financial risk for health systems, insist on
better quality outcomes, and demand lower cost. Under traditional payment models,
healthcare providers were paid per service provided, and the outcome of that service was
not linked to payment. Under new payment models, payment is increasingly tied to
performance based on outcomes.

In fact, the dialogue among healthcare reform players has now focused on
achieving value as the overarching goal of healthcare delivery. Value in healthcare has
come to be specifically defined as the health outcomes achieved per dollar spent. The
formula for value therefore places outcomes as the numerator and dollars spent as the
denominator. A key driver of value is the aggregate set of services provided to a patient
throughout an episode of care. The more focused and appropriate the services provided,
given the unique patient factors, the more value can be achieved (Porter, 2010).

In President Barack Obama’s 2015 State of the Union address, the President
announced the Precision Medicine initiative, saying, “I want the country that eliminated
polio and mapped the human genome to lead a new era of medicine—one that delivers
the right treatment at the right time” (State of the Union Address, 2015). While precision
medicine most frequently applies to the use of genomic level data, the term precision
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delivery refers to the use of a patient’s electronic health record data to predict risk and
tailor care to improve value. To increase value while payments are diminishing and tied
to individual outcome quality, healthcare must improve at predicting risks and outcomes,
and matching the right services to the right patient when needed.

The time for precision delivery is now. With the advent of accountable

care, the health care organizations that succeed will be those that deliver

high value. Perhaps the most important step to improving value will be

implementing clinical analytics in routine care. Organizations that

adapt by integrating these tools may do better both clinically and

financially going forward. (Parikh, Kakad, & Bates, 2016).

Some healthcare delivery system front runners are currently deploying predictive
analytics in order to improve efficiency by tailoring the delivery of services to the
individual patient. Delivery systems can focus costly resources on the higher-risk patient
groups if patient risk is assessed in real time at the point of care. One way to improve
predictions of risk is through better modeling methods.

Historically, predictive methods used fall under the category of generalized linear
modeling, and more specifically Regression Analysis. Regression Analysis methods, such
as Logistic Regression, have been widely accepted as the default method of prediction
and are still the predominant methodology in health outcomes research. More recently,
machine learning and artificial intelligence are gaining popularity, particularly with real-
time analytics and risk prediction. Logistic Regression is broadly understood and has
high “explainability,” thus allowing the clinicians clear insight into the mechanism of

prediction. Artificial Intelligence (Al) methods, such as Neural Networks (NNs), may

enhance predictions, but perhaps with a sacrifice of explainability. If a methodology is



both more predictive than LR and explainable, then this methodology will be worth
considering.

This project explores the possibility that there are other methods of predictive
modeling that may be stronger than or at least complimentary to standard methods of
prediction. Reconstructability Analysis (RA), which is the methodology that this study
looks at, is a machine learning methodology developed in the systems science research
community for finding relations in data, especially non-linear and higher ordinality
relations. These relationships between the variables in the data can have high ordinality
(involve many variables), and one need not impose any hypothetical relationship prior to
RA. RA may perform as well as LR methods and may provide additional accuracy
through detection of novel variables and interaction effects between independent
variables. While LR can model interaction effects, in standard implementation of this
method these interactions must be specified during model construction, usually based on
empirical findings, and specific hypotheses of interaction tested. RA is truly exploratory
in that no interactions need to be specified during model construction, but emerge
through exploration.

Reconstructability Analysis (RA) is a validated data mining method and has been
used with success in other fields. It is relatively unknown, however, in health outcomes
research. RA assesses hyper-graph structures either using set theoretic (SRA) or
information theoretic (IRA) modeling. This study will use the information theoretic form
IRA, which utilizes information theory to measure the uncertainty (entropy) in the output

(dependent) variable(s), as a function of the known input (independent) variable(s).



The potential value of RA for the present study is threefold:

(1) RA can play a confirmatory role. If RA results in similar findings as those
arrived at through use of more commonly accepted methodologies (LR), then this
confirmation of results increases the credibility of the research findings of the standard
methodologies.

(2) RA can be used as a hypothesis generator, detecting variables that were not
known a priori as strong predictors and then modeled using more standard regression
analysis methods, therefore providing a complimentary and supportive approach.

(3) Further, RA might predict with better accuracy than LR. If this result is
found, then RA is valuable as a stand-alone method that can replace LR in the creation

of predictive risk models.

Problem Domain

Reform efforts are looking at joint replacement procedures as an area ripe for
improvement in costs and outcomes because of the high cost, the high variation in
outcomes, and the increasing demand for these procedures. This project presents
condition specific models to predict outcomes that are important in hip and knee
replacement. RA is used to look for predicting variables (including interaction effects)
from a large set of patient comorbidities and delivery system variables on the following
four dependent variables: Complication (inpatient), discharge to Skilled Nursing Facility
(SNF), Readmission (90 day), and the continuous variable Total Cost (expected values

are calculated for cost).



Research Objectives

Within the specifics of the domain of hip and knee replacement surgery, this
project aims to demonstrate that RA models are able to predict outcomes and provide
additional insights that improve healthcare value, comparable to and beyond the

capabilities of LR.
Preliminary Research Objective: LR and RA Comparison

Do RA and LR give the same results for equivalent models?

Prior to exploratory modeling with Reconstructability Analysis, the first task is to
demonstrate the validity of the data used in this project and the RA methodology. RA is
validated by testing a logistic regression (LR)-generated model arrived at by a past study,
using LR on this project’s data. If LR applied to this data approximately reproduces LR
results reported in the literature, and if the results of RA applied to this data are similar to
those from LR, then the RA and LR methods are comparable. Generating similar results

using RA gives confidence in the use of RA for exploratory modeling.

Does exploratory RA provide better or novel models compared to LR?

It is possible that RA produces better models than models produced by LR. If RA
generates stronger predictions, then RA is not only valuable as a method to confirm or
augment LR, but as a stand-alone method that could replace LR in the creation of

predictive risk models.



Main Research Objective: Find Predictive Models with RA

What are the best RA models?

The primary results of this project are a set of 16 predictive models. Each model
provides a conditional probability distribution of the possible outcomes of four measures
(DVs), given a set of comorbidities and delivery system variables (IVs). The models look
not only at the probability distribution of outcomes given a single 1V, or of multiple 1Vs
taken individually, but also at the probability of outcomes given relationships between
IVs, i.e., given complex interaction effects between the 1Vs and the DV.

The exploratory phase of this project aims to detect predictive Vs and interaction
effects among the IVs and each of the DVs. Relations between the Vs and the DV do not
have to be specified up front, and thus their form does not need to be known or
hypothesized. These relations can be discovered using RA. These interaction effects may
offer better prediction than that of single 1\VVs known from the current literature.

Exploratory modeling with RA may even detect surprising predictive IVs.



Chapter 2. Review of Literature

In this chapter, four areas of literature are described. The first body of literature is
that of the healthcare context, and new payment models spurred by healthcare reform
efforts aimed at increasing value by tying costs to outcomes. The second area concerns
the assessment of risk for quality measurement and optimization of real-time patient care.
This discussion of risk is enhanced by the third area of focus, where the literature
surveyed looks at specific predictive models in the analysis of outcomes and, although
much less common, the clinical care setting. This literature shows that predictive models
provide value, particularly condition/procedure-specific models. A large body of
literature exists for predictive modeling in adult cardiac surgery, but a much more limited
body of literature exists for hip and knee replacement surgery. Of the studies that exist in
hip and knee replacement surgery, none make use of data mining techniques to increase
predictive ability. These studies use regression analysis methods with the most common
approach being the logistic regression methodology. That being said, in the fourth main
body of literature, data mining techniques are reviewed and the potential role for

Reconstructability Analysis to add value as a methodology is highlighted.

The Healthcare Context

Costs in the US healthcare system have spiraled out of control, resulting in what
is referred to as a healthcare crisis. This crisis is reflected not only in soaring costs, but
also in lack of access to care and in variation in treatments and outcomes and many other
issues (Fisher, 2003). National Health Expenditure Projects Americans will spend

4.5 trillion dollars on healthcare by 2019 (Medicare, 2016). The US is an outlier in
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healthcare spending, spending 40% more per capita then the next highest spending
country (Lorenzoni, Belloni, & Sassi, 2014). This massive amount of spending has not
resulted in better care. Glaring variations in services provided and outcomes have
intensified efforts toward reforming the healthcare delivery system. In a system that has
traditionally paid a fee for every service provided, current policy reform is essentially
focused on removing the incentive to provide too much care by creating fixed payments,
and guarding against poor care by incentivizing the delivery system on good performance
based on quality (Doyle, Graves, & Gruber, 2015). In a seminal publication, Michael
Porter captured the conflicting goals of stakeholders, including access to services,
profitability, high quality, cost containment, safety, convenience, patient-centeredness,
and satisfaction, and introduced the concept of value as the overarching goal to unite
healthcare delivery (Porter, 2010). Arguing for value, Porter states “If value improves,
patients, payers, providers, and suppliers can all benefit while the economic sustainability
of the health care system increases” (Porter & Teisberg, 2006).

Literature on healthcare reform shows the evolution toward value-based care over
the last decade, through adoption of performance-based payment systems as a primary
mechanism for the reduction of soaring healthcare costs and improvement in quality care
(Nichols & O’Malley, 2006). The Patient Protection and Affordable Care Act (ACA) of
2010 (“Patient Protection and Affordable Care Act of 2010,” 2010) has been a significant
piece of legislation with myriad components and strategies. A central piece of this
legislation provides for slowing growth in Medicare spending and promotes experiments
in payment and delivery system reform (Oberlander, 2010). Under value-based payment
systems, the fee-for-service payment system is retained but tied to efficiency and quality
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by the delivery system. The transformation of healthcare is under way, with 30% of
Medicare payments going through alternative payment models (APMs) (Obama, 2016).
These APMs include bundled payments, where a single payment is reimbursed for all
services falling within a pre-defined episode, or accountable care organizations (ACOs).
According to CMS, an ACO is “an organization of health care practitioners that agrees to
be accountable for the quality, cost, and overall care of Medicare beneficiaries who are
enrolled in the traditional fee-for-service program who are assigned to it” (Centers for
Medicare & Medicaid Services (CMS), HHS, 2011).

One of the first specific clinical areas to face these reform efforts is hip and knee
replacements. The demand for hip and knee replacements, coupled with the variation in
cost and outcomes, has resulted in the first early bundled payment experiments, such as
Bundled Payment for Care Improvement Initiative (BPCI) and now the first mandatory
bundled payment for hip and knee replacement surgery by the Centers for Medicare and
Medicaid Services (CMS). In the CMS Comprehensive Care for Joint Replacement (CJR)
episode-based payment model, set target payments require hospitals, physicians, and
post-acute care providers to coordinate in order to improve patient outcomes at an
increasingly smaller target price (Centers for Medicare & Medicaid Services, 2015).
Additionally, a large number of joint replacement commercial bundled contracts are in
the marketplace today.

Demand for total hip and knee replacement is expected to continue rapid growth
in the next 10 years, largely due to the aging baby boomer population and the obesity
epidemic (Fehring et al., 2010). One estimate places the total number of hip and knee
replacements at over 4 million by 2030, an increase of 174% over 2007 volumes

-10 -



(Kurtz S, 2007). Estimates place the prevalence of osteoarthritis, the disease causing total
hip and knee replacement, at 18.2% by 2020 (Lawrence et al., 1998). Osteoarthritis
increases with age (Pulido L, 2008) and “the higher life expectancy and the upcoming
massive cohort from the ‘old baby boomers’ will lead to a higher number of joint
arthroplasties being performed . . . it is hence plausible that a higher incidence of medical
complications in this growing joint arthroplasty population will be observed” (p.139).
The quality of elective total hip and total knee procedures is extremely varied (Tomek

et al., 2012) and in fact, hip and knee replacements are among the procedures with the
most varied payments. These variations in payment correspond in part to the fact that the
profile of patient populations differ across regions and within regions by the fact that
some hospitals receive larger burdens of higher-risk patients. Even after controlling for
the differences between patient populations, there is still a large variation between
payments for these procedures (Miller et al., 2011). The authors suggest that the
unexplained remaining variation is possibly unwarranted, suggesting that there is room to
improve. The literature shows a broad consensus that the medical system can perform
better—providing good patient outcomes at a lower cost.

Delivery systems contracted under bundled payments will have to deal with the
issue of risk: what happens if the cost of care exceeds the set bundled price? In some
bundle arrangements, the physician is a partner with the hospital on the gains, and in
some scenarios also on the loss. A set bundled price therefore provides incentive to come
in under the set fixed price as often as over it and therefore break even, or better yet,
come in under the bundled price more often than not and therefore derive profit.
Reducing costs alone will not solve the healthcare crisis, and achieving high quality
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outcomes is an essential component of value. Porter states “Cost reduction without regard
to the outcomes achieved is dangerous and self-defeating, leading to false “savings” and
potentially limiting effective care.” (Porter & Teisberg, 2006). Alternative payment
models reward cost effectiveness, and there is concern that without adjusting for patient
comorbidities restricted access to care will be encouraged (Rozell, Courtney, Dattilo, Wu,
& Lee, 2016). An increase in demand for total hip and knee replacement surgery in a
market where surgeons must select only a subset of all surgical candidates for surgery
and a reimbursement model that does not account for patient risk is a recipe for higher-

risk patients to be pushed out of the pool of surgical candidates.

Assessing Risk

Accounting for patient risk is important not only for optimizing the value equation
and ensuring fair physician reimbursement, but for patients, ensuring that reimbursement
is structured in a way that allows for broad and equitable patient access. With payments
increasingly tied to outcomes, providers are demanding collection of better data on
outcomes and improving risk adjustment techniques to account for underlying patient
comorbidities and understanding what techniques lead to the best outcomes (Luft, 2009).

There are two primary ways that the assessment of risk plays a role in this
landscape. First, adequately understanding a patient’s risk allows for the measurement of
outcomes adjusted by patient individual risk factors. This retrospective measure of
quality is critical for the measurement of performance. Second, predicting risk can allow

for-real time identification of high-risk patients likely to require expensive care or to
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experience an adverse event (Bates, Saria, Ohno-Machado, Shah, & Escobar, 2014) as
well as low-risk patients who may be appropriate candidates for fast-track care pathways.

Whether the reimbursement is an APM bundled-payment model or not, there are
challenges when tying payment to performance. In an article looking at pay-for-
performance in orthopedics, authors describe these challenges:

The implementation of such a dramatic paradigm shift in healthcare

payment policy is fraught with challenges. Those challenges include

difficulty in defining and measuring quality and efficiency, cost of
collecting and analyzing performance data, development and
implementation of appropriate risk adjustment models, lack of additional
funding to reward quality, unintended consequences of provider “gaming”
and patient deselection (e.g., “cherry picking”), and impact on low-tier,

low quality providers. (Bozic, Smith, & Mauerhan, 2007)

There are several limitations that must be addressed before widespread
implementation of new payment models that tie payment to quality. One of these
limitations is inadequate risk adjustment for clinical outcome measures (Nichols &
O’Malley, 2006). The authors state that:

Inadequate information systems, as well as imperfect algorithms and data

to control for patient-level comorbidities, severely limit the ability to risk

adjust clinical outcomes measures. This is a major barrier to more

widespread implementation of pay for performance (P4P) and to

convincing some physicians, who manage complex patients on a daily
basis, of the value of these measures. (Nichols & O’Malley, 2006).

Risk adjustment models have been developed and implemented for the large-scale
insurance market. This is the actuarial side of healthcare finance. Insurers have always
understood that if they can attract healthier patients to their pool of enrollees then they
will pay out less in medical claims. Health insurers have long used risk adjustment
methods to group patients into risk cohorts for payment strategies. At present, the type of

risk adjustment that occurs at the level of the health insurer is based on complex
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algorithms with the sole purpose of making adjustments between populations of patients
for financial balance in the insurance market. This type of risk adjustment is evolving
under the Affordable Care Act, where Health Insurance Exchanges are now mandated.
This new model of risk adjustment will utilize retrospective, diagnosis-based risk
adjustment strategies as a way to compensate insurers with higher-risk populations
(Weiner, Trish, Abrams, & Lemke, 2012). This large-scale risk adjustment performed in
the insurance market is very different from the prospective risk models that will be
created in this project. While the former is critical for a functional insurance market, it
cannot be applied at the patient or physician level and cannot calculate an expected
outcome.

In order to assess physician performance based on patient outcomes, it is crucial
to determine if the observed outcome for a group of patients is better or worse than
expected based on the patient comorbidities rather than better or worse than a fixed target
based on an average. Payments based on average targets are frequently referred to as
global payments. With or without physician performance incentives, the practice of
global payment is worrisome. If an expected outcome is simply a fixed target, providers
are punished “whose complex patients, even if doing ‘better than expected,’ do not hit
targets that are easier to achieve with healthier patients” (Ash AS, 2012). Target
outcomes that adjust based on the patients’ risk are critical for assessing physician
performance. Goroll and Schoenbaum (2012) describe robust, scientifically validated
risk-adjustment models as critical in order to address the impediments to payment reform.
Global payments, without risk adjustment, burden the providers with significant financial
risk. Risk adjustment that accounts for performance based on expected outcomes versus
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an average-based target will help alleviate this financial risk and deter providers from the
“temptation inherent in global payment to cherry-pick patients.” Utilizing risk adjustment
models at the provider level will enable patient-based expected outcomes to be generated,
and can connect directly with pay-for-performance strategies. Goroll and Schoenbaum
(2012) state that “Risk adjustment applied to payment for performance can serve to
recognize, reward, and incentivize the extra work needed to achieve better-than-expected
outcomes, helping to alleviate the concern that global payment will lead to less care.”
Ellis and Ash (2012) are also concerned about the use of globally calculated performance
measures and the lack of methods to make patient-based adjustments stating that
“Although using non-adjusted performance measures may create undesirable incentives
for practices to avoid the sickest patients, even crude adjustments are rare.”

A seminal report issued by the Institute of Medicine (IOM), an arm of the
National Academy of Sciences titled “Crossing the Quality Chasm: A New Health
System for the 21st Century,” makes the following request:

The committee calls for all purchasers, both public and private, to

carefully reexamine their payment policies to remove barriers that impede

quality improvement and build in stronger incentives for quality
enhancement. Clinicians should be adequately compensated for taking

good care of all types of patients, neither gaining nor losing financially for

caring for sicker patients or those with more complicated conditions.

Payment methods also should provide an opportunity for providers to

share in the benefits of quality improvement, provide an opportunity for

consumers and purchasers to recognize quality differences in healthcare

and direct their decisions accordingly, align financial incentives with the

implementation of care processes based on best practices and the

achievement of better patient outcomes, and enable providers to
coordinate care for patients across settings and over time.

Achieving high-quality outcomes can certainly be enhanced with retrospective
measurement, appropriately adjusted for patient risk. Quality improvement programs

-15 -



have been built using measures based on retrospective data. But the question remains:
Can we do something to prevent rather than merely to adjust? If we can predict, we can
prevent—or so the theory goes. With delivery systems accountable, predictive algorithms
can help allocate resources more effectively for both high-risk and low-risk patients.
Successful organizations will use a broad array of tools to predict important outcomes,
including to identify patients likely to require expensive care, be readmitted, or
experience a specific type of adverse event. (Bates, Saria, Ohno-Machado, Shah, &

Escobar, 2014).

Risk Models and Methodologies in Healthcare

In this section of the literature review, existing risk models are reviewed.
Literature shows that for condition-specific hip and knee replacement models, most are
based on logistic regression (LR) and previously identified comorbidities in a
retrospective analysis. Additionally, literature is reviewed showing some promising
implementations of real-time risk prediction systems, offering the chance to prevent
costly care and poor outcomes.

Predicting risk of adverse outcomes is common practice in insurance and in
research. Many insurers use risk assessment and risk adjustment models to identify
patients who are at risk of high-cost care as well as to profile and rate physicians. High-
risk care management is used for patients identified as expected to incur high costs.
However, broad risk profiling may not be suitable for subgroups of patients with specific
clinical conditions and interventions. “Interventions that are appropriate and effective for

one group will often do little to improve care and reduce costs for others” (Powers &
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Chaguturu, 2016). Insurance companies have long been involved in risk adjustment, and
have large pools of claims data for their members, yet are always on the lookout for
better methodologies to improve predictions of expected utilization.

There are a handful of general risk adjustment models that are based on pre-
operative clinical characteristics such as: Adjusted Clinical Group (ACG), Diagnostic
Cost Group (DCG), Seattle Index of Comorbidity (SIC), Chronic IlIness and Disability
Payment System (CDPS), Charlson Index, RxRisk, Self-reported measures for
demographic and health, and prior year expenditures. In one study, Maciejewski (2005)
and Liu compared the predictive accuracy of these risk adjustors for prospective
modeling of the expenditures in a year period of time. The goal of this study was to look
at which measures were most predictive and ought to be considered in future studies. One
of the interesting results from this study was that administrative-based data performed
better than patient self-reported measures. Administrative data refers to data that is most
often collected by government or commercial payers, typically for reimbursement
purposes.

Administrative data sets are large, inexpensive, structured, and readily available,
however they lack important clinical information. As the authors state: “VA provides an
ideal setting to assess the performance of differing strategies to adjust for patient risk
differences in observational or experimental studies because of the availability of
extensive demographic, clinical, pharmacy, and economic data on several million
veterans who use VA services” (Maciejewski & Liu, 2005). This type of model
validation would be very difficult in hip and knee replacement, as there is little
accessibility to comparable data.
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The private sector has recognized an unmet need for risk prediction, and a handful
of proprietary risk adjustment models exist. Currently, there are general risk calculators
available to providers marketed by private companies such as Archimedes, which
markets the product IndiGO. In this case, as is true with virtually all privately marketed
risk models, the mechanisms by which prediction is calculated are at least partially a
“black box,” meaning that the end user does not know exactly how a score was
calculated. In IndiGO, patient data is entered into a software application, and after the
data is entered, “IndiGO uses its advanced algorithms, based on the Archimedes Model,
to create individualized guidelines. The individualized guidelines include person-specific
risk of adverse events (such as heart attack, stroke, diabetes onset and its complications)
...” (Bellows, Patel, & Young, 2014). The predictive value of these models can be—and
has been—validated against compared with other models based simply on how well they
predict. Not only are they comparable, but they can be included in other risk scoring
models as well. For example, in the Global Outcomes Score (GO Score), Eddy, Adler &
Morris (2012) use the IndiGO risk calculator as the method to predict multiple outcomes
across many healthcare domains. The GO Score looks at a spectrum of outcomes,
comorbidities and interventions. The GO Score takes aggregated predicted outcomes and
measures them against the observed outcomes. The GO Score demonstrates the use of
predicted versus observed outcome as a method to quantify and measure quality. Quality
occurs when a patient does better (observed outcome) than expected (predicted risk). The
GO Score could be augmented, and utilize another risk calculator, as the authors suggest:
“Other risk calculators can be used to generate GO Scores, but they should be similarly
validated” (Eddy, Adler & Morris, 2012).
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While global risk models may be validated and useful at a general level, models
constructed for specific procedures are needed. Each surgical procure has its own patient
population with different rates of comorbidities, and disease-specific risk models are
more precise in predicting outcomes. For example, newborn infants will have a different
set of comorbidities than elderly patients prior to heart surgery. Not only are the
comorbidities different, but the heart surgeries conducted on each are technically unique,
and the adverse outcomes related to the procedure are distinct.

The procedure-specific Aristotle Based Complexity (ABC) score is used to
predict complications, mortality, and prolonged length of stay for surgeries performed by
congenital cardiac surgeons (Jacobs JP, 2009). The ABC score classifies the procedure
and assigns it a case complexity allowing placement of cases into low-risk or high-risk
groups, thus enabling researchers to make adjustments based on risk in order to conduct
outcomes analysis. The ABC score is uniquely created to apply to congenital heart
surgery, performed almost entirely on infants and children, and has no widespread use
outside of congenital heart surgery.

The most widespread and commonly used procedure-specific risk models are
found in adult cardiac surgery outcomes research. The body of literature on predictive
modeling is largely composed of studies aiming to predict operative mortality and
complications after adult cardiac surgery. These studies often use predictive risk models
created and maintained by the Society of Thoracic Surgeons (STS) and EuroScore. The
plethora of studies may have resulted from the fact that the STS and EuroScore models
are available online as a simple-to-use calculator, allowing widespread application.

Head et al. (2013) performed a systematic review of risk prediction and located 5,768
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studies modeling outcomes in adult cardiac surgery. They ended up reviewing 844
studies identifying preoperative independent comorbidities for adverse outcomes after
adult cardiac surgery. In this review, the authors found many instances of independent
variables that were found to be predictive of outcomes, but many of these variables were
not frequently considered in the bulk of the predictive studies. The authors conclude,
“Risk estimates of mortality, stroke, renal failure and length of stay may be improved by
the inclusion of additional (non-traditional) innovative comorbidities. Current and future
databases should consider collecting these variables” (p. 121). What this study
demonstrates is the need for exploratory modeling to reveal unexpected variables that
may have predictive strength. These would be what the authors refer to as “innovative” or
“non-traditional” variables.

Cagini (2012) discusses what may be considered the traditional variables popular
in risk prediction in adult cardiac surgery, stating:

A core set of variables associated with outcomes in cardiothoracic surgery

have evolved over time. Accuracy of risk models developed based on

administrative data in New York and Pennsylvania have been shown to be

substantially improved by addition of a few critical clinical variables. . . .

One may further question how many variables are actually needed to have
a robust prediction model (p. 68).

This quote illustrates that commonly-used predictive variables are empirically
grounded on past studies, yet accuracy in these studies was improved by adding new
variables. This raises the question of which variables, exactly, should be added. The
authors ask, “How many variables are actually needed to have a robust prediction
model?” (p. 68). The RA exploratory modeling approach is a response to exactly this type

of question. RA can search through even thousands of variables, and can detect the
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variables and their relations that are most predictive. However, exploratory results should
be confirmed with confirmatory tests.

Cagini (2012) further points out the primary methods used in the thousands of
adult cardiac outcomes studies. The author determines that logistic regression models are
the most common method for risk modeling and site comparative studies, demonstrating
that logistic regression models offer the best overall performance. The author discusses
potential advances that may be offered by the use of machine-learning techniques
“as these models permit complex, nonlinear information processing. However, tests of
these models have not yet shown significant improvement over logistic [. . .] models.”
Like RA, the neural networks methodology often falls under the more general class of
methods referred to as machine learning. The literature shows a very limited testing on
the ability of machine learning to predict better than logistic regression, with studies
largely falling within the arena of adult cardiac outcomes research (Lippmann, Kukolich
& Shahian, 1995), (Tu JV, 1998). Lippmann and Shahian (Lippmann RP, 1997)
compared a neural network model to logistic regression, finding that “a committee
classifier combining the best neural network and logistic regression provided the best
model calibration . . .”—suggesting that there is possibly a combination of methods used
to get best prediction.

Compared to the thousands of studies conducted in adult and congenital heart
surgeries, studies conducted in the field of orthopedics are relatively few. Of the
outcomes studies published in orthopedic journals, the majority look at the effect of
traditional comorbidities on one or more adverse outcomes. Bjorgul, Novicoff & Saleh
(2010) discuss this body of literature:
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There is ample evidence that comorbidity is a major factor in determining
the outcomes of various conditions, and there is a large body of literature
discussing the multiple aspects of comorbidity. The general finding is a
close relationship between comorbidities and complications, mortality,
functional outcome, and consumption of healthcare resources (Bjorgul
et al., 2010).

Comorbidities previously found to be predictive of adverse outcomes include
obesity (Andrew et al., 2008; Suleiman et al., 2012), diabetes (Bolognesi et al., 2008;
Berbari et al., 1998; Everhart, Altneu & Calhoun, 2013), hypertension (Memtsoudis
et al., 2010; Jafari, Huang, Joshi, Parvizi & Hozack, 2010), and age (Polanczyk et al.,
2001; Memtsoudis, Gonzélez Della Valle, et al., 2010), heart failure, pulmonary issues
(Bozic et al., 2012; Jain, Guller, Pietrobon, Bond & Higgins, 2005) among others.
Almost without exception, these studies used logistic regression methods to test a
hypothesis that a relationship exists between a comorbidity and the outcome of interest.
Studies that looked at more than one potential comorbidity used multivariable logistic
regression techniques to see if there was an effect on the outcome from more than one
comorbidity. This body of literature illustrates the current approach to performing
retrospective risk prediction in hip and knee replacement, which is limited to using
previously validated comorbidities in order to predict adverse outcomes. A good portion
of the literature on outcomes in hip and knee replacement is not focused on adverse
outcomes at all, but is focused on the functional and general patient-reported health from
follow-up surveys administered postoperatively and over the years of follow-up visits
(Caracciolo & Giaquinto, 2005; Gandhi et al., 2010). These studies require data
collection normally outside of the standard of care, are resource-intensive to collect, and

require prognostic study design and close monitoring of patients for long-term follow-up.
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The broad category of adverse outcomes includes not only post-surgical
complications, but outcomes such as discharge destination, readmissions, length of stay,
and total cost. These endpoints can all be measured with commonly available
administrative claims databases, a prerequisite for a simple and widely available risk
prediction. After hip or knee surgery, a patient may be sent directly home after the
hospital stay or may be discharged from the hospital directly to an extended care facility
(ECF). Researchers have looked at the impact of certain comorbidities on the discharge
destination of patients after hip and knee replacement surgery (Bozic, Wagie, Naessens,
Berry, & Rubash, 2006; Oldmeadow, McBurney, & Robertson, 2003; Barsoum et al.,
2010.) Munin et al., (1995) looked at the outcome of being discharged to an extended
care facility (ECF) and found that patients discharged to an ECF had increased
comorbidities prior to surgery. They developed a logistic regression model that was able
to predict 76% of the discharges to an ECF. This high predictive ability included not only
comorbidities, but operative and postoperative data as well. Using post-discharge data to
calculate risk does not allow for prognostic risk calculation and makes unclear the extent
to which the patient’s risk played a role relative to the in-hospital processes of care and
medical complications that patient may have experienced.

A prolonged length of stay (LOS) is another nonmedical indicator of adverse
outcomes. Researchers have looked at the impact of certain comorbidities on length of
stay of patients after hip and knee replacement surgery (Clague et al., 2002; Md,
Elsharkawy, 2011; Cram, 2011; Polanczyk et al., 2001). Dall et al., (2009) looked at the
association between various comorbidities and LOS using standard logistic regression
techniques. Understanding the need for a simple and easily available calculator, the
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authors discussed the possibility that findings from their research will contribute to the
creation of a simple scoring system to predict LOS. This study discussed the need to have
this available as a prognostic tool in order to increase patient flow in the hospital and
adjust staffing levels based on case mix (Dall et al., 2009). Interestingly, this multivariate
study found that the day of the week and the surgeon performing the surgery had an
effect on LOS. Because this information is routinely collected and is easily available in
claims data, future model development should include these variables alongside the
patient’s medical comorbidities. Other research has confirmed surgical volume in a given
hospital as predictive of complications after joint replacement (Schroer, 2008).

A key opportunity for delivery systems to improve value is by limiting overuse of
costly resources by focusing these resources on high-risk patient groups (Bates et al.,
2014). Screening patients for relevant comorbidities prior to surgery allows for increased
medical interventions, which have proven to be successful in decreasing adverse
outcomes (Meding, 2007). “Estimating the risk of complications when a patient first
presents to a hospital can be useful for a number of reasons, such as managing staffing
and bed resources, anticipating the need for a transfer to the appropriate unit, and
informing overall strategy for managing the patient” (Bates et al., 2014). Radcliff et al.
(2012) discuss the success of preoperative risk stratification on reducing cardiac and
thromboembolic complications in elective hip and knee replacement surgery, but point
out that few studies have been done on non-cardiac medical complications. The authors
subsequently present a risk stratification tool constructed from comorbidities confirmed
in previous studies and physician interviews. This study went beyond a demonstration of
a relationship between comorbidities and non-cardiac complications, but provided a
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method to increase and measure quality. The researchers in this study compared the
observed outcomes of patients who were screened against the observed outcomes patients
who were not screened (Radcliff et al., 2012). If the screened group has better outcomes
than the group that was not screened, then the screening tool is shown to have a positive
effect on quality.

Oldmeadow et al. (2003) developed The Risk Assessment and Predictor Tool
(RAPT) as a way to simply and easily predict a patient’s risk of requiring discharge to an
extended care facility (ECF). Initially constructed from a logistic regression model, it was
subsequently transformed into a simple points-based scoring system that was validated on
patient populations in its development and applications. The RAPT score places patients
into one of three risk groups. This score and the subsequent risk group the patient is
placed in are designed specifically to provide an objective measure of who ought to be
placed on a home pathway (those with a RAPT score >9) and those who need definite
rehabilitative care (those with a RAPT score <6) (Dauty, Schmitt, Menu, Rousseau &
Dubois, 2012).

A risk calculator developed for total joint arthroplasty predicting discharge to
skilled nursing facility (SNF) using logistic regression found age, dependent functional
status, living location, and severity of illness (ASA score) to be predictive of SNF
discharge (Gholson et al., 2016). However, it is quite well known that the utilization of
SNF varies by surgeon and hospital location, but no specific studies look at the relative
predictive effects of patient comorbidities versus provider practice patterns. This research
project will look at SNF, and test the effects of patient-related versus delivery system
predictors.
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Romine, May, Taylor & Chimento (2013) created a total knee replacement risk
calculator and found it to have predictive value of perioperative complications. This
evaluation resulted in 19 comorbidities as predictive of “1 or more” complications
modeled using logistic regression. The inputs for the calculator include the patient’s
comorbidities, which are necessary for prognostic prediction and can support patient care
decisions. While Romine et al.’s calculator predicts perioperative complications,
including complications that occur in the hospital prior to discharge, it also includes
complications that occur within 14 postoperative days. This post-discharge data is
problematic in its inherent incompleteness since post-discharge data is available for only
a fraction of the total population of the surgical cases. Another limitation of this
calculator is that it was built using Medicare data, and then tested on a more diverse
population of patients, resulting in an overestimate of complications due to the known
fact that the Medicare population has a higher incidence of complications (Romine et al.,
2013). Because Medicare datasets are large, well validated, accessible, and comparable to
other studies using the same data, Medicare data is commonly used. The difficulty in
more widely applying a model derived from Medicare data points to the need to construct
a model on data that includes the non-Medicare commercial patient mix as well. That
being said, this risk calculator fills a void in the field of health outcomes research and is
considered by Romine et al. (2013) to be:

the first risk assessment calculator designed specifically for use in total

joint arthroplasty. Despite limitations of our study design, and the lower

than predicted complication rate, the TKA [total knee replacement] risk

calculator represents the novel development of an objective risk

assessment tool that does have predictive value, and is a tangible risk
assessment device....Physicians may use the calculator to provide more

individualized patient counseling and to better stratify risk. (p. 448).

-26 -



Researchers at the Mayo Clinic developed a prognostic scoring system that
identifies patients at high risk of developing a postoperative infection after total hip or
knee replacement surgery (Berbari et al., 2012). The purpose of this risk score is for
improved risk-stratified reporting and to target high-risk patients for additional
preventative interventions. The Mayo model identified single predicting factors for
prosthetic joint infection (PJI). Logistic regression was used to determine the magnitude
of each of these associations and then combined into multivariable modeling with logistic
regression to determine if there was a pairwise effect between two factors on the risk of
infection. Current surgical site infection (SSI) models only take into consideration the
patient’s American Society of Anesthesiologists (ASA) physical status classification
system score; however, the Mayo study has shown that better risk stratification occurs
with inclusion of additional important predictors such as BMI, prior arthroplasty,
underlying immunosuppression, and prior surgery (Berbari et al., 2012). The authors
discuss the importance of accurately accounting for risk, and appropriate risk adjustment
will “assure tertiary referral institutions and specialty orthopedic institutions involved in
the care of high-risk patients of their ability to perform surgeries on high-risk patients
without the fear of being penalized for their relatively higher SSI rates” (p. 779). A
limitation of the Mayo model is that in order to calculate a one-month score, data is
needed from the preoperative, operative and one-month postoperative time frame. This
postoperative information is critical in analyzing infection, as many surgical infections do
not set in until the postoperative period. Postoperative data is limited only to those

patients that returned to the same facility, or same hospital system if a common electronic
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health record (EHR) system is used. Unless patients are being followed as part of the
protocol for a clinical research study, then it is very difficult to achieve accurate
postoperative patient information. The Mayo study may not easily be reproduced because
patients were followed as part of a research study protocol, something that does not
normally occur in the standard delivery of care for patients undergoing surgery.
Furthermore, while the factors selected as candidates for the model indeed turned up
predictive factors for infection, the question remains whether there are variables that were
not included that would have increased the predictive strength of these factors. These
non-traditional variables would not have appeared in the initial search of highly
predictive individual factors, and may only be predictive in their relation to another
factor.

Hospital readmissions are a substantial driver of spending, with all-cause 30-day
readmissions costing the US health system more than $41 billion annually (Hines Al,
Barrett Ml, Jiang Hj & Steiner Ca, 2011). An application of machine learning techniques
has resulted in the highly successful PIECES™ software (Amarasingham, 2012).
PIECES functions on top of a health system’s EMR, identifying high-risk patients using a
machine learning approach. Patients at high risk for readmission are flagged based on
both social and clinical factors found in the patient’s chart. This model was implemented
in a hospital, where clinical care was tailored for flagged patients, resulting in a 31%
reduction in readmissions.

With bigger data and new techniques for structuring data, disparate data sources
will have opportunities to merge into vast repositories. The possibility of more predictive
models, and the emergence of “data science” programs within healthcare systems, are
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leading to increased testing of machine learning techniques. While LR will likely
continue to be a very well performing method, exploration of new methods with the
ability to search through expansive data repositories is an effort that may have significant
payoffs when seeking to predict outcomes and custom tailor healthcare delivery in the

pursuit of higher value care.

General Overview of LR and its Relation to RA

Hosmer and Lemeshow (2005) provide an overview of logistic regression (LR)
models and discuss the recent explosion in the use of LR over the past decade. They state
that from its origination in epidemiological research, LR has gained widespread use and
acceptance in biomedical research. LR is typically used to analyze relationships between
a dichotomous dependent variable and categorical or continuous independent variables.
LR combines the independent variables to estimate the probability that a particular
outcome will occur. For example, if we assume that Z represents the adverse outcome
complication, we can create a formula in terms of the probability that a complication
occurs, or Z = 1, shown below as p(Z1), and the probability that no complication occurs,

or Z =0, shown as p(Zo). Therefore, the general mathematical notation is:

LQ9<E£§Q>- a0 + alA + aZ2B + a3C
p(Zo)

There are areas of overlap between RA and LR. For example, when nominal
variable states in RA are re-coded into binary states, RA does resemble LR. Zwick (2011)
points out that whether or to what degree the two methods are mathematically equivalent
is under investigation. Regardless of the potential mathematical overlap however, RA is

computationally distinct. LR maximizes likelihood most often with the Newton-Raphson
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algorithm, while RA uses Iterative Proportional Fitting (IPF) to maximize entropy subject
to the constraints of the data. LR software is not designed for exploratory modeling and
does not easily handle interactions between multiple variables. Because of this, RA is
distinctly useful for searching for novel variables and interaction effects. LR does not
generate the lattice of structures nor provide an approach for searching this lattice
(Zwick, 2011a). Unlike LR, but like ordinary regression, RA can also analyze continuous

dependent variables such as total cost of hip or knee replacement surgery.

An Overview of RA

Almost without exception, the studies surveyed in the review of the literature
generated models using logistic regression methods. While the models were well
constructed and tested, there is a trend in the discussions of prior studies urging further
testing and validation. One way to validate models is to use a different methodology on
similar data and compare the outcomes.

A model developed with RA will not only be an interesting test of comparison of
methods, but will test whether additional variables may provide more predictive strength
or whether non-hypothesized interaction effects offer additional predictive strength. For
example, prior studies using logistic regression had found that APOE was a highly
predictive genetic factor of Alzheimer’s disease. RA and Alzheimer researchers (Kramer,
Westaway, Zwick & Shervais, 2012) conducted a study using RA which confirmed the
gene APOE as highly predictive. However, RA has tentatively surfaced an additional

factor—Education—which, when interacting with APOE, generates a model that is more
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predictive than APOE or Education alone. This study looks at the questions of whether
there is something similar in total hip and knee replacement surgery.

It can be difficult to visualize what modeling actually does, especially when
thinking about the differences between specific modeling methodologies. In the broadest
terms, a model is intended to represent reality so as to explain, predict, or control features
of that reality which otherwise would be too difficult to observe or manage (Krippendorff
1981). In order to construct a model, data is collected to capture information about a
system. Yet this data is inherently very complex, with many degrees of freedom. Using
the data directly for prediction is likely to be flawed by overfitting, the postulation of
predictive relations that may not be real. A model is a reduction of the data to a simpler
structure, and simpler structures generalize better to new data. However, simplifying the
data too much will result in a loss of critical information. This presents a tension inherent
in the modeling process.

The most common RA approach to modeling is to start with the independence
model—which assumes no predictive relations between the IVs and DV—as a reference,
and to then search the space of possible models for incremental additions of predictive
relations. In RA, this bottom-up approach allows one to construct a model whose
complexity is statistically justified, but is still not overly complex.

RA developed from the early works of Ross Ashby (1964), who defined a process
for systematically testing whether a seemingly complex constraint could be decomposed
into several simpler constraints and then be recomposed to the original constraint without
loss. Ashby utilized Shannon’s information theory (Shannon, 1948) because it
generalized his constraint analysis to probabilistic systems and allowed for the creation of
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an algebra of relations (Krippendorff, 2009). RA was then further developed by Broekstra
(1979), Cavallo (1979), Conant (1981), Jones (1985), Klir (1976), Krippendorff (1981),
Zwick (2001), and others.

RA assesses hyper-graph structures using either set theoretic (SRA) or
information theoretic (IRA) modeling. RA is a data mining method that searches for
relations in data, especially nonlinear and higher-order relations. These relations between
the variables in the data can have high ordinality, and one need not assume any
hypothetical relationship prior to RA. For example, in a study applying RA to genomic
data, researchers found that RA can detect gene-gene interactions that other methods
could not detect (Shervais, Kramer, Westaway, Cox & Zwick, 2010).

RA resembles log-linear statistical methods in the social sciences, and has diverse
applications including time-series analysis, classification, decomposition, compression,
pattern recognition, prediction, control, and decision analysis (Zwick, 2004). RA handles
multivariate data with discrete values for nominal variables. Continuous data can be
handled by discretizing (binning) into discrete binary or multi-valued states. There are
multiple methods for binning data (e.g., rational binning, obvious clustering, and equal
sample size). The more states of an 1V, the better it can predict the outcome, but the
number of states of a variable increases the sample size required, and a trade-off is
necessary.

In this study, the information-theoretic (IRA) version is used. IRA turns input data
into frequency and probability distributions. IRA decomposes frequency distributions
into projections, several of which taken together define a model, which is then assessed
for statistical significance. The model maximizes entropy subject to the constraints of the
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model structure. Maximum entropy solutions are often identical to maximum likelihood
solutions of other methods.

A “saturated model” represents the data without simplification and assumes the
highest ordinality of relations amongst the variables. The “independence model” is the
least complex of all models and assumes no predictive relations between the IVs and the
DV. For example, a system with three Vs and one DV may be represented as ABCZ (the
saturated model), where A, B, and C are the IVs and Z is the DV. No interaction between
the IVs and the DVs is called the independence model and would here be characterized
by the model ABC:Z. The model ABC:Z is the simplest model possible and signifies that
the DV is not predicted by the IVs. Another possible model of the data ABCZ might be
ABC:AZ:BZ:CZ where A, B, and C again are the independent variables and Z is the
dependent variable. In the model ABC:AZ:BZ:CZ, A has an effect on Z, B has an effect
on Z, and C has an effect on Z, but there is no interaction effect between the independent
variables A, B, and C. In the independence model ABC:Z there are no relations between
the IVs and the DV at all, so this model may be said to contain no information. The DV
has maximum uncertainty. As used for prediction, an RA model is a conditional
probability distribution of the DV, given the 1Vs. In the present case, for example, this
might be expressed as Pmoder (Z1| AiBjCh).

With four variables, as in the example ABCZ, multiple relations are possible.
Each of these possible relations is a structure, without concern for order within or
between the relations. There are 19 specific structures for three IVs and one DV. The
lattice of structures for four variables is presented in Figure 1 below where the variables
are lines and the relations are boxes. Increasing the number of IVs to four results in 167
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specific structures, and increasing the number of 1Vs to five results in 7,580 specific
structures. Data with hundreds of possible 1Vs will generate a massive lattice of
structures. In this study, RA will search through the lattice of structures until it finds 1Vs

that are informative about the probability of a specific outcome.

T

e

Figure 1. Lattice of structures for 3 1Vsand 1 DV.
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Continuing with the previous example, assume ABC:Z is the independence model
for a directed system. The independence model will be the starting model (assuming
no relations), and an ascending search will be performed, looking for models through the
lattice of structures until difference from independence model and each increase in
complexity are not statistically significant. For example, one of the possible model
structures in this example search is model ABC:ABZ:CZ. In this model, the A and B
variables in the (ABZ) component represent an interaction effect. Every interaction effect
will be investigated further to interpret how the input variables combine to predict the
output variable.

Looking at multiple models relative to each other offers choices based on
predictive strength versus simplicity. Maximally predictive models may be traded in for a
simpler, less predictive model. Models that yield high information also are complex and
have high degrees of freedom relative to models with less complex structures containing
less information and lower degrees of freedom. The “best model” is often somewhere in
the middle since overly complex models will do poorly when confronted with new data;
this is known as “overfitting.”

To avoid overfitting, a good model will capture a maximum amount of the
information (the constraint) in the data while still being as simple as possible. After the
best models are obtained through an exploratory search, the actual contents of this
model—how it predicts the DV given the IV states—must be examined in detail. In
Occam, the RA software used in this project, this latter detailed examination is called
“fit,” to be distinguished from the first step which is called “search.” Several RA software
applications exist, such as the Construct and Spectral applications (Krippendorff, 1981),
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SAPS (Cellier & Yandell, 1987, Klir (1976), EDA (Conant, 1988) and Occam (Zwick,
2000). For this project, the third version of the Occam software application is used,
Occam3 (Willett & Zwick, 2004).

Another approach is available which is finer-grained than the variable-based
models previously described (Figure 2). Jones (1989) looked at systems in terms of states
instead of variables. In variable-based RA, the structures are subsets of ABC:Z while in
state-based RA, structures specify particular states of one or more variables. In the
example of ABC:Z, where the component ABC does not predict Z, it may still be that a
combination of specific states of A, B and C do in fact predict Z where the model may be
depicted as ABC:Z:A1B1C1Z. This more detailed, and in principle more powerful,
analysis can be done using state-based RA (Zwick & Johnson, 2004).

Two levels of refinement in RA will be used in this study: variable-based RA
without loops and variable-based RA with loops. The more refined the approach, the
more predictive the model may be. It is possible that a more predictive fine-grained
model will not have greater complexity (i.e., degrees of freedom) than the coarser-
grained variable-based models. These levels will be discussed in greater detail in the

methodology chapter.
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Degrees of
freedom

Variable-based State-based
Loopless Allowing loops

Figure 2. Levels of refinement in RA.

There are different criteria that can be used for model selection. In this project,
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are both
used. AIC is a measure of the goodness of fit of a model that trades off the complexity of
an estimated model against how much of the information in the data the model captures.
BIC is a slightly different way of doing the same thing. BIC is more conservative than
AIC and is thus generally preferred over AIC for selecting the best model. Another
measure that will be considered when assessing the quality of a model is its information
content. In RA, information is a measure of the constraint captured in a model. Since the
data always contains 100% information, and models of the data decompose the relations
into smaller components, one must test how far the data can be decomposed while still
holding onto enough information to be predictive. While information is scaled from 0-1,
the percent reduction of uncertainty of the dependent variable, represented as %AH(DV),
is the actual reduction of uncertainty achieved by any model and is the actual predictive
power of the model. The information measure indicates how much of the information in

the data is incorporated into the model, yet the information in the data itself can be small
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or large. This uncertainty reduction measure is calculated by multiplying the information
content with the percent reduction of uncertainty of the data. For directed systems, the
ability to quantify how predictable the outcome is, given the presence or absence of Vs,
IS expressed as the reduction of the entropy of Z (outcome), knowing A, B and C (3 1Vs).
For IRA, entropy reduction is derived from the conditional probability distribution of the
model. Both information and entropy reduction measures do not involve a sample size
and are therefore themselves non-statistical (Zwick, 2011a). The reduction in uncertainty
is a central measure of RA and something that is not possible with other methods.

A third criterion, the incremental p-value, will supplement AIC and BIC in order
to select the model that reduces uncertainty the most, from which every incremental step
from the independence model has an acceptable p-value. Knowing the sample size
provides for the calculation of the likelihood ratio test (chi-squared, or x2), which then
allows the researcher to determine the p-value for entropy reduction, relative to either
independence or some other simpler model as reference. This is one of the measures that
is used when assessing the trade-off between information and complexity in model
selection (Zwick, 2011a). This p-value is the probability, if one has rejected the null
hypothesis (that the model is the same as the reference model), that one is incorrect in
that rejection. This project will apply RA using the independence model as the reference,
where smaller p-values are preferred. As the search continues, new reference models are
generated and an incremental p-value will show the statistical significance at each step
through the lattice of possible model structures (Zwick, 2004).

In this project, the lattice of all possible models will be searched using a

bottom-up approach where the reference model is the independence model. With the
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independence model as the reference, the search up the lattice of structures is an attempt
to see if the data justifies a model with more complexity (degrees of freedom) than the
independence model. Additionally, many types of models may be assessed in Occam,
depending on the specification of search parameters. Going up the lattice, RA generates
“parents” of the models at each level in the lattice of structures. A search “width” can be
specified, which restricts the number of models retained at each level in the lattice. The
maximum number of levels to be searched can also be specified, using the search “levels”
parameter.

The literature shows that RA has been validated as a supplementary method,
strengthening research when used concurrently with other methods. A problem identified
by researchers of the Neural Networks (NNs) methodology is that NNs are often applied
on data without knowing what variables are the most valuable as inputs to the NN model,
thus resulting in overly complex models. For example, Chambless, Lendaris, and Zwick
(2001) applied RA to data and successfully “prestructured” the data, picking out the most
important and predictive variables to reduce the neural network’s complexity without
significant loss of predictive accuracy. Cangur (2009) used RA as a method to augment
LR in forecasting mortgage loan statuses. In this study, Cangur was able to improve on
what had previously been known to be predictive of mortgage delinguencies,
prepayments, defaults, and losses by detecting additional states as well as interaction
effects. These interaction effects improved the accuracy of LR models used in the field of
loan forecasting. Carletti (2004) generated an RA model that detects complex interactions
and predicts health status more effectively than multiple linear regression. Carletti used
state-based RA, surfacing literacy level in combination with occupational status and
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intensity of performing strenuous activities as predictive of health status. Mist (2007) also
has augmented LR with RA in an application predicting a Chinese Medicine diagnosis
from patient pre-treatment questionnaires. In this study, both variable-based and state-
based RA were used and interaction effects found. These interaction terms were then
introduced into a previously constructed LR model, resulting in an improvement of
prediction for three of the most common Chinese Medicine diagnoses.

What this literature demonstrates is that RA can do more than offer a
confirmatory role in validating the results of previous studies; it can provide a
complimentary approach to other methods, using multiple methods in tandem to
strengthen each other. Furthermore, the past studies discussed in this review of the
literature have shown that RA provided novel and valuable predictions undetected by the
more standard and common statistical modeling techniques, and can be valuable as a

stand-alone exploratory method.
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Chapter 3. Methods
This chapter starts with an overview of the data and provides the definitions of the
independent and dependent variables used in this project. Procedural descriptions are
provided describing how the data was transformed into the format used in the data
analysis. After this overview of the data, the LR and the RA methods as applied in this
project are described, as well as explanations of additional calculations used to augment

the core methodologies.

The Data

Data used in this study derives from patients who underwent inpatient surgical
procedures of either total hip replacement or total knee replacement at one of seven
inpatient hospitals within an integrated healthcare system in a single state. Participant
data consists of both hospital billing data and electronic health record system clinical
data. Clinical and cost data were matched on the patient’s episode identifier, then
de-identified and transformed into the variables used in this research project. This project
has been granted exempt status from the Portland State University Institutional Review
Board.

Effective October 1, 2007, the hospital Uniform Bill (UB) requires hospital
claims data to include a present on admit (POA) indicator for each diagnosis field.
Diagnosis fields are represented by codes called the International Classification of
Diseases, Ninth Revision (ICD-9). ICD-9 codes are created by the World Health
Organization, and are the official classification system for surgical, diagnostic, and

therapeutic procedures. In this project, ICD-9 codes are used to classify the procedure of
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an elective total hip replacement (ICD-9 code 81.51) or an elective total knee
replacement procedure (81.54). ICD-9 codes are also used in this project to classify the
Comorbidity 1Vs and the DV Complication occurring for each hip and knee procedure.

The data was divided into two data sets based on procedure type. The resulting
knee data set and hip data set share the same variables, with some differences in
comorbidities present. There were 3,205 cases in the hip data set, and 4,336 cases in the
knee data set. Because the administrative claims database includes variables that are
collected in diverse health systems across the nation, the resulting predictive models
developed in this project have the potential for widespread use.

Multiple analyses were conducted in this project, and two combinations of
independent variables were assessed: All 1Vs and Comorbidity 1Vs. All Vs include the

patient Comorbidity Vs as well as Non-Comorbidity IVs.

Comorbidity 1Vs

Diagnosis ICD-9 codes and corresponding POA status and rank were merged in
order to create the set of Comorbidity IVs. If a diagnosis code appeared as present on
admit and rank equaled 1, this was the primary diagnosis and was not included as a
comorbidity. For example, it is common to see osteoarthritis as the diagnosis POA with
rank = 1. If a diagnosis code was present on admit with a rank > 1, then this was
considered to be a comorbidity. Each comorbidity present in the data was then turned into
a binary variable with the possible states of present (1) or absent (0). If a diagnosis code
was present in the data but was not present on admit, then this ICD-9 diagnosis code

indicates a complication and was mapped into a complication grouping schema.
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There were 912 individual comorbidity independent variables (Table 103). While
the RA method can in principle utilize this many IVs, the data set would need to have a
much larger sample size if one wanted to detect interaction effects involving very many
IVs.

In the hip data set, 643 of 912 comorbidities occurred in at least 1 of the 3,205
cases, and 270 of these comorbidities were not present in any of the cases. There is a
chi-squared rule of thumb that argues for a minimal average cell count of at least 5. There
were 473 comorbidities that occurred in <5 cases and 170 comorbidities that occurred in
5-1464 cases (the comorbidity that showed up in 1,464 cases was essential hypertension).
The final culled hip data set included 3,205 cases with these 170 Comorbidity 1Vs.

In the knee data set, 671 of the 912 comorbidities were present in at least 1 case.
Using the same rationale as the hip data set, the 483 Comorbidity 1Vs that were present in
< 5 cases were removed, reducing the total number of Comorbidity Vs to 188 that
occurred in 5-2,373 cases (the comorbidity essential hypertension showed up in 2,373
cases). Thus the final knee data set contained 4,336 cases with these 188 Comorbidity
IVs.

The independent variable called number of risks (Nrb) is tallied by adding up any
of the 912 Comorbidity 1Vs that are indicated as present on admit. While the full 912 IVs
are not used in either data set, the Nrb variable in fact is dependent on the presence or
absence one or many of the original 912 Comorbidity IVs. In other words, it was
“possible” for the total number of risks for a patient to equal 912, even though fewer than

200 comorbidities were retained in the hip and knee data sets. Table 1 shows a sample
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subset of the individual patient Comorbidity 1Vs. A full list of Comorbidity IVs is
available in Table 103.

Table 1. Subset of Comorbidity 1Vs (Comorbidity 1Vs from Tier 1 Predictors).

ID IV Name

Rhd Other chronic pulmonary heart diseases

Ruh Other and unspecified hyperlipidemia

Rrd Unspecified hypertensive renal disease

Rgp Repair of cystocele with graft or prosthesis

Rug Unspecified glaucoma

Rca Coronary atherosclerosis of native coronary artery
Rku Chronic kidney disease, unspecified

Rci Chronic ischemic heart disease

Rhf Heart failure

Rcj Contracture of joint, lower leg

Rco Chronic obstructive asthma

Rmd Other persistent mental disorders due to conditions classified elsewhere
Rpl Hyperplasia of prostate

Non-Comorbidity 1Vs

An additional eight independent variables were included that represent,
non-binary patient risk factors (age, number of risks, and admit diagnosis) as well as
variables suggested as important variables in the literature (Dall et al., 2009; Schroer
WC, 2008) describing the delivery system (location, surgeon, surgeon volume, financial

class, and day of admission).
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Table 2. Subset of All 1Vs: Non-Comorbidity Variable Descriptions and IDs.

All 1Vs

Non-Comorbidity

1Vs Variable Description (Knee) Variable Description (Hip) ID
Location documented as 1 of 7
Location, inpatient hospitals within a single
multivalued integrated health system Same as Knee L
Principal One of 64 primary attending
Surgeon, physicians as determined in the Same as Knee, except 43 primary
multivalued patient's medical chart attending physicians S
Sv
Total number of procedures per (binned
surgeon over the entire time period to create
Surgeon Volume, | in the data set. Surgeon total volume | Same as Knee, except volume Svb,
Continuous ranged from 1 - 1,449 cases. ranged from 1 - 1,191 cases. below)
Surgeon volume counts were binned | Surgeon volume counts were
into 12 equal sample sized bins, binned into 10 equal sample sized
Surgeon Volume, | then rebinned into 3 bins: bins, then rebinned into 3 bins:
binned [1(1,2,3,4);2(5,6,7,8);3(9,10,11,12)] | [1(1,2,3,4);2(5,6,7);3(8,9,10)] Svb
Monday (1), Tuesday (2), Monday (1), Tuesday (2),
Day of Admit, Wednesday (3), Thursday (4), or Wednesday (3), Thursday (4), or
multivalued Friday (5) Friday (5), Saturday (6) Da
Medicare (1), Commercial (2),
Medicaid (3), Workers Comp (4),
Financial Class, Other Government (5), Self or Other
multivalued (6) Same as Knee Fc
Age
(binned
Patient age at time of admission to to create
hospital. Age ranges from 32-94 Same as Knee, except Age ranges Ageb,
Age, continuous | years old. from 15-96 years old. below)
Data was first binned into 12 equal
sample size bins, then re-binned into
3 equal size bins as follows:
Age, binned [1(1,2,3,4);2(5,6,7,8);3(9,10,11,12)] | Same as Knee Ageb
Admit Diagnosis, | This is the primary (coded)
multivalued diagnosis present on admit. Same as Knee Ad
Nr
Individual diagnosis codes coded as (binned
present on admit = Y. Total number to create
Number of Risks, | of risks per case ranged from 0 to Same as Knee, except risks per case | Nrb,
continuous 18. ranged from 0 to 19. below)
Number of risks were binned into 8
equal sample sized bins, then
rebinned into 3 equal sample size
Number of Risks, | bins as follows:
binned [1(1,2);2(3,4);3(5,6,7,8)] Same as Knee Nrb

This project uses de-identified data and does not use or disclose specific names of

these variables. Location or surgeon names, in combination with other variables, could be
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used to identify a patient and can be considered protected health information (HIPAA,

2009).

Binning Continuous I1Vs

Not only are there different sets of individual patient comorbidities present in the
hip and knee populations, but the average age for knee patients is higher at 67.1 years
versus 64.72 years for hip. The knee patients had an average of 3 patient comorbidities,
while the hip patients averaged 2.81. Due to the differences in hip and knee populations,
binning of the 1VVs was performed independently per data set. The independent variables
age (Age), surgeon volume (Sv), and number of risks (Nr) were continuous variables that
were discretized into the binned variables Ageb, Svb, and Nrb. These 1Vs were divided
into three equal sample-sized bins, which will allow for the detection of nonlinear effects,

within the hip data set, and then again in the knee data set as shown in Table 3 below.

Table 3. Binned Vs for the Continuous Variables:
Number of Risks, Age, and Surgeon Volume.

Number of Risks Binned (Nrb)
Knee Hip
Bin Range Frequency | Bin Range Frequency
1]0-1 1309 1]0-1 1,111
2|23 1474 2123 1,081
31418 1553 31419 1,013
Age Binned (Ageb)
Knee Hip
Bin Range Frequency | Bin Range Frequency
1] 32-62 1,490 1] 15-59 1,090
2 | 63-71 1,411 2 | 60-69 1,027
3 | 72-95 1,435 3 | 70-96 1,088
Surgeon Volume Binned (Svb)
Knee Hip
Bin Range Frequency | Bin Range Frequency
1| 1-479 1,444 1| 1-461 1,067
2 | 550-922 1,518 2 | 479-778 761
3 | 987-1449 1,374 3| 779-1191 1,377

-46 -



The primary purpose of the age variable in this project is to determine whether

age has an effect at all. The standard practice to test if an 1V is predictive is to use

uniformly sampled bins. The more uniform an IV distribution is, the more predictive or

explanatory it can be. So the question asked in this dissertation is whether age makes a

difference. A subsequent question, not pursued in this project, could be to look at whether

using bin definitions more common in the field (e.g., binning age by non-enrollment or

enrollment in Medicare) might provide more useful or enhanced predictions.

Dependent Variables (DVs)

Four DVs were constructed for this project and are summarized below in Table 4.

These DVs include adverse events Complication and Readmissions, and high cost

indicators of Skilled Nursing Facility discharges and Total Cost.

Table 4. Description of the Original Dependent Variables

and Subsequent Transformed (binned) Final Dependent Variables.

Dependent
Variables (DVs): | Variable Description (Knee) Variable Description (Hip) ID
Complication Any (coded) diggnosis that was not Same as Knee. Cp
present on admit.
Home Self (1), SNF (2), Home (used to
Discharge Health (3), Swing Bed (4), IP Same as Knee, except no AMA create
Disposition Rehab (5), ICF (6), Short Hospital state DV SNF)
(7), Expired (8), AMA (9)
ﬁ';(':'i'leify'z'gﬁgg No SNF = 1, SNF = 2 No SNF = 1, SNF = 2 SNE
Discharge [1(2,3,4,5,6,7,8,9);2(2)] [1(1,3,4,5,6,7,8);2(2)]
Readmission (Yes/No) according to
Readmission, Premier inpatient quality reporting | Same as Knee, except 87 total
multivalued system. There were 113 total readmissions within 90 days to the | Re
(within 90 days) readmissions within 90 days to the | same hospital as original surgery.
same hospital as original surgery.
Hospital costed “total cost per (used to
;rc%tr?tlir?lj)cizs) case.” Range $5,945 - $96,880 per :irlnid‘;s Kg;f '2%)2:;& IZ::ege create
case. ' ' ' DV Tcbh)
Total Cost was binned first into 12
Total Cost equal sample sized bins, then Same as Knee Teb
(binned) rebinned into 3 bins as follows:

[1(1,2,3,4);2(5,6,7,8);3(9,10,11,12)]
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The DV Complication, represented by the ID “Cp” (Table 4) was created by
looking at the ICD-9 diagnosis codes with a POA indicator of 0, indicating the diagnosis
was acquired after admission to the hospital. The knee data set contained 913 individual
complications across 205 cases. The complication rate for the knee data set is then
205/4336 or 4.7%. In the hip data set, there were 790 complications present across 164
cases with a rate of 5.2%.

The Skilled Nursing Facility (SNF) DV is constructed from the discharge
disposition filed in the administrative database. There are nine possible discharge
locations in the data: home health, skilled nursing facility (SNF), home self-care,
inpatient rehab, swing bed, short term hospital, intermediate care facility (ICF), expired,
and AMA (knee only). If the discharge location was SNF, then the DV SNF was assigned
a 2. If the discharge location was any of the other locations, the value of the DV was
assigned a 1. In the knee data, 17.6% of patients were discharged to a SNF and 14.3% of
hip patients were discharged to a SNF.

The Readmission DV is reported out of a nationally standardized quality reporting
database called Premier. Premier utilizes a methodology for counting related
readmissions. Premier is a common quality reporting system for hospitals across the
nation and therefore provides reproducible analysis for readmissions (Grosso, 2012).
While easily reproducible, this methodology of counting readmissions is limited in that it
is counting only readmissions to an inpatient stay at the same hospital as discharge and
therefore does not include visits to the ED or admissions to a different inpatient hospital
than originally discharged from. For this project’s Readmission DV, if a patient had one
or more readmissions within 90 days to the same hospital as discharge, then this case was
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assigned a 1. If no readmission was detected, then the case was assigned a 0. This method
results in many fewer readmissions counted and a very sparse DV with 2.6% of knee
patients readmitted within 90 days from discharge and 2.7% of hip patients. Premier is
adopting a new readmission methodology which will look across inpatient hospitals. In
this new method, it will be possible to count readmissions that occurred at locations

different from the discharging location.

Binning the Total Cost DV and Calculating Expected Values

Total Cost is a continuous DV with dollar amounts that ranged from $8,553 to
$96,880. There was an average Total Cost of $18,502 in the knee data, and a range of
$11,147 to $71,264, with an average of $18,593, in the hip data. Total Cost was binned
into three equal sample-size bins (low, medium, high).

Table 5. Binned 1V (Tcb) for Total Cost Variable.

Knee, Total Cost Binned (Tch)

Bin Min Cost | Max Cost | Average Cost | Frequency
1 $8,553 $16,780 $15,269 1446
2| $16,781 $19,139 $17,922 1445
3| $19,140 $96,880 $22,318 1445

Hip, Total Cost Binned (Tcb)

Bin Min Cost | Max Cost | Average Cost | Frequency
1] $11,147 $16,768 $15,244 1068
2| $16,772 $19,192 $17,997 1069
3| $19,195 $71,264 $22,534 1068

Each of these bins has an average cost, and along with the product of the
probabilities of each bin, an expected value is calculated and used in the interpretation of
the results for the Total Cost DV. Binning the DV in this way is referred to as
“b-systems” analysis, where continuous values are derived from a binned DV (Zwick,

Fusion, & Wilmot). The model’s conditional probability distribution includes the
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calculated probability of each of the model’s IV states for the low-cost (bin 1), mid-cost
(bin 2), and high cost (bin 3) bins. The product of the probabilities of each bin and each
bin’s average Total Cost was used to calculate an Expected Value (predicted Total Cost)

for each 1V state:

p(Tcbl) x Avg(Binl) + p(Tcb2) X Avg(Bin2) + p(Tcb3) X Avg(Bin3)
100

Expected Value =

Associations between the DVs

A preliminary analyses was performed looking at the amount of uncertainty
reduced for each of the DVs, given the other DVs (set as 1Vs). There is some association
between the DVs. For example, in the knee data set, Total Cost (Tcb) reduces the

uncertainty (AH) of Complication (Cp) by 8.67% (Table 6).

Table 6. Association of DVs by %AH in Knee Data Set

MODEL | Adf | ABIC | %AH
Complication (Cp) Tcb Cp 2 125.95 8.67
SNF Cp 1 47.93 3.42
Re Cp 1 0.38 0.53
Tcb SNF 2 119.75 3.39
Skilled Nursing (SNF) Cp SNF 1 47.93 1.40
Re SNF 1 12.78 0.53
Tcb Re 2 6.02 2.17
Readmission (Re) SNF Re 1 12.78 2.02
Cp Re 1 0.38 0.84
Cp Tcb 2 125.95 1.50
Total Cost (Tch) SNF Tcb 2 119.75 1.43
Re Tch 2 6.02 0.24

In the hip data set, Total Cost (Tcb) also has an association with Complication
(Cp) with a %AH of 7.93, and with Skilled Nursing Facility (SNF) with a %AH of 7.37

(Table 7).
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Table 7. Association of DVs by %AH in Hip Data Set

MODEL Adf | ABIC | %AH
Complication (Cp) Tcb Cp 2 85.57 7.93
SNF Cp 1 27.50 2.77
Re Cp 1 -6.65 0.11
Tch SNF 2 176.61 7.37
Skilled Nursing (SNF) | Cp SNF 1 27.50 1.36
Re SNF 1 -6.17 0.07
Tch Re 2 -0.91 1.91
Readmission (Re) SNF Re 1 -6.17 0.24
CpRe 1 -6.65 0.18
SNF Tcb 2 176.61 2.74
Total Cost (Tcb) Cp Tcb 2 85.57 1.45
Re Tch 2 -0.91 0.22

Formatting Files for Input into Occam Software

The data files were transformed into a format accepted by the Occam software.
These Occam input files specify the variables and include the data to be analyzed. The
data file is a plain-text ASCII file saved in a “.txt” format. Initial input files were created
for both hip and knee separately. The All 1Vs and the DVs looked the same; however, the
specifications of the Comorbidities are different, as the data sets have different sets of
Comorbidity 1Vs and of course the data itself is different in each. Below is an example of
one of the input files. After the variable name, the first number indicates the cardinality
(number of states) of the variable (e.g., there are 7 Location states); the second number is
1 foran IV, 2 for a DV, and 0 for “ignore this variable”; the third string of characters is a
short name for the variable; for some variables, a rebinning string specifies aggregation

of multiple states into fewer rebinned states (e.g., for Age binned, previous bins 1,2,3,4

are collapsed into new bin 1).
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Table 8. Example of an Input File for Occam.

:nominal

Location 7,1

Principal Surgeon 43,15

Day of admit ,6,1,da

Financial Class ,6,1,fc

Age binned ,12,1,ageb, [1(1,2,3,4);2(5,6,7,8);3(9,10,11,12)]
Surgeon Volume Binned ,10,1,svb,  [1(1,2,3,4);2(5,6,7);3(8,9,10)]

Admit Diagnosis ,39,1,ad

Number of Risks Binned ,7,1,nrb, [1(1,2);2(3,4);3(5,6,7)]

Complication ,2,2,Cp

Skilled Nursing Facility ,8,0,dd, [1(1,3,4,5,6,7,8);2(2)]

Total Cost Binned ,12,0,tcb

Readmission 90 Days

RISK_185 ,2,1,Rnp

RISK_238.75 ,2,1,Rmp

RISK 244 ,2,1,Rh

RISK_255.41 2,1,Rgd

RISK 266.2 ,2,1,Rbc

RISK 268.2 ,2,1,Rou

RISK 268.9 ,2,1,Rvd

RISK_272 2,1,RIi

:no-frequency

:data

#nrb cp Rnp Rmp Rh Rhy
6 1 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
5 0 0 0 0 0
7 0 0 0 0 0
1 0 0 0 0 0
4 0 0 0 0 0

Variable Reduction per DV

As discussed above, the criterion of occurrence in at least five cases was used to
reduce the 1Vs t0188 in the knee data and 170 in the hip data. Preliminary analyses
indicated that a further reduction of IVs was necessary, since even simple models
included many IV states with zero or very low frequencies. To do this additional variable
reduction, a level = 1 loopless search was performed to assess the predictive strengths,

expressed in %AH reduction, of the 188 and 170 I'Vs. A single predicting IV was
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considered to have predictive value if its p-value was <.05. An overview of IV selection,
and the resulting number of I\Vs per analysis, is provided in each of the results sections.
Additionally, sorting these predictive IVs by greatest %AH to least showed the single
predicting 1Vs with the greatest value. This variable reduction method was performed for
hip and knee data sets for each of the DVs. IVs that were found to have predictive value

in the literature were retained for the searches as well, and are summarized in Table 9

below.
Table 9. Literature-based 1Vs Retained in all RA Exploratory Searches.
ICD-9 Code | ICD-9 Description ID Knee | Hip
RISK 250 Diabetes mellitus Rdi yes yes
RISK 250.4 | Diabetes with renal manifestations Rdr yes no
RISK 250.5 | Diabetes with ophthalmic manifestations Rdo yes no
RISK 250.6 | Diabetes with neurological manifestations Rdn yes yes
RISK 278 Overweight, obesity and other hyperalimentation Roo yes yes
RISK 278.01 | Morbid obesity Rmo yes yes
RISK 278.02 | Overweight Rov yes yes
RISK 401.1 | Benign essential hypertension Rbe yes yes
RISK 401.9 | Unspecified essential hypertension Rhe yes yes
RISK 414 Other forms of chronic ischemic heart disease Rci yes yes
RISK 414.01 | Coronary atherosclerosis of native coronary artery Rca yes yes
RISK 428 Heart failure Rhf yes yes
RISK 428.3 | Diastolic heart failure Rdh yes yes
RISK 428.32 | Chronic diastolic heart failure Rdf yes no
RISK 443 Other peripheral vascular disease Rpe yes yes
RISK 443.9 | Peripheral vascular disease, unspecified Rpv yes yes
RISK 491.2 | Obstructive chronic bronchitis Rch yes no
RISK 491.9 | Unspecified chronic bronchitis Rbh yes no
RISK 492.8 | Other emphysema Rem yes yes
RISK 493 Asthma Ras yes no
RISK 493.2 | Chronic obstructive asthma Rco yes yes
RISK 493.9 | Asthma unspecified Rua yes yes
RISK 496 Chronic airway obstruction, not elsewhere classified | Rao yes yes

Rationale for No Training/Test Split
Preliminary analyses were conducted with training/test splits, but these resulted in

changes to the %correct measure that were small and misleading. While performing
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training/test splits is common in machine learning research, it is often done with larger
sample sizes and fewer variables. This project’s primary objective was exploratory
modeling, in which it does not seek to report definitive results, but offers variables and
models which should be subjected to subsequent confirmatory testing. Training/test splits
were thus not considered to be a necessary component of this project, and were not

pursued further.

Logistic Regression Analysis

Prior to using RA for exploratory modeling and selecting the best predictive
models, a preliminary comparison of RA with LR was conducted. Using LR, the
researcher can specify the predictor variables expected to be useful in predicting the
outcome. This is considered a confirmatory, and not an exploratory, approach. In this
project, LR (as programed in R) was used in a confirmatory approach in order to validate
both the data used in this project and the RA method. In this analysis, binomial LR
analysis was performed to recreate a previous study where the outcomes assessed were
binary DVs. The goal of this analysis was confirmatory—to test an a priori hypothesis of
the predictive strength of a model that includes predictor IVs predetermined from the
literature to be useful in predicting postoperative complications and non-homebound
discharge.

Next, the relatively modest exploratory capabilities of LR were used to compare
the relative abilities of LR and RA in finding the most predictive models. This analysis
was conducted using a stepwise approach. In the “backward stepwise” (versus forward)

method of LR exploratory analysis, the saturated model (all variables) is used with no
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specifications of interactions. This stepwise LR approach is more comparable than purely

confirmatory LR modeling to the exploratory modeling using RA.

Regular Logistic Regression

In order to evaluate the logistic regression models, the “stats” package from R
was used (R. Core Team., 2016). The variables included in the LR analysis were
converted into “factors” in order for R to treat them as nominal variables.

LR falls within a broader category of models called “general linear models” that
includes ordinary regression, log-linear regression, and ANOVA. In this analysis, the
“glm” (used to fit “general linear models™) function in R was used. The “glm” function is
specified through the use of arguments. Arguments specified under family functions
allowed the creation of models in the binomial family and of the “logit” type.

A reference point, in this case the “null model,” was created as an object from the
data. In this reference model the DV was specified, but no predicting variables were
specified. The “null model” as reference allowed for the calculations of measures
necessary for comparison across LR and RA methods, such as Adf. For comparison, the
reference models are shown for both Occam and R:

e R: Tch~1
e Occam: IV : Tcb

A second model was then created as a model object from the data. This second
model was the model to evaluate against the reference model. Here, the predictor Vs
were specified, including any hypothesized interaction terms. Again, here are models

written in both forms:
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e R: Tcb ~ Rdi + Rdn + Roo + Rmo
e QOccam: IV : RdiTch : RdnTcbh : RooTch : RmoTch

With the null model as the reference, and the model to evaluate defined, the
following measures were calculated:

Adf: take the difference in DF values of the two models.

AAIC: take the difference in AIC values of the two models.

ALR: take the difference in deviance values of the two models.
alpha: calculate an “ANOVA” table for the two models with test type
“Chisq” and select the desired value from the resulting table.

Stepwise Logistic Regression

The previous method measures a specified model to the null reference model, but
does not explore or propose additional models. In order to find a new and perhaps more
predictive model, a stepwise search, using the “step” function from the R “stats” package,
was used. This function can search either upward or downward, adding or removing
components from a model within specified boundaries (described below). In this stepwise
approach, the search considered all single steps that could be made from the model and
then selected the best of those by the specified metric. This process was repeated until no
better models were found, or a boundary or other termination condition was met. The
stepwise search in R is similar to the Occam searches with the parameter “width” = 1, but
only considering LR models and not Occam’s loopless or all-models searches.

To begin a stepwise search for an LR model, models were prepared as described
previously, using the “glm” and the binomial family arguments. Using this stepwise
method, search direction can be upward from the null model (independence), or
downward from the model containing all the variables (saturated model), or searching in

both directions from some model “in the middle” that contains some of the variables in
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the data. In the LR analysis for this project, both upward and downward searchers were
performed.

The “step” function uses AIC by default as its criterion for model comparison;
however, the function can also be modified to instead select based on BIC. Additionally,
an upper boundary for the search scope was specified by providing a model; for instance,
a model that includes all variables of interest but excludes others in the data. The lower
boundary was also be specified, either as the null model (the default) or another model.
The stepwise search then results in the model that has been found through this series of

single-variable additions and/or subtractions (steps), with the best value for AIC.

Determining the Best RA Models

In order to search for the most predictive models for each of the DVs, the
reference model used was always the bottom, or the “independence model,” with a search
direction of “up.” This method allows for moving up the lattice of structures, away from
independence (no relations) toward a more complex model. Unjustified complexity
results in large cumulative or incremental alphas that indicate the search has gone too far.
In this project, cumulative p-values > 0.05 indicated the model was more complex than
warranted, and a model lower in the lattice was subsequently selected.

Models without loops, and models allowing for loops, were both considered and
are provided in the model search results. During the search process, models were sorted
by ABIC, with a preference for larger values. Each search was initially specified to keep
three models at each level, and to search up to seven levels in the lattice for both loopless

searches (coarse models), and searches allowing for models with loops (fine-grained
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searches). For the loopless search, a seven-level search means that models with
interaction effects involving up to seven 1Vs could in principle be considered. For the
search that allows loops, models that add seven steps of complexification of the
independence model are considered, where a step is either adding another variable to an
interaction effect that is already being modeled or adding an additional predicting
component to the model.

If the search results indicated the best model by either BIC or AIC criterion was at
the topmost level (Level 7 according to the initial settings) then additional searches were
conducted looking higher than seven levels. The number of levels varied per search, but
the protocol used always added levels until it was certain that the best models by BIC or
AIC were not at the highest level that was examined. Additionally, a similar protocol was
used for determining the width of the searches. Once a level was determined, width was
increased to see if a better model was found. Once a model remained unchanged, either
by increasing search levels or search widths, then this was considered the “best model”
for that search.

The best models that are the primary results of this project are selected according
to BIC. The benefit of using the conservative BIC model selection criterion—as opposed
to, say, using the AIC criterion—is that overfitting is unlikely; in being conservative,
however, it is possible that the models selected were not aggressive enough, with a
consequence of missing real interactions. (AIC was, however, used in RA-LR
comparisons, because the LR software used this criterion.) BIC models are always
“cumulatively” statistically significant; i.e., their difference from independence is always
significant. In addition, in all of the BIC models reported there is always a path where
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every step of increasing complexity from independence to the model is statistically
significant, the significance of each step being given by the Occam measure Incremental

Alpha.

Fitting the RA Models to the Data & Identifying Important Model IV States

The “fit” action of Occam displays the model’s internal structure, the conditional
probability distribution for the DV, given the predicting IVs. In this project, best models
were obtained for 16 searches, each resulting in a conditional probability distribution.
Each distribution shows the conditional DV % for each of the IV composite states for the
model and include frequencies and observed probabilities calculated from the data, as
well as the calculated probabilities from the model. The frequency of all the IV states
observed in the data, the data’s marginal probabilities, and the calculated IV conditional
probabilities of the model are used for selecting important 1V states, discussed further in
the next section.

The model fit analysis also displays the individual model component’s projections
and is frequently informative. Each individual component may be a single variable, or
more than one variable if a relation (interaction term) was found in the model.

For both the model’s full table and the individual components’ tables, if the
conditional probabilities for particular IV states are higher or lower than the margins,
then the IVs have provided new (predictive) information. In this project, conditional
probabilities that appear different from the margins are indicted by the blue and orange
shaded cells. Whether or not this effect size is significant is assessed by a chi-square

p-value, calculated from the margins, the IV state’s conditional probabilities, and the
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frequencies for that IV state. This p-value indicates the statistical significance of the
difference between the conditional distribution for particular IV states, namely g(DV/|IV),
and the sample margins, namely p(DV). The important IV states for each of the models is
then communicated in a decision tree when possible. If the number of variables and their
number of states make the decision tree too large for inclusion, then the decision tree is
omitted. The decision trees provide a more intuitive visualization of the model’s

predictors and their effect on the DV.

Selection Criteria for Important Model 1V States

All observed IV states for each of the models are included in the original RA
output from Occam. In this project, a criterion is used that considers only IV states that
occur in 10 or more cases (freq > 10). This decision is suggested by the Chi-square rule
of thumb that calls for on average at least five values per cell. For DVs with cardinalities
of two, requiring at least 10 cases doubles this guideline and imposes it on every 1V state;
this implements a conservative position on making assertions from the model conditional
probability distribution. The position thus adopted here thus is that a p-value is assessed
only if an 1V state occurs in 10 or more cases. If p <0.05, then the 1V state is retained;
otherwise the IV state is omitted.

Of these remaining 1V states, a “risk ratio” is then calculated. If the IV state has a
ratio > 1.10, it is considered to be a higher-risk state, and if the ratio is < 0.90, then it is
considered to be a lower-risk state. Any IV state that is between 0.91 and 1.09 is
considered to have a small effect size and is thus not considered an important IV state.

These risk ratios are a primary measure of effect size, and while 5% is often considered
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standard for an important effect size, this project doubles it to 10%, which is another

conservative choice.

Calculating Risk Ratios

The risk ratio of an 1V state is a measure of its effect size, whereas the p-value
assesses the statistical significance of the difference between the conditional probability
of the IV and the margins. This ratio will be used as part of the selection criteria for
selecting important IV states in the model, as discussed in the next section, Results.

Risk ratios help explain effect size, as does the reduction of uncertainty (AH), but
provide a different way to look at the effect. For AH, even small uncertainty reductions
could be large in effect size (like 1:1 to 2:1). The measure AH is like %variance
explained, with the major exception that low %variance explained means the effect size is
ignorable. However, for AH, even small numbers can have large effect sizes (this is
because there is a log). The following example is used to help explain what the risk ratio
means. This is important because the risk ratio is the primary measure by which
decreased or increased risk is assessed.

In this example, the season can be either summer or winter, and the possibilities
for weather can be either rain or no rain (Figure 3 below). If you do not know what
season it is, then you face maximum uncertainty with a 1:1 chance of no-rain to rain.
However, if you know the season, the uncertainty is reduced. If you know it is winter,
then there is a 1:2 odds of no rain:rain. If you know it is summer, then there is a 2:1 odds
of no rain:rain. Knowing the season changes the odds. This is a big effect size and

correlates to a %AH of 8.
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ain no-rain

1
summer /6 216 | 1/2
2
winter 16 1/6 | 1/2
1
2 1/2

Figure 3. Knowing the Season Reduces the Uncertainty
of the No-Rain:Rain from 1:1 to 2:1 or 1:2 odds.

In a decision tree with probabilities, this would look like Figure 4.

.33 (summer has
lower risk of rain)

Summer
Marginal
Probability (Rain) 0.5
(don’t know
the season) Winter

.67 (winter has a higher
risk of rain

Figure 4. Decision Tree Illustrating How Knowing the Season
Reduces the Uncertainty of the No-Rain:Rain from 1:1 to 2:1 or 1:2 Odds.

In this example, the risk ratio is the probability of an outcome (e.g., rain) for a
particular IV state (e.g., summer) divided by the marginal probability of the outcome
(maximum uncertainty):

.33 or .67
5 5

For the three binary DVs (Complication, SNF, and Readmission), the risk ratio is
the probability of an outcome for a particular adverse 1V state divided by the marginal

probability of this outcome for the whole sample. For the DV Total Cost, however, the
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ratio is instead the Expected Value of an IV state divided by the average cost for the total
sample.

Trying out many models in an exploratory modeling approach can lead to false
positives, and it is valuable to try to guard against this. In this project, decisions were
made that were systematically conservative by (a) dropping Comorbidity Vs that were
infrequent in the data, (b) requiring a frequency > 10 for each of the IV states in the
model, (c) using ABIC as model selection criterion, and (d) establishing the effect size of
at least 10% in the Risk Ratio of 1V states.

The general LR and RA methodologies were described in the Literature Review
chapter, and project-specific applications and extensions of these methods are described
above in this Methodology chapter. In the following chapter, the LR and RA analysis is

performed, and the results are presented.
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Chapter 4. Results
In the last chapter, an overview of the data and methods was provided. In this
chapter, the first research objective aims to connect this project to the literature, and then
compare Logistic Regression (LR) and Reconstructability Analysis (RA) in both
confirmatory and exploratory modes. The second research question aims to find
predictive models with RA. This chapter describes the analyses and presents the results in

detail. These results are then summarized in the following Discussion chapter.

Preliminary Research Objective: LR & RA Comparison

To establish a connection to results from the literature, results are presented from
an LR analysis of this project’s data, using a limited set of variables. Then, to address the
question whether RA and LR give the same results for equivalent models, results are
presented for the comparison of RA to LR using the same limited set of variables. To
answer the question whether exploratory RA can provide better or novel models
compared to LR, results are presented from an exploratory RA analysis, first on the
limited data set and then on a larger subset of variables. This larger subset of variables is
also analyzed with stepwise LR for comparison. These analyses provide a sequence of
(limited) connections from LR results in the literature, to LR results from this project’s

data, to RA results on this project’s data.

Connecting to Previous LR Results from the Literature
Prior to LR and RA comparisons, the results of a previously published study that

used LR was re-created, also using LR, on this project’s data. The re-creation of this past
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study confirmed that this data set was comparable to the data set used in that study, thus
validating this project’s data.

Previous research has assessed the effect of comorbidities (hypertension (H),
diabetes (D), obesity (O), and their combinations) on postoperative complications and
non-homebound discharge for patients with hip and knee arthroplasty (Jain et al., 2005).
In the Jain study, LR was used to determine that postoperative complications were more
likely in patients with hypertension (H), diabetes (D), or obesity (O) as compared with
patients without these individual comorbidities. Jain et al, used the large National
Inpatient Sample (NIS) database to create a data set of over a million joint replacement
cases—a much larger sample than the data set used in this project. However, the
procedure and diagnosis coding methodology and the way DVs postoperative
complications and non-homebound discharges were determined are identical. The
similarity of patient cohort and variable definitions makes it possible to validate the data
used in this project.

The hip and knee data sets used in this project were transformed into a combined
data set (n = 6,612) similar to the data set used in the Jain study (Jain et al., 2005). The
statistical software package R was used to perform LR and obtain odds ratios to quantify
effect sizes and p-values to assess significance. Results demonstrate that odds ratios
determined from this project’s data are comparable to findings of the Jain study.

The Jain study (Jain et al., 2005) showed that hypertension had an effect on
postoperative complications with an odds ratio (OR) of 1.07. Results of the new LR
analysis (Table 10) show a slightly higher odds ratio at 1.18, although this result was not
significant (p = 0.18). Previous results showed that for patients with the comorbidity of
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obesity, there was a 31% greater chance of developing postoperative complications

(OR =1.31), while in the new LR analysis an odds ratio of 1.39 was found with a
significant p-value of 0.03. Previous results indicate that diabetes increased risk of a
postoperative complication by 6% (Jain et al., 2005), while patients with diabetes in this
new analysis were 2.9 times more likely to have a postoperative complication than their
non-diabetic counterparts (p = 0.00). The odds of diabetes are much higher in the new LR
analysis than the previous results, yet the rate of diabetes is similar in both cohorts. There
was a prevalence of diabetes of 10.04% in the Jain study cohort compared with 12.66%
in the new LR analysis cohort.

Table 10. Previous Results Reported in (Jain et al., 2005), and
Results from New LR Analysis on This Project’s Data.
Adf, ALR, and AAIC values are given in the table for later comparisons with RA calculations.

Previous Study
Results New (LR)

Comorbidity (1V) Outcome OR p-value OR p-value | Adf | ALR | AAIC
Postoperative | 4 o7 | <0001 | 118 | 018 | 1 | 178 | -0.22
Complications
Nonhomebound
Discharge

Postoperative
Complications

Hypertension
1.12 <0.001 1.07 0.17 1 1.85 -0.15

1.31 | <0.001 | 1.39 0.03 1 4.48 2.48

Obesity
Nonhomebound | 4 45 | <0001 | 122 | 000 | 1 | 938 | 738
Discharge
Postoperative 1.06 | 0010 | 290 | 0.0 1 | 49.56 | 47.56
. Complications
Diabetes Nonhomebound
. 1.30 <0.001 1.48 0.00 1 27.58 25.58
Discharge

The likelihood of a non-homebound discharge was 12% greater for patients with
hypertension in the previous study (OR = 1.12), and 7% greater in the new LR analysis
(p =0.17) (Table 10). Previous results showed that patients with diabetes had a 45%
greater chance of a non-homebound discharge, while new LR results showed a 22%

greater chance (p = 0.00). Diabetes was a comorbidity that increased likelihood of a
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non-homebound discharge in both previous and current LR analysis, with a 30% greater
chance (OR = 1.30) in previous results compared to a 48% greater chance in the new LR
results. While there were differences in the effect sizes, the odds ratios were roughly
comparable. The lack of significance in the effect size for hypertension on both DVs in
the new LR analysis could be due to the much smaller cohort.

The previous study (Jain et al., 2005) also looked at patients who had
combinations of two comorbidities. These were not hypothesized interaction terms to be
analyzed, but rather three new variables created. Again, the new LR analysis showed

comparable results in terms of odds ratios with most results being significant (Table 11).

Table 11. Previous Results Reported in (Jain et al., 2005) for 3 1Vs,
and Results from New LR Analysis on this Project’s Data.

Previous Study

Results New LR
Fr((j;?nT;b;f 4 IVs recoded into new variables
2005) 1=(both risks), 0=(not both risks)

Comorbidity (IV) | Outcome OR p-value OR p-value | Adf ALR AAIC

. Postoperative 104 | 0280 | 196 | 000 | 1 | 1302 | 11.02
Hypertension + Complications

Diabetes Non-homebound

. 1.30 | <0.001 | 1.24 0.01 1 6.09 4.09
Discharge

Postoperative

Hypertension + Complications 1.27 <0.001 1.33 0.13 1 2.34 0.34

Obesity Non-homebound | 4o | 5001 | 124 | o0.01 1 721 | 521
Discharge

. Postoperative 122 | 0020 | 232 | 000 1 | 1313 | 1113

Diabetes + Complications

Obesity Non-homebound |, 75 | 5001 | 151 | 0.00 1 | 1259 | 1059
Discharge

Do RA and LR give the same results for equivalent models?

Results from the previous LR analysis were reproduced using the RA method
instead. Here, RA was not used for exploratory modeling, but rather used in a
confirmatory mode starting with the hypothesized model that was recreated in the LR
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analysis. In this comparison, RA as programmed in the software “Occam” was used in a
confirmatory mode starting with the models used in the LR study. RA generated identical
results to LR, demonstrating that where the methods overlap, they are equivalent. The
AAIC and Alpha measures are identical between LR and RA (Table 10 and Table 12,

respectively).

Table 12. Similar RA Results Using this Project’s Data.

New Results (RA in “Occam”)
Comorbidity (IV) | Outcome OR Alpha | %AH(DV) | Adf | ALR AAIC
Postop_erat_lve 1.18 0.18 0.08 1 1.78 -0.22
. Complications
Hypertension Non-homebound
. 1.07 0.18 0.02 1 1.85 -0.16
Discharge
Postopgrat_lve 1.39 0.03 0.20 1 4.48 2.48
. Complications
Obesity Non-homebound
) 1.22 0.00 0.10 1 9.38 7.38
Discharge
Postopgrat_lve 2.90 0.00 219 1 49.56 47.56
. Complications
Diabetes Non-homebound
) 1.48 0.00 0.30 1 2758 | 25.58
Discharge

Results from RA are summarized as conditional probability distributions, which
were transformed into joint probability distributions from which the odds ratios were
calculated. The odds ratios are identical to those calculated by LR. RA provides an
additional measure of effect size in the percent reduction of uncertainty of the dependent
variable given the comorbidity IV states: %AH(DV), as seen in Table 12. This reduction
of uncertainty is a unique and central feature in the RA methodology and will be
emphasized in the upcoming exploratory modeling section. It might be viewed as a way
of summarizing several odds ratios in a single measure. Uncertainty is the nominal
variable “equivalent” of variance, and so a %reduction of uncertainty resembles a

%variance explained. (For Gaussian distributions, there is in fact an equation that directly
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relates the two.) However, uncertainty reduction numbers that are small can still represent
large effect sizes, because of the logarithm term in the expression for uncertainty
(Shannon entropy).

Using RA to generate results for patients who had two comorbidities again
resulted in identical AAIC, alpha, and odds ratio numbers (Table 13). However, the
%AH(DV) is rather low, with the largest reduction in uncertainty at 0.57%. Perhaps there
were other 1Vs that would have provided more information about the DV. The fact that
even low reductions of uncertainty can correspond to odds ratio values whose difference
from 1 is statistically significant should be kept in mind when uncertainty reduction
values are reported in the next section.

Table 13. Similar RA Results Using this Project’s Data with 3 New IVs.

New Results (RA)
Comorbidity (IV) | Outcome OR | Alpha | %AH(DV) | Adf | ALR | AAIC
_ Postoperative 1.96 | 0.00 0.57 1 ]1302 | 11.02
Hypertension + Complications
Diabetes Non-homebound 124 | o001 0.07 1 6.09 4.09
Discharge
. Postopgrat_lve 1.33 0.13 0.10 1 2.34 0.34
Hypertension + Complications
Obesity an-homebound 124 0.01 0.08 1 7.21 5.21
Discharge
Postoperative
Diabetes + Complications 232 | 000 058 i il Mt
Obesity an-homebound 151 0.00 0.14 1 12.59 | 10.59
Discharge

Does exploratory RA provide better or novel models compared to LR?

This preliminary comparison was then expanded, and RA was then used in an
exploratory mode, providing an initial example of the type of unique results that are
possible from using RA. This question is first answered using a simple RA exploratory

search using the limited variable set from the above LR and RA analysis. Then, to further
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demonstrate RA’s exploratory search capabilities, a larger subset of the data with 17 IVs
was analyzed with LR and RA.

Using this simplified data set with only four variables—the IVs, hypertension (H),
diabetes (D), and obesity (O), and the DV, complications (C), shows a simple example of
RA exploratory modeling, which in this case can evaluate the complete set of all possible
models. In Table 14 below, the bottom row shows the independence model, where there
IS no relation or constraint between the 1Vs and the DVs with zero reduced DV
uncertainty (%AH(DV) = 0.00). Moving up the table, or up the lattice of structures of all
possible models for this four-variable system, the top row shows the data, the “saturated
model,” which has information = 1 and maximum complexity (Adf = 7). The models in
between independence and the data were all considered by RA. While by the AIC
criterion the best model was determined to be IV:HDC, there was an opportunity to
consider models with loops, such as those highlighted in orange in Table 14 below. In
this simple analysis, the model chosen did not have a loop, but in other situations,

a model with loops may be the best model by AIC or another criterion. Note that IV:DC
has information of 0.81, and adding HC (to give model 1V:DC:HC) does not increase this
value, but going up and adding a genuine interaction effect (to give model 1VV:HDC)
increases the information to 0.98. Note also that although O predicts C better than

H predicts C, the HD interaction predicts C better (information = 0.98, uncertainty
reduction = 2.67%) than the DO interaction (information = 0.83, uncertainty

reduction = 2.24%).
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Table 14. Directed RA Search for DV Complication for 4 Variables.
(Best Model by AIC in Bold.)

MODEL Level | Adf | ALR Inf %AH(DV) | AAIC | Alpha
HDOC (Data) 7 7 61.44 1.00 2.71 47.44 0.00
IV:HDC:HOC:DOC 6 6 61.12 0.99 2.69 49.12 0.00
IV:HDC:DOC 5 5 61.11 0.99 2.69 51.11 0.00
IV:HDC:0C 4 4 60.80 0.99 2.68 52.80 0.00
IV:HDC:HOC 5 5 60.80 0.99 2.68 50.80 0.00
1IV:HDC 3 3 60.47 0.98 2.67 54.47 0.00
IV:HOC:DOC 5 5 51.29 0.83 2.26 41.29 0.00
IV:HC:DOC 4 4 50.89 0.83 2.24 42.89 0.00
IV:DOC 3 3 50.85 0.83 2.24 44.85 0.00
IV:HOC:DC 4 4 50.48 0.82 2.23 42.48 0.00
IV:HC:DC:0C 3 3 49.88 0.81 2.20 43.88 0.00
1V:DC:0C 2 2 49.82 0.81 2.20 45.82 0.00
IV:HC:DC 2 2 49.57 0.81 2.19 45.57 0.00
IV:DC 1 1 49.56 0.81 2.18 47.56 0.00
IV:HOC 3 3 5.83 0.09 0.26 -0.17 0.12
IV:HC:0C 2 2 5.37 0.09 0.24 1.37 0.07
IV:0C 1 1 4.48 0.07 0.20 2.48 0.03
IV:HC 1 1 1.78 0.03 0.08 -0.22 0.18
IV:C (Independence model) 0 0 0.00 0.00 0.00 0.00 1.00
MODEL Level | Adf | ALR Inf %AH(DV) | AAIC | Alpha

RA Exploratory and Stepwise LR

This previous example illustrated a very simple comparison where LR had been
used in its most standard form. In the next example, an exploratory “stepwise” approach
was used that illustrates a more typical research approach. This stepwise LR approach is
more comparable than confirmatory modeling to the exploratory modeling using RA.

In this example, the literature was surveyed in order to select a set of variables
that have been reported to have an effect on outcomes similar to those in this study. The
resulting 17 literature-based predictors became the Vs used in this analysis. With these
17 1Vs, LR (as implemented in R) was then used in both its regular and stepwise
variations. Without any additional hypothesis, the best models using LR are presented.

RA as implemented in “Occam” is then used with the same 17 IVs. RA looked at models
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not considered in the LR stepwise approach. The models from each method are compared
and discussed.

In the first example, 17 Comorbidity IVs were selected that have been found to be
potentially predictive of cost from the literature, and were included in the hip or knee data
sets used in the RA exploratory searches. This example analysis was performed on the
hip data set for the DV Total Cost (Tcb). While total cost was binned into three states for
RA exploratory modeling in the next results section, Tcb is binned into two states in
order to perform a simple LR comparison. (LR can be used with the DV having more

than two states, but the analysis is cumbersome.)

e Single IV Predictors
First, a single predicting search was performed with the 17 Vs specified. As is
seen in Table 15, RA and LR produced identical results. In this single predicting search,

six IVs were individually predictive with p < 0.05.
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Table 15. LR & RA Comparison of Results for Single Predicting Search.
(Adf=1 for every model in this table.)

Logistic Regression Results RA Results
MODEL AAIC | ALR Alpha MODEL AAIC | %AH | ALR % C Alpha
17 1Vs 17 1Vs
(single (single
predicting) predicting)
Rmo Tcb 4711 49.11 0.00 Rmo Tcb 47.11 111 | 49.11| 5248 0.00
Rdi Tcb 8.19 | 10.19 0.00 Rdi Tch 8.19 0.23| 10.19| 51.64 0.00
Rhf Tcb 5.07 7.07 0.01 Rhf Tcb 5.07 0.16 7.07 | 50.58 0.01
Rdh Tcb 4.94 6.94 0.01 Rdh Tcb 4.94 0.16 6.94 | 50.14 0.01
Rao Tcb 2.81 4.81 0.03 Rao Tcb 2.81 0.11 481 | 50.61 0.03
Rua Tcb 2.75 4.75 0.03 Rua Tcb 2.75 0.11 475 | 50.92 0.03
Roo Tcb 1.46 3.46 0.06 Roo Tch 1.46 0.08 3.46 | 50.92 0.06
Rpv Tch 0.52 2.52 0.11 Rpv Tcb 0.52 0.06 2.52 | 50.23 0.11
Rhe Tch 0.38 2.38 0.12 Rhe Tcb 0.38 0.05 2.38 | 51.36 0.12
Rci Tch 0.24 2.24 0.13 Rci Tcb 0.24 0.05 2.24 | 50.42 0.13
Rov Tcb -0.30 1.70 0.19 Rov Tch -0.30 0.04 1.70 | 50.14 0.19
Rbe Tcb -0.35 1.65 0.20 Rbe Tch -0.35 0.04 1.65 | 50.11 0.20
Rco Tcb -0.70 1.30 0.25 Rco Tcb -0.70 0.03 1.30 | 50.17 0.25
Rca Tch -1.09 0.91 0.34 Rca Tch -1.09 0.02 091 | 50.36 0.34
Rem Tch -1.10 0.90 0.34 Rem Tch -1.10 0.02 090 | 50.11 0.34
Rdn Tch -1.30 0.70 0.40 Rdn Tch -1.30 0.02 0.70 | 50.08 0.40
Rpe Tcb -1.91 0.09 0.76 Rpe Tcb -1.91 0.00 0.09 | 50.02 0.76

Looking at all 17 of the Vs together results in a AAIC of 51.85, as seen in

Table 16. Looking at a model that includes only the six Vs that were individually

predictive of total cost with alpha < 0.05 resulted in the LR model Rmo Tcb : Rdi Tcb :

Rhf Tcb : Rdh Tcb : Rao Tcb : Rua Tcb with a AAIC of 60.51 (Table 16), which is an

improvement over the model with all 17 1Vs.

Table 16. Confirmatory LR Results for all 17 IVs and 6 1Vs with p < 0.05.

Model | Adf | AAIC | ALR [ Alpha
All 17 variables

17 51.85 | 85.85 | 0.00
Model Adf | AAIC | ALR | Alpha

Model with the 6 I\Vs variables that individually have p < 0.05

Rmo Tcb : Rdi Tcb: Rhf Tcb: Rdh Tch: RaoTch: RuaTch | 6 [ 60.51 | 72.51 | 0.00
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Using the same 17 1Vs, a stepwise LR approach yielded model Rdi Tcb : Roo
Tcb: Rmo Tcb : Rov Tcb : Rhf Tcb : Rdh Tcb : Rua Tcb : Rao Tcb with a AAIC of

62.66 (Table 17), an improvement over the previous best LR model from Table 16.

Table 17. Stepwise LR Approach with 17 1Vs.

Model | Adf | AAIC | ALR | Alpha
Best model from a stepwise search using AlIC

Rdi Tcb: Roo Tcb: Rmo Tcb : Rov Teb : Rhf Tebh : Rdh Tceb :
Rua Tcb : Rao Tch

8 | 62.66 | 78.66 | 0.00

While the researcher must specify interaction terms for an LR analysis, even with
17 IVs, RA (as implemented in Occam) automatically considers these models in its
standard search. In addition, RA considers models that include multivariate interaction
effects that are not possible with LR. The best fine-grained model by AAIC in the
17-variable search using RA was Rd Rao Tcb : Roo Rpv Tcb : Rmo Rci Tcb : Rmo Rao
Tcb : Rov Rua Tcb : Rhf Rua Tcb : Rdh Tcb with a AAIC of 66.57 (Table 18), an

improvement over the model from the LR stepwise search in Table 17.

Table 18. RA Exploratory Search Results with 17 1Vs (no interaction terms specified in advance).

MODEL | Adf [ AAIC | %AH | ALR | % C | alpha | Variable description

FINE, best models (with loops)

AAIC (best model)

Diabetes mellitus (RISK 250) + Chronic
airway obstruction, not elsewhere
classified (RISK 496), Overweight,
obesity and other hyperalimentation
(RISK 278) + Peripheral vascular

Sgéﬁac\);—ri% :_ disease, unspecified (RISK 443.9),

pv1ch - Morbid obesity (RISK 278.01) + Other
RmoRci Teb: forms of chronic ischemic heart disease
RmoRaoTch .: 16 | 66.57 | 2.22 | 98.57 | 55.69 | 0.08 (RISK 414), Morbid obesity (RISK
RovRuaTch : L )

; 278.01) + Chronic airway obstruction,
RhfRuaTcb : e
RdhTch not elsewhere classified (RISK 496),

Overweight (RISK 278.02) + Asthma
unspecified (RISK 493.9), Heart failure
(RISK 428) + Asthma unspecified
(RISK 493.9), Diastolic heart failure
(RISK 428.3)
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RA has previously been used by several researchers to detect interaction terms
that are then specified for LR analysis (Cangur, 2009; Carletti, 2004; Mist, 2007). The
RA analysis detected interaction effects and in fact, each predicting component in the
best model by AIC from the RA search had an interaction term (Table 18). In this
analysis, the RA exploratory search appears to be more capable of finding predictive
interactions. When using the 10 1Vs (out of the original 17 1Vs) that are present in the
best model from the RA search (with no interaction terms), an LR analysis resulted in a
AAIC of 61.67 (Table 19). However, RA found a more interesting and informative
(AAIC = 66.57) model that LR could not find, because RA automatically searches for
significant interaction effects.

Table 19. LR Analysis with the 10 IVs present in the Best RA Model.

Model | Adf | AAIC | ALR | Alpha

Model with 10 variables that are present in Occam's “best model by AIC”

Rdi Tcb : Rao Tcb : Roo Tcb : Rpv Tcb : Rmo Tcb : Rci Teb :
Rov Tcb : Rua Tcb : Rhf Teb : Rdh Tcb 10| 6167 | 8167 | 0.00

In this example looking at just 17 IVs, RA generated models with quantifiable
additional predictive power by considering models that were not considered in the LR
analysis. Note that RA and LR looked at the same set of 1Vs. The higher AIC value for
the RA model means that its additional complexity (the RA model in Table 18 is twice as
complex as the LR model in Table 17) is more than justified by the increase in predictive
efficacy that it gives.

In the next section, a much larger set of Vs is considered when looking at each of
the dependent variables of this study. In addition to the previously known predicting Vs,

RA may detect something novel, particularly through the form of an interaction term.

-75 -



These combination effects may add predictive strength relative to the set of known single
predicting 1Vs available in the current literature and may even detect surprising 1Vs.

The first example in this preliminary comparison section recreated a previous
study and addressed any concern of whether RA is approximately similar to LR where
they overlap methodologically. This validated RA as a method and confirmed the results
from a previous LR study. The second example showed that RA can provide novel
predictions and better relative performance, and therefore RA was shown to have value as

a method to augment or supplant LR.

Main Research Objective: Find predictive models with RA

In this results section, a series of best models whose measure of goodness is
% reduction of uncertainty of the DV are proposed and analyzed in detail for the
following DVs: (a) Complication, (b) (discharge to) Skilled Nursing Facility,
(c) Readmission, and (d) Total Cost, for both Knee and Hip replacement data. In each of
these eight studies, searches were performed looking at (a) All IVs together, and (b) only

the Comorbidity 1Vs.
DV: Complication (Cp)

Knee Analysis

o AllIVs

o Coarse Searches (Models without Loops)
First, loopless models were examined for the dependent variable Complication

(Cp). These loopless models were sorted from the most predictive to the least predictive,
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and models were selected with single 1V predictors having p < 0.05, which resulted in
marking 53 1Vs to keep for the next round of searches. In addition to these single
predicting variables, 1VVs were retained that were found to be predictive in the literature
on similar outcome variables. In this literature, there were 25 variables that were
predictive of complications or discharge destination that were retained in the data; 16 of
these literature-based Vs also had a p value < 0.05 in the single predicting search, while
nine of the literature-based variables had p values > 0.05. The search results for the top
10 models are included in Table 20. Additional single predicting IVs are provided in
Table 20 if the IV was not listed in the top 10 but was included in one of the best models
by the BIC or AIC criterion. In results tables where p values always equaled zero to two
significant figures (i.e., p < 0.005), the column indicating p value was omitted. A model
in the table specifies 1Vs (e.g., Nrb, Rku) that predict the DV (here, Cp). It is followed
first by Adf = df(model) — df(reference), the difference between the degrees of freedom of
the model and the reference or independence model. The next value is

ABIC = BIC(reference) — BIC(model), for which improvements in the model compared
to the reference are reflected in larger values. The next measurement is %AH = H(DV) —
H(DV/|IV), the %reduction of uncertainty of the DV given the 1Vs. The reduction of
uncertainty measure indicates how predictive the IVs are. The BIC measure indicates
how efficient the prediction is; i.e., how predictive the IVs are, given their complexity
(degrees of freedom). Best models are chosen based on their BIC measures, which results
in a highly conservative choice of models. Table 18 summarizes the results of single and

multiple predictors in loopless and all-model (with loops) searches.
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Table 20. Summary of Search Results (Knee) for All 1Vs.
Search covers coarse and fine models. All p-values = 0.

MODEL |Adf | ABIC [%AH | Variable description
COARSE, single predictors (top 10)
SCp 62 | -412.74 | 6.45 |Surgeon
Nrb Cp 2 77.29 | 5.69 | Number of risks (binned)
Rrd Cp 1 43.04 | 3.11 |Unspecified hypertensive renal disease (403.9)
Rku Cp 1 39.63 | 2.91 | Chronic kidney disease, unspecified (585.9)
Ruh Cp 1 33.56 | 2.54 | Other and unspecified hyperlipidemia (272.4)
L Cp 6 -9.04 | 2.50 | Location
Ad Cp 27 | -185.33 | 2.47 | Admission diagnosis
Ageb Cp 2 14.61 | 1.90 | Age (binned)
Raf Cp 1 11.46 | 1.20 |Atrial fibrillation (427.31)
Rhf Cp 1 10.79 | 1.16 |Heart failure (428)
MODEL Adf | ABIC | %AH | Variable description
COARSE, IVs in AIC or BIC models but not in top 10
Rhd Cp (rank 12) 1 9.90 | 1.11 | Other chronic pulmonary heart disease (416.8)
Rro Cp (rank 18) 1 3.22 | 0.70 |Rosacea (695.3)
Reg Cp (rank 20) 1 1.95 | 0.63 |Esophagitis (530.1)
MODEL Adf | ABIC |%AH | Variable description
COARSE, best model (loopless)
ABIC (best model)
Number of risks (binned), Chronic kidney disease,
Nrb Rku Cp 5 | 8323 | 758 |\ e (585_(9) ) y
Inc.P & AAIC (same best model)
Number of risks (binned), Other chronic pulmonary heart
Nrb Rhd Rku Cp 1) 5271 1877 disease (416.8), éhronic)kidney disease (285.9) g
MODEL Adf | ABIC | %AH | Variable description
FINE, best models (with loops)
ABIC (best model)
Age (binned), Number of risks (binned), Other and
Ageb C_p - Nrb C-p ’ ungspécified k)myperlipidemia (275.4), Ot%er chronic
Ruh Cp:Rhd Cp : 8 | 104.71 |10.40 . o .
Rku Cp : Rro Cp pulmor]a_ry heart disease (416.8), Chronic kidney disease,
unspecified (585.9), Rosacea (695.3)
Inc.P & AAIC (same best model)
. . Age (binned), Number of risks (binned), Other and
égﬁbc(;pm']\(ljr%gp ’ unspecified hyperlipidemia (272.4), Other chronic
N y 9 104.23 | 10.88 | pulmonary heart disease (416.8), Esophagitis (530.1),
Reg Cp:RkuCp: L - -
Chronic kidney disease, unspecified (585.9), Rosacea
Rro Cp (695.3)

Knowing the surgeon who performed the surgery (S) reduces uncertainty by
6.45% (Table 20). Likewise, knowing only if the patient had unspecified hypertensive
renal disease (Rrd) reduces uncertainty by 3.11%, and knowing that the patient had

unspecified chronic kidney disease (Rku) reduces uncertainty by 2.91%. The best coarse
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model in Table 20 shows that, for this data set, simply knowing the total number of
comorbidities a patient had (Nrb) along with chronic kidney disease (Rku) reduces the

uncertainty in predicting if Complication (Cp) occurred by 7.58%.

o Fine Searches (Models with Loops)

The next type of search considers models with loops, which allows for multiple
components that predict the DV. Within each component, there may be interaction effects
among the 1Vs in their prediction of the DV, just as an interaction effect was observed in
the best BIC model, Nrb Rku Cp, and the best loopless IncrP/AIC model, Nrb Rhd Rku
Cp, as shown in Table 20.

Note that some single predicting variables do not show up in the best coarse or
fine models, indicating that the IVs are not independent from each other. There are six
single predicting variables in the best BIC fine-grained model: Ageb Cp : Nrb Cp : Ruh
Cp : Rhd Cp : Rku Cp : Rro Cp. Five of these variables—Ageb, Nrb, Ruh, Rhd, and
Rku—also appear in the top 10 single predicting components, while Rro is the 18th in
the list of single predicting components (Appendix C). This apparently low-value
variable was included when the RA search methodology sought to improve a model
already containing the better individual predictors Ageb, Nrb, Ruh, Rhd, and Rku. Rro
was found to be the variable that added more additional information to that model,
relative to any of the better singly-predicting Vs above it.

The best single predictor, S (surgeon) does not appear in the best fine-grained
model, presumably in part because S has high cardinality and the information added by S

is not worth the complexity of including it in the model, and perhaps in part also because
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the predictive effect of S is already provided by the Ageb, Nrb, Ruh, Rhd, and/or Rku
predictors. Similarly, Ageb, Nrb, Ruh, Rhd, and Rku contain the information offered by
the other single predictors all the way down to Rro. The third-best single predictor, Rrd,
also does not appear in the best fine-grained model. Again, the information added by Rrd
is presumably not worth the additional complexity to be added to the model. This
explanation is supported by the fact that if Rrd were the DV, it is well predicted by Ageb,
Nrb, Ruh, Rhd, and Rku. In fact, Rku alone predicts Rrd with a %AH of 53.14%,
demonstrating significant overlap between Rku and Rrd. Nrb and other variables also
explain information in Rrd, as seen in Table 21. This demonstrates the lack of
independence between the 1Vs, which is analogous to collinearity among IVs in
regression analysis.

Table 21. IV Rku Predicts Rrd (as DV),
Demonstrating 1V Overlap.

MODEL Adf | %AH(DV) | ABIC
Rku Rrd 1 53.14 548.21
Rkd 1 18.64 186.83
Rhe Rrd 1 17.45 174.39
Nrb Rrd 2 17.13 162.69
SRrd 62 11.42 -399.60
Fc Rrd 5 4.63 6.64
Ageb Rrd 2 4.31 28.43
Rdi Rrd 1 4.19 35.46
Ruh Rrd 1 4.16 35.20
Ad Rrd 27 3.43 -190.21

Recall that the IV Nrb is a binned variable that tallies up the number of
comorbidities a patient has upon admission, and says nothing about the specific
comorbidities and their effects. The Nrb IV is tallied based on the presence or absence of
the 912 potential Comorbidity 1Vs present in the original data set. Because the specific

effect of individual or interactive Comorbidities are of interest, the Comorbidity only
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search excludes Nrb and other All Vs and thus focuses explicitly on the potential effects

of each individual comorbidity.

e Comorbidity 1Vs

o Coarse Searches (Models without Loops)

In the next search, Comorbidity Vs alone were considered as possible predictors.
The two predicting All IVs [Number of Risks Binned (Nrb) and Age Binned (Ageb)] from
Table 20 are thus not included in the results from this search (Table 22). The
Comorbidities IVs from Table 20 also show up—in the same order as in Table 20—as the
most predictive single predictive IVs, and two additional single predicting IVs appear:
aortic valve disorders (Rav), and coronary atherosclerosis of native coronary artery
(Rca).

While the results of the search including both All 1Vs resulted in the best model
Nrb Cp by the BIC criterion with a %AH of 6.73 (Table 20), the results of this search
yielded a best model in which other and unspecified hyperlipidemia (Ruh) and
unspecified hypertensive renal disease (Rrd) together predict Complication (Cp) with a

%AH of 5.04 Table 22 below.

Table 22. Summary of Search Results (Knee) for Comorbidity 1Vs.
Search covers directed coarse and fine models.

MODEL Adf | ABIC | %AH | Alpha | Variable description

COARSE, single predictors

Rrd Cp 1 ]43.04] 3.11 | 0.00 |Unspecified hypertensive renal disease (403.9)
Rku Cp 1 [39.63|2.91 | 0.00 |Chronic kidney disease, unspecified (585.9)
Ruh Cp 1 |33.56| 2.54 | 0.00 |Otherand unspecified hyperlipidemia (272.4)
Raf Cp 1 |11.46]1.20 | 0.00 |Atrial fibrillation (427.31)

Rhf Cp 1 ]10.79| 1.16 | 0.00 |Heart failure (428)

Rhd Cp 1 1990|111 | 0.00 |Otherchronic pulmonary heart disease (416.8)
Ros Cp 1 1981 |1.10| 0.00 |Obstructive sleep apnea (327.23)

Rdi Cp 1 |845|1.02| 0.00 |Diabetes mellitus (250)

Rav Cp 1 | 654 ]0.90]| 0.00 |Aorticvalve disorders (RISK 424.1)
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MODEL Adf | ABIC | %AH | Alpha | Variable description
Coronary atherosclerosis of native coronary
Rea Cp 1164810901 000 | tory (RISK 414.01)
MODEL Adf | ABIC | %AH | Alpha | Variable description
COARSE, IVs in AIC or BIC models but not in top 10
Rro Cp (rank 18) 1 322|070 | 0.00 |Rosacea (695.3)
Rmo Cp (rank 19) 1 | 272 |0.67| 0.00 |Morbid Obesity (278.01)
Reg Cp (rank 20) 1 | 195 |0.63| 0.00 |Esophagitis(530.1)
RIb Cp (rank 21) 1 | 195 |0.63| 0.00 |Legalblindness (369.4)
Rkd Cp (rank 22) 1 | 184 |0.62| 0.00 |Chronickidney disease, unspecified (585.9)
Ruu Cp (rank 28) 1 1-0131 050 | 000 ggg)r disorders of urethra and urinary tract
Unspecified hereditary and idiopathic peripheral
Rpn Cp (rank 32) 1 |[-1.44]042| 0.01 neuropathy (356.9)
Rcb Cp (rank 36) 1 |[-259]0.35| 0.02 |Obstructive chronic bronchitis (491.2)
Rpy Cp (rank41) 1 |-3.11]0.32 | 0.02 |Polymyalgiarheumatica (725)
Rhe Cp (rank42) 1 |-3.14]0.32 | 0.02 |Unspecified essential hypertension (401.9)
Rsy Cp (rank 44) 1 |-3.33]0.31| 0.02 |Other synovitis and tenosynovitis (727.09)
Rs Cp (rank 46) 1 |-3.40]0.30 | 0.03 |Sarcoidosis (135)
Rtu Cp (rank 47) 1 |-3.48]0.30 | 0.03 |Tobacco use disorder (305.1)
Rdf Cp (rank 48) 1 |-4.05]0.26 | 0.04 |Chronic diastolic heart failure (428.32)
MODEL Adf | ABIC | %AH | Alpha | Variable description
COARSE, best model
(loopless)
ABIC (best model)
Other and unspecified hyperlipidemia (272.4),
Ruh Rrd Cp 3 |58.2115.041 0.00 Unspecified hypertensive renal disease (403.9)
AAIC (best model)
Other and unspecified hyperlipidemia (272.4) +
Obstructive sleep apnea (327.23) + Atrial
Ruh Ros Raf Rku Cp 15.014.62 | 7.89 1 0.00 | g itration (427.'%1{O v cr(wonic k)idney disease,
unspecified (585.9)
Inc.P (best model)
Other and unspecified hyperlipidemia (272.4) +
Obstructive sleep apnea (327.23) + Atrial
Ruh Ros Raf Rku Cp 150/ 462 | 7.89 | 0.00 fibrillation (427.%1§)+ Cr(wonic k)idney disease,
unspecified (585.9)
MODEL Adf | ABIC | %AH | Alpha | Variable description
FINE, best models
(with loops)
ABIC (best model)
Other and unspecified hyperlipidemia (272.4) +
Atrial fibrillation (427.31), Obstructive sleep
Ruh Raf Cp : Ros Cp : Rhd apnea (327.23), Other chronic pulmonary heart
Cp:RavCp:RegCp:Rku | 10 |87.76[10.39| 0.00 |disease (416.8), Aortic valve disorders (424.1),

Cp:RuuCp:RroCp

Esophagitis (530.1), Chronic kidney disease,
unspecified (585.9), Other disorders of urethra
and urinary tract (599), Rosacea (695.3)
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MODEL

| Adf [ABIC | %AH | Alpha [ Variable description

Inc.P & AAIC (same best model

Rs Cp : Ruh Raf Cp : Rmo
Cp : Rtu Raf Cp : Ros Rhd
Cp:RpnRafCp:RIbCp:

Rhe Rro Cp : Rhe Rsy Cp :
RcaCp: Rav Cp:RdfCp:
Rcb Cp: Reg Cp : Rkd Cp :

RkuCp:RuuCp:RpyCp

27

87.02

16.57

0.00

Sarcoidosis (135), Other and unspecified
hyperlipidemia (272.4) + Atrial fibrillation
(427.31), Morbid Obesity (278.01), Tobacco use
disorder (305.1) + Atrial fibrillation (427.31),
Obstructive sleep apnea (327.23) + Other
chronic pulmonary heart disease (416.8),
Unspecified hereditary and idiopathic peripheral
neuropathy (356.9) + Atrial fibrillation (427.31),
Legal blindness (369.4), Unspecified essential
hypertension (401.9) + Rosacea (695.3),
Unspecified essential hypertension (401.9) +
Other synovitis and tenosynovitis (727.09),
Coronary atherosclerosis of native coronary
artery (414.01), Aortic valve disorders (424.1),
Chronic diastolic heart failure (428.32),
Obstructive chronic bronchitis (491.2),
Esophagitis (530.1), Chronic kidney disease,
Stage 111 (585.3), Chronic kidney disease
(585.9), Other disorders of urethra and urinary
tract (599), Polymyalgia rheumatica (725)

o Fine Searches (Models with Loops)

Performing a search that allowed for loops with only Comorbidity 1Vs (Table 22)

resulted in the best BIC model Ruh Raf Cp : Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku

Cp : Ruu Cp : Rro Cp, with a corresponding reduction in uncertainty of 10.39%, a very

slight improvement over the model in Table 20, namely Ageb Cp : Nrb Cp : Ruh Cp :

Rhd Cp : Rky Cp : Rro Cp, at a cost of an increase of complexity: Adf = 10, compared

to 8. The first component of this model, Ruh Raf Cp shows an interaction effect between

Ruh and Raf in their combined effect on the DV. Thus, in the best model found that using

Comorbidities 1Vs, other and unspecified hyperlipidemia (Ruh) and atrial fibrillation

(Raf) form one predictive component, followed by obstructive sleep apnea (Ros), other

chronic pulmonary heart disease (Rhd), aortic valve disorders (Rav), esophagitis (Reg),
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chronic kidney disease, unspecified (Rku), other disorders of urethra and urinary tract
(Ruu), and rosacea (Rro).

Similar to the results from Table 20, the best model from Table 21, Ruh Raf Cp :
Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp, also excludes Rrd
(the top single predicting variable in the Comorbidity only search). Just like the model in

Table 20, the other variables in the model presumably cover the information in Rrd.

e Comparing Search Results (Knee, Cp)

The All IVs and the Comorbidity Vs searches yield two sets of results that can be
compared to each other and interpreted with a 3-tiered classification of results, as
described below and summarized in Table 23.

Table 23. The 3-Tiered Classification of
Predicting Variables for DV:
Complication, Knee Analysis

Tier Variables

Tier 1 — Most Important | Nrb, Ageb, Ruh, Rhd, Rku
Tier 2 Reg, Raf, Ros, Rav, Ruu
Tier 3 Rro

Tier 1 contains variables from the best-by-BIC model from the dataset All 1Vs.
This is the most complete search, and the one that provides the most conservative
predictors. The selected variables (Nrb, Ageb, Ruh, Rhd, Rku, Rro) are shown in the first
row of Table 23, and are considered the most important predicting variables.

Tier 2 contains variables not in Tierl, but found in the AIC (less conservative)
model of All IVs AND in the BIC model of Comorbidity 1Vs. For the Knee Analysis of
DV Complication, this selects the variables Reg, Raf, Ros, Rav, Ruu as the next-most

important predicting variables. These are shown in the second row of Table 23.
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Finally, this classification places into Tier 3 any variables present elsewhere in the
best model search results, but not included in Tier 1 or Tier 2. That is, any variables
unique to one of the two searches: variables in the AIC model of All 1Vs but not in the
BIC model of Comorbidity 1Vs, as well as variables in the BIC model of Comorbidity IVs
but not in the AIC model from All IVs. In this case, there were no variables that met these
specifications. Strictly speaking, by the criteria set forth for Tier 1, Rro should have been

included, but it has been “demoted” to Tier3 for reasons that will be explained below.

e Model FIT

Having found a best model, the next step is to analyze its detailed content; i.e., the
conditional probability distribution for the DV, given the predicting IVs. This distribution
is shown in Table 24 below, for the best fine-grained model from the search with All Vs,
namely Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp. The columns of the
table are: the model number, to be able to refer to models easily; the six IVs in the model
and their different states; the frequency of each particular IV (vector) state; the
conditional probability p(Cp = 0|IV) and p(Cp = 1|IV) in the data given as percentages
(so they add up to 100%); these two conditional probabilities in the model (which is an
approximation to the data) written as q(Cp = 0|IV) and gq(Cp = 1|IV); the “risk ratio” of
q(Cp = 1|IV) / q(Cp = 1); i.e., the probability of complications for a particular IV state
divided by the marginal probability of complications for the whole sample. So, for
example, the first row specifies the IV state (Ageb, Nrb, Ruh, Rhd, Rku, Rro) =
(1,1,0,0,0,0), which occurs 502 times in the sample, for which the conditional

probabilities for the data (p) and the model (q) are given in percent, where ratio
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0.19 = 0.89/4.73, and where the p-value for the comparison of (99.11, 0.89) to the

margins (95.27, 4.73) is 0. The “risk ratio” conveys the effect size, while the p-value

conveys the significance of the effect size. The p-values are important and are used to

retain significant results only; however, it is the ratio—the effect size—that is used in

selecting the states that result in an effect, either protective (blue) or risky (orange), 10%

above or below the risk ratio of 1.

Table 24. Full Fit Table (Knee) All 1Vs for Best Model:
Ageb Cp: Nrb Cp : Ruh Cp: Rhd Cp : Rku Cp : Rro Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.

(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.)

Vs Data Model
obs. p(DV|IV) calc. q(DV|IV)

# | Ageb |Nrb|Ruh|Rhd |Rku|Rro| freq | Cp=0 Cp=1 Cp=0 Cp=1 | ratio | p(margin)
1 1 110 ] 0] 0| 0]|502]| 9900 1.00 99.11 0.89 0.19 0.00
2| 1 1110|000 1 100.00 0.00 98.46 1.54 0.33 0.88
3| 1 2 0| 0| 0| 0 |457| 98.69 1.31 97.77 2.24 0.47 0.01
41 1 21 0]01] 01 1 100.00 0.00 80.86 19.14 | 4.05 0.50
5| 1 2/ 0]0|1]0O0 2 100.00 0.00 91.86 8.14 1.72 0.82
6| 1 2/ 0]1|0]0O0 1 0.00 100.00 87.38 12.62 | 2.67 0.71
7] 1 211 ]10|0]|0]| 34 91.18 8.82 96.17 3.83 0.81 0.81
8| 1 3 /0] 0| 0| 0|38 96.05 3.95 95.90 4.10 0.87 0.56
9| 1 3/]0]0|0]1 1 100.00 0.00 69.34 30.66 | 6.48 0.22
10] 1 3/J]0joj1]oO 8 100.00 0.00 85.80 14.20 | 3.00 0.24
11 1 3101010 2 100.00 0.00 78.75 21.25 | 4.49 0.27
121 1 3111000 9 89.58 10.42 93.07 6.93 1.47 0.31
13| 1 3] 10|01 1 100.00 0.00 56.47 4353 | 9.21 0.07
14| 1 3101|110 3 66.67 33.33 77.61 22.39 | 4.74 0.15
15| 1 3111010 1 0.00 100.00 68.01 31.99 | 6.77 0.20
16| 2 110 ] 0] 0|0 ]|421] 99.29 0.71 98.78 1.22 0.26 0.00
17] 2 1101|010 1 100.00 0.00 92.78 7.22 1.53 0.91
18| 2 1110|010 6 100.00 0.00 97.90 2.10 0.44 0.76
19| 2 21 0] 0] 0|0 |420| 96.91 3.10 96.96 3.04 0.64 0.10
20| 2 2111010 ]0]| 50 90.00 10.00 94.82 5.18 1.10 0.88
21| 2 3/0] 0| 0|0 |349]| 9398 6.02 94.47 5.53 1.17 0.48
22| 2 3]0]01]0]1 3 33.33 66.67 62.26 37.74 | 7.98 0.01
23| 2 3/]0]0]1]0]10 60.00 40.00 81.51 1849 | 3.91 0.04
24| 2 301|010 3 66.67 33.33 73.00 27.00 | 5.71 0.07
25| 2 301110 1 100.00 0.00 41.10 58.90 |[12.46 0.01
26| 2 3|11 |0] 0| 0]|137]| 9562 4.38 90.74 9.26 1.96 0.01
27| 2 3/]1]01]1]0 9 44.44 55.56 71.66 28.34 | 5.99 0.00
28| 2 3/1]1]01]0 1 100.00 0.00 60.80 39.21 | 8.29 0.11
29| 3 110 0] 0| 0]|376]| 9787 2.13 98.11 1.90 0.40 0.01
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30| 3 1110|010 2 50.00 50.00 96.74 3.26 0.69 0.92
31 3 2 1 0] 0| 0| 0447 | 9508 4.92 95.32 4.68 0.99 0.96
32| 3 2 00|01 1 0.00 100.00 66.30 33.71 | 7.13 0.17
33| 3 2/ 0]0|1]0O 7 100.00 0.00 84.01 1599 | 3.38 0.19
34| 3 21110 0] 0] 54 94.44 5.56 92.11 7.89 1.67 0.27
35| 3 3]0 0] 0|0 |341| 90.62 9.38 91.60 8.41 1.78 0.00
36| 3 3/]0]0|0]1 2 100.00 0.00 51.29 48.71 |10.30 0.00
37| 3 3/]0]0]1]0]| 28 75.00 25.00 73.77 26.23 | 5.55 0.00
38| 3 3/]0]1|0]0 7 57.14 42.86 63.31 36.70 | 7.76 0.00
39| 3 3011170 1 100.00 0.00 30.81 69.19 |14.63 0.00
40| 3 3] 10| 0| 0]|148| 8784 12.16 86.21 13.79 | 2.92 0.00
41 3 3/1]0|0]1 1 0.00 100.00 37.65 62.35 |13.19 0.01
42| 3 3/]1]0]1)]0] 18 66.67 33.33 61.74 38.26 | 8.09 0.00
43| 3 3/1]1]0]0 2 50.00 50.00 49.74 50.26 |10.63 0.00
4336| 95.27 4.73 95.27 4.73 1.00
# |Ageb |Nrb |Ruh [Rhd |Rku |Rro |freq Cp=0 Cp=1 Cp=0 Cp=1 | ratio | p(margin)

The values for the All IVs: number of risks binned (Nrb) and age binned (Ageb)
are either states 1, 2, or 3 and are the three bins that the data was discretized to. Bin
ranges and frequencies are summarized in Table 25 and Table 26 below. With three states
possible for each of Ageb and Nrb, and two states possible for each of Ruh, Rhd, Rku and
Rro, one might expect to see 144 rows—one row for each possible combination of states.
However, fit tables don’t show rows for IV states that did not occur in the data. In
Table 24, for example, instead of 144 rows there are 43 rows. Additionally, fit tables in
the remainder of the results section will include only the rows that meet the protocol of

this project, which requires a frequency of 10 or more and a p(margin) of 0.05 or less.

Table 25. Number of Risks (Nrb)
Bin Range & Frequency (Knee)

Bin Range Frequency
1 0-1 1309
2 2-3 1474
3 4-18 1553
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Table 26. Age Binned (Ageb) Bin Range
& Frequency (Knee).

Bin Range | Frequency
1 32-62 1,490
2 63-71 1,411
3 72-95 1,435

For the independence model, which is the reference, we do not know the state of
Ageb or Nrb or if a comorbidity was present, so all of the uncertainty of the DV comes
from its marginal distribution, which is the last line of the table, for which the data and
model conditional probabilities are the same. For the calculated model, knowing the bin
states of All IVs (Nrb, Ageb) or the presence or absence of the individual Comorbidity IVs
(Ruh, Rhd, Rku, Rro) tells us about the probability of Cp occurring. The model
conditional probabilities are more appropriate to use than the observed (data) conditional
probabilities because the model is simpler than the data and thus generalizes better.

Each of the model’s components, namely Ageb Cp or Nrb Cp or Ruh Cp or Rhd
Cp or Rku Cp or Rro Cp, has an individual conditional probability distribution and is
individually informative. Table 27 is a compressed table summarizing the conditional
probability distributions for one component only. For example, looking only at Age
(Table 27), the conditional probability of Cp = 1 given Ageb =1 is 2.82% with the risk
ratio of 0.60 (row 9), Ageb = 2 has a neutral risk ratio close to 1 and was excluded, and
Ageb = 3 shows increased risk with a ratio = 1.52 (row 6). In other words, knowing only
Ageb, regardless of the states of the other Vs in the model, there is a significant
difference in the probability of Cp =1, i.e., a significant difference in the probability of
complications between the Ageb values—a decrease in risk for the low bin and an

increase in risk for the high bin.
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The individual model component’s projections alone do not explain the DV as
fully as the joint probability distribution (the calculated distribution of the entire model).
Table 27 shows that Ageb high (bin = 3) predicts an increase in risk; yet in the table for
the model that combines these components (Table 24), Ageb = 3 appears in row 29 along
with Nrb = 1 and Ruh, Rhd, Rku and Rro all absent that has a significantly reduced risk
ratio of 0.40. This is supported by Table 28, which looks at the Nrb Cp component alone,
which suggests that when Nrb = 1, the risk is reduced (ratio = 0.27) as compared to when
Nrb = 3 and the risk is increased (ratio = 1.82). On the other hand, when Ruh, Rhd, Rku
and Rro are present, the risk increases with a sizeable effect, as seen in the condensed
component table (Table 29) for the model’s comorbidity components (ratio = 2.29, 7.40,

5.59, and 8.46, respectively).

Table 27. Component Fit Table for IVAgeb in (Knee) All 1Vs Best Model:
Ageb Cp: Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

v Data obs. p(DV|IV)
# Ageb freq Cp=0 Cp=1 Ratio p(margin)
1 1 1490 97.18 2.82 0.60 0.00
3 3 1435 92.82 7.18 1.52 0.00
4336 95.27 4.73 1.00

Table 28. Component Fit Table for IV Nrb in (Knee) All 1Vs Best Model:
Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

| v Data obs. p(DV|IV)
# | Nrb freq Cp=0 Cp=1 Ratio p(margin)
1 1 1309 98.70 1.30 0.27 0.00
2 2 1474 96.34 3.66 0.77 0.05
3 8 1553 91.37 8.63 1.82 0.00
4336 95.27 4.73 1.00
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Table 29. Condensed Fit Table of Comorbidity Components for
IVs Ruh, Rhd, Rku, Rro in (Knee) All 1Vs Best Model:
Ageb Cp: Nrb Cp : Ruh Cp: Rhd Cp : Rku Cp : Rro Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

Data obs. p(DV|IV)

v State freq Cp=0 Cp=1 Ratio p(margin)
Ruh 0 3772 96.18 3.82 0.81 0.01
Ruh 1 564 89.18 10.82 2.29 0.00
Rhd 1 20 65.00 35.00 7.40 0.00
Rku 1 87 73.56 26.44 5.59 0.00
Rro 1 10 60.00 40.00 8.46 0.00

4336 95.27 4.73 1.00

The marginal distribution (last line) of the integrated Table 24 above shows that
in the total population of 4,336 knee replacement cases, Complication (Cp) was actually
present (observed) in 4.73% and was absent in 95.27% of the cases. If the conditional
probabilities for particular IV states are higher or lower than the margins, then the Vs
have provided new (predictive) information. Looking at the conditional probabilities of
the model in Table 24 shows a number of rows whose calculated probabilities appear
very different from the margins (the blue and orange shaded cells).

For Table 24, rows are highlighted with p(margin) < 0.05 and frequency > 10.
The distribution for Cp is highly skewed, since Cp = 1 occurs in only 4.73% of the cases;
therefore, only if a model predicts more than 50% chance of Cp = 1 will the prediction
rule be to predict “yes” for Cp. This occurs only for 1V states where the frequencies are
1 or 2 (rows 25, 39, and 41), and predictions with such low frequencies are here judged
not significant even if their calculated p-values are under the typical 0.05 threshold
(because of their extreme difference from the margins). In fact, in the tiered search results
(Table 23) Rro had been demoted from Tier 1 to Tier 3 precisely for this reason. Rro did

not appear in any of the IV states after the removal of 1V states with a frequency < 10
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even though the p-value had been significant. Aside from these very low-frequency IV
states, the model distribution always predicts Cp = 0, which is just what the marginal
distribution predicts even without any IV information. What the model predicts beyond
the independence model is the risk of occurrence. While there were no 1V states with
sizeable frequencies that predicted greater than 50% probability of Cp =, there are
probabilities that are significantly different than the margins, which demonstrate either
a protective effect (< 4.73%) or a higher risk of Cp =1 (> 4.73%). These effects are
indicated in the column labeled “ratio” which is model q(DV|IV) for Cp = 1 divided by
its marginal q(DV) value. It is the probability of a complication for a type of patient
divided by probability of complication for the full sample. When this ratio is < 0.90
(and is statistically significant), risk is reduced (blue cells); when the ratio is > 1.10
(and statistically significant), risk is increased (orange cells).

Row 1 (Table 24), for example, shows a protective effect of age binned
(Ageb) < 63 (bin = 1) and number of risks binned (Nrb) is low (bin = 1) with number of
risks < 1 with the probability of Cp =1 at 0.89% (ratio = 0.19), markedly lower than the
margin of 4.73%. Row 16 shows a similar protective effect, where even with Ageb range
63-71 (bin 2), as long as Nrb < 1 (bin 1), the probability is 1.22%, which is lower than
the margin (ratio = 0.26). Row 29 (Table 24) also offers a protective effect where even
with Ageb range 72-95 (bin3) as long as Nrb < 1 (bin 1), then the probability of Cp =1
is still lower than the margin at 2.13% (ratio = 0.40). Row 3 (Table 24) shows that even
where there is an increase in number of comorbidities with Nrb = 2 or 3 (bin 2), when
Ageb =1, there is still a protective effect with probability of Cp =1 of 2.24%
(ratio = 0.47).
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In each of these three cases where there was a protective effect, the four
Comorbidity 1Vs, Ruh, Rhd, Rku and Rro, were all absent. To recapitulate: the results
show that if these Comorbidity 1Vs are absent and Nrb = 1, then Ageb can be in any of its
three potential states and the risk is still low. Risk is also reduced if Ruh, Rhd, Rku and
Rro are not present, even if there are more comorbidities present (Nrb = 2), if the age is
low (Ageb =1).

Row 35 (Table 24) shows IV states that predict higher risk of Cp = 1. With Ageb
72-95 (bin 3), and Nrb between 4 and 18 (bin 3), there is a higher probability of Cp at
8.41% (ratio = 1.78). In this state, there was no presence of one of the four Comorbidity
IVs (Ruh, Rhd, Rku & Rro). In row 23, however, with the presence of Rku and with lower
Ageb 63-71 (bin 2), and with Nrb again between 4 and 18 (bin 3), the risk of Cp is
18.49% (ratio = 3.91).

Compare row 35 also with row 37 in Table 24 (freq = 28), where again Ageb =3
and Nrb = 3, but Rku is present and we get a much higher risk ratio of 5.5, a 0.2623
probability of Cp = 1 which is over five times the risk of the whole sample.

One way of summarizing the model predictions is through the use of a decision
tree. The decision tree provides an operational branching of questions one could ask, and
the answers that result. Before looking at the decision tree for model Ageb Cp : Nrb Cp :
Ruh Cp : Rhd Cp : Rku Cp : Rro Cp, three decision trees are shown for a much simpler
model in order to explain the meaning of the decision tree and show how these decision
trees will be constructed for the remainder of the analyses. In this example, the best BIC
model from the All IVs loopless model search (Table 20) is used: Nrb Rku Cp. The fit
table for this model is shown in Table 30 below.
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Table 30. Fit Table (Knee) All 1Vs for Best Coarse Model: Nrb Rku Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(1V states with frequency < 10 are not highlighted.)

Vs Data Model
obs. p(DV/|IV) calc. q(DV|IV)
# Nrb Rku freq Cp=0 Cp=1 Cp=0 Cp=1 ratio p(margin)
1 1 0 1309 98.70 1.30 98.70 1.30 0.27 0.00
2 2 0 1465 96.31 3.69 96.31 3.69 0.78 0.06
3 2 1 9 100.00 0.00 100.00 0.00 0.00 0.53
4 3 0 1475 92.48 7.53 92.48 7.53 1.59 0.00
5 3 1 78 70.51 29.49 70.51 29.49 6.24 0.00
4336 95.27 4,73 95.27 4,73 1.00

These results from the fit table can be communicated in a decision tree. The full
decision tree, showing all possible combinations of IV states, is not included in this
project as the relevance and size are prohibitive. The decision trees used in this project
omit IV states that are not observed (Nrb = 1, Rku = 1) or whose distribution is not
significantly different from the marginal distribution. The protocol in this project selects
only scenarios with a frequency > 10 and a p(margin) < 0.05, and these rows were
excluded in the fit tables as well as the corresponding branching on the decision trees.

The simplified version of the decision tree from Table 30 is illustrated below in Figure 6.

ratio=0.27

ratio=1.59
~a
ratio=6.24

Figure 5. Simplified Decision Tree for DV Any Comp (Knee) All Vs,
for Best Coarse Model Nrb Rku Cp.
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The decision tree for model Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp :
Rro Cp (Table 24) is shown in Figure 6. Note that while Rro appears in the BIC model,
none of the IV states in this table involving Rro = 1 meets the criterion of p-value < 0.05

and freq > 10. For this reason, Rro does not appear in the decision tree (Figure 6).
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Figure 6. Decision Tree for DV Any Comp (Knee) All 1Vs for Best Model
Ageb Cp : Nrb Cp : Ruh Cp : Rhd Cp : Rku Cp : Rro Cp.

The decision tree in Figure 6 shows clearly that regardless of Age (Ageb =1, 2,
or 3), as long as number of risks are low (Nrb = 1) then the risk of Complication Cp is

substantially lower than 1. If a patient has two or three comorbidities (Nrb = 2), there is
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still lower risk as long as the patient is in the lowest age group (Ageb = 1), which is 62
and younger.

The details of the best fine BIC model from the Comorbidity only search,

Ruh Raf Cp: Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp

(Table 22), are given in Table 31. The Comorbidity 1Vs, Ruh, Ros, Rhd, Rav, Raf, Reg,
Rku, Ruu, Rro, are listed in the nine IV columns. As discussed with Table 24, the
probabilities of Cp = 1 may differ significantly from the model’s marginal probabilities.
Each of the Vs is either 0 (comorbidity absent) or 1 (comorbidity present). In Table 31,
only p(margin) < .05 are shown due to the size of the table.

Row 1 (Table 31) is the case where all of the Comorbidity IVs are absent, with a
frequency of 3,311. Having none of these comorbidities lowers the risk ratio to 0.57,
where having any one of the comorbidities increases the risk of Cp. There are a few cases
where having a particular comorbidity increases risk of Cp = 1 substantially, such as is
seen in rows 4 (ratio = 3.07), 6 (ratio = 1.9), 9 (ratio = 2.88), 24 (ratio = 7.32), and 29

(ratio = 3.57).
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Table 31. Fit Table (Knee) with Comorbidity 1Vs for Best Model
Ruh Raf Cp : Ros Cp : Rhd Cp: Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.

Vs Data Model
obs. p(DVI|IV) | calc. g(DV/|IV)
RIRIRITRJRJR[JR[RJR
#lujo|h|lajale|k|u]|r]| freqq | Cp=0| Cp=1| Cp=0 | Cp=1 | ratio | p(margin)
h|ls|d|v]|flgluJu]lo
1/]0(0|0|0|0O|0|O0|O0]|O0O]|3311]|9737 | 263 | 97.30 | 2.70 | 0.57 0.00
2/0[0|0|0|0]|J0O|2|0|0]| 45 | 8222 | 17.78 | 85.46 | 1454 | 3.07 0.00
3/]0|0|0|0|1|0|0|0]|O0]| 184 |9239 | 7.61 | 91.03 | 897 | 1.90 0.01
4/1/0|0|0|0|0|0|0]| 0| 442 | 9208 | 7.92 | 92.07 | 793 | 1.68 0.00
5/12]0[0|0|0]|]0|2|0|0| 25 |64.00 | 36.00 | 65.41 | 3459 | 7.32 0.00
6/1|/1/0|0|0|JO0O|0|0|O0| 3 |8286|17.14 | 83.11 | 16.89 | 3.57 0.00
4336 | 95.27 | 4.73 | 95.27 | 4.73 | 1.00

The decision tree for Table 31 (Figure 7) shows that when unspecified
hyperlipidemia (Ruh) is present, regardless of the states of the other Comorbidity 1Vs in
the model, there is an increased risk of Cp. In fact, the only protective effect offered
against Cp occurring is to have none of the Comorbidity IVs. Having only 1 on the
Comorbidity IVs Ruh, Rku, Ros, or Raf results in an increased risk ratio. The presence of

both Ruh and Rku leads to the highest risk ratio of 7.32.
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Figure 7. Decision Tree for DV Any Comp (Knee) with Comorbidity 1Vs for Best Model
Ruh Raf Cp : Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp.

Each of the model’s components (Ruh, Ros, Rhd, Rav, Raf, Reg, Rku, Ruu, Rro),
shown below, is individually informative in its conditional probability distribution. To
illustrate with one of these components, Table 32 shows that when both Ruh and Raf
(one component with two Vs, showing an interaction effect) are absent, there is a
protective effect with a risk ratio of 0.71. The risk ratio of Cp increases when either Ruh
or Raf is present (2.3 and 2.45, respectively), and when they are both present (2.2). It
might seem odd that the ratio is lower when both are present than when only one is
present, but the differences between these ratio values are probably not statistically
significant. Table 33 shows the conditional probability distribution, with highest risk

ratio at the top, of the other components in the model.
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Table 32. Component Fit Table for 1Vs Ruh Raf (Knee) Comorbidity 1Vs Best Model
Ruh Raf Cp : Ros Cp : Rhd Cp: Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.

Vs Data obs. p(DV|IV)
# | Ruh | Raf | freq Cp=0 Cp=1 ratio p(margin)
1 0 0 | 3565 | 96.63 3.37 0.71 0.00
2 0 1 207 88.41 | 1159 | 2.45 0.00
3 1 0 516 89.15 | 10.85 | 2.30 0.00
4 1 1 48 89.58 | 1042 | 2.20 0.06
4336 | 95.27 4,73 1.00

Table 33. Condensed Component Fit Table for 1Vs Ruh Raf (Knee) Comorbidity 1Vs
Best Model Ruh Raf Cp : Ros Cp : Rhd Cp : Rav Cp : Reg Cp : Rku Cp : Ruu Cp : Rro Cp.
Orange rows indicate ratio > 1.10.

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

Data | obs. p(DV|IV)

# v IV State | freq Cp=0 | Cp=1 ratio p(margin)

1 | Reg 1 6 50 50 10.58 0.00

2 | Rro 1 10 60 40 8.46 0.00

3 | Ruu 1 8 62.5 37.5 7.93 0.00

4 | Rhd 1 20 65 35 7.4 0.00

5 | Rku 1 87 7356 | 26.44 | 5.59 0.00

6 | Rav 1 33 75.76 | 24.24 | 5.3 0.00

7 | Ros 1 225 88.44 | 1156 | 244 0.00
4336 | 95.27 4.73 1

Hip Analysis

In this portion of the results section, a similar series of results to the knee analysis
are presented. Here, two sets of results are again produced: (a) All IVs and
(b) Comorbidity IVs. The hip data set contains the same eight administrative All 1Vs but a

different set of Comorbidity 1Vs.

o AlllVs

o Coarse Searches (Models without Loops)
The hip data set, with 3,205 cases, originally had 170 Comorbidity IVs. A loopless

search for individually predictive variables provided the rationale in reducing the total
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Comorbidity 1Vs. Individually predictive variables were kept in addition to the

Comorbidity 1Vs that were found to be predictive in the literature. The resulting data set

consisted of 45 variables. The top 10 predicting variables are below in Table 34.

Table 34. Summary of Search Results for All 1Vs for DV Complication (Hip).
Search covers directed coarse and fine models. All p values = 0.

MODEL

|Adf [ ABIC |%AH | Variable description

COARSE, single predictors (top 10)

Nrb Cp 2 | 70.88 | 6.72 | Number of risks (binned)
SCp 42 | -272.10 | 5.17 |Surgeon
Ad Cp 38 | -246.01 | 4.69 |Admit diagnosis
Ageb Cp 2 | 38.11 | 4.19 |Age (binned)
Rrd Cp 1 38.60 | 3.61 |Unspecified hypertensive renal disease (403.9)
Fc Cp 5 1.35 3.22 | Financial class

Coronary atherosclerosis of native coronary artery
Rca Cp 1| 2791 | 2.78 (414.01)
Ruh Cp 1 27.11 | 2.72 |Other and unspecified hyperlipidemia (272.4)
Rku Cp 1 21.67 | 2.30 |Chronic kidney disease, unspecified (585.9)
Rpl Cp 1 19.16 | 2.10 |Hyperplasia of prostate (600)
MODEL Adf| ABIC | %AH | Variable description

COARSE, IVsin AIC or BIC mode

Is but not in top 10

Rhd Cp (rank 11) 1 14.76 | 1.76 | Other chronic pulmonary heart disease (416.8)
Rgp Cp (rank 25) 1 -0.25 | 0.60 | Repair of cystocele with graft or prosthesis (70.54)
MODEL Adf| ABIC | %AH | Variable description
COARSE, best model (loopless)
ABIC (best model)
Number of risks (binned), Unspecified hypertensive
Nrb Rrd Cp 5 71.05 | 8.61 renal disease (403.9)
Inc.P & AAIC (same best model)
Ageb Nrb Cp 2 66.21 | 10.10 | Age (binned), Number of risks (binned)
MODEL Adf| ABIC | %AH | Variable description
FINE, best models (with loops)
ABIC (best model)
Age (binned), Number of risks (binned), Unspecified
. . . hypertensive renal disease (403.9), Coronary
'é‘gae%gp er:l(;bCCpp RRp[(z:(;p " | 8 | 109.68 | 13.46 |atherosclerosis of native coronary artery (414.01),
' ' Other chronic pulmonary heart diseases (416.8),
Hyperplasia of prostate (600)
Inc.P & AAIC (same best model)
Age (binned), Number of risks (binned), Unspecified
. . . hypertensive renal disease (403.9), Coronary
';‘g;%gp ﬁmzbgpp:'ggﬁé)p:. 9 | 10923 | 14.05 atherosclerosis of native coronary artery (414.01),

Rgp Cp

Other chronic pulmonary heart diseases (416.8),
Hyperplasia of prostate (600), Repair of cystocele
with graft or prosthesis (70.54)
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Looking at the single predicting variables, simply knowing the total number of
comorbidities a patient had (Nrb) reduces the uncertainty in predicting Complication
(Cp) by 6.72%. Knowing only the surgeon (S) that performed the surgery reduces
uncertainty by 5.17%, admit diagnosis (Ad) by 4.69% and age (Ageb) by 4.19%. The
first predictive individual comorbidity is hypertensive renal disease (Rrd) which reduces
uncertainty by 3.61%, and so on. The best loopless coarse model shows that knowing

both Nrb and Rrd reduces the uncertainty by 8.61%.

o Fine Searches (Models with Loops)

As with the knee analysis, a fine-grained search has allowed for multiple
components in the prediction of Complication (Cp). While this type of search allows for
the detection of interaction effects, none were discovered in the best models for this
search. There are 6 single predicting variables in the best BIC fine-grained model Ageb
Cp:NrbCp:Rrd Cp:RcaCp:RhdCp:Rpl Cp. Five of these variables are in the
top 10 as seen in Table 41 above, and the sixth, Rhd, is the 11th single predicting
variable. While one might expect to see the more predictive of the single predicting
variables included in the best fine-grained BIC model, the variables surgeon (S), admit
diagnosis (Ad), financial class (Fc) and the two Comorbidity IVs hyperlipidemia (Ruh)
and chronic kidney disease (Rku) did not make it into the best BIC model. Any predictive
effects offered by these variables may overlap with those of the variables already in the
model, and so be excluded, or the effects may not improve the model enough to balance
the cost that each incurs in increased complexity. The next variable that added new

information was chronic pulmonary heart disease (Rhd).
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e Comorbidity 1Vs

o Coarse Searches (Models without Loops)

The most predictive Comorbidity 1Vs (top 10) are listed below in Table 35, which

shows the search results including only the Comorbidity IVs. The comorbidities are in the

same order as in Table 34 but show additional predictive comorbidities that were in a

sense hidden by the more predictive All IVs Ageb and Nrb.

Table 35. Summary of Search Results for Comorbidity Vs (Hip).
Search covers directed coarse, and fine models.

MODEL Adf| ABIC | %AH | Alpha | Variable description
COARSE, single
predictors
Rrd Cp 1 | 38.60 | 3.61 | 0.00 |Unspecified hypertensive renal disease (403.9)
Rea Cp 1127011 278 | 0.00 Eiflﬁ)gir)y atherosclerosis of native coronary artery
Ruh Cp 1 | 27.11 | 2.72 | 0.00 |Other and unspecified hyperlipidemia (272.4)
Rku Cp 1 | 21.67 | 2.30 | 0.00 |Chronic kidney disease, unspecified (585.9)
Rpl Cp 1 | 19.16 | 2.10 | 0.00 |Hyperplasia of prostate (600)
Rhd Cp 1 | 1476 | 1.76 | 0.00 |Other chronic pulmonary heart diseases (416.8)
Rdi Cp 1 | 1379 | 1.69 | 0.00 |Diabetes mellitus (250)
Rkd Cp 111198 | 155 | 0.00 (Cagré)gi)c kidney disease, Stage 11l (moderate)
Raf Cp 1 | 11.35 | 1.50 | 0.00 |Atrial fibrillation (427.31)
Rck Cp 1 | 655 | 1.13 | 0.00 [Anemia in chronic kidney disease (285.21)
MODEL Adf| ABIC | %AH | Alpha | Variable description
COARSE, Vs in AIC or BIC models but not in top 10
Rhe Cp (rank 12) 1 | 452 | 0.97 | 0.00 |Unspecified essential hypertension (401.9)
Rhh Cp (rank15) 1| 296 | 0.85 | 0.00 |Hyposmolality and/or hyponatremia (276.1)
Ram Cp (rank 17) 1| 181 | 0.76 | 0.00 |Unspecified deficiency anemia (281.9)
Rgp Cp (rank 19) 1 | -0.25 | 0.60 | 0.00 |Repair of cystocele with graft or prosthesis (70.54)
Rfr Cp (rank 23) 1 | -1.02 | 0.54 | 0.01 |Nonunion of fracture (733.82)
Rra Cp (rank 26) 1 ] -1.68 | 0.49 | 0.01 |Alcohol abuse, in remission (305.03)
MODEL Adf| ABIC | %AH | Alpha | Variable description
COARSE, best model
(loopless)
ABIC (best model)
Unspecified hypertensive renal disease (403.9),
Rrd Rca Cp 3 | 52,96 | 5.96 | 0.00 |Coronary atherosclerosis of native coronary artery
(414.01),
AAIC (best model)
Other and unspecified hyperlipidemia (272.4),
Ruh Rrd Rea Rpl Cp 15 | 898 |10.05! 0.00 Unspecified hypertensive renal disease (403.9),

Coronary atherosclerosis of native coronary artery
(414.01), Hyperplasia of prostate (600)
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Inc.P (best model)

Other and unspecified hyperlipidemia (272.4),
Unspecified hypertensive renal disease (403.9),
Ruh Rrd Rca Raf Rpl Cp | 31 | -93.15 | 12.14 | 0.01 |Coronary atherosclerosis of native coronary artery
(414.01), Atrial fibrillation (427.31), Hyperplasia
of prostate (600)

MODEL Adf| ABIC | %AH | Alpha | Variable description

FINE, best models
(with loops)

ABIC (best model)

Diabetes mellitus (250), Other and unspecified
hyperlipidemia (272.4), Hyposmolality and/or
hyponatremia (276.1), Unspecified deficiency

Rdi Cp : Ruh Cp : Rhh anemia (281.9), Alcohol abuse, in remission
Cp:RamCp:RraCp: (305.03), Unspecified essential hypertension
Rhe Cp : Rrd Cp : Rca 12 | 101.79 | 15.35 | 0.00 |(401.9), Unspecified hypertensive renal disease
Cp:RhdCp:RplCp: (403.9), Coronary atherosclerosis of native
Rgp Cp : Rfr Cp coronary artery (414.01), Other chronic

pulmonary heart diseases (416.8), Hyperplasia of
prostate (600), Repair of cystocele with graft or
prosthesis (70.54), Nonunion of fracture (733.82)

Inc.P & AAIC (same best model)

Diabetes mellitus (250), Other and unspecified
hyperlipidemia (272.4), Hyposmolality and/or
hyponatremia (276.1), Unspecified deficiency

Rdi Cp : Ruh Cp : Rhh anemia (281.9), Alcohol abuse, in remission
Cp:RamCp:RraCp: (305.03), Unspecified essential hypertension
Rhe Cp : Rrd Cp : Rca (401.9), Unspecified hypertensive renal disease
Cp:RhdCp: Raf Cp: 13 1100.13 ) 1584 | 0.01 (403.9), Coronary atherosclerosis of native

Rpl Cp: Rgp Cp : Rfr coronary artery (414.01), Other chronic

Cp pulmonary heart diseases (416.8), Atrial

fibrillation (427.31), Hyperplasia of prostate
(600), Repair of cystocele with graft or prosthesis
(70.54), Nonunion of fracture (733.82)

With the All 1Vs included, the best coarse model by the BIC criterion was Nrb Rrd
Cp, which had a %AH of 8.61. The best coarse model in the Comorbidity 1Vs search is
Rrd Rca Cp, with a %AH of 5.96. Hypertensive renal disease (Rrd) in fact is the top
single predicting comorbidity in both hip and knee searches, and is included in the best
BIC model for loopless searches. In the knee data set, Ruh was predictive and was
included in the best loopless model along with Rrd. Just as in the knee data set, in the hip

data set Ruh is the third most predictive single variable. In the hip search results Ruh is
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not selected by BIC but rather is selected by the AIC criterion as a predicting component
in the loopless search. More comparisons between the hip and knee data sets within the

DV are provided at the end of this section.

o Fine Searches (Models with Loops)

In the search that allows loops, the best model by BIC with Comorbidity Vs
resulted inRdi Cp : RuhCp:RhhCp:RamCp:RraCp:RheCp:Rrd Cp: RcaCp:
Rhd Cp : Rpl Cp : Rgp Cp : Rfr Cp with a %AH of 15.35 (Table 35), a large
improvement over the loopless model in this Comorbidity Vs search, and slight
improvement over the best model from the prior search that included All 1Vs which had a
%AH of 13.46 (Table 34). This best model does not have any interaction terms, and the
comorbidities are all individually predictive of Cp. Overall, however, there is a type of
interaction effect—not the familiar kind—due to the combination of the multiple
components of the model (Zwick, 2011c). Each of these 1Vs, diabetes mellitus (Rdi)
other and unspecified hyperlipidemia (Ruh), hyposmolality and/or hyponatremia (Rhh),
unspecified deficiency anemia (Ram), alcohol abuse, in remission (Rra), unspecified
essential hypertension (Rhe), unspecified hypertensive renal disease (Rrd), coronary
atherosclerosis of native coronary artery (Rca), other chronic pulmonary heart diseases
(Rhd), hyperplasia of prostate (Rpl), repair of cystocele with graft or prosthesis (Rgp),
nonunion of fracture (Rfr), is examined in detail in the model’s joint conditional

probability distribution in Table 43.
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e Comparing Search Results (Hip, Cp)

All 1Vs and the Comorbidity IVs searches yield two sets of results that can be
compared to each other and interpreted into a three-tiered classification of predicting
variables, as summarized in Table 36.

Table 36. The 3-Tiered Classification of Predicting Variables for DV:
Complication, Hip Analysis.

Tier Variables

Tier 1 (Most Important) | Ageb, Nrb, Rrd, Rca, Rhd, Rpl
Tier 2 Rgp

Tier 3 Rdi, Ruh, Rhh, Ram, Rra, Rhe, Rfr

Tier 1 contains variables from the best-by-BIC model from the dataset All 1Vs.
This is the most complete search, and the one that provides the most conservative
predictors. The selected variables (Ageb, Nrb, Rrd, Rca, Rhd, Rpl) are shown in the first
row of Table 36, and are considered the most important predicting variables.

Tier 2 contains variables not in Tier 1, but found in the AIC (less conservative)
model of All IVs AND in the BIC model of Comorbidity 1Vs. For the Hip Analysis of DV
Complication, this selects the variable Rgp as the next-most important predicting variable
as shown in the second row of Table 36.

Finally, this classification places into Tier 3 any variables present elsewhere in the
best model search results, but not included in Tier 1 or Tier 2. That is, any variables
unique to one of the two searches: variables in the AIC model of All 1Vs but not in the
BIC model of Comorbidity Vs, and variables in the BIC model of Comorbidity 1Vs but
not in the AIC model from All IVs. These variables (Rdi, Ruh, Rhh, Ram, Rra, Rhe, Rfr)

are in the last row of Table 36.
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e Model FIT

The detailed content of the best fine-grained BIC model from the All 1Vs search,
Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp, is shown as a conditional
probability distribution in Table 37 below. This joint probability distribution contains
many fewer rows than the distribution from the best BIC model from the knee data in
Table 24, because rows have been excluded that either are not significant (p > 0.05) or

have too low a frequency (< 10), to focus on more informative results.

Table 37. Fit Table (Hip) for All 1Vs for Best Model
Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

Vs Data Model
obs. p(DV|IV) |calc. g(DVI|IV)
# | Ageb | Nrb | Rrd | Rca | Rhd | Rpl | freq | Cp=0 | Cp=1 | Cp=0 | Cp=1 | Ratio | p(margin)
1 1 1 0 0 0 0 | 475 | 97.90 | 2.11 | 9849 | 152 | 0.30 0.00
3 1 2 0 0 0 0 | 348 | 97.70 | 2.30 | 98.27 | 1.73 | 0.34 0.00
13 2 1 0 0 0 0 | 355 |98.03| 1.97 | 9825 | 1.76 | 0.34 0.00
16 2 2 0 0 0 0 | 337 | 97.63 | 2.37 | 98.00 | 2.00 | 0.39 0.01
37 3 3 0 0 0 0 | 312 |87.82 | 12.18 | 89.66 | 10.34 | 2.02 0.00
38 3 3 0 0 0 1 24 |83.33 | 16.67 | 71.68 | 28.32 | 5.53 0.00
40 3 3 0 1 0 0 55 | 78.18 | 21.82 | 79.84 | 20.17 | 3.94 0.00
43 3 3 1 0 0 0 31 | 70.97 | 29.03 | 72.42 | 27.58 | 5.39 0.00
46 3 3 1 1 0 0 11 | 54.55 | 45.46 | 54.53 | 45.47 | 8.89 0.00
3205 | 94.88 | 5.12 | 94.88 | 5.12 | 1.00

The values for the All IVs: number of risks binned (Nrb) and age binned (Ageb)
are the variables that number of risks and age were discretized to with possible states
being either in bin 1, 2, or 3. The bin ranges and frequencies are summarized in Table 38

and Table 39.
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Table 38. Number of Risks Binned (Nrb)
Bin Range & Frequency (Hip).

Bin Range Frequency
1 0-1 1,111
2 2-3 1,081
3 4-19 1,013

Table 39. Age Binned (Ageb)
Bin Range & Frequency (Hip).

Bin Range Frequency
1 15-59 1,090
2 60-69 1,027
3 70-96 1,088

Each of the component’s individual projections is informative, yet not as
informative as the full model’s joint distribution (Table 37). In the component table
below (Table 40) for Ageb = 2, the probability of Cp was 3.51% with a risk ratio of 0.68.
In the model’s full joint distribution in row 13, when Ageb = 2 and when Nrb was its
lowest in bin 1 and the comorbidities in the model are all absent, then the probability of a
complication is essentially cut in half at 1.76%, with a risk ratio of 0.34. Row 16 shows
almost the same scenario; however, with Nrb slightly higher (Nrb = 2), the probability of
Cp of 2% was still lower than the overall data (the margins), with a ratio of 0.39. Once
Ageb and Nrb get to their highest states, we see increased risk (rows 37, 38, 40, 43, 46).
Row 37 shows that when Ageb and Nrb were both in bin 3, and the individual
comorbidities were absent, the risk of Cp increased to 10.34%, much higher than the
complication rate for the whole sample, with a risk ratio of 2.02. Introduce the presence
of Rpl (hyperplasia of prostate), and the risk more than doubles, with a probability of
Cp =28.32% and a ratio of 5.53 (row 38). With Ageb and Nrb each in bin 3, the presence

of Rca (coronary atherosclerosis of native coronary artery) alone nearly doubled the risk

- 106 -



to 20.17%, with a ratio of 3.94 (row 40). The presence of just Rrd (hypertensive renal
disease) with Ageb and Nrb each in bin 3 increased risk of Cp to 7.58% with a ratio of
5.39 (row 43). When either hyperplasia of prostate (Rpl), coronary atherosclerosis of
native coronary artery (Rca), or hypertensive renal disease (Rrd) were present along with
high Ageb and a higher total number of risks in total (Nrb), then the probability of
developing a complication increased at least four times that of the probability of entire
sample. Row 46 shows what happens when an additional comorbidity, Rca, is present in
the model when Ageb = 3, Nrb = 3, and Rrd is present. In cases where these states occur,
the patient had a 45.47% (ratio 8.89) probability of Complication (Cp) occurring.

The decision tree version of the conditional probability distribution provides a

different perspective of the same results (Figure 8).
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Figure 8. Decision Tree for DV Any Comp (Hip) All 1Vs for Best Model
Ageb Cp: Nrb Cp: Rrd Cp : RcaCp : Rhd Cp : Rpl Cp.

Each component of the model has its own individual probability distribution.
Table 40 shows the conditional probability of Cp =1 given Ageb = 1 is 2.57%, with a
risk ratio of 0.50; when Ageb = 2, the probability of Cp = 1 is 3.51%; and when
Ageb = 3, the risk increased with the probability of Cp = 1 at 9.19%, with a risk ratio of
1.80. As was seen with the knee data, lower age offered a protective effect while higher
age increased risk of Cp. Additional model components are listed in Table 41 and

Table 42, but are self-explanatory.
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Table 40. Component Fit Table for IVAgeb in (Hip) All 1Vs Best Model:
Ageb Cp: Nrb Cp: Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.

v Data obs. p(DV|IV)
# Ageb freq Cp=0 Cp=1 ratio p(margin)
1 1 1090 97.43 2.57 0.50 0.00
2 2 1027 96.50 3.51 0.68 0.02
3 3 1088 90.81 9.19 1.80 0.00
3205 94.88 5.12 1.00

Table 41. Component Fit Table for IV Nrb in (Hip) All 1Vs Best Model:
Ageb Cp: Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.

v Data obs. p(DV]|IV)
# Nrb freq Cp=0 Cp=1 ratio p(margin)
1 1 1111 97.84 2.16 0.42 0.00
2 2 1081 97.04 2.96 0.58 0.00
3 3 1013 89.34 10.66 2.08 0.00
3205 94.88 5.12 1.00

Table 42. Condensed Component Fit Table for Vs Rhd, Rrd, Rpl and Rca in (Hip)
All 1Vs Best Model: Ageb Cp : Nrb Cp : Rrd Cp : Rca Cp : Rhd Cp : Rpl Cp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

Data obs. p(DV]IV)

IV | IV States freq Cp=0 Cp=1 Ratio p(margin)
Rhd 1 10 40.00 60.00 | 11.73 0.00
Rrd 0 3128 95.46 4.54 0.89 0.14
Rrd 1 77 71.43 28.57 5.58 0.00
Rpl 1 77 77.92 22.08 431 0.00
Rca 0 3039 95.56 4.44 0.87 0.09
Rca 1 166 82.53 17.47 3.41 0.00

3205 94.88 5.12 1.00

The joint probability distribution below in Table 43 show the details for the best
fine model from the hip Comorbidity 1Vs search Rdi Cp : Ruh Cp : Rhh Cp : Ram Cp :
RraCp:Rhe Cp:Rrd Cp:RcaCp:Rhd Cp: Rpl Cp:RgpCp: Rfr Cp. In this
distribution, each of the IVs are either 0 (comorbidity absent) or 1 (comorbidity present).

Row 1 is the case where all of the comorbidities included in the model are absent, which
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lowers the risk of Complication (Cp) from 5.12% (the model’s marginal probability) to
1.92%, with a ratio of 0.37.

Table 43. Fit Table (Hip) for Comorbidity 1Vs for Best Model Rdi Cp : Ruh Cp : Rhh Cp :
RamCp:RraCp:RheCp:RrdCp: RcaCp:RhdCp:RplCp:RgpCp:RfrCp.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)
(Variables Rhh, Ram, Rra, Rhd, Rgp, and Rfr only take value 0 for these rows.)

[IVs Data Model
obs. p(DV]|IV) calc. g(DV|IV)

RIR|RIR|R|R|R|R|RIR|R|R
# |djulh|r|c|p|hla|r|h|g]|f]| freq Cp=0 | Cp=1 | Cp=0 Cp=1 | Ratio |p(margin)

i|lhje|ldja|l|h{m|a|d|p]|Tr
1]0/0/0|0|0|0|0|0|0]|0|0|0]| 1424 | 98.16 1.84 | 98.09 1.92 0.37 0.00
13/0|0[1/0|0|0|0|0|0|0|0|0O| 893 | 96.42 3.58 | 96.60 3.40 0.66 0.02
31/0/1]|0j1]|0/0|0|0|0|O|0O|O| 10 | 100.00 | 0.00 | 79.03 | 20.97 | 4.10 0.02
37|10|1|1/0f0|1]1|1|1|21|1]|1| 10 90.00 | 10.00 | 76.53 | 23.47 | 4.59 0.01
39|0|1]1/0|1]|0|0|0|0|0O|0]|O]| 26 76.92 | 23.08 | 83.37 16.63 | 3.25 0.01
51|1|0]1/0|1]|0|0|0|0|0|0]|O] 15 73.33 | 26.67 | 80.68 19.32 | 3.78 0.01
5711|1]1]/0|0]|0|0|0|0|0|0]|0O]| 49 87.76 | 12.25 | 86.98 13.02 | 2.55 0.01

3205 | 94.88 512 | 94.88 5.12 1.00

Having only the comorbidity Rhe (essential hypertension) still keeps the risk
lower, with a ratio of 0.66 (row 13). However, with the additional presence of either Rdi
(diabetes mellitus), Ruh (hyperlipidemia), Rca (coronary atherosclerosis of native
coronary artery) or Rpl (Hyperplasia of prostate), the risk increases. Row 37 shows that
in addition to the presence of Rhe (essential hypertension), the presence of Ruh
(hyperlipidemia) and Rpl (Hyperplasia of prostate) increases risk of Cp to 23.47%

(ratio = 4.59). Row 39 shows that with Rhe and Ruh present, but with the additional Rca
comorbidity, the probability of Cp = 16.63% (ratio = 3.25). Row 51 shows that with Rhe
present again, but this time along with Rdi and Rca, the probability of Cp = 19.32%
(ratio = 3.78), and with Rhe and Rdi both present, but with Ruh, the probability of

Cp = 13.0% (ratio = 2.55). Risk is also increased over Hypertension alone when even a
single other comorbidity is present, as with diabetes mellitus (Rdi), hyperlipidemia (Ruh),
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coronary atherosclerosis of native coronary artery (Rca), and/or hyperplasia of prostate
(Rpl). For these cases, the risk of Complication (Cp) increases from the marginal
probability of 5.12% to between 13.02% and 23.47%.

The decision tree for the conditional probability distribution for model Rdi Cp :
RuhCp:RhhCp:RamCp:RraCp:RheCp:RrdCp:RcaCp:RhdCp:RplCp:
Rgp Cp : Rfr Cp (Figure 9) offers perhaps a simplified way of looking at how the
presence or absence of each Comorbidity 1V, and their combinations, lead to increased or

decreased risk of Complication (Cp).
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Figure 9. Decision Tree for DV Any Comp (Hip) with Comorbidity IVs for Best Model Rdi Cp : Ruh
Cp:RhhCp:RamCp:RraCp:RheCp:RrdCp:RcaCp:RhdCp:RplCp:RgpCp:RfrCp.

The individual components of the model each have a fit table, condensed into a

single table below (Table 44).
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Table 44. Condensed Component Fit Table for 1Vs Rhd, Ram, Rhh, Rgp, Rfr, Rra,
Rrd, and Rpl in (Hip) Comorbidity IVs Best Model: Rdi Cp : Ruh Cp : Rhh Cp :
RamCp:RraCp:RheCp:RrdCp: RcaCp: RhdCp:RplCp:RgpCp:RfrCp.
Orange rows indicate ratio > 1.10.

(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

Data obs. p(DV]|IV)
# v IV State freq Cp=0 Cp=1 Ratio p(margin)
1 Rhd 1 10 40.00 60.00 11.73 0.00
2 Ram 1 6 50.00 50.00 9.77 0.00
3 Rhh 1 10 60.00 40.00 7.82 0.00
4 Rgp 1 8 62.50 37.50 7.33 0.00
5 Rfr 1 9 66.67 33.33 6.51 0.00
6 Rra 1 10 70.00 30.00 5.86 0.00
7 Rrd 1 77 71.43 28.57 5.58 0.00
8 Rpl 1 77 77.92 22.08 4.31 0.00
9 Rca 1 166 82.53 17.47 3.41 0.00
10 Rdi 1 305 88.53 11.48 2.24 0.00
11 Ruh 1 466 88.63 11.37 2.22 0.00
12 Rhe 1 1464 93.37 6.63 1.29 0.01

3205 94.88 5.12 1.00

Hip & Knee Summary of Results for Complication

The most important IVs are summarized in Table 45. The Vs that show up in
both searches are number of risks (Nrb), age (Ageb), chronic pulmonary heart disease
(Rhd), and hyperlipidemia (Ruh).

Table 45. Summary of Most Important 1Vs by Tier
across Hip and Knee for Complication.

Complication (Cp)
Knee Hip
Nrb, Ageb, Ruh, Rhd, Rku | Ageb, Nrb, Rrd, Rca, Rhd, Rpl
Reg, Raf, Ros, Rav, Ruu Rgp
Rro Rdi, Ruh, Rhh, Ram, Rra, Rhe, Rfr

=
WINPT
o

DV: Skilled Nursing Facility (SNF)

Knee Analysis
In this results section, the analysis is conducted with the same knee data set as

with DV Complication (Cp), but using the DV Skilled Nursing Facility (SNF) instead.
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SNF is a binary variable, with a patient either being discharged to a SNF or not. SNF
occurs much more frequently in the data than DV Cp, with approximately 17% of
patients discharged to a SNF after a knee replacement compared to the occurrence of DV
Cp of 4.7%. In this analysis, a new series of best models, whose measure of goodness is
also % reduction of uncertainty, are described and analyzed in detail. This analysis also
looks at (a) All 1Vs, and (b) only the Comorbidity IVs.

(This SNF analysis results section is briefer than that provided above for DV Cp,
with less discussion of the methodology. To the extent that each results section uses the
same methodology, the detailed discussion given for Cp can be used for reference, as can

the RA methodology portion of the Methods chapter.)

o AllIVs

o Coarse Searches (Models without Loops)

The final knee data set for SNF contained 67 IVs. The variable reduction method
of performing a loopless search for single predicting variables found 55 IVs to be
individually predictive of SNF with p < 0.05. Of these 55 1Vs, 12 were also found to be
predictive of similar outcomes in the literature. However, the literature had found 12 IVs
to be predictive that were not found to be individually predictive in the loopless search
conducted in this project. These 12 IVs were retained in the knee data set for this
analysis.

In the prior analysis section, the search to predict Complication (Cp) in the knee
data found the best single predictor to be surgeon (S) with a %AH of 6.45. The top single

predicting 1V of SNF is financial class (Fc) with a %AH of 10.55 (Table 46). The top 10
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single predicting Vs for SNF are listed below in Table 46 and are ordered smallest to
largest for alpha, which is the inverse of %AH.

Age (Ageb) reduces uncertainty of SNF by 10.5% and by simply knowing the
surgeon (S) there is a %AH of 7.18. Number of risks (Nrb) has a %AH of 2.57, hospital
location (L) a %AH of 2.14, and admit diagnosis (Ad) a %AH of 1.03. The first
individual patient Comorbidity IV that is predictive of SNF is heart failure (Rhf), with a
%AH of 0.95, followed by glaucoma (Rug), with a value of 0.9, and then persistent

mental disorders (Rmd) at 0.85.
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Table 46. Summary of Search Results for Knee data, DV SNF.
Includes both All 1Vs for coarse and fine models.

MODEL | Adf | ABIC | %AH | Alpha | Variable description
COARSE, single predictors (top 10)
Fc SNF 5 | 383.00 | 10.55 | 0.00 | Financial class
Ageb SNF 2 | 406.13 | 10.50 | 0.00 | Age binned
S SNF 62 | -229.95| 7.18 | 0.00 | Surgeon
Nrb SNF 2 86.87 | 2.57 | 0.00 | Number of risks binned
L SNF 6 35.81 | 2.14 | 0.00 | Location
Ad SNF 27 | -184.59 | 1.03 | 0.04 | Admitdiagnosis
Rhf SNF 1 29.93 | 0.95 | 0.00 | Heart Failure (428)
Rug SNF 1 27.95 | 0.90 | 0.00 | Unspecified glaucoma (365.9),
Rmd SNF 1 26.03 | 0.85 | 0.00 | Persistent mental disorders (294.8)
Svb SNF 2 15.18 | 0.79 | 0.00 | Surgeon volume binned
MODEL Adf | ABIC | %AH | Alpha | Variable description
COARSE, IVs in AIC or BIC models but not in top 10
Rpa SNF (rank 21) | 1 2.99 0.28 | 0.00 | Parkinson's disease (332)
Rbp SNF (rank 26) | 1 1.06 0.23 | 0.00 | Other and unspecified bipolar disorders (296.8)
MODEL Adf | ABIC | %AH | Alpha | Variable description
COARSE, best model (loopless)

ABIC (best model)
Ageb Nrb SNF | 8 | 451.49 | 12.87 | 0.00 [ Age binned + Number of risks binned

AAIC & Inc.P (same best model)

Age binned + Number of risks binned + persistent

AgebNrbRmdSNF 17| 401.43 1 1350 | 0.00 mental disorders (294.8)
MODEL Adf | ABIC | %AH | Alpha | Variable description
FINE, best models (with loops)

ABIC (best model)
L SNF : Fc SNF:
Ageb SNF : Svb location, financial class, age binned, surgeon
SNF : Nrb SNF: 20 | 635.69 | 19.94 | 0.00 | volume binned, number of risks binned, persistent
Rmd SNF: Rug mental disorders (294.8), Unspecified glaucoma
SNF: Rhf SNF (365.9), Heart Failure (428)

Inc.P & AAIC (same best model)
L SNF : Fc SNF :
Ageb SNF : Svb location, financial class, age binned, surgeon
SNF : Nrb SNF volume binned, number of risks binned, persistent
:Rmd SNF: Rbp 22 | 634.61 | 20.33 | 0.00 | mental disorders (294.8), Other and unspecified
SNF : Rpa SNF : bipolar disorders (296.8), Parkinson's disease
Rug SNF : Rhf (332), Unspecified glaucoma (365.9), Heart Failure
SNF (428)

The best coarse model allowing for more than one IV (but not allowing for loops)

is Ageb Nrb SNF, with a corresponding %AH of 12.87 and a Adf of 8. Financial class

(Fc), while individually predictive, is not included as it does not provide additional

information worth the complexity over the combined 1Vs of Ageb and Nrb. Ageb and
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Nrb form a conventional interaction effect that is different from the simple combination

of two separate components (i.e., Ageb SNF : Nrb SNF).

o Fine Searches (Models with Loops)

Allowing for multiple components and loops, the best model by BIC found 8 IVs
in the model L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF : Rmd SNF : Rug SNF :
Rhf SNF. All 8 of these 1Vs are also listed in the top 10 single predicting IVs of
Table 46. Similar to the search results for Cp, surgeon (S) is individually predictive but
does not appear in the best fine-grained model, presumably because of the high
cardinality of S (63 states). Location (L), financial class (Fc), age binned (Ageb),
surgeon volume binned (Svb), number of risks binned (Nrb), persistent mental disorders
(Rmd), unspecified glaucoma (Rug), and heart failure (Rhf) reduce uncertainty of SNF
by 19.94% with a Adf of 20.

Both the coarse and fine-grained searches were dominated by the effects of the
non-comorbidity variables present in All 1Vs. In order to look only at the effect of the

patient’s individual comorbidities, a Comorbidity 1Vs search is performed.

e Comorbidity 1Vs

o Coarse Searches (Models without Loops)
Considering only Comorbidity Vs as predictors, the most predictive individual
comorbidities are uncovered, yet no single comorbidity has a %AH over 1 (Table 47).

Individual comorbidities alone do not seem very predictive of discharge to SNF.
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Table 47. Summary of Search Results (Knee) for Comorbidity 1Vs for SNF.
Search covers directed coarse, and fine models.

MODEL | Adf | ABIC | %AH | Alpha | Variable description
COARSE, single predictors
Rhf SNF 1 29.93 | 0.95 | 0.00 | Heart failure (428)
Rug SNF 1 27.95 | 0.90 | 0.00 | Unspecified glaucoma (365.9),
Rmd SNF 1 26.03 | 0.85 | 0.00 | Persistent mental disorders (294.8)
Rku SNF 1 21.81 | 0.75 | 0.00 | Chronic kidney disease (585.9)
Unspecified hypertensive renal disease
Rrd SNE 1 | 1904 | 068 | 000 | 403?9) yp
Rbn SNF 1 16.49 | 0.62 | 0.00 | Other disorders of bone and cartilage (733)
Rin SNF 1 13.77 | 0.55 | 0.00 | Urinary incontinence (788.3)
Rhy SNF 1 12.34 | 0.51 | 0.00 | Hypothyroidism (244.9)
Other chronic pulmonary heart diseases
Rhd SNF 1| 967 | 045 | 000 | ot ’
Rau SNF 1 9.04 0.43 | 0.00 | Anemia, unspecified (285.9)
MODEL Adf | ABIC | %AH | Alpha | Variable description
COARSE, IVs in AIC or BIC models but not in top 10
Rhe SNF (rank 14) 1 5.06 0.33 | 0.00 | Essential hypertension (401.9)
Rpa SNF (rank 15) 1 2.99 0.28 | 0.00 | Parkinson's disease (332)
MODEL Adf | ABIC | %AH Variable description
COARSE, best model (loopless)
ABIC (best model)
RugRhf SNF 3 5072 | 1.88 | 0.00 IL:Jn_specified glaucoma (365.9) + Heart
ailure (428)
AAIC (best model)
persistent mental disorders (294.8) +
Unspecified glaucoma (365.9) + Heart
RmdRugRhfRKku SNF 15 9.20 3.35 | 0.00 Failﬁre (428)g+ Chronié kidne)y disease
(585.9)
Inc.P (best model)
persistent mental disorders (294.8) +
Unspecified glaucoma (365.9) + Heart
RmdRugRhfRkuRbn SNF | 31 | -98.97 | 3.99 | 0.02 | Failure (428) + Chronic kidney disease
(585.9) + Other disorders of bone and
cartilage (733)
MODEL Adf | ABIC | %AH Variable description
FINE, best models (with loops)
ABIC, Inc.P & AAIC (same best model)
Hypothyroidism (244.9), Anemia (285.9),
ersistent mental disorders (294.8),
Rhy SNF :.Rau SNF :_ Earkinson's disease (332), l(Jnspegified
Rmd SNF : Rpa SNF : laucoma (365.9), Essential hypertension
Rug SNF : Rhe SNF : 10 | 13861 | 552 | 0.00 |9 ) yperte
Rhf SNE - Rk - (401.9), Heart failure (428), Chronic

Rbn SNF : Rin SNF

kidney disease (585.9), Other disorders of
bone and cartilage (733), Urinary
incontinence (788.3)
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The results of a coarse search allowing for multiple 1Vs yields a best BIC model
Rug Rhf SNF. Together, Rug and Rhf have a %AH of 1.88, close to what adding their

separate effects of 0.9 and 0.95 would give.

o Fine Searches (Models with Loops)
In a search that allows for loops, the best BIC model is Rhy SNF : Rau SNF :
Rmd SNF : Rpa SNF : Rug SNF : Rhe SNF : Rhf SNF : Rku SNF : Rbn SNF : Rin SNF,
with a corresponding reduction in uncertainty of 5.52% and a Adf of 10. Hypothyroidism
(Rhy), anemia (Rau), persistent mental disorders (Rmd), Parkinson’s disease (Rpa),
unspecified glaucoma (Rug), essential hypertension (Rhe), heart failure (Rhf), chronic
kidney disease (Rku), other disorders of bone and cartilage (Rbn), and urinary

incontinence (Rin) are not nearly as predictive as the model that allowed for All 1Vs.

e Comparing Search Results (Knee, SNF)
All 1Vs and the Comorbidity 1Vs searches yield two sets of results that can be
compared to each other and interpreted into a three-tiered classification of predicting

variables, as shown in Table 48.

Table 48. The 3-Tiered Classification of Predicting
Variables for DV SNF, Knee Analysis.

Tier Variables

Tier 1 (Most Important) | L, Fc, Ageb, Svb, Nrb, Rmd, Rug, Rhf
Tier 2 Rpa

Tier 3 Rbp, Rhy, Rau, Rhe, Rku, Rbn, Rin

As with earlier analyses, the Tier 1 variables are those from the BIC model from
All IVs. This is the most complete and conservative search, and these are deemed the

most important predicting variables: L, Fc, Ageb, Svb, Nrb, Rmd, Rug, and Rhf.
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The Tier 2 variables are those not in Tier 1, but still found in the best models of
both searches: the AIC (less conservative) model of All IVs, and the BIC model of
Comorbidity 1Vs. This selects Rpa as the best IV by Tier 2.

Finally, Tier 3 contains the variables in only one of the best models (the same as
with Tier 2), but not in both. For DV SNF, these lowest-tier predicting variables are:

Rbp, Rhy, Rau, Rhe, Rku, Rbn, and Rin.

e Model FIT
The best fine-grained model, L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb
SNF : Rmd SNF : Rug SNF : Rhf SNF, is explained in detail by the joint conditional

probability distribution in Table 49 below.
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Table 49. Fit Table (Knee) for All 1Vs for Best Model L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb
SNF : Rmd SNF : Rug SNF : Rhf SNF. Blue rows indicate ratio < 0.90 and orange rows indicate ratio
> 1.10. (Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

[1Vs Data Model
obs. p(DV/|IV) calc. q(DV|IV)
# |L|Fc|Ageb|Svb|Nrb|Rmd|Rug|Rhf| freq | SNF =1|SNF =2 | SNF =1|SNF =2 |Ratio| p(margin)
111(2| 1 2|1] 0| 0| 0] 55 |10000| 0.00 | 97.89 | 211 |0.12 0.00
212]1] 2 113|000 41 | 7805 | 21.95 | 66.44 | 33.56 | 1.91 0.01
312]1] 2 23] 0| 0| 0| 52 | 6346 | 36.54 | 66.08 | 33.92 | 1.93 0.00
5(2]1] 3 1]/1| 00| 0| 20 | 70.00 | 30.00 | 64.65 | 35.35 | 2.01 0.04
6(2]1] 3 112 0| 0| 0| 62 | 66.13 | 33.87 | 55.08 | 44.92 | 2.56 0.00
712]1] 3 13| 0| 0| 0| 41 | 46.34 | 53.66 | 4447 | 5553 | 3.16 0.00
1112| 1| 3 2| 1] 0| 0| 0] 30 | 63.33 | 36.67 | 64.28 | 35.73 | 2.04 0.01
12|12| 1| 3 22| 0 | 0| 0] 62 | 51.61 | 48.39 | 54.68 | 45.32 | 2.58 0.00
1412| 1| 3 23] 0| 0| 0] 70 | 47.14 | 52.86 | 44.07 | 5593 | 3.19 0.00
18|2| 1| 3 3|12 ] 0 | 0| 0] 134 | 6866 | 31.34 | 69.97 | 30.04 | 1.71 0.00
19|12| 1| 3 3|13 0| 0| 0| 8 | 6429 | 3571 | 60.34 | 39.66 | 2.26 0.00
22|21 2| 1 111 0|0 0]| 49 | 9796 | 2.04 | 96.38 | 3.62 | 0.21 0.01
23|21 2| 1 112 0| 0| 0| 61 | 9344 | 656 | 9470 | 530 | 0.30 0.01
24|21 2| 1 2| 1] 0| 0| 0] 55 | 9818 | 182 | 96.33 | 3.67 |0.21 0.01
25(21 2| 1 2|1 2] 0 | 0| 0] 77 | 96.10 | 390 | 94.62 | 5.38 |0.31 0.01
26121 2| 1 23] 0| 0| 0] 68 | 89.71 | 10.29 | 91.99 | 8.01 | 0.46 0.04
27121 2| 1 3] 1] 0| 0] 0] 119 | 9916 | 0.84 | 98.06 | 1.94 | 0.11 0.00
28(21 2| 1 3|12| 0| 0| 0| 118 | 9576 | 424 | 97.14 | 2.86 | 0.16 0.00
29121 2| 1 3|13|] 0] 0)]0]| 73 |9315 | 6.85 | 95.69 | 432 |0.25 0.00
30[2|2| 2 3|]1] 0] 0)|0] 3 |9714| 286 | 97.06 | 294 | 0.17 0.03
3112 2| 2 3|12 0] 0] 0| 5 | 9273 | 727 | 95.67 | 433 |0.25 0.01
33/3/1| 3 1 ]3| 0| 0| 0| 8 | 5833 | 4167 | 70.84 | 29.16 | 1.66 0.01
3631 3 23] 0| 0| 0] 55 | 7091 | 29.09 | 70.51 | 29.49 | 1.68 0.02
39|32 1 1]/1| 0| 0| 0]| 40 |100.00| 0.00 | 98.78 | 1.22 | 0.07 0.01
40(3(2| 1 12| 0| 0| 0| 63 | 983 | 318 | 98.19 | 181 | 0.10 0.00
4113/ 2| 1 1]13| 0| 0)| 0| 49 |100.00| 000 | 9725 | 275 | 0.16 0.01
42132 | 1 2|1 0| 0| 0] 22 |10000| 0.00 | 98.76 | 1.24 | 0.07 0.04
4313/ 2| 1 2|1 2] 0| 0| 0] 3 |10000| 0.00 | 98.16 | 1.84 | 0.10 0.02
4413/ 2| 1 23] 0| 0| 0] 32 |10000| 000 | 97.21 | 2.79 | 0.16 0.03
45|13/ 2| 1 3]1] 0] 0] 0] 21 |100.00| 0.00 | 99.35 | 0.65 | 0.04 0.05
46|32 | 1 3|12| 0] 0] 0| 23 |100.00| 0.00 | 99.04 | 0.96 | 0.05 0.04
47131 2| 1 3|13| 0] 0] 0] 37 |10000| 0.00 | 9854 | 1.47 |0.08 0.01
48|41 | 2 23] 0| 0| 0] 24 | 8333 | 16.67 | 63.34 | 36.66 | 2.09 0.01
52|14/ 1| 3 2| 1] 0 | 0| 0] 21 | 76.19 | 23.81 | 61.47 | 3853 | 2.20 0.01
53(4|/1| 3 2|1 2] 0| 0| 0] 25 | 36.00 | 64.00 | 51.69 | 48.31 | 2.75 0.00
54(4/ 1| 3 23] 0| 0| 0| 46 | 3478 | 65.22 | 41.14 | 58.86 | 3.35 0.00
56|6|1| 2 1]1|0 | 0)|0]| 37 | 9460 | 541 | 9470 | 530 | 0.30 0.05
4336 | 82.45 | 17.55 | 82.45 | 17.55 | 1.00
# |L|Fc| Ageb|Svb|Nrb| Rmd|Rug|Rhf| freq | SNF =1|SNF =2 | SNF =1| SNF =2 | Ratio| p(margin)

Financial class (Fc) at first seemed that it might be redundant with age. However,

financial class = 1 (Medicare) can cover patients who are age 65 and over, or those

-120 -




younger than 65 and receiving disability benefits. Moreover, the age bins do not line up
along age requirements for Medicare, and the highest age bin has a minimum age of 72
(Table 50).

Table 50. Age bin distribution.

Bin Range Frequency
1 32-62 1,490
2 63-71 1,411
3 72-95 1,435

There is some association between financial class (Fc) and age binned (Ageb),
which is supported by the finding that when Fc is made the DV, its single best predictor
is Ageb with %AH(Fc) of 38.37. However, the best model selected to predict SNF
includes both Fc and Ageb, which indicates that each of these Vs offers additional
information worth the added complexity.

For the calculated model, knowing the states of All IVs (L, Fc, Ageb, Svb, Nrb) or
the presence or absence of the individual Comorbidity IVs (Rmd, Rug, Rhf) tells us about
the probability of SNF occurring. Each of the model’s components, namely L SNF or Fc
SNF or Ageb SNF or Svb SNF or Nrb SNF or Rmd SNF or Rug SNF or Rhf SNF, has
an individual conditional probability distribution and is individually informative. For
example, looking only at location (L) (Table 51), the conditional probability of SNF
given location 1 is 12.3%, with the risk ratio of 0.70. Additional locations that seem with
low projected discharges to SNF include locations 3, 6, and 7, with risk ratios 0.69, 0.62,
and 0.17. Locations 2 and 4 show increased risk with ratios (1.15 and 1.67 respectively).
Location 5 has a neutral risk ratio, with the projected discharge to SNF similar to that of

the observed rate in the data with a risk ratio of 0.96. In other words, knowing only the
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location of the surgery, regardless of the states of the other Vs in the model, there is a

significant difference in the probability of SNF = 2 between the locations.

Table 51. Component Fit Table for IV L in (Knee) All 1Vs Best Model
L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF : Rmd SNF : Rug SNF : Rhf SNF.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

v Data obs. p(DV|IV)
# L freq SNF=1 | SNF=2 Ratio p(margin)
1 1 244 87.71 12.30 0.70 0.03
2 2 2143 79.75 20.25 1.15 0.00
3 3 1138 87.87 12.13 0.69 0.00
4 4 349 70.77 29.23 1.67 0.00
6 6 267 89.14 10.86 0.62 0.00
7 7 34 97.06 2.94 0.17 0.03
4336 82.45 17.55 1.00

Knowing only the financial class (Fc) is individually informative as well.
Financial class 1 is Medicare, and patients with Medicare have 26.89% chance of
discharging to SNF compared to 17.55% overall, with a risk ratio of 1.53. Patients with
financial class 2 (commercial payers) have a very low projection of discharging to a SNF
at 4.4% and a risk ratio of 0.25. Patients with financial class 3 (Medicaid) had an
increased risk of SNF at 21.13%, with a ratio of 1.2. Both financial classes 4 and 5
(Workers Comp and Other Government) offered decreased risk of SNF with risk ratios of
0.19 and 0. Perhaps financial class 4 and 5 payers did not offer a skilled nursing facility
benefit, something worth looking into in any future confirmatory analysis. The individual
component table for Fc is below in Table 52, while the remainder of the individual

component tables are available in Appendix I: Supplementary Tables.
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Table 52. Component Fit Table for IV Fc in (Knee) All 1Vs Best Model
L SNF : Fc SNF : Ageb SNF : Svb SNF : Nrb SNF : Rmd SNF : Rug SNF : Rhf SNF.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.

v Data obs. p(DV/|IV)
# Fc freq SNF=1 | SNF=2 Ratio p(margin)
1 1 2484 73.11 26.89 1.53 0.00
2 2 1727 95.60 4.40 0.25 0.00
3 3 71 78.87 21.13 1.20 0.43
4 4 30 96.67 3.33 0.19 0.04
5 5 17 100.00 0.00 0.00 0.07
6 6 7 85.71 14.29 0.81 0.83
4336 82.45 17.55 1.00

The cardinality of the All 1Vs for this knee analysis search and fit for SNF are
many-valued, with seven possible states for location (L), six possible states for financial
class (Fc), and three possible states each for age binned (Ageb), surgeon volume binned
(Svb), and number of risks binned (Nrb). Therefore, the combinations of 1Vs that are
summarized above in Table 49 resulted in a very large decision tree. However, one can
determine blue or orange by looking at Fc alone. For Fc = 1, one gets orange. For Fc = 2,
one gets blue. There is only one exception to this in line 56, which has Fc = 1 and is blue
(Table 49). Decision trees have two purposes in the present context: (1) to distinguish
coarsely between blue and orange (between decreased risk and increased risk 1V states),
and (2) to distinguish more finely between degrees of protectiveness or riskiness, as
shown by the ratio values.

The details from the best fine model from the Comorbidity 1Vs search, Rhy SNF :
Rau SNF : Rmd SNF : Rpa SNF : Rug SNF : Rhe SNF : Rhf SNF : Rku SNF :

Rbn SNF : Rin SNF, are provided in Table 53 below and also in the decision tree in
Figure 10 below. Again, each comorbidity is either present or absent. The absence of all

of the comorbidities offers a protective effect against SNF with a risk ratio of 0.66.
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With only the presence of essential hypertension (Rhe), there is still a slight protective

effect with ratio = 0.90.

Table 53. Fit Table (Knee) for Comorbidity 1Vs, for Best Model, Rhy SNF : Rau SNF :
Rmd SNF : Rpa SNF : Rug SNF : Rhe SNF : Rhf SNF : Rku SNF : Rbn SNF : Rin SNF.

Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(Ratios between 0.91 and 1.09 are close to the margins and are indicated in gray.)

IVs Data Model
obs. p(DV|IV) calc. g(DV|IV)

RIR|IR|R|R|R[R|R|R|R
#|hjalm|plulh|h|k|b|i]| freq | SNF=0 SNF=1 SNF=0 SNF=1 | ratio | p(margin)

yluld|a|g|e|f|u|n|n
1/0/0/0/0|0|0|0|0|0|0|1501| 88.61 11.39 88.44 11.56 0.66 0.00
2|0/0|0|0|0|0|0|21]|0]|0]| 43 74.42 25.58 68.89 31.11 1.77 0.02
3/0/0/0|0]|0|1|/0[0|0]|0|1771] 84.30 15.70 84.27 15.73 0.90 0.05
410(0|0|0]|0|1|0(0|0|1| 21 52.38 47.62 59.91 40.09 2.28 0.01
5/0/0/0|0|0|1]|0|0|1]|0] 51 62.75 37.26 69.83 30.17 1.72 0.02
6/0{0/0|0|0|1]1/0/0|0] 41 60.98 39.02 60.66 39.34 2.24 0.00
7/0/0{0|0|1|1]|0]|0|0]|0| 31 58.07 41.94 59.20 40.80 2.32 0.00
8/0/1|0|0|0|1]|0|0|0|0] 41 65.85 34.15 70.14 29.86 1.70 0.04
9/1|0/0|0|0|0]|0|1]|0|0] 18 50.00 50.00 59.81 40.19 2.29 0.01
10|1/0|0|0]|0|1|0|0|0|0O]| 329 78.42 21.58 78.26 21.74 1.24 0.05
11|11/0|0|0|0|1]|0(0|1|0]| 16 50.00 50.00 60.87 39.13 2.23 0.03
12|1]/1|0|0|0|1]|0(0|0(0O] 13 84.62 15.39 61.22 38.78 221 0.05

4336| 82.45 17.55 82.45 17.55

These results show that the occurrence of one or more of the Comorbidity 1Vs—

hypothyroidism (Rhy), anemia (Rau), persistent mental disorders (Rmd), Parkinson’s

disease (Rpa), unspecified glaucoma (Rug), heart failure (Rhf), chronic kidney disease

(Rku), other disorders of bone and cartilage (Rbn), and urinary incontinence (Rin)—

increases the risk of discharge to a skilled nursing facility (SNF). The model

component’s individual fit table is provided in Appendix I: Supplementary Tables.

Another view of the combinations of these comorbidities is presented in the decision tree

in

Figure 10 below.
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Figure 10. Decision Tree for DV SNF (Knee) with Comorbidity 1Vs for Best Model Rhy SNF :
Rau SNF : Rmd SNF : Rpa SNF : Rug SNF : Rhe SNF : Rhf SNF : Rku SNF : Rbn SNF : Rin SNF.

Hip Analysis

As in the Knee Analysis presented for SNF above, this section analyzes the hip
data seen previously in the analysis of DV Cp, but with the DV Skilled Nursing Facility
(SNF) instead. SNF is a binary variable, and the positive value marks cases where a
patient has been discharged to a skilled nursing facility after a hip replacement. The
occurrence of SNF is more common than with the DV Cp, present in approximately 14%
of cases, while DV Cp had positive occurrence of approximately 5% (Table 37). As

before, new searches were conducted with Occam to select best models, considering the

-125 -



combined All IVs, and then separately the Comorbidity IVs alone. The set of eight

administrative All 1Vs remains the same for these analyses.
All 1Vs

o Coarse Searches (Models without Loops)

The hip data set used for SNF analysis contained 71 1Vs, selected through the
same variable reduction method described in previous sections. That is, variables found
to be individually predictive with p <0.05 were retained, as were a subset of 1Vs from the
literature. The results of searching for predictive models with this data set are
summarized in Table 54. As with other analyses presented here, the summary first
presents the ten variables that best predict SNF individually. The best of these is financial
class (Fc), with a reduction of uncertainty (%AH) of 12.57%. This IV was also the top
single predictor for the Knee Analysis of DV SNF. The other top single predictors are
listed as well, sorted by the reduction in uncertainty for each model. The top seven of

these predictors are all Hospital 1Vs, and only two of the ten are Comorbidity IVs.
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Table 54. Summary of Search Results (Hip) for All 1Vs for SNF.

Search covers coarse and fine models.

MODEL

| Adf| ABIC |%AH | Alpha]Variable description

COARSE, single predictors (top 10)

Fc SNF 5 | 289.60 [12.57| 0.00 |Financial class

Ageb SNF 2 |299.44 |12.02| 0.00 | Age binned

S SNF 42 | -32.63 |11.67| 0.00 |Surgeon

Svb SNF 2 |181.53 | 7.53 | 0.00 |Surgeon volume binned

L SNF 6 | 86.84 | 5.15 | 0.00 |Location

Nrb SNF 2 | 78.28 | 3.60 | 0.00 |Number of risks binned

Ad SNF 38 |-219.99| 3.30 | 0.00 | Admit diagnosis

Rhy SNF 1 | 30.41 | 1.47 | 0.00 |Unspecified acquired hypothyroidism (244.9)
Da SNF 5 | -2.44 | 1.44 | 0.00 | Day of admit

Rhe SNF 1 | 25.46 | 1.28 | 0.00 |Unspecified essential hypertension (401.9)
MODEL Adf| ABIC |%AH | Alpha | Variable description

COARSE, IVs in AIC or BIC models but not in top 10

Rnr SNF (rank 15)

Aseptic necrosis of head and neck of femur
1| 11.29 | 0.74 | 0.00 (733.42)

Rhd SNF (rank 24)

1 | 482 | 0.49 | 0.00 |Acquired hypothyroidism (244)

Rml SNF (rank 29)

1| 284 |0.42 | 0.00 |Memory loss (780.93)

MODEL

Adf| ABIC |%AH | Alpha | Variable description

COARSE, best model (loopless)

ABIC (best model)

Ageb Svb SNF

| 8 | 44591 [19.44] 0.00 | Age binned, Surgeon volume binned

Inc.P & AAIC (same best model)

Ageb Svb Rhy Rmo SNF

Age binned, Surgeon volume binned, Unspecified
35| 297.19 | 22.08| 0.00 |acquired hypothyroidism (244.9), Morbid obesity
(278.01)

MODEL

Adf| ABIC |%AH | Alpha | Variable description

FINE, best models (with loops)

ABIC (best model)

Fc SNF : Ageb SNF :
Svb SNF :Nrb SNF

Financial class, Age binned, Surgeon volume

11153117 123.61) 0.00 binned, Number of risks binned

Inc.P & AAIC (same best model)

Fc SNF : Ageb SNF :
Svb SNF : Nrb SNF:
Rhd SNF : Rnr SNF :
Rml SNF

Financial class, Age binned, Surgeon volume
binned, Number of risks binned, Acquired
hypothyroidism (244), Aseptic necrosis of head and
neck of femur (733.42), Memory loss (780.93)

14 | 527.73 |24.41| 0.01

After the single-predictor models, the next models to consider are those also

selected by coarse (or loopless) search, but now also allowing for multiple predicting

variables in the single component. (These are given in Table 54, under “COARSE, best

model (loopless)”). The best of these models, selected by the ABIC criterion, is Ageb Svb

SNF, where the 1Vs Age binned (Ageb) and Surgeon volume binned (Svb) predict SNF
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with a of %AH 19.44. As in other searches, the best model selected does not necessarily
reflect the top single-predicting variables, indicating that the included variables (Ageb
and Svb) together balanced the reduction of uncertainty and increase in complexity (here,

a Adf = 8) better than other IV combinations.

o Fine Searches (Models with Loops)

When allowing for multiple predicting components (that is, models with loops),
the search for best model selects a model with four components: Fc SNF : Ageb SNF :
Svb SNF : Nrb SNF. This model is the best by the BIC criterion for predicting the
DV SNF in the Hip data set of All 1Vs. This model reduces uncertainty by 23.61%
(%AH), using 11 degrees of freedom (Adf). All four of the IVs included in this model are
All 1Vs: Financial class (Fc), Age binned (Ageb), Surgeon volume binned (Svb), Number
of risks binned (Nrb). The best model under the less conservative criterion of AAIC also
includes three Comorbidity IVs, and is more complex as a result, with Adf of 14. In the
similar results for Knee analysis of DV SNF, Comorbidity IVs were included in the

models selected by each criterion.

e Comorbidity 1Vs Only

o Coarse Searches (Models without Loops)

When considering only the variables in the Comorbidity IVs data set, the most
predictive models are substantially different. The results given in Table 54 above include
relatively more of the All IVs and few of the Comorbidity 1Vs, so the list of the ten best
single predictors in Table 55 is mostly different by necessity. (The reductions in

uncertainty (%AH) for these predictors are also lower than the best values in Table 54, or
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else they would have been included in that table.) The best single predictor of the
Comorbidity 1Vs by uncertainty reduction is unspecified acquired hypothyroidism (Rhy),

with a %AH of 1.47.

Table 55. Summary of Search Results (Hip) for Comorbidity 1Vs for SNF.
Search covers both coarse and fine models.

MODEL |Adf | ABIC |%AH [Alpha |Variable description
COARSE, single predictors
Rhy SNF 1 | 30.41 | 1.47 | 0.00 |Unspecified acquired hypothyroidism (244.9)
Rhe SNF 1 | 25.46 | 1.28 | 0.00 |Unspecified essential hypertension (401.9)
Rav SNF 1 | 15.99 | 0.92 | 0.00 |Aortic valve disorders (424.1)
Rrd SNF 1 | 15.89 | 0.91 | 0.00 |Unspecified hypertensive renal disease (403.9)
Rao SNF 1 | 15.61 | 0.90 | 0.00 |Chronic airway obstruction (496)
Rhf SNF 1 | 12.87 | 0.80 | 0.00 |Heart failure (428)
Rnr SNF Aseptic necrosis of head and neck of femur

1 | 11.29 | 0.74 | 0.00 (733.42)
Rbn SNF 1 | 10.25 | 0.70 | 0.00 |Other disorders of bone and cartilage (733)
Rhh SNF 1 7.98 | 0.61 | 0.00 |Hyposmolality and/or hyponatremia (276.1)
Rkd SNF 1 7.80 | 0.60 | 0.00 |Chronic kidney disease, Stage Il1 (585.3)
MODEL Adf | ABIC | %AH | Alpha |Variable description
COARSE, Vs in AIC or BIC models but not in top 10
Rin SNF (rank 12) 1 6.36 | 0.55 | 0.00 |Urinary incontinence (788.3)
Rse SNF (rank 13) 1 | 6.08 | 0.54 | 0.00 |Senile osteoporosis (733.01)
Rug SNF (rank 19) 1 | 3.21 | 0.43 | 0.00 |Unspecified glaucoma (365.9)
Rml SNF (rank 21) 1 2.84 | 0.42 | 0.00 |Memory loss (780.93)
MODEL Adf | ABIC | %AH | Alpha |Variable description

COARSE, best model (loopless)

ABIC (best model)

Unspecified acquired hypothyroidism (244.9),

Rhy Rhe Rrd SNF 7 | 46.95 | 3.94 | 0.00 |Unspecified essential hypertension (401.9),
Unspecified hypertensive renal disease (403.9)
AAIC (best model)

Unspecified acquired hypothyroidism (244.9),
Unspecified essential hypertension (401.9),
Unspecified hypertensive renal disease (403.9),
Chronic airway obstruction (496)

Rhy Rhe Rrd Rao SNF | 15 | 7.77 | 491 | 0.00

Inc.P (best model)

Unspecified acquired hypothyroidism (244.9),
Unspecified essential hypertension (401.9),

Rhy Rhe Rrd Rbn Rin 31 | -95.30 | 5.90 | 0.03 |Unspecified hypertensive renal disease (403.9),

SNF Other disorders of bone and cartilage (733),
Urinary incontinence (788.3)
MODEL Adf | ABIC | %AH | Alpha |Variable description
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FINE, best models (with loops)

ABIC (best model)
Unspecified acquired hypothyroidism (244.9),
Hyposmolality and/or hyponatremia (276.1),
Rhy SNF : Rhh SNF : Unspecified glaucoma (365.9), Unspecified
Rug SNF : Rhe SNF : essential hypertension (401.9), Unspecified
Rrd SNF : Rav Rbn 11 | 111.97 | 7.65 | 0.00 |hypertensive renal disease (403.9), Aortic valve
SNF : Rao SNF : Rse disorders (424.1) + Other disorders of bone and
SNF : Rnr SNF cartilage (733), Chronic airway obstruction (496),

Senile osteoporosis (733.01), Aseptic necrosis of
head and neck of femur (733.42)

Inc.P & AAIC (same best model)

Unspecified acquired hypothyroidism (244.9),
Hyposmolality and/or hyponatremia (276.1),

Rhy SNF : Rhh SNF : Unspecified glaucoma (365.9), Unspecified

Rug SNF : Rhe SNF : essential hypertension (401.9), Unspecified

Rrd SNF : Rav Rbn hypertensive renal disease (403.9), Aortic valve
SNF : Rao SNF : Rse 13 1110.79 | 8.22 | 0.01 disorders (424.1) + Other disorders of bone and
SNF : Rnr SNF : Rml cartilage (733), Chronic airway obstruction (496),
SNF : Rin SNF Senile osteoporosis (733.01), Aseptic necrosis of

head and neck of femur (733.42), Memory loss
(780.93), Urinary incontinence (788.3)

When the coarse search is widened to include more than one predicting variable
in its (loopless) models, the best model by ABIC is Rhy Rhe Rrd SNF. This model
combines the 1Vs unspecified acquired hypothyroidism (Rhy), unspecified essential
hypertension (Rhe), and unspecified hypertensive renal disease (Rrd), resulting in a %AH
of only 3.94. This is much lower than the value for the model above that included All IVs

(Ageb Svb SNF), which reduced uncertainty by 19.44%.

o Fine Searches (Models with Loops)

The final step in the Hip analysis of the Comorbidity Vs data set is to allow for
the inclusion of models with loops. Like the search for loopless models with this data set,
the results continue to show that the Comorbidity 1Vs do not predict as well as the All 1Vs
do. The best model by ABIC (Rhy SNF : Rhh SNF : Rug SNF : Rhe SNF : Rrd SNF:

Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF) includes 10 IVs in nine components, but
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only reduces uncertainty by 7.65%. This model uses 11 degrees of freedom, which is also
the Adf of the best model from the All Vs data set, though that model achieved a %AH of

23.61 for the same complexity, with four predicting variables.

e Comparing Search Results (Hip, SNF)
All 1Vs and the Comorbidity IVs searches yield two sets of results that can be
compared to each other and interpreted into a three-tiered classification of predicting

variables for DV SNF. These three sets of 1\Vs are shown in Table 56.

Table 56. The 3-Tiered Classification of
Predicting Variables for DV SNF, Hip Analysis.

Tier Variables

Tier 1 — Most Important | Fc, Ageb, Svb, Nrb

Tier 2 Rhy, Rur

Tier 3 Rml, Rhh, Rug, Rhe, Rrd, Rav, Rnn, Rao, Rse

The first tier includes the most important predicting variables, which are those
that were included in the best model by BIC in the All IVs data set: Fc, Ageb, Svb, and
Nrb.

The Tier 2 variables are those that appeared both in the best model by AIC in the
combined All IVs search, and in the best model by BIC in the Comorbidity 1Vs search.
This tier adds the two Comorbidity IVs, Rhy and Rur.

Tier 3 includes those variables that occur in either of the two searches from Tier 2
but not both. This tier includes nine Comorbidity IVs Rml, Rhh, Rug, Rhe, Rrd, Rav,

Rnn, Rao, and Rse.
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e Model FIT

The best fine-grained model for All IVs, Fc SNF : Ageb SNF : Svb SNF :
Nrb SNF, which reduced uncertainty by 23.61%, is explained in detail by the conditional
probability distribution in Table 57 below. When Financial class (Fc) = 1, one tends to
get orange, and when Fc = 2, one tends to get blue, but there are some exceptions on lines
16, 17, 25, 26 (Table 57). Note that in this composite table one gets only Fc =1 or 2;
Fc can also be 3, 4, 5, 6, but these other states have much lower frequencies, so one

doesn’t see them in a composite table.
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Table 57. Fit Table (Hip) for All 1Vs for Best Model
Fc SNF : Ageb SNF : Svb SNF : Nrb SNF.
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

Vs Data Model
obs. p(DV|IV) calc. g(DV|IV)
# | Fc | Ageb | Svb | Nrb | freq | SNF=0 | SNF=1 | SNF=0 | SNF=1 | Ratio | p(margin)

3204

# | Fc | Ageb | Svb | Nrb | freq | SNF=0 | SNF=1 | SNF=0 | SNF=1 | Ratio | p(margin)

Each of the component’s individual projections is somewhat informative, yet not
as informative as the full model’s joint distribution. These components are provided in
the Appendix I: Supplementary Tables, Table 111 through Table 117,

The joint probability distribution below in Table 58 shows the details for the best
fine model from the hip Comorbidity 1Vs search Rhy SNF : Rhh SNF : Rug SNF :

Rhe SNF : Rrd SNF : Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF. In this

distribution, each of the Vs is either 0 (comorbidity absent) or 1 (comorbidity present).

- 133 -



Row 1 is the case where all of the comorbidities included in the model are absent, which
lowers the risk of Skilled Nursing Facility (SNF) from 14.26% (the model’s marginal
probability) to 7.85%, with a ratio of 0.55

Table 58. Fit Table (Hip) for Comorbidity 1Vs for Best Model Rhy SNF :
Rhh SNF : Rug SNF : Rhe SNF : Rrd SNF : Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF .
Blue rows indicate ratio < 0.90 and orange rows indicate ratio > 1.10.
(Ratios between 0.91 and 1.09 are close to the margins and are excluded.)

IVs Data Model
obs. p(DV|IV) | calc. g(DV]|IV)
2 £ g 2 2 3 g 5 g E+ _ . . o — :
# Z Zl & &l x| & &| £ 2| x| freq | SNF=0|SNF=1| SNF=0| SNF=1 | ratio | p(margin)
ofoJofoJofo[o[O[O0]O/1371] 9234 [ 766 [ 9215 [ 7.85 [055] 0.0 |
10/0(0|0]|]0|1|0|0|0|O0]| 0] 42 | 7143 | 2857 | 7460 | 2540 |1.78 0.04
18/ 00|01 |0|0|0|0|O0]| 1] 49 | 7347 | 26.53 | 68.93 | 31.07 |2.18 0.00
200000 |1]0|0]|0|1|0]|0]| 43 | 79.07 | 20.93 | 75.02 | 2498 |1.75 0.04
22/ 0|00 |1]0|0]|]1|0|0]|0]| 26 | 7692 | 23.08 | 72.01 | 27.99 |1.96 0.05
26/ 0| 0]|]0|1]0|212]|]0|0|0]0]| 10 | 50.00 | 50.00 | 44.64 | 55.37 |3.88 0.00
50/1|0]|]0|0|1|]0]|]0|0|0]0]| 14 | 7857 | 21.43 | 59.33 | 40.67 |2.85 0.01
53/ 1|0]|]0|1]0|0]|]0|0|0]|0]|171]| 7485 | 25.15 | 75.84 | 24.16 |1.69 0.00
56/1|0]|]0|1]0|0]|]0|1]|0]0]| 12 | 66.67 | 33.33 | 59.87 | 40.13 |2.81 0.01
3204 | 85.74 | 14.26 | 85.74 14.26

The additional IV states show if one or more of the comorbidities from the model
are present, the risk is increased. This is illustrated in the decision tree below in

Figure 11.
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Figure 11. Decision Tree for DV SNF (Hip) with Comorbidity 1Vs,

for Best Model, Rhy SNF : Rhh SNF : Rug SNF :Rhe SNF :
Rrd SNF : Rav Rbn SNF : Rao SNF : Rse SNF : Rnr SNF.

Hip & Knee Summary of Results for SNF

The most important IVs are summarized in Table 59. The IVs that are important
across both hip and knee searches are number of risks (Nrb), age (Ageb), surgeon volume
(Svb), financial class (Fc), glaucoma (Rug), essential hypertension (Rhe), and acquired
hypothyroidism (Rhy)

Table 59. Summary of Most Important 1Vs by Tier across Hip and Knee for SNF.

Tier Knee Hip
1 L, Fc, Ageb, Svb, Nrb, Rmd, Rug, Rhf | Fc, Ageb, Svb, Nrb
2 Rpa Rhy, Rur
3 Rbp, Rhy, Rau, Rhe, Rku, Rbn, Rin Rml, Rhh, Rug, Rhe, Rrd, Rav, Rnn, Rao, Rse
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DV: Readmission (Re)

Knee Analysis
In this results section, another series of best models are proposed and analyzed in

detail. This section looks both at (a) All 1Vs together, and (b) only the Comorbidity IVs.

o AllIVs

o Coarse Searches (Models without Loops)

The original 188 patient Comorbidity IVs were reduced to 35 IVs, of which 17
had p < 0.05 in a single predicting search for the dependent variable Readmission (Re),
18 were literature-based but not individually predictive in the searc