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Abstract

The lithography process for chip manufacturing has been playing a critical role

in keeping Moor's law alive. Even though the wavelength used for the process is

bigger than actual device feature size, which makes it di�cult to transfer layout

patterns from the mask to wafer, lithographers have developed a various technique

such as Resolution Enhancement Techniques (RETs), Multi-patterning, and

Optical Proximity Correction (OPC) to overcome the sub-wavelength lithography

gap.

However, as feature size in chip design scales down further to a point where

manufacturing constraints must be applied to early design phase before generating

physical design layout. Design for Manufacturing (DFM) is not optional anymore

these days. In terms of the lithography process, circuit designer should consider

making their design as litho-friendly as possible.

Lithography hotspot is a place where it is susceptible to have fatal pinching

(open circuit) or bridging (short circuit) error due to poor printability of certain

patterns in a design layout. To avoid undesirable patterns in layout, it is mandatory

to �nd hotspots in early design stage.

One way to �nd hotspots is to run lithography simulation on a layout.

However, lithography simulation is too computationally expensive for full-chip

design. Therefore, there have been suggestions such as pattern matching and

machine learning (ML) technique for an alternative and practical hotspot detection

method. Pattern matching is fast and accurate. Large hotspot pattern library is

utilized to �nd hotspots. Its drawback is that it can not detect hotspots that are

unseen before. On contrast, ML is e�ective to �nd previously unseen hotspots, but

it may produce false positives.
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This research presents a novel geometric pattern matching methodology using

edge driven dissected rectangles and litho award machine learning for hotspot

detection.

1. Edge Driven Dissected Rectangles (EDDR) based pattern matching

EDDR pattern matching employs member concept inside a pattern

bounding box. Unlike the previous pattern matching, the idea proposed

in this thesis uses simple Design Rule Check (DRC) operations to create

member rectangles for pattern matching. Our approach shows signi�cant

speedup against a state-of-art commercial pattern matching tool as well as

other methods. Due to its simple DRC edge operation rules, it is �exible

for fuzzy pattern match and partial pattern match, which enable us to check

previously unseen hotspots as well as the exact pattern match.

2. Litho-aware Machine Learning

A new methodology for machine learning (ML)-based hotspot detection

harnesses lithography information to build SVM (Support Vector Machine)

during its learning process. Unlike the previous research that uses only ge-

ometric information or requires a post-OPC (Optical Proximity Correction)

mask, our method utilizes detailed optical information but bypasses post-

OPCmask by sampling latent image intensity and use those points to train an

SVMmodel. Our lithography-aware machine learning guides learning process

using actual lithography information combined with lithography domain

knowledge. While the previous works for SVM modeling to identify hotspots

have used only geometric related information, which is not directly relevant

to the lithographic process, our SVM model was trained with lithographic

ii



information which has a direct impact on causing pinching or bridging

hotspots. Furthermore, rather than creating a monolithic SVM trying

to cover all hotspot patterns, we utilized lithography domain knowledge

and separated hotspot types such as HB(Horizontal Bridging), VB(Vertical

Bridging), HP(Horizontal Pinching), and VP(Vertical Pinching) for our SVM

model. Out results demonstrated high accuracy and low false alarm, and

faster runtime compared with methods that require a post-OPC mask. We

also showed the importance of lithography domain knowledge to train ML

for hotspot detection.
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Introduction

1.1 Motivation

Hotspot is a term to describe a location in layout designs where it is prone to have a

pinching (open circuit) or bridging (short circuit) error during lithography process

for IC (Integrated Chip) manufacturing. In the process, layout patterns composing

of a circuit layout are transferred to wafer from a photomask. Figure 1.1 brie�y

depicts the lithography process. Among those steps, it is the exposure step that

is most important to avoid pinching or bridging errors. Figure 1.2 illustrates the

exposure tool showing a light source, an illumination, and patterns on photomask

to wafer through the projection lens to print a circuitry on a wafer. Note patterns

on the mask are di�erent from the original layout. They are modi�ed through

Optical Proximity Correction (OPC) to improve �delity and printability on the

wafer.

Since the wavelength of the light source is usually larger than the minimum

size of actual patterns on the photomask, geometric shapes on the mask become

distorted due to optical proximity e�ect. This is called sub-wavelength lithography

gap in the industry [20]. In other words, what you see on the mask is not what

you see on your wafer. In order to tackle this issue and manufacture working ICs,

lithographers have invented various Resolution Enhancement Techniques (RETs)

such as Optical Proximity Correction (OPC) [12], O�-Axis Illumination [59],

Double or Multiple Patterning (DP or MP) [55,57,70,82], Phase-shift mask [62,85],

immersion lithography [13,15,65], and sub-resolution assist features [44,78]. (More
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Figure 1.1: Lithography steps

information about RET is at 1.2.)

However, as Moore's law [46] has driven features to smaller dimensions,

semiconductor manufacturing process often run into lithography hotspots even

with these advanced lithographic techniques. Hotspots are fatal errors that cost a

tremendous e�ort, money, and time if they are found in the lithography process.

It is crucial to identify hotspots in an early design stage, ideally at the physical

layout generation phase or even at before routing.

In conventional design �ow, the industry used to apply lithography simulation

on physical layouts [19, 29, 30] to achieve the goal to identify hotspots before

manufacturing. This is accurate, but it is computationally expensive at full-chip

scale, which limits its practical application.
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(a) Optical Proximity Correction (OPC)

(b) Lithography exposure system

Figure 1.2: Optical Proximity Correction and Lithography exposure system

Recently, there have been attempts to avoid lithography simulation for hotspot

detection mainly based on pattern matching (PM) and machine learning (ML). The

pattern matching-based approach [2,8,11,18,23,63,79,83,86] uses a pattern library

that contains a set of known hotspots that are constructed �rst. Pattern matching

then scans through a layout to match the testing layout with the hotspots in the

library. This approach is fast and accurate to identify known hotspots. However, it

has a limitation to �nd previously unseen hotspots. In contrast, ML-based hotspot

detection [9,43,49,50,53,83] is strong to identify previously unseen hotspots when

it is well trained, and the characterization vector is relevant to the problem, but

just as pattern matching approaches have their strength and weakness, ML also

has limitations. False alarms are inevitable, and therefore, it is critical to create

an optimal model and develop methods to reduce the false alarm rate.

This thesis tackles the problems of both pattern matching and ML-based

approaches, and it presents a novel methodology and work�ow for hotspot
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detection. The pattern matching solution presented in this thesis is faster and

more accurate than previously developed pattern matching solutions. Besides, it

is more �exible in detecting previously unseen hotspots. Our solution for ML-

based hotspot detection is unique in terms of its innovative approach to utilizing

lithography information and domain knowledge for guiding the ML process and

training SVM (Support Vector Machine) models. Unlike other ML-based hotspot

detection approaches that use only geometric information or require a post-OPC

layout, our solution uses detailed optical information of lithography by sampling

latent image intensity to train an SVM model. With this novel idea, we remarkably

reduced false alarm rate while achieving high accuracy.

1.2 Resolution Enhancement Technique

1.2.1 O�-axis Illumination

O�-axis illumination [59] is used to enhance resolution limit imposed by Rayleigh

equation 1.1 by guiding the zero and the �rst di�raction light into the projection

lens. Figure 1.3 shows illumination types: Conventional and o�-axis (Annular,

Dipole, Quadrupole)

R = κ · λ

NA
(1.1)

NA: Numerical Aperture, λ: wavelength, κ: process constant

To transfer patterns on a photomask to a wafer, two di�ractions of light,

at least, must be captured by the projection lens. In the case of Conventional

illumination, the zero order di�raction goes into the projection lens along the axis

while the zero order of O�-axis illumination enters o� the axis as the name suggests.
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Figure 1.3: Type of illuminations. Dipole, Quadrupole, and Annular are o�-axis
illuminations.

Figure 1.4: Di�raction order entering lens from [39], p is pitch between lines. (a)
Conventional; (b) O�-axis;

O�-axis illuminations can form images even when feature size on the photomask

is too small, and the �rst order failed to be captured by the lens in Conventional

illumination. As seen at Figure 1.4, Conventional illumination's �rst order can

be missed into the lens when the di�raction angle is signi�cant, which means the

feature size on the mask is too small compared to the source light wavelength.

However, in the case of O�-axis illumination, one of the two �rst order can go into

the lens to form patterns on the wafer.
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Figure 1.5: Immersion Lithography. Figure from [75]

1.2.2 Immersion Lithography

Immersion lithography [13, 15, 65] uses a liquid as the refractive material between

the projection lens and the wafer surface. This �uid's refractive index is

greater than one so that it enlarges the numerical aperture which is the size

of the maximum refraction angle multiplied by the refractive index. As seen

at the equation 1.1, larger NA means better resolution. 1.5 depicts immersion

lithography.

1.2.3 Phase Shift Mask

Phase Shift Mask [62, 85] is a photomask that uses a phase shifter to generate

phase di�erences making constructive and destructive interference work together

improving image resolution. Figure 1.6 explains how it works.

1.2.4 Sub-resolution Assist Feature

Sub-resolution Assist Feature (SRAF) [44, 78] is unprintable features placed next

to printable features on the wafer, usually isolated features, to improve the depth

of focus on them. 1.7 illustrates SRAF.
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Figure 1.6: (a) Mask without shifter, (b) Phase Shift Mask; �gure from [27]

Figure 1.7: Sub-resolution assist feature: SRAF disappears on wafer, improving depth
of focus of the main feature.

1.2.5 Multi-patterning Lithography

Multi-patterning [55,57,70,82] is a technique to overcome lithographic limitations

dictated by Rayleigh equation 1.1 in chip manufacturing process. Lithography
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Figure 1.8: Litho-Etch-Litho-Etch Multi-patterning

using ArF of 193nm wavelength reached its physical limit of 40 nm half-pitch.

Multi-patterning technique allows chip manufacturing companies to image IC

designs of 20 nm and below.

There are two mainstream approaches of multi-patterning: LELE (Litho-Etch-

Litho-Etch) and SADP (Self-aligned double patterning). For LELE, a physical

layout is decomposed to two layouts, and Litho-Etch is done for each one which is

combined to de�ne a single layer. Figure 1.8 shows LELE. For SADP, a spacer is

formed along the lines, and the lines are removed leaving only spacers along the

lines. Then, those spacers are used to form �nal lines, which means the number of

lines double the original lines. Figure 1.9 depicts this process.

1.3 Problem De�nition

1.3.1 Pattern Matching

Current pattern matching methods lacks �exibility in identifying a hotspot that

is not registered in a database, namely hotspot pattern library. They are fast
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Figure 1.9: Self-algined Double Patterning

and accurate to detect hotspots only when those are in the library. In other

words, pattern matching is working perfect for an exact match, but it has limited

�exibility to describe a hotspot pattern in a fuzzy way (Relaxing the description

such that it can detect not only exactly matching hotspots but also fuzzy matching

for previously unseen hotspots). There have been several fuzzy pattern matching

ideas introduced to attack this issue. Hybrid approaches [40, 42, 51, 83] have been

tried, where they tried to use a combination of pattern matching and ML-based

hotspot detection. But, as mentioned in [64], such hybrid models are 10 to 100

times slower than pattern matching. They also do not fully address the false alarm

issue inherent with a ML-based approaches.
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Figure 1.10: Fig.15 of [9] Exponential increase of false alarm

1.3.2 Machine Learning

Machine learning is a subject being studied in computer science to give computers

ability to learn without being explicitly programmed such that it can predict or

change a behavior of the program when exposed to new data [38]. ML-based

approaches for hotspot detection have typically used a supervised learning model,

e.g., arti�cial neural network (ANN) [50] or support vector model (SVM) [43].

Recent research involves hierarchical learning [49], data clustering [53], fuzzy

cluster growing [83], and topological classi�cation and critical feature extraction [9].

All of these ML-based hotspot detection methods su�er from false positives when

they try to achieve higher accuracy of real hotspot detection. Figure 1.10 of [9]

shows their experimental data to point out the tradeo� between accuracy and false

alarms. Even though [9]'s critical feature extraction method is one of best ML-

based approaches, they were not able to adequately address the false alarm issue.

Their experimental data showed that it is exponentially di�cult to suppress false
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alarms as accuracy levels go up.

1.4 Proposed Approach

1.4.1 Edge Driven Dissected Rectangle-based Pattern Matching

Our solution to the lack of �exibility in pattern matching is to create a framework

where a simple and �exible pattern description is adopted for fuzzy pattern

matching. This framework is not only �exible enough to detect previously unseen

hotspots but also accurate enough to identify exact patterns in the pattern library.

Among many pattern matching methods [2, 8, 11, 18, 23, 79], our approach focuses

on DRC (Design Rule Check) [76] based pattern matching [11, 18, 23] because it

has shown better accuracy and faster runtime. However, unlike other DRC-based

pattern matching algorithms, we propose novel algorithms for pattern matching

which dissects patterns into rectangles based on polygon edges. We call this

solution EDDR PM (Edge Driven Dissected Rectangle Based Pattern Match).

Our solution utilizes simple DRC edge length rules and DRC width/space check

rules to create rectangles (Figure 1.11) for hotspot pattern descriptions. Formal

de�nitions of those DRC operations are de�ned in Appendix A. With the idea of

EDDR PM we also solve the problem with DRC-based pattern matching needing

such a high number of DRC rules when describing complicated hotspot patterns.

As shown at Figure 1.12, this description is a set of member rectangles created

by edge length, width, or space between edges of a hotspot pattern. Note that

the yellow box in the �gure is a bounding box of the pattern. Along with this

bounding box, each member rectangle's center point can create a vector space 3.8

which will be explained in detail in Section 3.1. The �exibility we add to our

pattern matching solution comes from the fact that we can skip a certain member

11



Figure 1.11: DRC length rule check, width rule check, and rectangle creation

Figure 1.12: Pattern and dissected rectangles as member

rectangle creation in the pattern description. For example, if we don't create P3 in

Figure 1.12 and only care about the other members, we can detect not only exact

matching hotspots but also fuzzy matching ones as well. Previous work for DRC-

based pattern matching solutions such as [10] have tried the concept of "don't

care region" to do the fuzzy matching for previously unseen hotspot detection.

However, the process to take care of "don't care region" is complex and requires

a lot of extra work. Our solution does not have this issue because "don't care

region" is naturally embedded in our EDDR PM.

This approach has at least three advantages over other solutions. First, it is
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faster than other state-of-the-art pattern matching tools. Second, it is intuitive

and straightforward for pattern matching engineers to understand and describe

patterns. Third, it scales well for parallel computation. We also show how to

improve pattern matching runtime using vector space created by an origin rectangle

and other reference rectangles inside a pattern bounding box. By adopting the

vector concept, we iterate only once or twice when detecting di�erent pattern

orientations. Other pattern matching techniques usually iterate eight times (4

rotations x 2 mirrored images) 3.10 to detect all of the eight di�erent orientations.

Our method eliminates these unnecessary iterations.

1.4.2 Litho-aware Machine Learning for Hotspot Detection

Previously proposed ML-based hotspot detection methods tried to use only

geometric information or required a pose-OPC layout. These methods fail to

solve the false alarm issue while maintaining high accuracy. As a fundamentally

di�erent approach, we propose to use lithography information and lithographic

related domain knowledge for machine learning.

As explained at [14], prior knowledge (Domain knowledge) plays a crucial role to

have machine learning trained as accurate as possible. In addition to training data,

we have to select features which are paricularly informative to the training. In this

thesis, we use aerial image intensity information produced by the same illumination

as used in the chip manufacturing process. We also select features based on hotspot

type such as bridging and pinching. Furthermore, if the illumination is asymmetric,

those two hotspot types split into four types: Horizontal bridging, vertical bridging,

horizontal pinching, and vertical pinching. Therefore, we create four SVM kernels

that are trained with aerial image intensity information. Each kernel will help us
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to �nd hotspots in the design. It is important to note that the simulation of these

intensity points is obtained by using the drawn (design target) structures, thus

eliminating the need of a post-opc mask.

1.5 Contributions

1.5.1 Pattern Matching solution

The key contributions of our work on EDDR PM are summarized as follows.

1. We developed a fast pattern matching method that shows signi�cant

speedups against state-of-art commercial pattern matching tools and other

methods.

2. We presented an easiness and �exibility of our method for fuzzy pattern

match and partial pattern matching.

3. We introduced a practical idea of adopting vector space concept to reduce

the number of iterations for the pattern matching.

1.5.2 Machine Learning solution

Our test experiment result against 2012 CAD contest at ICCAD [64] shows almost

100% accuracy and low false alarm rate. In fact, it shows our approach outperforms

all other previous works by a signi�cant margin as shown at Table 4.2. Our

contributions are brie�y summarized as follows:

1. We proposed a robust and accurate SVM kernel training method utilizing real

lithography illumination information and domain knowledge of lithographic

failure types.
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2. We presented experiment results demonstrating our method is able to achieve

high accuracy with low false alarm rates, which means it overcomes the

biggest drawback of ML-based hotspot detection methods.

I have published the following papers:

1. Journal

(a) Jea Park, Robert Todd, Xiaoyu. Song, Geometric Pattern Match Us-

ing Edge Driven Dissected Rectangles and Vector Space in IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

2016, Vol: 35, Issue: 12, pp: 2046-2055, DOI: 10.1109/TCAD.2016.2535908

(b) Jea Park, Andres Torres, Xiaoyu Song, Litho-Aware Machine

Learning for Hotspot Detection in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 2017 (Note: Revision

decision on May 10, 2017. Submitted �rst revision on May 22, 2017)

2. Conference and Poster sessions

Jea Park, Robert Todd, Xiaoyu Song, Geometric Pattern Match Using

Edge Driven Dissected Rectangles and Vector Space, Poster presentation in

Work-in-Progress session at IEEE Design Automation Conference (DAC),

June 2014.

1.6 Organization of the Dissertation

The rest of the dissertation is organized in several chapters.

Chapter 2 reviews related work on hotspot pattern detection.

Chapter 3 describes the fundamentals of EDDR PM such as DRC operations,

member rectangle creation, and vector space. We also show how EDDR PM works
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for exact pattern matching as well as fuzzy pattern matching. Experimental result

of EDDR PM against previous works is provided in this chapter.

Chapter 4 explains our idea of ML-based hotspot detection. This chapter

describes how lithography information is incorporated into SVM models in detail.

Experimental result of our Litho-aware Machine Learning based hotspot detection

against previous works is provided in this chapter.

Chapter 5 concludes this thesis by summarizing key results and contributions.

Chapter 6 discusses future works related to this thesis.
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2

Related Work

As hotspot detection has become a hot topic in the industry, many researchers

have been trying to come up with fast and accurate solutions [2,3,8�11,18,23,25,

28,40,42,43,49�51,79,83,86]. For example, they have proposed ML-based hotspot

detection methods [9, 43, 48�50, 71], hybrid methods using both ML and pattern

matching technologies [3, 40, 42, 51, 83], explicit model-based methods [28, 79, 86],

string-based pattern matching [2,25], and DRC-based pattern matching [10,11,18,

23].

1. Machine learning-based detection:

In this approach, hotspot patterns are extracted for training an arti�cial

neural network or SVM model. This model is then used to predict potential

hotspots in layout designs. Therefore, it is essential to create an accurate

learning model to avoid false alarms. It requires a long training time and

other complex techniques to reduce false alarms. In fact, false alarms are

inevitable in this approach even though the false alarm rates may be relatively

low. Our litho-aware machine learning based hotspot detection method

address this issue.

2. DRC-based pattern matching:

This method uses DRC (Design Rule Check) rules to identify patterns.

First, the input pattern is converted into some DRC rules, whose output

is then analyzed to obtain pattern matches. This approach does not su�er
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from the false alarms, therefore it can be used for the exact match. However,

DRC tends to generate a large number of complex DRC rules causing high

computational cost as the numbers of patterns are increased. Our EDDR

PM proposal addresses this shortcoming.

3. Explicit model-based pattern matching:

In this approach, an explicit model is created to compare target patterns

to patterns in the layout. For example, Kahng [79] proposed to create a dual

graph to represent patterns and to use it for �ltering out all non-matching

patterns. But, this approach also su�ers from false alarms due to its inherent

modeling error. Compared to Machine-learning-based pattern matching, it

is more accurate and more e�cient.

4. String-based pattern matching:

It applies string matching techniques to pattern matching. Frist, a grid is

created. Each grid point is converted to a layout matrix where 1 is assigned

when it overlaps with a geometry, otherwise 0. Then, points are encoded into

strings for pattern matching. This method does not su�er from false alarms,

but it is not suitable for cutting-edge designs because manufacturing grid

sizes are getting smaller and it increases computation time exponentially.

5. Hybrid detection:

The idea of hybrid hotspot detection is to combine machine learning and

pattern matching together for hotspot detection. The combination of two

complement each other trying to minimize their weakness and boost their

strength for better hotspot detection result. This approach, however, as
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reported in [64], is ten time slowerthan pattern matching approaches and

still shows high false alarm rates.

2.1 Machine Learning-based detection

1. Arti�cial Neural Network using bitmap of litho simulation contour

Nagase [48] adopted Arti�cial Neural Network (ANN) [32] which is trying

to mimic a human brain for learning. ANN can approximate unknown

functions with a large number of inputs. It creates a neural network which has

highly interconnected neurons (processing elements) that process information

and passes it to the �ow of information inside the network. A link between

neurons is associated with weight. ANN learns by altering the weight values

through test samples. If the network generated undesired output from the

samples, it alters the weights. The authors trained their ANN using bitmaps

from lithography simulation contour images on post-OPC patterns. Their

success rate to �nd hotspots in testing was about 42% to 90%. They tried

only four types of patterns, which is far fewer types than real hotspot patterns

in reality.

2. ANN using critical hotspot features

Ding [50] reported that their method to extract critical hotspot features

and use them for ANN training was more accurate and faster than 2D pixel

image-based models. They proposed three major features such as Bounded

Rectangle, T-shape metal, and L-shape metal shown at Figure 2.1. The

number of features is dramatically smaller than training on 2D pixel image

such as bitmap, which is a major factor for their improved runtime. Their
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Figure 2.1: critical features. Figure from [50] (a) certain 45nm cell layout; (b)(c)
Two sampled pattern examples for critical feature extraction procedure; Each BR is
expressed with a 5 parameter vector (W, L, X, Y, D), where L denotes the length of BR
along the metal edges containing itself; W denotes the width of BR along the direction
perpendicular to L; (X, Y) is the coordinates of the upper-left corner of BR; D is set to
0 if W is along X direction, to 1 if W is along Y direction. Area A is T-shaped metal for
BR1/BR4, area B is L-shaped metal for BR1/BR2/BR3/BR4, area C is neither T-shape
nor L-shape for BR2/BR3.

accuracy ranged from 80% to 90% with a 10% false alarm rate.

3. SVM using 2D distance transform and image histogram

Drmanac [71] tried to build SVM models using 2D distance transform

and histogram extraction on pixelized layout images. They �rst do raster

scanning on a layout and produce the portable bitmap (PBM). Then, they

transform the image to a grayscale format named portable gray map (PGM)

where each pixel is now an integer from 0 to 255 representing gray scale

level. They used a distance transform technique for this transform which is

widely being used in image processing shown at Figure 2.2. With this, they

create an image histogram in a raster window, which has 256 bins on the

x-axis and display number of pixels per bin on the y-axis. A simple example

of this process is shown at Figure 2.3 This image histogram information is

used for training their SVM which computes the similarity between image

histograms. Their result showed it achieved about 90% accuracy which is
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Figure 2.2: Distance transform from PBM to PGM of [71] (a) Portable bitmap (PBM);
(b) Portable gray map (PGM)

Figure 2.3: Image histogram creation process. Figure from [71].

not satisfactory for industry standard. It also showed their runtime is faster

than direct lithography simulation in �nding hotspots (variability prediction

in their paper). However, it is still too slow for full chip level application and

it is not surprising if you consider a huge number of pixels they have to deal

with.

4. Multi-level method

Ding and Torres [49] proposed a fragment-based classi�cation feature

metrics. Fragmentation is a process to break edges of geometry into

smaller pieces for OPC. The authors de�ned hotspot signature based on

fragment information, which is shown at Figure 2.4, such as convex corner,

concave corner, external distance between fragments, internal distance
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Figure 2.4: [49]'s features to train their hotspot detection model. Figure from [49].

between fragments, and etc. (NOTE: External distance is the distance

when fragments are located on di�erent polygon. Internal distance is when

fragments are located on the same polygon.) By performing this step,

their feature-centric layout characterization avoids expensive operations for

characterization of hotspots such as 2D distance transform and density

extraction. They fed this data to train SVM or ANN in a multi-level manner

where they create ANN or SVM at each level with a di�erent threshold

to detect hotspots until the false alarm rate is under their target. They

called this �ow �hierarchically re�ned machine learning in multi-level�. The

main reason of multi-level machine learning was to lower false alarms. Their

experimental result showed 89% accuracy with false alarm rate ranging from

130 to 7,500 per mm2. (Note: False alarm rate is measured by false alarm

count per mm2)

5. Layout density-based feature metric with two-level SVM

Wuu [43] extended their previous work [41] which used layout density for

pattern representation to encode features for SVM training. They chopped

a layout in pixels of 35 by 35 nm to generated density information per pixel.

This density-based pattern representation is shown at Figure 2.5. Along

with this density information for SVM models, they proposed a two-level
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Figure 2.5: Density-based pattern representation. Figure from [43].

approach to lower false alarm rates. At the �rst level, they trained an SVM

using hotspot and non-hotspot samples. Then, the �rst classi�er runs on

non-hotspot samples to gather the samples that were wrongly predicted as

hotspots. SVM at their second stage, which becomes the second classi�er,

is trained using hotspot samples and those samples that were produced as

hotspots on the �rst stage. It is a similar attempt with [49] to reduce false

alarms. They also tried to use small sample pattern clips for their level-

1 classi�er to �lter out the majority of non-hotspots while training data

for the level-2 classi�er was larger including the peripheral pattern density

information. This method yielded accuracy 84% on average with a reasonable

false alarm rate. But their testing layout is only about 700 by 700 um2. It

may be worse for full chip hotspot detection.

6. SVM using critical features extracted from topologically classi�ed samples

Yu's approach [9] to build an SVM is made of two steps. At the

�rst step, they classify training samples into clusters based on similarity

of topologies of their core regions. They introduced two-level topological

classi�cation. String-based classi�cation [2] was applied �rst and then
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Figure 2.6: [43]'s two-level approach for training model and testing �ow. Figure
from [43].

density-based classi�cation, which is the same way as layout density-based

feature metric was done. The output from the �rst string-base classi�cation

is used to re�ne the clusters. Figure 2.7 shows an example of this two-

level topological classi�cation. Moreover, they de�ned critical features using

their previous work [11] to train their SVM. They extracted critical feature

information from each cluster that was fed to an SVM for training so that

they could have multiple SVMs. They also created a feedback SVM to

suppress false alarms. Their method shows about 90% accuracy with a

relatively small false alarm rate.

2.2 Drc-based pattern match

1. Topological graph

Pikus [18] constructed all lengths of geometry edges and distances

between polygons in a pattern to create a graph based on this information.
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Figure 2.7: Two-level topological classi�cation. (a) four core regions of hotspots, (b)
{A,D} and {B,C} classi�cation from the string-based classi�cation. {A,D}, {B}, and
{C} �nal classi�cation from density-based classi�cation. Figure from [9].

During matching phase, they created a search graph using the topological

information created by DRC on a layout. Therefore, matching is a process to

�nd the topological graph of hotspot patterns inside the search graph. This

approach su�ers from slow runtime because their topological representation

of a pattern is not an e�cient and compact representation. If they have

a complex pattern to describe, they need more rules and their DRC rules

explods. This approach is also not capable of detecting previously unseen

hotspots. Figure 2.8 shows a pattern description example. As seen in

this example, the pattern information is represented by DRC topological

operations such as edge lengths and distance between edges. The distance

between two edges can have a range value of X, W, and Z polygon case, while

the V and Y polygons would still be the same distance away from W.

2. Hash table of corner or edge recorded by DRC

Gennari [23] proposed hashing technique to speed up DRC-based pattern
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Figure 2.8: Example pattern description of [18]

matching. They identify corners or edges in a pattern by DRC and create

hash values based on information around the corners or edges to represent

pattern con�guration. This hash table is used to match patterns in a layout

where the DRC engine reports corners or edges of polygons in the layout

and compute hash values. If the hash value is the same in the hash table, it

proclaims matched. This idea needs a sophisticated hash function to avoid

hash collisions. More hash collision means more matching time required.

This hashing idea for pattern match cannot handle previously unseen hotspot

as well like above topological graph approach.

3. Critical design rule extraction

Yu [11] tried to extract critical feature design rules that are most

relevant to hotspot descriptions. Rather than de�ning all the rules that are
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Figure 2.9: Modi�ed Transitive Closuer Graph of [11]

necessary to describe a pattern, they reduce the number of rules to �ve most

common hotspot rules. To do that, they adopted TCG (Transitive Closure

Graph) from Lin [4] and modi�ed it as MTCG (Modi�ed TCG) shown as

Figure 2.9 to describe pattern's topology. They �rst construct MTCG for

a hotspot pattern and extract critical design rules from it. They perform

these critical rules on a layout to create MTCGs and compare hotspot

MTCG to the created MTCGs for an exact match. They claimed their

approach outperformed other DRC-based pattern matching methods such

as [18, 23]. They extended their idea for fuzzy pattern match by adding

�don't care region� concept to their original MTCG which is shown by their

next paper [10]. Since [10] has some capability for the fuzzy pattern match,

it is somewhat possible to identify previously unseen hotspots. But, it works

only in a limited way and not su�ciently �exible because polygons inside a

pattern are described as exact match and they have some freedom in only

�don't care region� areas during the matching process.
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2.3 String-based pattern match

1. String-based pattern match

Yao [2] described an idea to use string matching for the pattern matching.

They divided a pattern into rectangles with additional speci�cations encoded

by strings, which they called it a �range pattern� since each rectangle

can have range value. Range values include width, length, space, optimal

width, optimal length, and optimal space range value. They even allow

linear combinations of those range values to be encoded in the rectangles.

Therefore, their range pattern can be used as fuzzy pattern matching tool

to handle previously unseen hotspots. Regarding some detail about their

approach, they divide a layout into 2D pixels to represent them as a 2D

matrix. As shown at Figure 2.10, if a rectangle overlaps a grid location, it is

1. Otherwise 0. For a simple exact match, meaning there is no range value

encoded in the range pattern, the matrix comparison is su�cient to �nal

exact match. For fuzzy matching applications, the matrix representation

of all possible hotspot patterns that can be generated by a general range

pattern is too big and it is too computationally expensive for matching. So,

they proposed new representation called cutting-slice representation which

slices range patterns in regions and put constraints derived from the range

pattern value on the regions. This method is accurate and �exible to handle

previously unseen hotspots. But the process is complicated resulting in slow

performance, and it su�ers more when a smaller pixels are required as design

nodes are getting smaller and smaller.
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Figure 2.10: Layout representation as layout matrix. Figure from [2]

2.4 Hybrid detection

1. Hybrid �ow using hierarchical clustering and pattern matching

Ma [3] took a hybrid approach combining unsupervised machine learning

for clustering and pattern matching. The hierarchical clustering algorithm

was adopted to classify hotspots into clusters. This is because we don't know

how many clusters are in the training hotspot data set before clustering.

Hierarchical clustering allows choosing the number of clusters (k) after its

training. They picked the best k using C-index [60] and Point-biserial

correlation coe�cient [45]. Their distance metric for distinguishing clusters

is based on geometric similarity as described with the equation of 2.1. Figure

2.11 is an example of the equation.

ρ(θ1, θ2) =

[∫∫
θ1 6=θ2

dA

] 1
2

(2.1)
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Figure 2.11: Visualization of the distance metric of [3]. Two patterns and, on the right,
the area where the two di�ers. Figure from [3]

Their �ow is as follows: First, they gather all the hotspots on a training

layout from a lithographic simulation. And then, using the distance metric,

they perform the hierarchical clustering algorithm. They choose appropriate

k to generate clusters. Once the hotspot clusters are created, each cluster is

analyzed to produce a representative pattern of the cluster which is then fed

into pattern matching tool to identify hotspots on testing layouts. Because

hotspots in one cluster share similar geometric shapes, they claimed that

all hotspots in the same cluster may be �xed by a common �xing solution,

which is mentioned as their �future work�. They did not carry out the pattern

matching part they described in their paper so that we don't know the

accuracy and false alarm rate of their approach. The complexity of training

time is O(n�2). Table 1 of their paper showed it took about 30 minutes

for training with 13,200 hotspot samples. Considering it is common in the

industry to deal with millions of hotspots, this runtime is not acceptable.

2. Flow to combine SVM and Pattern matching

[42] tried to use both SVM and pattern match to improve accuracy and

lower false alarm rates. The authors used their previous work [43] for training

SVM which is two-level density-based machine learning [43]. They used
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Figure 2.12: 2D-space example of hotspot region decision. Figure from [83]

commercial industry pattern matching tools in their hybrid hotspot detection

�ow. The motivation for their hybrid �ow is simple. Pattern matching

tool can perform exact match resulting in no miss on known hotspots while

machine learning can miss some known hotspots, but can identify previously

unseen hotspots. Therefore, Combining these two methods in a hybrid �ow

may show some bene�t. However, their result was not impressive. It was

because their machine learning model still produced high false alarm rates.

Their model was based on a density-based encoding method which did not

overcome the issue presented in their previous work [43].

3. Fuzzy pattern match

Lin [83] presented a fuzzy matching model which is constructed by

density-based SVM [43], hotspot grouping, and fuzzy region growing process

which is illustrated in Figure (c) of 2.12. The fuzzy region of a hotpot is

determined by the fuzzy distance which is calculated by expanding a hotspot

point until it reaches non-hotspot points. The group distance, fuzzy distance,

and fuzzy region are trained for their fuzzy model. They generate hotspot

candidates in a similar way of pattern matching with a hash table [23]. They

�rst select representative polygons in a hotspot pattern. The represented
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polygons are de�ned as the polygons with the most vertices which are close

to the center of the hotspot. These representation are used to create a hash

pattern library. Then, during the testing stage of their model on a layout,

they scan their testing layout to �nd the represented polygon of each known

hotspot. If they �nd it, they apply their fuzzy model to decide whether it

is a hotspot or not. Their experimental result showed 72.41% accuracy with

the false alarm of 1,907 per mm2.
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3

Geometric Pattern Match Using Edge Driven Dissected Rectangles

3.1 Change from Traditional Design Rules to Pattern Match

There was a shift of physical veri�cation paradigm at 45 nm process node and

below, which was propelled by design complexity and manufacturing issues,

particularly lithography hotspots. [61] explains well this change as follows.

"Human beings are visual people. From the earliest moments of our life, visual

patterns are the dominant way we learn about our world. Throughout our lifespan,

we react more strongly to visual stimuli than any other. Even when we speak

di�erent languages, we can communicate basic ideas via pictographs with perfect

understanding.

IC layouts are visual in nature - any engineer who looks at a layout can instantly

recognize transistors and wires and vias - yet we have always de�ned them with an

esoteric textual scripting language. We de�ne layout features by describing in text

how wide and tall and long they are. We enhance these de�nitions by specifying

the distances allowed (or not allowed) between features. This text-based, one-

dimensional approach worked well enough for a fairly long time, but words have

�nally begun to fail us.

At today's nanometer nodes, especially at 45 nm and below, we're no longer

de�ning relatively simple, one-dimensional length and width types of measure-

ments. Lithography and manufacturing limitations combined with performance

requirements expand the radius of in�uence within a design layout so that we

now �nd ourselves trying to describe an increasing set of combined features that
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Figure 3.1: Design constraints and in�uences have spread far beyond simple length-
/width measurements at 45 nm and below. Figure from [61]

are all interdependent, and sometimes multi-dimensional. Some con�gurations are

so complex that they simply cannot be accurately (or practically) described with

existing scripting languages.

Figure 3.1 illustrates how the focus of design rules has changed from a simple

length-width type of measurement to a complex, interdependent, multidimensional

set of variables. Not only are there more measurements in the multi-dimensional

case, but all the measurements are interdependent, so the allowable range of any

particular dimension depends on the values of many surrounding measurements.

Lithography presents a di�erent set of challenges. Even in the late 1990s,

feature sizes were smaller than the wavelength of light commonly used in

lithography, and the gap has been growing steadily ever since. Achieving

resolution at 45 nm and below has become a challenging puzzle, where systematic

variability is heavily impacted by both the wafer manufacturing processes and
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Figure 3.2: Feature size has been continuously shrinking node over node. At 22 nm, an
entire IC standard cell design may be smaller than the optical diameter. Figure from [61]

the topological layout features themselves. As geometries shrink relative to the

illumination source wavelength (Figure 3.2), the impact of optical e�ects on

the wafer worsens. The constructive and destructive interference of light as it

passes through the photomask and the stepper (scanner) optics can easily induce

di�raction e�ects that distort on-chip features, or even make them disappear,

rendering the integrated circuit (IC) unusable.

As a consequence, design rules are exploding in number and complexity, making

design rule checking (DRC) harder and lengthier. What we have observed across

the industry is that the number of physical veri�cation checks is growing at

>20% node over node driven primarily by the growth of manufacturing process

complexity. More alarming, the number of individual operations required to

execute each check is also growing. The total number of operations within a

physical veri�cation deck is growing at >30% node over node. Figure 3.3 illustrates

these growth patterns.

This runaway growth in both size and complexity has impacts throughout the

IC manufacturing �ow. Design rule manual developers are spending an inordinate

amount of time trying to craft specialized rules that overcome manufacturing

limitations and accurately satisfy the requirements of the design. Design teams
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Figure 3.3: Growth in number and complexity of physical veri�cation rules. Figure
from [61]

must then spend even more time attempting to interpret these rules in complex

rule checks that can contain hundreds of operations. A lot of valuable time and

expertise is being used in an attempt to achieve congruence between the original

intent of the design and its rendering as a physical implementation that can

be pro�tably manufactured. Design teams are experiencing increased di�culty

reaching physical implementation closure, longer physical veri�cation runtimes,

and escalating debugging di�culty and timelines.

The majority of physical veri�cation requirements are based on one sim-

ple concept: certain combinations of geometric shapes cannot be successfully

manufactured with a given process. Problematic topological con�gurations are

identi�ed through manufacturing process simulation, failure analysis, or other

veri�cation/validation techniques. Simulations and layout analysis techniques, for

example, can identify areas of concern within a particular design - features or
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con�gurations that will likely fail or negatively impact yield during manufacturing

due to lithographic variability, planarity variation, or high sensitivity to random

defects. Failure analysis, on the other hand, uses post-manufacture silicon testing

and yield analysis techniques to identify and isolate systematic defects that appear

repetitively across dies and designs.

Historically, these problematic con�gurations were textually de�ned in an

engineering speci�cation (design rule). This design rule was passed on to someone

whose responsibility was to interpret the rule and write a new design rule check

(using the physical veri�cation scripting operations) that accurately represented

the original pattern and design rule constraints. This design rule check would

then be added to the rule decks used for physical veri�cation. In this �ow, then,

these con�gurations are twice abstracted by the time the design rule check is

implemented. Additionally, as advanced nodes are being implemented, problematic

con�gurations are now being de�ned well before silicon production, generally by

the teams using lithography and optical process simulations.

What we need is some e�cient and accurate way to identify known problematic

con�gurations in the physical design so they can be removed or improved before

they cause failures in the manufacturing �ow."

3.2 Applications of pattern match

To avoid yield limiting patterns in a design implementation, designers run DRC

(Design Rule Check) or/and DFM (Design for Manufacturing) rules on their design

during physical veri�cation. Usually, those rules have been implemented in a text-

based script. However, as their design becomes more complex along with the

continuous shrinking of technology node, the text-based DRC and DFM rules have

37



been too lengthy and complicated. Sometimes, it was almost impossible to write

rules to describe problematic patterns in order to eliminate them in their design

since more and more rules are two-dimensional. In other words, design rules are

getting increasingly complex with each new process node, and a yield limiting

pattern might require hundreds of lines of traditional text-based script to express.

Pattern matching tool enables designers to implement complex design con-

straints with easy-of-use. It also helps more streamlined communication between

designers and manufacturing foundries because pattern matching is a direct visual

comparison between patterns rather than a long text description. Major bene�ts

of using a pattern matching based approach are following as described at [17].

1. Reducing time required for rule deck development by simplifying and au-

tomating the creation of complex physical veri�cation or design methodology

checks that were previously di�cult or operationally impossible to create

using text-based scripting.

2. Reducing design variability by performing physical veri�cation checks previ-

ously di�cult or impossible to perform.

3. Simplifying debugging by providing a direct visual comparison between

actual geometries, making it much easier to understand and �x violations.

4. Faster updates between manufacturing and design, enabling the quick

accurate implementation of recently-identi�ed yield-limiting patterns.

5. Improving consistency and accuracy across �ows and between teams by

enabling design, manufacturing and test teams to share pattern libraries

across multiple tools. Pattern libraries can be created for speci�c design

methodologies, manufacturing processes, or other categorizations.
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Figure 3.4: (a) Hotspot found at the foundry on wafer, (b) Hotspot pattern registered
into a library, (c)(d)(e) patterns found in a design as hotspots by pattern matching tool.
Figure from [74]

6. Improving communication between designers and fab/foundry by using

actual patterns (rather than text-based abstractions) to create complex

checks.

One of the most important applications of pattern match is that it can be

used to detect yield limiting patterns (hotspots) that have been identi�ed at

manufacturing companies. Once designers have a hotspot pattern library provided

by the foundry, they can run pattern matching tool to quickly �nd problematic

patterns in their design. Figure 3.4 shows an example of hotspot registered in the

library and several yield limiting patterns found in a design.

3.3 The fundamental idea

The fundamental idea of EDDR PM (Edge Driven Dissected Rectangles Pattern

Match) is that any hotspot pattern can be represented by rectangles which are

derived by edge lengths, widths, and/or spaces of polygons. These rectangles

inside bounding box of a pattern become unique members to represent the pattern.
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E�cient and �exible pattern matching is possible with the information about

these member rectangles along with vector space created by the members and

the bounding box.

The best way to derive member rectangles based on edge lengths, widths,

and/or spaces of polygons is to employ geometry processing engine which is known

as DRC (Design Rule Check) engine. It is well known and proven that DRC tool

can handle polygon geometries and edges of those e�ciently. With this industry

level con�dence, we adopt DRC engine for our EDDR PM.

3.4 Background

3.4.1 Design Rule Checks (DRC)

Design rules [76] are the rules provided by the process engineers to ensure

manufacturability of the design layout. Process variations and technical limitations

of the photo-lithography techniques make it necessary for each design to be DRC-

clean before tape-out. Modern DRC rule sets are complex, but they always

include the two most basic rules: width and spacing (Figure 3.5). The width rule

prevents pinch-o� of narrow shapes by de�ning a minimum width for any shape.

Similarly, the spacing rule prevents bridging by de�ning a minimum distance

allowed between two shapes. These rules can be expressed using constant values or

equations/inequalities with variables. Violations of these rules are reported by the

DRC tool by providing locations of the edges in violation. Besides these basic rules,

there are many other DRC rules like area, ratio, overlap and density constraint

rules. As design nodes are getting smaller and smaller, the DRC rules are getting

more complicated and modern DRC tools must perform these checks e�ciently.
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Figure 3.5: Minimum width/space check. Highlighted are edges that violate the width
and space constraints

3.4.2 DRC Edge Operation

Edge operation of a DRC tool is a fundamental operation to check edge related

rules. Some basic edge operations are LENGTH, WIDTH, SPACE, and ANGLE.

The edges operations used in this paper are de�ned in 3.4.3. These operations

can be used to generated edge-driven dissected rectangles as shown in Figure 3.7.

Since it is a core operation of DRC tools, edge operation is usually optimized for

speed, often by employing parallel computing. Because our proposal directly relies

on the DRC edge operation, our solution naturally bene�ts from these advantages

as well.

3.4.3 Formal de�nition of DRC edge operations

De�nition 3.4.1. LENGTH is an edge operation function that takes three inputs

(edges of polygons, length constraint, length value) and returns edges that meet

the constraint. Length constraint can be any relational operators such as ==, >=,

<=, and etc. It can be expressed:

E' = LENGTH (E, RO, value)

* E': edges that meet the length constraint.

* E: edges of polygons.
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* RO: relational operator.

De�nition 3.4.2. WIDTH is an edge operation function that takes �ve inputs

(edges of polygons, edges of polygons, all edges of layer, width constraint, width

value) and measure width between the �rst input edges and the second input edges

facing inward polygons. It returns rectangles using the edges that meet the width

constraint in the form of P1 in Fig. 2 (a). Width constraint can be any relational

operators such as ==, >=, <=, and etc. It can be expressed:

R = WIDTH (E1, E2, E3, RO, value)

* R: rectangles formed by edges that meet the width constraint.

* E1, E2, E3: edges of polygon. E1 and E2 are subset of E3.

De�nition 3.4.3. SPACE is the same edge operation function as WIDTH except

that it measures space between the �rst input edges and the second input edges

facing outward polygons. It can be expressed:

R = SPACE (E1, E2, E3, RO, value)

Example 1. P1 in Fig. 2 (a) can be created by LENGTH and WIDTH DRC

operation.

// a is length for Len_A. Metal_1 is Metal_1 layer's edges.

// b is length for Len_B. Metal_1 is Metal_1 layer's edges.

// 0.3 is width value.

Len_A = LENGTH (Metal_1, ==, a)

Len_B = LENGTH (Metal_1, ==, b)

P1 = WIDTH (Len_A, Len_B, Metal_1, ==, 0.3)

De�nition 3.4.4. ANGLE is an edge operation function that takes three inputs

(edges of polygons, angle constraint, angle value) and returns edges that meet the
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constraint. Angle constraint can be any relational operators such as ==, >=, <=,

and etc. It can be expressed:

E' = ANGLE (E, RO, value)

Example 2. Fig. 15 is one of cases that may have di�erent ways to decompse into

member rectangles. If we apply �ANGLE == 0� on Len_1, we get Fig. 15 (b). If

�ANGLE == 90� on Len_1 is applied, we get Fig 15 (c). DRC operations below

are to create members as Fig. 15 (b).

P1_Len_1 = ANGLE (LENGTH (Metal_1, ==, 2), ==, 0)

P1_Len_2 = LENGTH (Metal_1, ==, 2)

P1 = WIDTH (P1_Len_1, P1_Len_2, Metal_1, ==, 2)

P2_Len_1 = ANGLE (LENGTH (Metal_1, ==, 2), ==, 0)

P2_Len_2 = LENGTH (Metal_1, ==, 1)

P2 = WIDTH (P2_Len_1, P2_Len_2, Metal_1, ==, 0.5)

De�nition 3.4.5. OR is an polygon operation function that arbitary number of

polygons as inputs (P1,...,Pn) and returns the union of polygon regions. It can be

expressed:

P' = OR (P1,...,Pn)

* P': merged polygons.

* P1,..,Pn: polygons.

De�nition 3.4.6. NOT is an polygon operation function that takes two inputs

(P1,P2) and returns P1 without overlapped region with P2.It can be expressed:

P' = NOT (P1,P2)

* P': P1 polygons without overlapped area with P2.
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(a) (b) (c)

Figure 3.6: Example of applying ANGLE (a) pattern that can be decomposed in
di�erent ways; (b) ANGLE == 0 on Len_1; (c) ANGLE == 90 on Len_1

* P1,P2: polygons.

3.5 Method of EDDR PM

3.5.1 Pattern Description

The pattern is described by member rectangles inside the pattern bounding box.

Each member rectangle is derived by edge operations as explained in Figure 3.7.

We can create member rectangles based on edge length and width, or edge length

and space. And a member rectangle can be described by this simple format below.

<Name of member>

Len_1 == value (um or any user unit)

Len_2 == value

Width == value or Space == value

Using this information, we can perform DRC operations such as LENGTH,

WIDTH, or SPACE to generate member rectangles. Since there are some patterns

that may have di�erent ways to decompose, we perform additional DRC operation

of ANGLE during member rectangles generation for those patterns to enforce only
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Len_A = Find Edge Length of A along Metal_1 edges
Len_B = Find Edge Length of B along Metal_1 edges
EdgePair = Find Edge Pair having width 0.3 between

Len_A and Len_B
P1 = Create a rectangle overlapping opposite direction

of the edge-pair facing each other

(a) (b)

Figure 3.7: Member rectangle creation example using edge-driven dissection. (a): Edge
operation example. (b): Example of Edge Driven Dissected Rectangles. P1, P2, and P3
are generated by the process described in (a).

one way of decomposition (see example 2 in 3.4.3). Formal de�nitions of those

DRC operations are de�ned in 3.4.3.

Figure 1.12 is an example of pattern description that has six member rectangles

inside pattern bounding box. In this case, Len_1 and Len_2 are the same, but in

general, those can be di�erent as explained in Figure 3.7. In this example, we have

6 members. Any one of them can be origin member and one of the remainders can

be the �rst reference member. (Note: We do not need P1 which is derived from

space check for this particular pattern match. We can use P4 or any one of the

other rectangles as the origin rectangle. We derived P1 in order to demonstrate

that we can also use space check for our pattern matching method.)

Using the center point of the origin member and the center point of the �rst

reference member, we can create vector space and other necessary information that

is used to perform pattern matching. Figure 3.8 illustrates this. In this example,

P1 is the origin member and P2 is the �rst reference member to form vector space.

Besides the vector information, we need to store other information described in

Figure 3.8 for pattern match. The information of each member rectangle we store
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Figure 3.8: Vector information (angle and distance between origin member�s center to
the reference member�s center point) and other necessary information we store as the
pattern description.

for the pattern description is as follows:

1. Vector information (angle and distance between origin and reference)

2. Plane location from origin to reference (one of 4 planes or 4 along-axis)

3. Distance between each center of member rectangle and the bounding box.

(d1, d2, d3, and d4)

4. The width and the height

5. A Boolean to indicate whether it is the width or the space rectangle (for

example, P1 is Space rectangle.)

This information for each member is stored in PDB (Pattern Description

Database) which we will use for pattern match. With this information, we can

distinguish 8 di�erent orientations (4 rotations X 2 mirrored images) of any pattern,

which eliminates the unnecessary 8 iterations to detect same pattern with di�erent
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Figure 3.9: Cannot distinguish the top one and the bottom one using the vector
information between origin member and the reference member. Both top and bottom
have the same angle and same distance along-axis, but they have di�erent d2 and d4.
(a): �ipping along x-axis case. (b): �ipping along y-axis case.

Figure 3.10: Eight di�erent orientations of the same pattern. These are distinguishable
using the vector information.

orientations. Figure 3.10 demonstrates this. We also store in PDB Len_1, Len_2,

Width or Space value for each member as well as their corresponding relational

operator for fuzzy pattern match which will be discussed in 3.14. The only

exception is when the vector direction is along-axis or when the angle is 45. In

these cases, we have to iterate two times to cover two cases during the pattern

matching process. Figure 3.9 explains why we need to iterate two times in the case

of along axis.
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Figure 3.11: When non-member interacts with the bounding box, it is immediately
classi�ed as no match.

3.5.2 Pattern Match

With pattern description information explained in 3.5.1, we can run the pattern

matching process on a layout by following the simple algorithm (Algorithm 1). It

is a brute force algorithm visiting all the origin members one by one in the layout.

We can improve this by adopting a bin-search grid algorithm which will be shown

in Algorithm 2.

As indicated in the Algorithm 1, we need to take care of non-members inside

the pattern bounding box during the pattern matching process. If there is a non-

member polygon inside the bounding box, it is immediately classi�ed as no match

(Figure 3.11). To do this, we pass non-member polygons to EDDR_PM (Edge

Driven Dissected Rectangle Pattern Match), which are created by OR and NOT

operations. For example, non-members of Figure 1.12 are:

Non-member = Metal_1 NOT 1 (OR P1 P2 P3 P4 P5 P6)

At step (8) and (18) in the Algorithm 1, it uses scan line based topological

check which is not ideal in terms of runtime performance. We can improve it

signi�cantly by using a bin-search grid algorithm. Another criterion we examine

for an early invalidation of a match for EDDR_PM is passing the total number of

1Refer to 3.4.3 for NOT and OR operation
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Algorithm 1 EDDR PM (Pattern Match Using Edge Driven Dissected Rectangle)

1: procedure EDDR�PM(P1, P2, ...., Pn, nonMem, PDB)
2: P1 = set of origin members in a layout
3: P2 = set of the �rst reference members in a layout
4: P3..n = set of all the other reference members in a layout
5: nonMem = set of non-member polygons in a layout
6: PDB = a pattern description database.
7: while !empty in P1 do
8: Find a reference member p2 in P2 by searching the vector distance
9: between P1's center and P2's center.(PDB has this info.)

10: if found then
11: if the found p2 a valid reference member then
12: Create a bounding box using d1, d2, d3, and d4 determined by
13: vector info between P1 and the found P2's center.
14: else
15: No match. continue to next p1 in P1

16: if nomMem exists inside the bounding box then
17: No match. continue to next p1 in P1

18: Find other members in P3 · · · Pn inside the bounding box.
19: for each member inside the bounding box do
20: n = number of each member inside bounding box
21: m = number of each member described in PDB
22: if n != m then
23: No match. continue to next p1 in P1

24: if valid member == false then
25: No match. continue to next p1 in P1

26: Matching pattern found at this point.
27: Output the bounding box to indicate the match.
28: continue to next p1 in P1
29: else
30: No match. continue to next p1 in P1

each member to EDDR_PM. If the number does not match inside the bounding

box, it is classi�ed as not a match right away (Figure 3.12).

We use information in PDB format as explained in 3.5.1 for valid member

check and creating the bounding box. At step (12) in the algorithm, we can
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Figure 3.12: Immediate mismatch when the total number of each member inside the
bounding box does not match.

determine which orientation we want among the 8 possible ones by calculating

the vector (angle and distance) between P1 and the found P2 and referencing the

information in PDB. If its plane is at along-axis or its angle is 45 degree, we create

two bounding boxes and do the subsequent checks for each bounding box in the

algorithm.

Because Algorithm 1 is a brute force search using the topological scan-lines, it

is best to have as small number of P1 as possible to reduce runtime. We can do this

by adding an extra edge operation related to other members when creating origin

members. For example, we can add a space check between the origin member and

some of the other reference members for �nal derivation of the origin members.

This additional edge operation to reduce the total number of origin members in a

layout does not incur much additional runtime. However, it reduces EDDR_PM

runtime signi�cantly.

Even though Algorithm 1 can do a decent job by reducing the number of P1, it

is not su�cient to handle a huge number of P1 rectangles presented in the layout.

So, we developed another algorithm, Algorithm 2, which utilizes a bin-search grid

technique. As presented in 3.13, it achieved signi�cant runtime reduction.
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Algorithm 2 EDDR PM (Pattern Match Using Edge Driven Dissected Rectangle)

1: procedure EDDR�PM(P1, P2, ...., Pn, nonMem, PDB)
2: Inputs (P1..n, nonMem, and PDB) are the same as Algorithm 1.
3: ADD_BIN for each member from P1 to Pn.
4: LOCATE_BIN for all the origin members of P1 and get bin_counts
5: for i = 1→ bin_counts for pi in P1 bins do
6: LOCATE_BIN a reference member, p2, in P2 bins by searching
7: the vector distance between P1's center and P2'2 center.(PDB has this

info.)
8: if found then
9: Same process as Algorithm 1 to decide match or no match

10: .....
11: LOCATE_BIN for other members inside the bounding box.
12: .....
13: Same process as Algorithm 1 to decide match or no match
14: .....
15: else
16: No match. continue

3.5.3 Bin-Search Grid

A bin-search grid is e�cient for �nding objects which interact in a 2D space. It is

typically much faster than topological scan-lines which must process all the objects

in a single scan. It uses an adaptive structure for rectangle search via binning.

The structure starts with a �xed pixel size but will re-grid more �nely when the

average number of objects in a bin becomes excessive. Usually rectangular extents

of geometric objects are used to insert into the grid. The grid is �rst populated

with a series of ADD_BIN methods. ADD_BIN has a rectangle input along

with an associated ID for the object. The grid can then be searched with the

LOCATE_BIN method. LOCATE_BIN has a search rectangle as input, and

returns a set of object IDs that interact with the rectangle.

The bin-search grid has a �xed overall rectangular bounding box, usually layout
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extent, which is supplied by the client at initialization time. This rectangle

is divided into a 2D grid with an initial default pixel size. ADD_BIN and

LOCATE_BIN can then directly calculate the row and column elements of the

grid to analyze using the pixel size. ADD_BIN contains heuristics to decrease the

pixel size and recalculate the grid when the number of bins in the grid elements

becomes large.

LOCATE_BIN analyzes the intersecting grid elements with a search rectangle

and builds a list of unique bin IDs that have been previously added. The bin-search

grid is e�cient when the added bin extents, which are member rectangles in our

case, are small relative to the overall layout extent bounding box. Since pattern

bounding box is, in general, so small relative to the layout extent that it lies in

one grid element in our application. Figure 3.13 explains it graphically. In this

picture, bounding box has 3 by 3 grid elements to locate bins inside it. Because

LOCATE_BIN has O(k) where k is the total number of grid elements overlapped

by a search extent rectangle, it requires O(9)to locate ID1 and ID2 bin.

3.5.4 Computational Complexity

Let n denote total number of P1 and let m denote total number of all members in

a layout. Since Algorithm 1 visits all origin members in P1, it is O(n) for the while

loop. The scan-line search to �nd other members at the step (8) and step (18)

inside the while loop requires m times topological check per each loop. Therefore,

the complexity becomes O(nm). Because of m >= n, we can say that O(n(n+c))

where c is a constant, and it becomes O(n^2).

Those two steps in Algorithm 1 have been replaced with LOCATE_BIN for

Algorithm 2. Since LOCATE_BIN's time complexity is O(k) where k is the total
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Figure 3.13: Bin-search gird

number of grid elements overlapped by a search box, Algorithm 2 has O(nk).

Because k �n or k = 1 in general in our pattern match process, it is O(n) in

practice. Table II compares these two algorithms and shows substantial runtime

di�erence.

3.5.5 Fuzzy Pattern Match 2

With our simple approach to pattern match, we could see another bene�t of

EDDR_PM when it comes to fuzzy pattern matching. Figure 3.14 illustrates

this. Because we can use not only == but also other relational operators (>, =>,

<, =<) for pattern description, we can describe a pattern in a fuzzy way and do

2There is a limitation in our approach for fuzzy match. Our approach cannot handle matching
from post-OPC (Optical Proximity Correction) pattern to pre-OPC pattern. However, tolerance-
based match [10] can be easily accomplished in our approach. Refer to 3.5.6.
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Figure 3.14: Any P1 meeting the constraints can be a member of the pattern. Any P2
meeting the constraints can be a member of the pattern.

a fuzzy pattern match.

In this case, the vector space information is no longer valid. We can use the

number of each member inside bounding box for fuzzy pattern match. Therefore,

we skip validation checks at the step (24) and (11) of Algorithm 1 for members that

are derived from relational operators except == operator. It also must either have

at least one member rectangle created by only == operator inside the bounding box

or have a con�guration where origin member rectangle's center point is unchanging.

Since PDB has information about relational operator used for each member,

we can decide whether to do fuzzy match or exact match for each member. If

== operator is not used for Len_1, Len_2, or Width/Space, we do fuzzy match

for that member by skipping member validation check at step (24) of Algorithm

1. If reference member is described as fuzzy member, we skip the step (11) of

Algorithm 1 and need to iterate 8 times for fuzzy match. Algorithm 3 is fuzzy

match algorithm. Note that step (9) and step (28) in Algorithm 3 for fuzzy member

check are added.

Figure 3.15 shows fuzzy match examples in details. (b) is for exact match where
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(a)

P1
Len_1 == 1.142
Len_2 == 0.240
Width == 1.325

P2
Len_1 == 1.142
Len_2 == 0.667
Width == 0.265

P3
Len_1 == 1.142
Len_2 == 0.235
Width == 1.011

P4
Len_1 == 1.251
Len_2 == 1.251
Width == 0.239

(b)

(c)

(d)
P1 P2 P3 P4
Len_1 >= 1.142 Len_1 >= 1.142 Len_1 >= 1.142 Len_1 >= 1.251
Len_2 == 0.240 Len_2 == 0.667 Len_1 >= 0.235 Len_1 >= 1.251
Width == 1.325 Width == 0.265 Width == 1.011 Width == 0.239

(e)

Figure 3.15: (a) geometric pattern to match; (b) exact pattern description using only
== operations; (c) member rectangles created from exact patern description of (b) and
green bounding box for matched pattern; (d) member rectangles created from fuzzy
pattern description of (e) and green bounding boxes indicating matches; (e) fuzzy pattern
description using range relational operations

we have four member rectangles, P1, P2, P3, and P4. (e) uses relational operators

to perform the fuzzy match. Green bounding boxes are outputs from EDDR_PM

when it found matches. Another fuzzy match example is described at Figure 3.16

where Space member rectangle is applied.
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(a)

P1
Len_1 == 0.419
Len_2 == 0.419
Width == 0.200

P2
Len_1 == 1.000
Len_2 == 0.419
Space == 0.238

P3
Len_1 == 1.000
Len_2 == 1.000
Width == 0.204

(b) (c)

(d)
P1 P2 P3
Len_1 == 0.419 Len_1 >= 1.000 Len_1 >= 1.000
Len_2 == 0.419 Len_2 == 0.419 Len_1 >= 1.000
Width == 0.200 Space >= 0.238 Width >= 0.204

(e)

Figure 3.16: (a) geometric pattern to match; (b) exact pattern description using only
== operations; (c) member rectangles created from exact patern description of (b) and
green bounding box for matched pattern; (d) member rectangles created from fuzzy
pattern description of (e) and green bounding boxes indicating matches; (e) fuzzy pattern
description using range relational operations

In the fuzzy match example of Figure 3.15, note that P1 and P2's center points

are not changed to perform successful fuzzy pattern matching. As long as we have

two unchanging center points, one or two iteration is su�cient for pattern match.

If there is only one member with its unchanging center point, we have to iterate 8

times to cover all the 8 orientations, which is the case of Figure 3.16.
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3.5.6 Tolerance-based Match

Widely used resolution enhancement technique in lithography process during chip

manufacturing may create process-hotspots from patterns which are quite similar

to a hotspot pattern and only have tiny width or space di�erences. Basically,

process-hotspot can have slightly di�erent topologies from hotspot patterns for

the match. Enumerating all these variant topologies as hotspot patterns is not

practical, and there must be a representative pattern with edge tolerance and

incomplete speci�ed region [10].

Our approach can be easily extended to solve this issue by adding range

relational operations along with partial match we presented at Section 3.5.7. For

example, a member can be de�ned as:

Len_1 => a <= b (Len_1 is between length a and b.)

Len_2 >= c <= d (Len_2 is between length c and d.)

Width >= e <= f (Width is between width e and f.)

With this range speci�cation, we can specify edge tolerance. By using this edge

tolerance and our �Don't care region� (incomplete speci�cation) approach, we can

�nd process-hotspots as [10].

3.5.7 Partial Match

Another interesting case for our approach is when we try to do partial match.

For example, we can match a pattern in Figure 3.17 by skipping the step (16) in

Algorithm 1. Therefore, we can match patterns that contain non-orthogonal edges

as well. As long as there are a couple of member rectangles in a pattern, we can do

partial match, which means it can do match for incompletely-speci�ed patterns.

Other approaches for partial match create "Don�t care" regions. For example,
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Figure 3.17: Partial match example

[10] tried to rede�ne their method to re�ect the impacts of "Don�t care" regions

for partial match. However, our approach does not need to add additional e�orts

to deal with a concept of "Don�t care" regions for a partial match because it is

automatically de�ned. If some polygons or parts of a polygon are not speci�ed in

a bounding box of a pattern like Figure 3.17, our algorithm does not care those

and perform a partial match.

Figure 3.18 shows partial match experimental results using �Ind1� test pattern

of [11]. Figure 14 (a) and Figure 14 (b) illustrates �Ind1� pattern con�guration

and its pattern description. Figure 14 (c) is showing partial match results when

we skip the step (16) in Algorithm 1. Figure 14 (d) depicts partial match results

when we not only skip it but also we don�t specify P4 in pattern description not to

create members for parts of a polygon at the �rst place as Figure 14 (e).

3.6 Experimental Result

Our experiments were performed on a Linux platform with 3.7 GHz clock CPU

and 32 GB RAM. We created 9 di�erent patterns to match (Figure 3.19). Real

industry layout was used for this experiment. The area and number of polygons

inside each layout are shown at Table 3.1.

First we compared performance between Algorithm 1 and Algorithm 2. Table
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(a)
P1 P2 P3 P4 P5 P6

Len_1 == 0.24 Len_1 == 0.12 Len_1 == 0.24 Len_1 == 0.48 Len_1 == 0.12 Len_1 == 0.24
Len_2 == 0.72 Len_2 == 0.12 Len_1 == 0.12 Len_2 == 0.72 Len_2 == 0.72 Len_2 == 0.12
Width == 0.36 Width == 0.24 Width == 0.24 Width == 0.12 Width == 0.48 Width == 0.12

(b)

(c)

(d)
P1 P2 P3 P5 P6
Len_1 == 0.24 Len_1 == 0.12 Len_1 == 0.24 Len_1 == 0.12 Len_1 == 0.24
Len_2 <= 0.72 Len_2 == 0.12 Len_1 == 0.12 Len_2 <= 0.72 Len_2 == 0.12
Width == 0.36 Width == 0.24 Width == 0.24 Width == 0.48 Width == 0.12

(e)

Figure 3.18: (a) Ind1 pattern to match; (b) exact pattern description using only ==
operations; (c) partial match results by skipping non-member check. member rectangles
created from exact patern description of (b) and green bounding boxes for matched
patterns; (d) partial match results by both skipping non-member check and removing P4
member creation. member rectangles created from fuzzy pattern description of (e) and
green bounding boxes indicating matches; (e) partial pattern description in fuzzy way
using range relational operations
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Table 3.1: Layout information for TableII and TableIII (*tp9 4M: 4 million of tp9 exist
in the layout.)

Layout for tp1 to tp9 Layout for tp9 4M

Area(mm2) 1.5 x 1.5 2 x 2

Number of Polygons 5,207,283 9,170,937

Figure 3.19: Test patterns to match for our experiments. tp2 is a clip from the real
design of layout 1, which is whited out due to proprietary concerns. tp3, tp4, tp5, tp6,
tp9 are from [1].

3.2 shows the result. This result makes it clear how e�cient Algorithm 2 is and

at the same time how ine�cient the brute force Algorithm 1 is when there are

many hotspots to match. It is important to note that the result shown in the table

proves our previous assertion: "It scales as well with increasing number of patterns

to match because it needs to go through all edges only once in the chip on which

it does pattern matching, regardless of the number of patterns to match."

Note in Table 3.2 that # of P1 is equal to a number of hotspots in the layout.

tp9 4M is a test case where there are 4 million of tp9. DRC1 denotes edge operation
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Table 3.2: Algorithm 1 VS. Algorithm 2

Pattern # of locations of DRC1 # of locations of DRC2 # of P1 DRC1
(sec)

DRC2
(sec)

EDDR(sec) Total(sec) Success
rate

Algo 1

tp1 3,298,447 38,663 6,336 40 2 17 59 100%

tp2 13,772,975 4,627,518 7,219 44 17 25 86 100%

tp3 1,934,668 115,371 37,581 37 1 172 210 100%

tp4 488,596 172,476 112,856 37 1 389 427 100%

tp5 243,343 28,656 9,336 37 1 13 51 100%

tp6 721,911 154,422 25,518 37 1 111 149 100%

tp7 337,058 357,696 19,480 39 1 66 106 100%

tp8 271,188 406,782 15,236 40 1 81 122 100%

tp9 6,664,603 163,984 40,996 38 1 112 151 100%

tp9 4M 26,491,623 16,025,600 4,016,400 57 23 205,772 205,852 100%

Algo 2

tp1 3,298,447 38,663 6,336 40 2 5 47 100%

tp2 13,772,975 4,627,518 7,219 44 17 5 66 100%

tp3 1,934,668 115,371 37,581 37 1 4 42 100%

tp4 488,596 172,476 112,856 37 1 4 42 100%

tp5 243,343 28,656 9,336 37 1 4 42 100%

tp6 721,911 154,422 25,518 37 1 4 42 100%

tp7 337,058 357,696 19,480 39 1 4 44 100%

tp8 271,188 406,782 15,236 40 1 4 45 100%

tp9 6,664,603 163,984 40,996 38 1 4 43 100%

tp9 4M 26,491,623 16,025,600 4,016,400 57 23 16 96 100%

time to run through all edges in the layout for �nding Len_1 and Len_2 for

member rectangles. DRC2 is edge operation time to create member rectangles

based on the found edges in DRC1. EDDR column means time for Edge Driven

Dissected Rectangle Pattern Match.

The only di�erence for EDDR between Algo1 and Algo2 is that Algo2 used

bin-search grid algorithm while Algo1 is a topological scan-line search algorithm.

The success rate is matching success rate. There are no false positive matches.

Our approach guarantees 100% accurate match.

Secondly, we compared our Algorithm 2 with a state-of-art DRC-based

commercial pattern matching tool which uses the hashing of polygon vertices [23].

We summarized its result in Table 3.3 where you can see that our approach is 2 to

10 times faster than the commercial tool.
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Table 3.3: Alogrithm 2 VS. Commercial Vertices Hashing

Pattern Algo2 (sec) Vertices hashing Speed up
tp1 47 186 4.0
tp2 66 365 5.5
tp3 42 268 6.4
tp4 42 211 5.0
tp5 42 403 9.6
tp6 42 447 10.6
tp7 44 380 8.6
tp8 45 387 8.6
tp9 43 96 2.2

tp9 4M 96 167 1.7

We also compared [11]'s result to our approach. Because it is not a commercial

tool available for us to try, we followed the author's metrics of [11] to have

a fair comparison. As you can see at Table 3.4, their approach su�ers longer

runtimes when there are too many locations that DRC reports from their critical

rules. For example, in their Layout2, they had tp9 called �Stair 1�, and DRC

reported less than 4 million of locations of it. But their approach caused a

dramatic runtime impact. Depending on a pattern con�guration, [11]'s approach

su�ers runtime degradation in their Pre-�ltering as well as Finalization, while our

approach shows fast EDDR_PM time and consistent DRC runtime regardless of

pattern con�gurations because we go through all edges only once using simple edge

operation rules to create locations of interest.

To be more convinced that our approach is better than [11], we obtained

benchmark data from the authors of [11], which included their layout, patterns, and

matching results. Figure 3.20 presents their test patterns and layout information.

For a fair comparison, we set exactly the same experimental settings as their

benchmark, using the same 2.4 GHz CPU and 16GB memory on a Linux machine.

Table 3.5 shows our results against their benchmark data. As we expected, our
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Table 3.4: Alogrithm 2 VS. [11]'s critical design rule extraction method

Pattern # of location of DRC # of
loca-
tion
after
pre-
�ltering

number
of
hotspots

DRC(sec) pre-
�ltering
(sec)

Finalization
(sec)

Total
(sec)

Success
rate

[11]

tp3(mountain) 97,418 9,600 9,600 11 2.98 3.54 17.52 100%

tp4(I) 67,640 38,400 9,600 9 2.27 56.25 67.52 100%

tp5(Stair2) 115,950 19,200 9,600 9 3.99 14.18 27.17 100%

tp6(Ind1) 895,377 9,600 9,600 35 50.44 3.61 89.05 100%

tp9(Stair1) 3,710,439 57,592 9,600 63 164 125 352 100%

DRC1 DRC2 DRC1 DRC2 EDDR(sec)

Algo2

tp3(mountain) 1,934,668 115,371 N/A 37,581 37 1 N/A 4 42 100%

tp4(I) 488,596 172,476 N/A 112,856 37 1 N/A 4 42 100%

tp5(Stair2) 243,343 28,656 N/A 9,336 37 1 N/A 4 42 100%

tp6(Ind1) 721,911 154,422 N/A 25,518 37 1 N/A 4 42 100%

tp9(Stair1) 6,664,603 163,984 N/A 40,996 38 1 N/A 4 43 100%

tp9(Stair1)
4M

26,491,623 16,025,600 N/A 4,016,400 57 23 N/A 16 96 100%

Figure 3.20: [11]'s layout information and test patterns

approach was 20 times faster on average. It was 58 times faster for �Stair1�.

As another data point, there is a recent work [28] that compared exactly same

benchmark data of [11] we used in this paper. Table III in [28] shows [28]'s approach

is faster than only 5.6 times on average and only about 18 times faster for �Stair1�.

Table 3.5 includes [28]'s result as well.
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Table 3.5: Alogrithm 2 VS. [11] and [28]

[11] [28] Algorithm 2

Pattern # of
hotspots

DRC
(sec)

pre-
�ltering
+
�nalization
(sec)

Total
(sec)

Success
Rate

Total
(sec)

Success
Rate

Speedup DRC1
+
DRC2

EDDR Total
(sec)

Success
Rate

Speedup

Mountain 12,800 14.83 7.09 21.92 100% 19.9 100% 1.1 4 0.2 4.2 100% 5.2

S 12,800 45.89 86.00 131.89 100% 22.5 100% 5.9 8 0.5 8.5 100% 15.5

Stair1 12,800 45.81 318.93 364.74 100% 19.9 100% 18.3 6 0.3 6.3 100% 57.9

I 12,800 10.74 52.47 63.21 100% 20.1 100% 3.1 3 0.2 3.2 100% 19.8

Ind1 12,800 46.68 69.76 116.44 100% 21.6 100% 5.4 5 0.5 5.5 100% 21.2

Ind2 12,800 55.83 43.63 99.46 100% 23.5 100% 4.2 5 0.5 5.5 100% 18.1

Stair2 12,800 9.61 17.57 27.18 100% 19.7 100% 1.4 4 0.2 4.2 100% 6.5

3.6.1 Multi-layer pattern matching

Since DRC operations to create member rectangles for EDDR PM can be

performed not only on a single layer but also in between two layers, it is simple

and easy to expand EDDR PM to multi-layer pattern matching. For two-layer

pattern matching, We can run DRC LENGTH operation de�ned in the section,

3.4.3, on one layer for Len_1 and the other layer for Len_2. And then, WIDTH

or SPACE operation de�ned in the same section performs on the edges between

Len_1 and Len_2 to create member rectangles. Figure 3.21 depicts an example

of creating member rectangles for two-layer pattern matching. As shown at the

Figure 3.21, P1 and P2 member rectangles are created from edges between two

di�erent layers. If we want to put more constraints for the match, we can create

P3 and P4 member rectangles as well.

In a similar way, three-layer pattern matching can be performed as shown at

Figure 3.23. The only di�erence is that there are more ways and freedom to

generate member rectangles. The question of how many member rectangles we

need depends on whether we want a partial match or not. For example, if we want
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Figure 3.21: Member rectangles creation for two-layer pattern matching. P1 and P2
are created between two di�erent layers. P3, P4, and P5 can be created as well for exact
match.

Figure 3.22: Two-layer partial match when only P1 and P2 are created.

an exact match of 3.21, we have to create all member rectangles such as P1, p2,

P3, P4, and P5. However, if we create only P1 and P2, there is a possibility to

match non-exact patterns such as 3.22.

3.6.2 Other DRC operations for future work

We only used several DRC operations such as LENGTH, WIDTH, SPACE, and

ANGLE for our EDDR PM. Those are su�cient for exact matching, partial

matching, and fuzzy matching. However, there are many other DRC operations

that may be applied to demonstrate their e�ectiveness for other matching space

such as multi-layer matching or for enhancement of EDDR PM. In this subsection,

we introduce several more DRC operations as possible candidates for future work
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Figure 3.23: Member rectangles creation for three-layer pattern matching. Members
are created between edges from two di�erent layers.

Figure 3.24: AREA operation. Area constraint is < 12.5. Black solid polygons are
output polygons from AREA operation. Figure from [24]

related to pattern matching.

1. AREA

AREA operation takes a polygon layer and selects all polygons that have

areas meeting area constraint. Figure 3.24 shows an example of AREA

operation. This operation may be useful for fuzzy matching when used

together with EDDR PM.

2. DEANGLE
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Figure 3.25: NET AREA RATIO operation. NET AREA RATIO metal1 gate > 20.
Figure from [24]

DEANGLE operation replaces skewed edges with orthogonal edges. This

operation may be used to remove all skewed edges before member creation

so that EDDR PM can handle a complicated pattern having many skewed

edges.

3. NET AREA

NET AREA operation selects all polygons that lie on an electrical node

(on the same net) and calculate the area of them to decide whether it meets

NET AREA constraints or not. It outputs the polygons that meet the

constraints.

4. NET AREA RATIO

NET AREA RATIO operation does a similar job to NET AREA. The

di�erence between those is that NET AREA RATIO calculates a ratio of

polygon areas from two or more layers. This operation is most promising for

multi-layer pattern matching. Figure 3.25 is an example of this operation.

5. RECTANGLE ENCLOSURE
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Figure 3.26: RECTANGLE ENCLOSURE operation. (a) operation with left,top,right,
and bottom constraint. (b) possible results from the operation (a). Figure from [24]

RACTANGEL ENCLOSURE operation checks enclosureness of rectan-

gles. It is used for e�cient enclosure checking of rectangles as shown at

Figure 3.26. This DRC operation has a potential to work well for multi-layer

pattern matching.

6. INSIDE

This operation selects all polygons that are inside of polygons from

another layer. This operation may be used for multi-layer pattern matching

with EDDR PM as well. Figure 3.27 shows an example of this operation.
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Figure 3.27: Operation 1 selects all layer1 polygons that lie completely inside any
layer2 polygons (this includes coincident edges). Operation 2 reverses the layer order;
therefore, it selects all layer2 polygons that lie completely inside layer1 polygons (again,
this includes coincident edges). Figure from [24]

3.6.3 EDDR PM Conclusion

In this section, we presented a novel methodology for fast and accurate pattern

matching. Along with the idea of employing super-fast DRC edge operations to

do edge driven dissected rectangles pattern match, we showed how to utilize the

mathematical vector concept to avoid the unnecessary 8 iterations for detecting

the same pattern in 8 di�erent orientations.

We also presented possible applications of our approach such as fuzzy match

and partial match. Our results show that our approach achieves 100% accurate

match and it is signi�cantly faster than other methods. Since member rectangle
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creation is based on simple DRC edge operations, it is not only fast and easy

to describe a pattern but also it enables us to perform fuzzy pattern matching

and partial matching e�ciently. The �exibility of EDDR PM for fuzzy matching

and partial matching comes from its concept of members. Depending on whether

we allow non-members or not, the degree of partial matching can be di�erent.

Similarly, depending on how to put constraints or where to put constraints on

member creation, the degree of fuzzy pattern matching can vary. The beauty of

this member concept for hotspot detection is it is so simple that we can apply this

concept easily to other pattern matching applications.

We showed that this technique can be easily adapted in multi-layer pattern

matching. For example, if a pattern includes several layers such as metal_1, via,

and metal_2, we can use edge operations not only in metal_1 layer but also

between those layers to derive member rectangles that match the con�guration of

those layers and perform EDDR_PM.

We discussed future work by utilizing additional DRC operations such as

AREA, DEANGLE, NET AREA, NET AREA RATIO, RECTANGLE ENCLO-

SURE, and INSIDE for pattern matching.
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Algorithm 3 EDDR PM Fuzzy Match

1: procedure EDDR�PM(P1, P2, ...., Pn, nonMem, PDB)
2: Inputs (P1..n, nonMem, and PDB) are the same as Algorithm 1.
3: ADD_BIN for each member from P1 to Pn.
4: LOCATE_BIN for all the origin members of P1 and get bin_counts
5: for i = 1→ bin_counts for pi in P1 bins do
6: LOCATE_BIN a reference member, p2, in P2 bins by searching
7: the vector distance between P1's center and P2'2 center.(PDB has this

info.)
8: if found then
9: if the found p2(reference member) is fuzzy member then

10: Create one of 8 bounding boxes using 8 di�erent d1, d2, d3,
11: and d4 sets stored in PDB.
12: Iterate 8 times from step(19) to step(35).
13: else
14: if the found p2 a valid reference member then
15: Create a bounding box using d1, d2, d3, and d4 determined

by
16: vector info between P1 and the found P2's center.
17: else
18: No match. continue to next p1 in P1

19: if nomMem exists inside the bounding box then
20: No match. continue to next p1 in P1

21: LOCATE_BIN for other members in P3 · · · Pn
22: inside the bounding box.
23: for each member inside the bounding box do
24: n = number of each member inside bounding box
25: m = number of each member described in PDB
26: if n != m then
27: No match. continue to next p1 in P1

28: if member is fuzzy member then
29: skip member validation check
30: else
31: if valid member == false then
32: No match. continue to next p1 in P1

33: Matching pattern found at this point.
34: Output the bounding box to indicate the match.
35: continue to next p1 in P1
36: else
37: No match. continue to next p1 in P1
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4

Litho-aware Machine Learning Based Hotspot Detection

In this chapter, we propose a novel methodology for machine learning (ML) based

hotspot detection that uses lithography information to build SVM (Support Vector

Machine) during its learning process. Unlike previous researches that use only

geometric information or require a post-OPC (Optical Proximity Correction) mask,

this proposed method utilizes detailed optical information but bypasses post-OPC

mask by sampling latent image intensity and use those points to train an SVM

model. The results suggest high accuracy and low false alarm, and faster runtime

compared with methods that require a post-OPC mask.

There are two major machine learning algorithms: Supervised machine learning

and Unsupervised machine learning. All of ML-based hotspot detection approaches

use supervised one since training data sets are categorized into two, hotspots

and non-hotspots, and we are not drawing inferences from the data sets which

unsupervised machine learning can do, but we want to identify hotspots using

what ML has learned from the past data sets where supervised machine learning

can be applied. More information about machine learning is summarized in 4.1

and 4.2.

4.1 Supervised Machine Learning

Supervised learning discovers patterns in the data with a target (class) attribute,

which means the training data is labeled data. For example, data set of hotspot

with 1 and non-hotspot with -1 can be learned to predict new data's attribute. In
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Figure 4.1: Non-linear SVM Kernel vs linear classi�ers from [36]

other words, It learns using labeled data (class) to classify new data into a proper

class.

There are many classi�ers such as K-NN classi�er [1], Perceptron classi�er

[21], SVM (Support Vector Machine) classi�er [37, 67, 69], Logistic classi�er [16],

Decision Tree classi�er [47] and etc. Among those, SVM is widely adopted because

it can capture complex relationships between training data points. SVM uses a

technique called Kernel trick (4.1.5) to transform data in order to �nd an optimal

boundary classifying the data with maximum margin. If SVM's kernel is non-

linear, the separation boundary (hyperplane) is also non-linear. Figure 4.1 shows

this bene�t of SVM.

The basic idea in SVM is to �nd the optimal separating hyperplane by

maximizing the margin between classes' closest points known as support vectors

which are shown in Figure 4.2. In this example, linear Kernel is used since training
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Figure 4.2: Support Vectors from [89]

Figure 4.3: Arbitary separation lines

data is linearly separable.

4.1.1 Support Vector Machine

There are many separation boundaries, for an example of 2D as shown Figure 4.3,

we can draw to separate data. SVM can pick the best boundary with maximum

margin. Let's see how it works with the simple case. Figure 4.4 has minus samples

and plus samples. The decision rule for the unknown input, ~u, is ~w~u + b ≥ 0 if
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Figure 4.4: plus samples and minus samples; dashed line is a decision boundary.

the unknown is a plus sample where ~w is a perpendicular vector to the separation

boundary dashed line.

If we set +1 for plus samples and -1 for minus samples, we can write the

equation for plus samples and minus samples such as 4.1 and 4.2.

~w~x+ + b ≥ 1 (4.1)

~w~x− + b ≤ −1 (4.2)

In addition, for mathematical convenience, let's have a function yi such that

yi = +1 for plus samples and yi = −1 for minus samples. And then the equation

4.1 and 4.2 becomes one merged equation as 4.3.

yi(~w~xi + b)− 1 ≥ 0 (4.3)

SVM tries to maximize the width shown at Figure 4.5, which can be calculated

by the equation, 4.4.
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Figure 4.5: Maximizing width between solid line is the goal of SVM.

WIDTH = (x+ − x−)
~w

~‖ w ‖
(4.4)

Since ~w ~x+ is 1 - b and ~w ~x− is 1 + b according to the equations, 4.1 and 4.2.

it becomes the equation, 4.5.

WIDTH =
2

~‖ w ‖
(4.5)

Therefore, for maximum width, we need to minimize ~‖ w ‖. Let's write it such

as 1
2

~‖ w ‖
2
for mathematical convenience and our goal is to minimize it. When we

have a minimization goal with a constraint function such as the equation, 4.3, the

method of Lagrange multipliers can be used to �nd a solution.

Now, our goal is to �nd Lagrange multipliers of αi in the equation of 4.6.

L =
1

2
~‖ w ‖

2
−

N∑
i

αi(yi(~w~xi + b)− 1) (4.6)

Since we need to �nd maximum location of the function, 4.6, there are two
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partial derivatives, 4.7 and 4.8, to be set as zero.

∂L

∂ ~w
= ~w −

N∑
i

αiyi~xi = 0 (4.7)

∂L

∂b
= −

N∑
i

αiyi = 0 (4.8)

Therefore, ~w =
∑N

i αiyi~xi which means ~w is a linear sum of all samples. And

we can obtain the equation, 4.9, by plugging 4.7 and 4.8 into 4.6.

L =
N∑
i

αi −
1

2

N∑
i

N∑
j

αiαjyiyj ~xi ~xj (4.9)

This is called Dual form to solve the quadratic programing SVM is dealing

with. Note that maximization of the equation, 4.9, depends only on sample's dot

product. Once all αi is calculated, we can use the decision function, 4.10, to decide

whether an unknown sample of ~u is a plus sample or minus sample.

D =
N∑
i

αiyi~xi~u+ b


plus sample if D ≥ 0

minus sample if D < 0

(4.10)

4.1.2 Linear classi�er

A linear classi�er has the form (4.11) where w is weight vector which is the normal

to the line, and b is the bias. The separation is a line in 2-dimensional space. In

3D, it is a plane, and in nD, it is a hyperplane. Figure 4.6 graphically shows this.

f(x) = w>x+ b (4.11)
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Figure 4.6: Separation in 2D and 3D; (a) 2D (b) 3D

Given training data (xi , yi) for i = 1, . . . , N with xi ∈ <d and yi ∈ { -1, 1},

a classi�er 4.12 can be learned such that yi f(xi) > 0 always.

f(xi) =


≥ 0 if yi = 1

< 0 if yi = −1

(4.12)

For an SVM learning a linear classi�er 4.11, it is an optimization problem over

w as following equation 4.13:

maxw

(
2

‖ w ‖

)

subject to w>xi + b


≥ 1 if yi = 1

≤ −1 if yi = −1

for i = i . . .N

Or, equivalently

minw (‖ w ‖)2

subject to yi
(
w>xi + b

)
≥ for i = 1 ... N

(4.13)

This is a quadratic optimization problem subject to linear constraints. To

maximize margin while sacri�cing training error in a reasonable range depending
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Figure 4.7: Slack variable [89]

on the application of SVM, a slack variable is introduced as explained at Figure

4.7.

Now, the optimization problem becomes as following:

minw

(
‖ w ‖2 +C

N∑
i

ξi)

)

where yi
(
w>xi + b

)
≥ 1− ξi for i = 1, . . . , N

which can be expressed as: 4.15

C is a parameter that controls trade-o� between margin and training error.

Small C allows large margin but increases the error. Large C decreases margin,

but it allows small error.

The quadratic optimization problem 4.15 is known as the primal problem. We

can derive the dual problem 4.17 from it by Representer Theorem that states the

solution w can always be written as a linear combination of the training data:

w =
N∑
j

αjyjxj
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The advantage of solving the dual form rather than the primal form is that it is

much more e�cient when a number of input data is much greater than a number

of dimensions. It also enable us to use �exible SVM kernel for better classi�cation

when dealing with complex training data.

4.1.3 Primal and Dual

Primal version of classi�er is:

f(x) = w>x+ b (4.14)

Primal optimization problem over w is:

minw

(
‖ w ‖2 +C

N∑
i

max(0, yif(xi))

)
(4.15)

for w ∈ <d where d is dimension of feature vector x.

Dual version of classi�er is:

f(x) =
N∑
i

αiyi(x
>
i x) + b (4.16)

Dual optimization problem over α is:

max

N∑
i

αi −
1

2

N∑
jk

αjαkyjyk(x
>
j xk) (4.17)

for α ∈ <N subject to 0 ≤ αi ≤ C for ∀i

and
∑N

i αiyi = 0 where N is number of training points.
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Figure 4.8: Feature map [89]

4.1.4 Feature map

When data is not linearly separable in a certain dimension, for an example of 2D,

we can map the data to a higher dimension in order to make it linearly separable.

It is called feature mapping which transforms data feature space. It is depicted at

Figure 4.8.

With feature mapping, classi�er in w for <D becomes f(x) = w>Φ(x)+b where

Φ(x) is feature map.

Dual calssi�er 4.16 in transformed feature space becomes:

f(x) =
N∑
i

αiyiΦ(xi)
>Φ(x) + b (4.18)

Dual optimization problem over α 4.17 becomes:

max

N∑
i

αi −
1

2

N∑
jk

αjαkyjykΦ(xj)
>Φ(xk) (4.19)

for α ∈ <N subject to 0 ≤ αi ≤ C for ∀i

and
∑N

i αiyi = 0 where N is number of training points.
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4.1.5 Kernel trick

By writing k(xi, xj) = Φ(xi)
>Φ(xj), 4.18 and 4.19 can be written as:

f(x) =
N∑
i

αiyiκ(xi)κ(x) + b (4.20)

maxα

N∑
i

αi −
1

2

N∑
jk

αjαkyjykκ(xj)κ(xk) (4.21)

for α ∈ <N subject to 0 ≤ αi ≤ C for ∀i

and
∑N

i αiyi = 0 where N is number of training points.

With Kernel trick, we can train SVM models on complex data which may

require non-linear classi�cation. For example, we can use Gaussian kernel 4.22 to

support in�nite dimensional feature space.

κ(x, x′) = e
−‖x−x′‖2

2σ2 for σ > 0 (4.22)

Therefore, we can write Radial Basis Function SVM like below.

f (x) =
N∑
i

αiyie
−‖x−xi‖

2

2σ2 + b, b : bias (4.23)

4.2 Unsupervised Machine Learning

Training data for unsupervised learning does not have a target attribute (class).

As the name suggests, input data is not labeled so that learning process is not

supervised. During training stage, unsupervised learning tries to �nd intrinsic
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Figure 4.9: K-means algorithm: K is 2. Two centroids, red cross and blue cross

pattern inside data and cluster the data. Based on this learning, it can put any

new input data in an appropriate cluster. Clustering approaches of unsupervised

learning include k-means [34], mixture models [72], hierarchical clustering [3, 53]

and etc. Since we use labeled data for hotspot detection, we don't pay much

attention to unsupervised learning for our thesis. This section is just a brief

summary of major unsupervised learning models for reference.

4.2.1 K-means

When classifying unlabeled data into clusters, you �rst decide how many clusters,

K, you need to generate. Once K is decided, K-means algorithm creates K number

of seeds, named cluster centroids, at random location inside of the data to start

with. It calculates distances from the centroids, where the distance metric can be

any user-de�ned metric in feature space, and assign each data point to the closest

centroid. After this clustering, it calculates the average point of each cluster and

moves centroids to the mean point, and it starts the process again until it meets

some stopping criterion which can be the total number of iteration or no more

cluster assignments change. 4.9 depicts K-means algorithm graphically.
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Figure 4.10: Hierarchical clustering. Figure is from [7]

4.2.2 Hierarchical clustering

Using a distance metric (a measure of distance between pairs of samples),

hierarchical clustering algorithm combines samples together (agglomerative or

bottom-up) or split samples (divisive or top-down) hierarchically and generate

tree-like clusters. There is no need to know the number of clusters in advance.

4.10 illustrates hierarchical clustering process.

4.3 Background

As feature sizes in chip design and semiconductor manufacturing technology node

scale down further, the industry is being faced with a great challenge to cope

with the sub-wavelength lithography gap [22]. Even with various sophisticated

resolution enhancement techniques (RETs), multiple pattern lithography (MLP),

and design for manufacturing (DFM), semiconductor manufacturing process will

often run into lithography hotspots which produce pinching and bridging errors.

Lithography simulation has been used to �nd hotspots because it can be very
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accurate [19, 29, 30]. However, it is too computationally expensive for full-chip

scale.

To tackle this problem, there have been some alternative hotspot detection

approaches. Pattern matching and machine learning based techniques are mainly

adopted to reduce high computational complexity and to enable design veri�cation

at the early design phase.

Pattern matching approach can be categorized into three areas. String-based

pattern matching [2, 8], DRC-based pattern matching [11, 18, 23, 63], and explicit

model-based pattern matching [79,83,86].

Even though these pattern matching techniques have shown reasonable success

and been employed by the industry as alternative hotspot detection to avoid the

expense of rigorous lithography simulation, they have an signi�cant shortcoming:

It is di�cult to recognize previously unseen hotspots. Hotspot pattern library for

pattern matching cannot cover all possible hotspots even if fuzzy pattern matching

is adopted.

In contrast, Machine Learning (ML) is capable of identifying previously unseen

hotspots when it is well trained, and the characterization vector is relevant to

the problem, but just as pattern matching approaches have their strength and

weakness, ML also has limitations. False alarms are inevitable, and therefore, it is

critical to create an optimal model and develop methods to reduce the false alarm

rate.

ML-based approaches for hotspot detection have typically used a supervised

learning model, e.g., arti�cial neural network (ANN) [50] or support vector model

(SVM) [43]. Recent research involves hierarchical learning [49], data clustering

[53], fuzzy cluster growing [83], and topological classi�cation and critical feature
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extraction [9].

All of these ML-based hotspot detections su�er from false alarms when they try

to achieve higher accuracy of real hotspot detection. Figure 15 of [9] shows their

experimental data to point out the tradeo� between accuracy and false alarm.

To address this issue with a ML-based approach for hotspot detection, we

propose in this paper to use lithography information and lithographic related

domain knowledge for machine learning. As well explained in [14], prior knowledge

(Domain knowledge) plays a crucial role to have machine learning trained as

accurate as possible. In addition to training example, we have to select features

which are especially informative for the training.

In this chapter, we propose to use aerial image intensity information produced

by the same illumination as chip manufacturing process. We also propose to select

features based on hotspot type such as bridging and pinching. Furthermore, if

the illumination is asymmetric, those two hotspot types split into four types:

Horizontal bridging, vertical bridging, horizontal pinching, and vertical pinching.

Therefore, we create four SVM kernels that are trained with aerial image intensity

information. We run those four kernels, and each kernel will serve us to �nd

hotspots in design. It is important to note that the simulation of these intensity

points is obtained by using the drawn (design target) structures, thus eliminating

the need of a post-OPC mask.

Our test experiment result against 2012 CAD contest at ICCAD shows almost

100% accuracy and low false alarm rate. In fact, it shows our approach outperforms

all other previous works by a signi�cant margin. Our contributions are brie�y

summarized as follows:

1. We propose a robust and accurate SVM kernel training method utilizing real
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lithography illumination information and domain knowledge of lithographic

failure type.

2. We present experiment results demonstrating high accuracy with low false

alarm rate, which means it overcomes the biggest drawback of ML-based

hotspot detection.

The remaining section is organized as follows. Section 4.4 describes the problem

presented at 2012 ICCAD contest. Section 4.5 explains our approach in detail.

Section 4.6 shows experimental data comparing the contest winner and [9]. We

conclude our ML work in Section 4.7.

4.4 PROBLEM at 2012 ICCAD CONTEST

In 2012 CAD contest at ICCAD, fuzzy pattern matching problem for physical

veri�cation to detect previously unseen hotspots was given to contestants [64].

They were given a training data set of hotspots and non-hotspots patterns in a

layout for training. They were also given a testing layout which has previously

unseen hotspots for testing their methods. Maximizing accuracy was the primary

goal while minimizing false alarm rate was a secondary goal.

Figure 4.11 shows hotspot or non-hotspot pattern in the training data set. It

is a layout clip with a core and its ambit. A core is an area that has expanded

from the center of a hotspot or non-hotspot location. The amount of expansion

is determined by interaction distance of optical illumination, which is 0.6um from

the center in this contest making 1.2 um square box. Ambit is a peripheral part of

the clip. Usually, these hotspot and non-hotspot data set are provided by foundry

or lithography simulation.
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Figure 4.11: Hotspot or non-hotspot pattern con�guration. Figure from [64]

De�nition 4.4.1. A hotspot is a layout pattern that may induce printability issue

in lithography process.

De�nition 4.4.2. A hit is a correctly detected hotspot when core of actual hotspot

is inside the hit region shown as Figure 4.12.

De�nition 4.4.3. Accuracy is the ratio of the hits over the actual hotspots in

total.

De�nition 4.4.4. An extra is a non-hotspot detected as a hotspot.

De�nition 4.4.5. False alarm is the ratio of the extras over the testing layout

area.

An identi�ed hotspot is considered as a hit when the core of the hotspot

interacts with the core of an actual hotspot, which means there must be at least

overlapping area between the two cores.
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Figure 4.12: Hit means acutal hotspot is inside of the Hit region. Figure from [9]

4.5 Litho-aware Machine Learning

4.5.1 Prepare Training Data

In our approach, we categorize hotspots to two cases as we know that there are

two critical failures in transferring layout on the mask to wafer: Bridging and

Pinching. Bridging may happen when two nearby polygons are too close, whereas

pinching may occur when polygon dimension is too small. We also further separate

those two to four cases for machine learning process. When the illumination is

not symmetric, we have to take into account whether it is horizontal or vertical

failures, which leads to four hotspot types: Horizontal bridging (HB), Vertical

bridging (VB), Horizontal pinching (HP), and Vertical pinching (VP). Figure 4.13

shows the four hotspot types.

Since asymmetric Quadruple illumination shown at Figure 4.14 was used

to generate hotspots in the training data set at the 2012 ICCAD contest,

we categorize all hotspots into the four categories. It is because asymmetric

illumination has a di�erent image formation impact on horizontal line/space

versus vertical line/space. After we categorize all hotspot types, we train four
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Figure 4.13: Four types of hotspots: (a) HB, (b) VB, (c) HP, (d) VP; Red boxes are
cores. Box at the center of a core is hotspot location.

Figure 4.14: Asymmetric Quadruple illumination used for hotspot generation at 2012
ICCAD contest.

SVMs respectively using aerial image intensity information produced by the same

asymmetric Quadruple illumination.

Aerial image Intensity is calculated on 6% attenuated mask which is used for

generating hotspots in the training data. 12 points are selected at the center of a

core for intensity to be used for SVM. The distance between the points is 3 or 5

nm depending on the technology node (28nm or 32nm). The number of points is

decided to ensure that the intensity line crosses at least minimum width or space.

In our case, it is 28nm or 32nm. Those selected points are lined vertically or

horizontally from the center of the core. Figure 4.15 shows it graphically. During

the training phase, we decide which direction is best for each SVM (HB, VB, HP,

and VP SVM). During cross-validation using training data, we choose the best
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Figure 4.15: Simulation points. Distance between points is 3 nm for 28nm design and
5 nm for 32 nm design; (a) vertical line of points; (b) horizontal line of points

one.

4.5.2 Prepare hotspot candidates

Each trained SVM is applied to a testing layout to �nd hotspots. Since we know

that bridging and pinching occurs mostly at locations with a minimum width

or minimum space of layout design, we generate possible locations for hotspot

candidates only at those locations.

By generating hotspot candidates this way, we don�t check every location in

the design. We only check those hotspot candidates, which reduces the number of

locations to check and improves run time of hotspot detection. Besides, we also

categorize those candidates into the four hotspot types: HB, VB, HP, and VP

hotspot candidates. Figure 4.16 shows examples of those four hotspot candidate

types on which each SVM will run respectively.

As shown in Figure 4.16, a long line is broken into several pieces to check along

the line. Otherwise, we end up checking only one place in the long line which is

a center of the line. It is necessary to break up a long line because bridging or

pinching may happen somewhere along the line. The distance between hotspot
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Figure 4.16: Hotspot candidates; (a) HB candidates, (b) VB candidates, (c) HP
candidates, (d) VP candidates

checking points is 45 nm for 28 nm design and 50 nm for 32 nm design. These

distances are chosen based on a minimum width of the testing layouts.

For most technology nodes, it is well known that optical proximity e�ect is

about 0.6 um in radius from one location. The e�ect, however, gets reduced

exponentially as it goes out further from the location. And the ripple e�ect along

a line causing pinching or bridging is directly related to edge fragmentations for

OPC. Since we don�t know edge fragmentation scheme for OPC which is applied

to the test layouts to generate hotspots, we chose minimum width as the distance

between hotspot checkpoints along a line trying not to miss a hotspot between

those points. Note this distance is not decided by analytical quanti�cation. This

is a limitation of our approach and it should be further studied.

Figure 4.17 shows the framework of our lithography-aware ML for hotspot

detection. Most important data during SVM training stage is illumination, mask,

and hotspot type information.

4.5.3 Supervised Machine Learning

We adopted C-type Support Vector Machine (SVM) which supports binary

classi�cation: hotspot and non-hotspot in our case. Binary classi�cation SVM

transforms training data to a high-dimensional feature space and produces a
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(a)

(b)

Figure 4.17: Our hotspot detection framework; (a) Training �ow, (b) Testing �ow
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decision function (classi�er) to separate the data into two classes with a maximum

margin. SVM is chosen among many supervised learning models since it has shown

excellent performance in handling a small nonlinear data set [66, 67], which is an

important aspect considering there are usually a small number of hotspots for

training.

If SVM kernel function is a symmetric positive semi-de�nite function, it is

guaranteed to have a global optimum solution. We chose radial basis function as

our SVM kernel for that reason.

C-type SVM solution to derive a decision function can be reduced to the

solution of the dual form of quadratic programming, which is given as follows.

max (f(α)) =
N∑
i

αi −
1

2

N∑
jk

αjαkyjykk(xj, xk)

Subject to 0≤ai ≤ c for ∀i

N∑
i

αiyi = 0

k(xj, xk) = e
−‖x−xi‖

2

2σ2

α = (α1, . . . , αN)T

Decision function (radial basis function SVM):

f (x) =
N∑
i

αiyie
−‖x−xi‖

2

2σ2 + b, b : bias

N is size of training data and γ is N dimensional vector to be learnt. Given

training data xi, i=1, . . . ,N, we have a binary label function yi ∈ {1, -1}, 1 for
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hotspot and -1 for non-hotspot in our usage. Note that Gaussian Kernel, k, is

used, which is a symmetric positive semi-de�nite function. C controls the trade-

o� between classi�cation accuracy and the norm of the decision function. The

slack variable, γ which is 1/2σ2 portion of the Gaussian kernel, is to handle non

separable data.

Setting an appropriate C and γ is critical to have a good training result.

Therefore, we performed 3-fold cross-validation [35] during iterations with di�erent

C and γ each time to pick up the best decision function for each SVM kernel. The

initial value of C is 1 and γ is 0.0001. The iteration loop is nested with these two

variables. Outer loop is γ stepping 5 times previous value until γ becomes 1. Inner

loop is C stepping 5 times previous value until it reaches 100,000. In short, we

perform 64 times of the cross validation and pick the best C and γ.

Since there are a small number of hotspots and a large number of non-hotspots

in training data set, we balanced those two numbers to avoid degradation of

the training quality. Otherwise, the imbalanced number between hotspot and

non-hotspots can destroy the soft margin leading to a poor training result. We

rebalanced it by including only the same number of non-hotspots as the number of

hotspots in the training data. We discarded the rest of non-hotspots during SVM

training.

Another thing important to consider for a high quality of trained model is

how to sample non-hotspots data [88]. Since most hotspots occur at a minimum

width or space, the non-hotspot data set should also be generated at minimum

a width or space. We generated those locations for non-hotspot data set. Also,

there should be a suitable metric to sample appropriate ones among non-hotspots.

This metric should draw a clear line between hotspots and non-hotspots. We used
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Figure 4.18: Metric to select non-hotspots: Maximum and minimum intensity di�erence
less than 0.001 is used to select non-hotspots.

maximum and minimum intensity di�erence in the 12 intensity calculation points

as the metric to select non-hotspots as our training data set. Figure 4.18 shows

an example of how the intensity di�erence space look like for hotspots and non-

hotspots. In this example, we select sixty non-hotspots that have the intensity

di�erence less than 0.001.

4.6 Experimental Result

We implemented our approach in C++ programming language with SVM library

LIBSVM [37]. Our experiments were performed on a Linux platform with 3.7

GHz clock CPU and 32 GB RAM. Six industrial designs, two 32 nm and four

28 nm designs which were provided by 2012 CAD contest [64], were used for our

experiment in order to have fair comparisons. Table 4.1 from [9] shows a list of

the designs.

Table 4.2 summarizes our experimental results against 2012 CAD contest

winners, [83] and [9]. As it shows, our approach achieves the highest accuracy
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Table 4.1: 2012 CAD Contest at ICCAD Benchmark Statistics

Training data Testing layout
Name #hs #nhs Name #hs area

(um2)
process

MX_benchmark1_clip 99 340 Arrary_benchmark1 226 12,516 32nm
MX_benchmark2_clip 176 5,285 Arrary_benchmark2 499 106,954 28nm
MX_benchmark3_clip 923 4,643 Arrary_benchmark3 1,847 122,565 28nm
MX_benchmark4_clip 98 4,452 Arrary_benchmark4 192 82,010 28nm
MX_benchmark5_clip 26 2,716 Arrary_benchmark5 42 49,583 28nm

MX_blind_partial 55 224,975 32nm
#hs: number of hotspots; #nhs: number of non-hotspots. The core
size is 1.2 x 1.2um2, while the clip size is 4.8 x 4.8um2

among other previous works, ranging from 97.40% to 100% across the entire testing

layouts. As mentioned before, accuracy is primary criteria for a winner while the

false alarm is secondary. Since missing one hotspot kills a design, the primary

object is accuracy.

False alarm result of our approach is also excellent considering high accuracy

achievement. As pointed out with the experimental data in Figure 15 of [9],

there is a huge tradeo� between accuracy and false alarm especially when trying

to exceed 95% accuracy. However, our result shows we minimized the tradeo�

achieving high accuracy with low false alarm. In fact, if we look at the data of

"MX_blind_partial", our approach produced 100% accuracy with the lowest

false alarm. It is important data point because the test design is a layout as a

whole while the others testing designs consist of a collection of clipped layouts,

which means our approach outperformed on a real design environment.

4.6.1 Multi-layer hotspot detection

Multi-layer hotspots are mainly caused by overlay issues between layers. As

explained at the section, 3.6.1, EDDR PM is capable of identifying those hotspots.
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Table 4.2: Comparison with 2012 CAD contest winner, [87], [81], [83], and [9]

Testing layout(Training data) Methods #hit #extra accuracy false
alarm
(#xtra
/area)

run time area(um2)

Array_benchmark1
(MX_benchmark1_clip)

1st place 212 1,826 93.81% 0.15 0m05.1s 12,516

[87] 226 788 100% 0.06 0m10s

[81] 225 147 99.56% 0.01 0m51s

[83] 183 3,356 82.10% 0.27 0m14.4s

[9] 214 1,416 94.69% 0.11 1m01.6s

Ours 226 469 100% 0.04 2m43.1s

MX_blind_partial
(MX_benchmark1_clip)

1st place 51 66,818 92.73% 0.30 2m31.7s 224,974

[9] 51 49,343 92.73% 0.22 2m10.6s

ours 55 27,880 100.00% 0.12 12m44.3s

Array_benchmark2
(MX_benchmark2_clip)

1st place 489 20,383 98.00% 0.19 8m11.9s 106,954

[87] 496 544 99.40% 0.01 1m43s

[81] 498 561 99.80% 0.01 6m30s

[83] 385 1,842 75.80% 0.02 3m04.8s

[9] 490 10,761 98.20% 0.10 1m02.7s

Ours 499 1,296 100.00% 0.01 13m58.4s

Array_benchmark3
(MX_benchmark3_clip)

1st place 1,696 20,764 91.82% 0.17 18m44.0s 122,565

[87] 1,801 2,052 97.51% 0.02 1m50s

[81] 1,806 2,660 97.78% 0.02 7m14s

[83] 1,271 2,407 68.80% 0.02 4m07.0s

[9] 1,697 13,025 91.88% 0.11 12m24.9s

Ours 1,846 2,938 99.95% 0.02 16m27.0s

Array_benchmark4
(MX_benchmark4_clip)

1st place 161 3,726 83.85% 0.05 1m15.9s 82,010

[87] 187 3,341 97.74% 0.04 1m9s

[81] 185 1,785 96.40% 0.02 5m34s

[83] 138 1,488 72.00% 0.02 1m43.3s

[9] 165 3,437 85.94% 0.04 5m29.1s

Ours 188 3,423 97.92% 0.04 5m57.5s

Array_benchmark5
(MX_benchmark5_clip)

1st place 39 2,014 92.86% 0.04 0m26.6s 49,583

[87] 40 94 95.12% 0.00 0m41s

[81] 40 245 95.12% 0.00 3m52s

[83] 28 444 63.40% 0.01 0m44.6s

[9] 39 1,111 92.86% 0.02 0m07.8s

Ours 42 700 100.00% 0.01 3m04.5s

Since the intensity distribution of the 12 points is only for a single layer hotspot

detection, Litho-aware Machine learning may not be used to detect multi-layer

hotspots. In other words, intensities calculated using more than one layer are not
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meaningful in terms of deciding whether there are hotspots or not between layers.

In fact, overlay issue has not much to do with aerial image intensities. Therefore,

if we want a machine learning model to be able to detect multi-layer hotspots,

further research is needed to investigate which features are best rather than the 12

intensity features.

However, it may be worth of trying to combine the 12 intensity points at each

layer, which are simulated independently, and use them in LAML SVM model

training. For example, when we have two-layer hotspots, we create 24 intensity

points, 12 per each layer, and we feed in these 24 features into our model training.

4.7 Litho-aware ML conclusion

We presented a novel methodology for machine learning-based hotspot detection.

Our lithography-aware machine learning guides learning process using actual

lithography information combined with lithography domain knowledge. While

previous works for SVM modeling to identify hotspots have used only geometric

related information which is not directly relevant to the lithographic process,

our SVM model was trained with lithographic information which has a direct

impact causing pinching or bridging hotspots. Furthermore, rather than creating

a monolithic SVM trying to cover all hotspot patterns, we utilized lithography

domain knowledge and separated hotspot types such as HB, VB, HP, and VP for

our SVM model.

We also showed how we incorporated that lithography information into SVM

kernel to accomplish an accurate decision function (classi�er) for high accuracy

result. The key point to create accurate SVM models for hotspot detection is

to decrease model complexity by appropriate use of domain knowledge. Without
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domain knowledge, it is di�cult to �nd proper features that lead accurate models.

Lithography simulation is all about aerial intensity distribution to create pattern

images on a wafer to �nd hotspots. Therefore, considering intensity distribution

in some way for hotspot detection machine learning is absolutely necessary for an

accurate ML model. We used just 12 intensity points as 12 features for training

SVM models for this thesis. It will be interesting to see if adding more intensity

related features such as slope or curvature of the intensity points would enable us

to generate more accurate models with lower false alarm rates.

Our experiment result con�rms that our lithography-aware machine learning

approach to detect hotspots outperforms all other previous works in this research

�eld. As pointed out at 4.6, 100% accuracy with lowest false alarm rates for the real

industry design, "MX_blind_partial", is a remarkable result when considering

other approaches are not even near 95%. In fact, our approach showed 100%

accuracy with three testing layouts. Since not missing real hotspots is the �rst

priority, this result is outstanding.
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5

Conclusion

With a continued e�ort to shrink feature size as guided by Moor's law, Integrated

Circuit Manufacturing process has become more and more prone to lithography

hotspots. Even state-of-the-art semiconductor manufacturing processes adopting

Optical Proximity Correction (OPC) [12] and Resolution Enhancement Techniques

(RETs) such as O�-Axis illumination [59], Double or Multiple Patterning (DP or

MP) [70,82], and Phase-shift mask [85] often have challenges to avoid hotspots in

layouts.

Since these lithography hotspots have an enormous impact on the yield of

semiconductor manufacturing companies, it has become a critical task to �nd

hotspots, which are caused by problematic patterns in a layout, during not only

physical veri�cation but also early physical design stage.

Lithography simulations can be used for the most accurate hotspot detection,

and some researchers showed their works [19, 29, 30]. However, lithography

simulations are extremely computational intensive, and it is not practical, if

not almost impossible, to run the simulations on a full-chip level for identifying

hotspots.

Recently, several approaches for hotspot detection have been proposed to avoid

lithography simulations and to be accurate and e�cient as well. They are mainly

based on two ideas. One is pattern match, and the other is machine learning.

Pattern match approach is fast and accurate, but it cannot identify previously

unseen hotspots because it mainly relies on hotspot library which is composed of
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previously known hotspot patterns to match for hotspot detection. In contrast,

machine learning (ML) based hotspot detection has shown that it can identify

previously unseen hotspots if the model is well trained. But, it su�ers false alarm

issue and needs special methods to suppress false alarm hotspots.

This thesis tackles the issue of pattern matching approach and the issue of

ML-based approach for hotspot detection. We proposed our novel method of Edge

Driven Dissected Rectangle based pattern match (EDDR PM) to be �exible enough

for identifying previously unseen hotspot while maintaining accuracy not to miss

any hotspot patterns in hotspot pattern library. Since our EDDR PM uses simple

DRC rules, unlike other DRC-based pattern matching approaches, it does not

su�er DRC rule explosion issue.

We showed that with our vector space concept, EDDR PM could avoid the

unnecessary eight iterations to detect the same pattern with di�erent orientations.

Among all the member rectangles in a pattern, we used the center point of a

member as an origin and the center point of another member as a reference point

to create vector space and other necessary information. With this vector space

information available at pattern matching process, it is possible to decide which

orientation we are trying to match without going through eight iterations to cover

all eight possible orientations of a pattern.

We detailed about how to implement EDDR PM for various pattern matching

purposes such as exact match, partial match, and fuzzy match. By introducing

range relational operations for pattern description, we demonstrated how �exible

EDDR PM is to handle fuzzy pattern matching. We explained that partial

matching is done by simply a skipping member check thanks to our core concept

to EDDR PM, the concept of members or non-members in a pattern.
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We also showed that our EDDR PM outperformed previous DRC-based pattern

matching works. The biggest performance improvement came from Bin-search

grid algorithm as explained at Section 3.5.3. Runtime complexity of EDDR PM

has reduced from O(n^2) to O(n) by employing Bin-search grid algorithm. As

expected, the runtime improvement for 4 million pattern matching test shown at

Table 3.2 was tremendous from two days to 1.5 minutes. Our experimental result

comparing [11] showed a huge speed up of 20 times faster on average shown at

Table 3.5.

We presented how easy to extend EDDR PM for multi-layer pattern matching.

It is one of many bene�ts of EDDR PM which comes from the fact that it

adopted simple DRC edge rules for pattern match. We also discussed how

additional DRC operations such as AREA, NET AREA, NET AREA RATIO,

DEANGLE, RECTANGLE ENCLOSURE, and INSIDE may help for multi-layer

pattern matching or another purpose of matching.

As a novel solution to ML based hotspot detection, we proposed Litho-aware

machine learning (LAMA) which uses latent aerial image intensities. Our idea of

LAMA directly relates lithography simulation information to SVM models during

ML training using actual lithography information combined with lithography

domain knowledge. Unlike previously developed ML based approaches which use

only geometric information or require a post-OPC (Optical Proximity Correction)

mask, our proposed method utilizes the use of detailed optical information but

bypasses post-OPC mask by sampling latent image intensity and use those points

to train an SVM model. The results suggest high accuracy and low false alarm,

and faster runtime compared with methods that require a post-OPC mask.

Our domain knowledge about lithography illumination was used to decrease
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model complexity by creating a separate SVM model for each horizontal bridging,

vertical bridging, horizontal pinching, and vertical pinching hotspot types. Because

our approach avoided the higher complexity of a lumped model dealing with all

the possible hotspot types, it was possible for LAML to yield higher performance

even with only 12 features (the 12 intensity points).

Another thing to note and emphasize the importance of domain knowledge

is that lithography hotspot is mainly related to intensity distribution around the

hotspot point. Therefore, this domain knowledge should be utilized to enable us

to create a machine learning model. With this in mind, we found a reasonable and

reliable metric to measure intensity distribution that distinguishes hotspot and

non-hotspot pattern signature. As shown at Figure 4.18, the di�erence between

maximum intensity and minimum intensity served well for our metric.

Since non-hotspot outnumbers hotspots, we matched the total number of non-

hotspot data to the total number of hotspots in our training set to ensure a

high-quality model. Otherwise, the imbalanced number between hotspot and

non-hotspots can destroy the soft margin leading to a poor training result. We

rebalanced it by including only the same number of non-hotspots as the number of

hotspots in the training data. We discarded the rest of non-hotspots during SVM

training.

With those domain knowledge incorporated in SVM model training, we created

a machine learning model that achieved higher performance (accuracy) and lower

false alarm rate. Our experimental result proved how important it is for domain

knowledge to be incorporated into machine learning model. We presented that

our LAML performance surpassed previous works for hotspot detection machine

learning with a signi�cant margin. Important data point in the comparison against
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the ICCAD 2012 contest winner and [9] shown at Table 4.2 is that our LAML

achieved 100% accuracy. There was no miss in �nding real hotspots on an actual

design, "MX_blind_partial", which is the most important requirement for

hotspot detection technology.

As a future topic to improve LAML, we suggested to include additional intensity

related features such as the slope of the line of the 12 intensity points and curvature

of the line. Since these features can be calculated so fast along with the 12 intensity

points, there will be no impact on runtime both in training phase and testing phase

while we can expect better performance in terms of accuracy.
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6

Future Work

1. Additional DRC operations for pattern matching

As discussed at Section 3.6.2, other DRC rules may show their im-

portance in the �eld of pattern matching. Further research needs to be

performed to determine that. Especially for multi-layer pattern matching,

NET AREA RATIO and RECTANGLE ENCLOSURE operations seem

excellent candidates for further studies.

2. Analytical Quanti�cation of best distance between hotspot candidates

As mentioned at 4.5.1, developing analytical quanti�cation to decide the

best distance between hotspot candidates along a long line would be helpful

to make LAML more robust. Also, studying hybrid approach using EDDR

PM and LAML would be an exciting research project in the future. Further

research needs to be done by adding more features for SVM model training

such as the slope of the 12 intensity points or curvature of the intensity line

curve to see if this improves accuracy and false alarm rates.

3. Deep Neural Network using LAML idea

As another future work, Deep Neural Network (DNN) using our LAML

idea should be investigated. Since DNN performs automatic feature

extraction on a distinct set of features based on the previous layer's output

without human's intervention, it may discover important features we have

not come up with yet. During DNN training, it can start with the features

106



Figure 6.1: Deep Neuron Network with two hidden layers

we used for our work, the 12 intensity points, but generate a di�erent set

of features on the next layer of DNN, which may be important to train an

accurate machine learning model which humans may not be able to discover.

Through this feature hierarchy along layers on DNN, DNN is capable of

handling complex features to model even more complex non-linear functions.

Figure 6.1 shows a typical four-layer DNN with two hidden layers. Besides

that, there are many other forms of DNN such as Sparse Auto Encoder,

Denosing Auto Encoder, Deep Belief Network, and etc (See Figure 6.2).

Further investigation should be carried out to �nd out how many hidden

layers are best for hotspot detection or to �gure out what kind of network

produces the most accurate model with lowest false alarm rate.

4. Hybrid approach using both EDDR PM and LAML

As explained through out this thesis, pattern matching for hotspot

detection is perfect for exact matches while it lacks to detect previously
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Figure 6.2: Several DNN types. Figure from [31]

unseen hotspots. In contrast, machine learning approach enables designers

to detect problematic patterns that are not in hotspot libraries, but may

increase false alarms.

Since EDDR PM is capable of not only �nding previously known hotspots

but also generating hotspot candidates with its �exible pattern description

power in fuzzy ways, we can perform LAML on the candidates to decide

whether those are hotspots or not. In this hybrid �ow, both EDDR PM and

LAML can work together such that it does not miss any known hotspots

and covers previously unseen hotspots as well. Considering LAML's high

accuracy with low false alarm rates, it may show a promising result unlike

any other hybrid methods [3, 40, 42,51,83].

5. Lithography Friendly Routing

There has been a lot of research to avoid hotspot patterns in the earlier
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Figure 6.3: Edge Placement Error. The di�erence between the printed edge position
and the original mask edge position is the edge placement error. It is approximated by a
rule-of-thumb (30 % rule). Figure from [54]

design stages such as logic synthesis, placement, and routing [26, 58, 84].

Routing is probably a most critical physical design stage to solve hotspot

issues. Research e�orts have been focused in two paradigms, Construct-by-

correction [54,73,80] and Correct-by-construction [5, 6, 56,77].

In Construct-by-correction paradigm, routing is done �rst, and then hotspot

detection process is carried out to �x found hotspots through post-routing

optimization. It performs rip-up, re-route, doubling via, wire spread-

ing/widening, and so on to remove found hotspots.

[54] attempted lithography simulations to create Edge Placement Error

(EPE: See Figure 6.3) map and used it to measure overall printability issues.

Guided by EPE map, they proposed RET-aware detailed routing where they

tried EPE guided wire spreading, EPE guided rip-up and re-route.

[80] proposed model assisted routing. The authors also attempted lithogra-

phy simulation to �nd real hotspots and �x them. A rule-based �ltering is
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Figure 6.4: Rule-Based Detection identi�es hotspot candidates. These candidates are
then con�rmed or rejected by lithography simulation. Finally, hotspots are �xed by
Rule-Based Correction. Figure from [73]

applied �rst to reduce the number of potential hotspots. Their �xing solution

to remedy those hotspots is either widening gap to reduce bridging or making

more room around shapes to reduce pinching. Below is a summary of [80]'s

approach.

(1) In the �rst step, a conservative rule-based �lter is applied to select

potential hotspots.

(2) Router is then invoked to �x these potential hotspots.

(3) These two steps are repeated until the number of �ltering hotspots is

reduced to a manageable size.

(4) In the third step, they apply lithography simulation to the remaining

�ltering weak spots to determine the true hotspots.

(5) The router is called again to perform layout optimization to remove the

lithography hotspots.

Luk-Pat [73] also tried a rule-based �ltering similar with [80] before

lithography simulation. Figure 6.5 shows an example of their rules and Figure

6.4 shows their work�ow. Their solution for �xing hotspots is a rule-based

correction that modi�es found hotspot patterns in a pre-determined way.

Their correction rule is tightly linked to a detection rule such that they don't

identify hotspots that they don't know how to �x.
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Figure 6.5: Example of a Detection Rule. The green wires must be present. The
checkered wires may or may not be present. The �nely-dotted regions must not be
present. The green wires must have dimensions parameterized by A, B, C, D and E.
These parameters must have values in speci�ed ranges, where the ranges are depending
on the process technology. Figure from [73]

In Correct-by-construction paradigm, routing considers lithography costs or

constraints directly to avoid hotspots during routing. In essence, an e�ective

Litho-metric capturing hotspots needs to be developed, and it must be

incorporated e�ciently into an existing routing framework such that routing

generates Litho-friendly layouts.

One challenge of Correct-by-construction routing approach, also called

lithography-aware routing, is that it is di�cult to decide hotspots or not

before a real routing path is created. Figure 6.6 shows an example of

this di�culty. This example has a layout region with metal blockages and

unrouted pins Pin1-Pin4. Because of this unrouted region, potential hotspots

may occur by route Pin1-Pin2 as shown (b) of Figure 6.6.

Huang [77] proposed a maze routing method that considers lithography

optical e�ect in the routing algorithm. The maze algorithm is a sequential
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Figure 6.6: The hotspot detection challenge in the detailed routing stage. (a) routed
layout region with metal blockages and unrouted pins, Pin1-Pin4. (b) lithography
simulation to �nd hotspots. Note that due to unrouted pins Pin1-Pin4, potential hotspots
may be missed. Figure from [52]

Figure 6.7: (a) Three nets with short lengths of two conductor layers, (b) OPC layout of
(a), (c) The same three new with di�erent paths, (d) OPC layout of (c). Note that fewer
and less complicated OPC features are needed in the layout. The routing is friendlier to
the OPC process, and the process window is wider. Figure from [77]

routing algorithm where one signal net is routed at a time. Based on their

OPC (Optical Proximity E�ect Correction) cost function, they try to �nd

best routing paths as shown at Figure 6.7. Their OPC Constraint Maze

Routing (OPCCMR) is a multi-constrained shortest path problem which

can be solved by Lagrangian relaxation method. Their OPC cost function is

derived from actual lithography simulations to create lookup tables.
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Figure 6.8: characterization for t1=jog-corner and t2=line-end is shown where (b), (c),
(d), and (e) are the cases with the same distance. Thus, the mean EPE will characterize
this interaction between t1 and t2 at this distance. Figure from [56]

Chen [6] also tried to consider OPC cost function during routing for Litho-

Friendly Design. Their cost function was based on only line width, length,

and adjacent lines.

Cho [56] proposed a compact post-OPC Litho-metric based on a statistical

characterization. They prede�ned Litho-prone shapes, i.e., weak grids, such

as jog-corner, via, line-end, and they characterized the interferences among

them. They obtain the Litho-cost between weak-grid interactions at various

distances based on post-OPC images. (See Figure 6.8) They estimated

printability cost by calculating the summation of the Litho-cost among all

weak-grid interactions within the lithography in�uence and process window.

The Litho-metric derived from the characterization showed high �delity to

total edge placement error.

Chen [5] introduced Quasi-inverse lithography technique to estimate "OPC

demand" which is their metric measuring OPC required area. Visualization

of this "OPC demand" is depicted at Figure 6.9. The goal of their routing
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Figure 6.9: (a) Illustration of OPC demand calculation. (b) An example of OPC
demand calculation. All numbers are multiplied by 100. The gray (green) and dark gray
(red) grids denote the drawn and manufactured shapes, respectively. Note that (a) and
(b) do not correspond to the same layout. Figure from [5]

is to minimize "OPC demand".

Construct-by-correction and Correct-by-construction are not perfect. These

two approaches can be combined for a much better approach. First, we route
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in Correct-by-construction fashion, trying to prevent most hotspots. Next,

we perform the iterative process of Correct-by-construction by detecting

hotspots and �xing those using post-routing optimization.

The main purpose of EDDR PM and LAML is to detect hotspots. Therefore,

our work �ts in Correct-by-construction. Since EDDR PM and LAML

shows superiority to previous works, it will be interesting to try our work

in Correct-by-construction for lithography-friendly routing. Furthermore,

research about formulating a lithography cost function based on LAML idea

should be studied for lithography-aware routing.

6. Feature Extraction

Feature extraction is a critical step in both machine learning and pattern

matching. In fact, our thesis is an excellent example of the importance of

feature extraction that is domain relevant for both pattern matching and

machine learning. Simple but comprehensive feature information to represent

patterns is key to an e�cient and accurate hotspot detection. Therefore,

more research on feature extraction should be carried out to �nd the best

one for hotspot detection, especially for the machine learning approach.

Qiu [33] suggested a semi-supervised approach for feature extraction. He

creates a semi-supervised model using Universum which is a data set sharing

the same domain as the target problem. Recently, Universum is widely

adopted for machine learning algorithm to encode prior knowledge (domain

knowledge) into the model. In most machine learning problems, there are

insu�cient labeled data. Therefore, semi-supervised learning is required to

enhance classi�cation accuracy by using not only available labeled data but
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also a great deal of unlabeled data.

Regarding semi-supervised model to generate extra labeled data from

unlabeled data using Universum data, we create an initial model that uses

available labeled data along with Universum data. Once the model is

trained, it can classify each unlabeled data to obtain a con�dence value

about the classi�cation. The classi�ed unlabeled data that exceeds a speci�c

threshold value of con�dence is merged into the labeled set along with their

classi�cation labels. The new model can be constructed with the original

labeled data and new labeled data to classify the rest of the unlabeled data

set. In this process of semi-supervised learning, selecting the most e�ective

Universum samples is important since not all the Universum samples are

helpful.

As a case study, In 2006, Vapnik [68] experimented a binary classi�cation of

handwritten digits 5 and 8. For this classi�cation problem, he created the

following Universum sets:

(a) U1: randomly selected other digits (0, 1, 2, 3, 4, 6, 7, 9)

(b) U2: randomly mixing pixels from images 5 and 8

(c) U3: average of randomly selected examples of 5 and 8 (See Figure 6.10)

He showed that U-SVM (SVM used Universum data) outperformed a regular

SVM. Below is his conclusion of U-SVM research which makes such an

important point that we want to re-write it here.

"The idea of using an Universum is also about the use of additional data.

However, here we do not require either the same distribution or labeling.

The Universum idea is close to the Bayesian idea: the attempt to use
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Figure 6.10: Universum data created by average of randomly selected examples.

prior knowledge. However there is a conceptual di�erence between the

two approaches. In Bayesian inference, the prior knowledge is knowledge

about decision rules, while the Universum is knowledge about the admissible

collection of examples. People may have some feeling about a set of examples,

but they may often know nothing about the distribution on the admissible

set of functions. Like the Bayesian prior, the Universum encodes prior

information. Unlike the Bayesian prior, the Universum distribution does

not depend on the admissible family of functions. Our experiments show

that the obtained performance depends on the quality of the Universum.

The methodology of choosing the appropriate Universum is the subject

of research. However, our results con�rm that the Universum can be

an important instrument for boosting performance, especially in the small

sample size regime."

Note that U-SVM is particularly important when sample data set is small
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such as hotspots. Therefore, research on how to create Universum hotspot

data should be carried out to improve our hotspot detection model's

performance. It would be interesting to see whether U3, which was

experimented at [68], is going to have a positive impact on LAML in terms

of accuracy and low false alarm rates.

It is also worth trying Deep Neural Network (DNN) with Universum data as

well as intensity data from LAML concept. Even though DNN performs

automatic feature extraction on a distinct set of features based on the

previous layer's output and may discover important features we did not

realize, initial input features which are sensible to the hotspot detection

model is critical.
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