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Abstract 

At this time the synthesis of reversible circuits for quantum computing is an 

active area of research. In the most restrictive quantum computing models there are no 

ancilla lines and the quantum cost, or latency, of performing a reversible form of the 

AND gate, or Toffoli gate, increases exponentially with the number of input variables. In 

contrast, the quantum cost of performing any combination of reversible EXOR gates, or 

CNOT gates, on 𝑛 input variables requires at most O(𝑛2/ log2 𝑛) gates. It was under 

these conditions that EXOR-AND-EXOR, or EPOE, synthesis was developed. 

In this work, the GF(2) logic theory used in EPOE is expanded and the concept of 

an EXOR-AND product transform is introduced. Because of the generality of this logic 

theory, it is adapted to EXOR-AND-OR, or SPOE, synthesis. Three heuristic spectral 

logic synthesis algorithms are introduced, implemented in a program called XAX, and 

compared with previous work in classical logic circuits of up to 26 inputs. Three linear 

reversible circuit methods are also introduced and compared with previous work in linear 

reversible logic circuits of up to 100 inputs.  
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1 

Introduction 

A number of different quantum computing architectures, such as quantum dot, 

scalable ion-trap, and linear optical quantum computing [1, 2], have been proposed and 

used experimentally. There are many challenges in realizing a quantum computer and it 

remains an open question which approach will be the most commercially viable. A 

parallel open question is how best to convert irreversible Boolean functions into a 

quantum form (or quantum circuit). A commonly used quantum computing model for 

logic synthesis is one in which ancilla lines are unavailable, the quantum cost or latency 

of performing a reversible form of the AND gate (known as the multiple-controlled 

Toffoli gate) increases exponentially with the number of input variables, and the quantum 

cost of performing a reversible form of the EXOR gate (which is known as the CNOT 

gate) is one [3]. It was under these conditions that the EXOR-AND-EXOR (or EPOE) 

logic synthesis methodology presented herein was developed [4]. Specifically, the 

original goal for EPOE logic synthesis was to realize reversible circuits which would use 

a minimal number of Toffoli gates at a cost of increasing the number of CNOT gates. 

This Toffoli-gate-CNOT-gate tradeoff strategy is general and can lead to multi-level 

logic forms significantly more complicated than the three-level forms presented herein. 

In this work the two fundamental problems in EPOE logic synthesis, Linear 

Reversible Circuit Synthesis and EXOR-AND-based logic synthesis, are covered in 

separate sections. Previous work on linear reversible circuit synthesis used the Four 

Russians Method for Inverting a GF(2) matrix to achieve an upper-bound of O(𝑛2/
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log2 𝑛) CNOT gates per circuit [5, 6]. Compared to that work, the methods presented 

herein translate more efficiently into both reversible gates and quantum gates. 

The closest previous work to EPOE synthesis was an Exclusive-OR sum of 

pseudoproducts (or ESPP) approach developed by Ishikawa et al. [7]. Their experiments 

were limited to circuits of 10 inputs with no synthesis times reported, they had no 

optimizations for multi-output functions, and they did not make the connection to 

quantum computing. In contrast there have been many papers on EXOR-AND-OR 

synthesis formulated as a sum of pseudoproducts (or SPP) which was introduced by 

Luccio and Pagli [8]. Herein a technology-independent approach to EXOR-AND-based 

logic synthesis is presented and compared with previous work. For compatibility with 

reversible circuit notation, the presented EXOR-AND logic synthesis algorithms use a 

GF(2) linear transform formulation employed in describing error correction codes and 

logic decomposition by Meinel and Theobald [9], and Günther and Drechsler [10], and 

Karpovsky, Stanković, and Astola [11]. Comparisons are made between the GF(2) linear 

transform formulation and the SPP/pseudoproduct formulation in order to bridge these 

two approaches. 

The presented EXOR-AND-based logic synthesis algorithms differ from the 

majority of logic synthesis algorithms in two fundamental ways. First, they rely on 

EXOR-AND product transformations in a postprocessing stage to increase similarity 

across EXOR-AND expressions, and second, they employ a Hadamard transform spectral 

approach to generate logic expressions. This spectral approach improves the speed of 

synthesis but at a cost of increased variability in the results compared to other methods. 
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2 

Theory 

2.1 Definitions (extending [12]) 

Previously defined terms relevant to logic synthesis [13, 14, 15, 16] 

The following conventions are used herein:  

1. Logical sums are denoted by terms separated by the “∨” operator. 

2. Logical products are denoted by both “∏𝑥𝑖” and concatenated expressions.  

3. Boolean expressions that contain products of Exclusive-OR sums will be 

expressed in algebraic normal form, e.g., as (𝑥𝑖⨁1)(𝑥𝑗⨁𝑥𝑘⨁1) rather than 

𝑥𝑖(𝑥𝑗⨁𝑥𝑘), 𝑥𝑖(𝑥𝑗⨁𝑥𝑘), or 𝑥𝑖(𝑥𝑗⨁𝑥𝑘).  

4. Where noted Galois Field 2 (GF(2)) matrix algebra will be used. In GF(2) 

algebra, values are restricted to either 0 or 1, multiplication is equivalent to 

logical AND, and addition is modulo two.  

A completely specified 𝑛×1 switching function, or equivalently a two-valued logic 

function, is a Boolean mapping of the form 𝑓:𝔹𝑛 → 𝔹. The 𝑛 input variables of a 

switching function are specified herein in one of two ways: either as an 𝑛-bit binary 

variable in the form 𝑥0𝑥1𝑥2 …𝑥𝑛−1, or as an 𝑛×1 binary vector in the form 𝑥⃗ =

[𝑥0, 𝑥1, … , 𝑥𝑛−1]
𝑇. Given a constant 𝑛×1 binary vector 𝑎⃗ in the domain of switching 

function 𝑓, the expressions 𝑓│𝑎0𝑎1𝑎2…𝑎𝑛−1
≡ 𝑓(𝑎0, 𝑎1, 𝑎2, … 𝑎𝑛−1) ≡ 𝑓(𝑎⃗) denote the 

particular value in the range of 𝑓 to which 𝑓 maps 𝑎⃗. When the domain of a switching 

function 𝑓 is restricted by holding a collection of input variables constant, the restricted 
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functions will be denoted similarly. For instance, the expressions 𝑓│𝑎0
≡ 𝑓│𝑥0=𝑎0

≡

𝑓(𝑎0, 𝑥1, 𝑥2, … 𝑥𝑛−1) denote the subfunction of 𝑓 where 𝑥0 = 𝑎0; 𝑓│𝑎0𝑎1
≡

𝑓│𝑥0=𝑎0,𝑥1=𝑎1
≡ 𝑓(𝑎0, 𝑎1, 𝑥2, … 𝑥𝑛−1) denote the subfunction of 𝑓 where 𝑥0 = 𝑎0 and 

𝑥1 = 𝑎1, etc. In the logic synthesis literature these restricted functions are often called 

cofactors. The specification of a switching function can be denoted in multiple ways, 

such as a vector of 2𝑛 binary constants in the form 

[𝑓│0…000, 𝑓│0…001, 𝑓│0…010, … , 𝑓│1…111], or as a set of all binary vectors 𝑥⃗ such that 

𝑓(𝑥⃗) = 1. The latter specification is sometimes referred to as the ON-set of 𝑓. Further, a 

given ON-set can be denoted either as a list of unsigned binary values or as a list of 

integers via the 𝔹𝑛 → ℤ mapping 𝑥⃗ → 2𝑛−1𝑥0 + 2𝑛−2𝑥1 + 2𝑛−3𝑥2 …+ 20𝑥𝑛−1. The 

OFF-set of 𝑓 is the Boolean complement in the domain of 𝑓 of the ON-set for 𝑓, i.e., the 

set of all 𝑥⃗ such that 𝑓(𝑥⃗) = 0. 

In an incompletely specified switching function, binary vectors in the domain of a 

switching function belong to either the ON-set of f, the OFF-set of 𝑓, or the don’t-care 

set (DC-set) of 𝑓 which is the set of all binary vectors 𝑥⃗ for which 𝑓(𝑥⃗) = 0 or 𝑓(𝑥⃗) = 1 

is acceptable. Each of these sets can be represented as an independent switching function, 

i.e., 𝑓𝑂𝑁, 𝑓𝑂𝐹𝐹, and 𝑓𝐷𝐶.  

Given the 𝑛×1 switching function 𝑓, we define the following: 

The expression |𝑓| denotes the number of elements in the ON-set of 𝑓.  

A literal 𝑙𝑖 is an input variable in either direct or negated form, e.g., 𝑙𝑖 where 

𝑙𝑖 ∈ {𝑥𝑖, 𝑥𝑖}. 
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A minterm is a product of exactly n literals in which each input variable appears 

precisely once, e.g., ∏ 𝑙𝑖
𝑛−1
𝑖=0  where 𝑙𝑖 ∈ {𝑥𝑖, 𝑥𝑖}. A minterm can be regarded either as a 1-

minterm when 𝑓𝑂𝑁(𝑙0, 𝑙1, 𝑙2, … 𝑙𝑛−1) = 1, or a 0-minterm when 𝑓𝑂𝐹𝐹(𝑙0, 𝑙1, 𝑙2, … 𝑙𝑛−1) =

1, or a DC-minterm when 𝑓𝐷𝐶(𝑙0, 𝑙1, 𝑙2, … 𝑙𝑛−1) = 1. 

A cube is either the Boolean value 1, a single literal, or the product of two or 

more literals, e.g., 𝑐 = ∏ 𝑚𝑖
𝑛−1
𝑖=0  where 𝑚𝑖 ∈ {𝑥𝑖, 𝑥𝑖 , 1}. The cubes 𝑐0 and 𝑐1 are disjoint 

when 𝑐0𝑐1 = 0 for all 𝑥⃗, otherwise they intersect each other. 

A sum of products (SOP) expression for the function 𝑓 is a logical sum of cubes 

which corresponds to the ON-set of 𝑓. 

The canonical SOP expression for the function 𝑓 is the logical sum of unique 

minterms which corresponds to the ON-set of 𝑓. For example, the canonical SOP 

expression for the 3× 1 function 𝑓1 = 𝑥0𝑥1 ∨ 𝑥2 is 𝑥0𝑥1𝑥2 ∨ 𝑥0𝑥1𝑥2 ∨ 𝑥0𝑥1𝑥2 ∨

𝑥0𝑥1𝑥2 ∨ 𝑥0𝑥1𝑥2. 

A disjoint sum of products (DSOP) expression for the function 𝑓 is an SOP 

expression which is comprised of disjoint cubes. Note that all canonical SOP expressions 

are DSOP expressions. An advantage of DSOP expressions is that they can be treated 

flexibly as SOP expressions or ESOP expressions.  

𝑥0 𝑥1 𝑥2 𝑥3

0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0

 

Figure 2.1. The pseudocube matrix corresponding to the pseudoproduct 

(𝑥0⨁𝑥1)(𝑥2⨁𝑥3). 
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Previously Luccio and Pagli defined the terms pseudocube and canonical 

expression of a pseudocube or pseudoproduct, [8] which are summarized here briefly. A 

pseudoproduct such as (𝑥0⨁𝑥1)(𝑥2⨁𝑥3) is a product of Exclusive-OR sums of literals 

(or equivalently a product of EXOR-factors) which is algorithmically constructed from a 

specific type of matrix of minterms called a pseudocube. A pseudoproduct expression 

will be either 1, an Exclusive-OR sum of one or more literals, or a product in which each 

factor is either a literal or an Exclusive-OR sum of literals for which the number of 

literals is bounded. Specifically, in pseudoproduct expressions consisting of 𝑝 EXOR-

factors, the maximum number of literals in each EXOR-factor is 𝑛 − 𝑝 + 1. Further, a 

pseudocube is a binary encoded matrix representation of 2𝑘 minterms, where 0 ≤ 𝑘 ≤ 𝑛, 

that satisfies the following requirements: all rows are unique; all rows are sorted in 

ascending order; the entries in each column are either all 0, all 1, or half 0’s and half 1’s; 

and, the upper half of each column is equal to either the lower half of the same column or 

the Boolean complement of the lower half of the same column. Further, these 

requirements must continue to hold for all submatrices created from recursively dividing 

a pseudocube matrix into two submatrices corresponding to its upper-half rows and 

lower-half rows. For example, the pseudoproduct (𝑥0⨁𝑥1)(𝑥2⨁𝑥3) will be constructed 

from the pseudocube matrix in Figure 2.1. 

In its verb form the term cover denotes either an expression representing an entire 

function or an inclusion relationship. With regard to the latter, an example would be as 
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follows: given the cubes 𝑐1 = 𝑥0𝑥1 and 𝑐2 = 𝑥0𝑥1𝑥2, since 𝑐1 covers 𝑐2 it follows that 

𝑐1𝑐2 = 𝑐2. Conversely 𝑐2 is an implicant of 𝑐1. 

Given the two nonzero switching functions 𝑓1 and 𝑓2, we define the following: 

The function 𝑓1 approximately covers or fractionally covers 𝑓2 when the ON-set 

of 𝑓2 is not a subset of the ON-set of 𝑓1 and |𝑓1𝑓2| ≠ 0. Here it follows that |𝑓1𝑓2| < |𝑓2|. 

For example, the function 𝑓1 = 𝑥0𝑥1 ∨ 𝑥2 approximately covers the function 𝑓2 = 𝑥0. 

Conversely the function 𝑓2 is an approximate implicant of the function 𝑓1. 

An approximate cover criterion or fractional cover criterion is a real number 

between ½ and 1, typically denoted as w, used in the approximate covering criterion 

equation |𝑓1𝑓2| > 𝑤 × |𝑓2|. For example, given 𝑤 = 0.57 and the 3× 1 functions 

𝑓1 = 𝑥0𝑥1 ∨ 𝑥2 and 𝑓2 = 𝑥0, the equation 3 > 0.57 × 4 holds and therefore 𝑓2 is an 

acceptable approximate implicant of 𝑓1. The approximate covering criteria equation for 

incompletely specified switching functions is |𝑓1
𝑂𝑁𝑓2| > 𝑤 × |(𝑓1

𝑂𝑁 ∨ 𝑓1
𝑂𝐹𝐹)𝑓2|; i.e., 

minterms in 𝑓1
𝐷𝐶 are excluded from consideration. 

The Hadamard transform, or Walsh-Hadamard transform, is a self-inverse 

spectral transform which herein is used to perform the ℤ𝑛 → ℤ𝑛 mapping: multiplication 

of an input vector of length 2𝑛 with the matrix (½)𝑛/2⨂1
𝑛𝐻𝑖 where 𝐻1 = [

1 1
1 −1

]. For 

convenience, elements of this input vector will be restricted to {0,1} and the scalar 

(½)𝑛/2 will be omitted; consequently a correcting scalar of (½)𝑛 must be used when 

computing inverses. 

Given an invertible GF(2) 𝑛 × 𝑛 matrix 𝑀, an input vector 

𝑥⃗ = [𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛−1]
𝑇, a constant vector 𝑏⃗⃗ = [𝑏0, 𝑏1, … , 𝑏𝑛−1]

𝑇, and the output vector 
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𝑦⃗ = [𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑛−1]
𝑇, when 𝑏⃗⃗ = [0, … ,0,0,0]𝑇 the mapping 𝑦⃗ = 𝑀𝑥⃗ + 𝑏⃗⃗ denotes a 

GF(2) linearly transformed vector or a linear transform of 𝑥⃗. When 𝑏⃗⃗ can take any 

constant value the mapping 𝑦⃗ = 𝑀𝑥⃗ + 𝑏⃗⃗ denotes a GF(2) affine-linearly transformed 

vector or an affine-linear transform of 𝑥⃗. In these transforms the matrix 𝑀 is restricted to 

invertible matrices, thus preventing elements of 𝑦⃗ from attaining values such as 0𝑥0, 

𝑥1𝑥1, 𝑥1𝑥1, and 𝑥0(𝑥0⨁𝑥1⨁1)𝑥1. 

The above transformations can be extended to switching functions. For example, 

linearly transforming all elements of a function’s ON-set, OFF-set, and DC-set into a 

transformed ON-set, transformed OFF-set, and transformed DC-set creates a linearly 

transformed function. 

A product of Exclusive-OR sums (POE) is a product of two or more unique 

elements of 𝑦⃗. For example, given 𝑀 = [

1 1
0 1

0 0
0 0

0 0
0 0

1 1
0 1

], 𝑏⃗⃗ = [

0
0
0
0

], and 𝑦⃗ = 𝑀𝑥⃗ + 𝑏⃗⃗ =

[

𝑥0⨁𝑥1

𝑥1

𝑥2⨁𝑥3

𝑥3

], the expression 𝑦0𝑦2 = (𝑥0⨁𝑥1)(𝑥2⨁𝑥3) is a POE expression. 

A product cube of Exclusive-OR sums (POE cube) is either 1, a component of 𝑦⃗, 

or the product of two or more unique elements of 𝑦⃗.  

A product minterm of Exclusive-OR sums (POE minterm) is a POE cube that is a 

product of all n elements of 𝑦⃗. Further, each element of 𝑦⃗ may be in negated form. 
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A sum of products of Exclusive-OR sums (SPOE) expression is a logical sum of 

POE cubes, e.g., (𝑥0⨁𝑥1)𝑥2 ∨ (𝑥0⨁𝑥1)𝑥3. Each POE cube in an SPOE expression may 

correspond to a different affine-linear transform. 

An Exclusive-OR sum of products of Exclusive-OR sums (EPOE) expression is an 

Exclusive-OR sum of POE cubes, e.g., 𝑥0⨁𝑥1⨁(𝑥0⨁𝑥1)(𝑥2⨁1)(𝑥3⨁1). Each POE 

cube in an EPOE expression may correspond to a different affine-linear transform.  

A disjoint sum of products of Exclusive-OR sums (DPOE) expression for the 

function 𝑓 is an SPOE expression comprised of disjoint POE cubes, e.g., 

(𝑥0⨁𝑥1)(𝑥2⨁𝑥3) ∨ (𝑥0⨁𝑥1)𝑥2𝑥3. 

Given rows 𝑚𝑘,∗ and 𝑚𝑙,∗ in matrix 𝑀 and 𝑘, 𝑙 ∈ {0,1,2, … 𝑛 − 1} such that 𝑘 ≠ 𝑙, 

elementary row addition over GF(2) is the operation 𝑚𝑘,∗⨁𝑚𝑙,∗ → 𝑚𝑘,∗. Given 

corresponding vector elements 𝑏𝑘 and 𝑏𝑙 in the vector 𝑏⃗⃗, the linear combination 

complement (LCC) operation is the operation 𝑚𝑘,∗⨁𝑚𝑙,∗ → 𝑚𝑘,∗, 𝑏𝑘⨁𝑏𝑙⨁1 → 𝑏𝑘. When 

applying LCC operations the property ∏ 𝑦𝑖
𝑜𝑙𝑑𝑛−1

𝑖=0 = ∏ 𝑦𝑖
𝑛𝑒𝑤𝑛−1

𝑖=0  holds. For example, 

performing the LCC operation 𝑚0,∗⨁𝑚2,∗ → 𝑚0,∗, 𝑏0⨁𝑏2⨁1 → 𝑏0 on the previous 

matrix 𝑀 and vector 𝑏⃗⃗ results in 𝑀 = [

1 1
0 1

1 1
0 0

0 0
0 0

1 1
0 1

] and 𝑏⃗⃗ = [

1
0
0
0

]. Further, because of 

the Boolean identity 𝑦𝑗𝑦𝑘 = 𝑦𝑗(𝑦𝑗⨁𝑦𝑘⨁1), it holds that the POE minterm 

(𝑥0⨁𝑥1)𝑥1(𝑥2⨁𝑥3)𝑥3, associated with the previous 𝑀𝑥⃗ + 𝑏⃗⃗ expression, is equal to the 

POE minterm (𝑥0⨁𝑥1⨁𝑥2⨁𝑥3⨁1)𝑥1(𝑥2⨁𝑥3)𝑥3, associated with the resultant 𝑀𝑥⃗ + 𝑏⃗⃗ 
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expression. Product transformation is computation of these equivalent EXOR-AND 

expressions. 

When 𝑓│𝑥𝑖
= 𝑓│𝑥𝑖

 holds for one or more input variables of a switching function, 

it is known as a degenerate function. A degenerate function can be linearly transformed, 

and the linearly transformed function may or may not be degenerate. Conversely 

Bernasconi et al. define a k-autosymmetric function (paraphrasing, using the notation 

defined herein) as a function which can be linearly transformed into a new function 

consisting of 𝑛 − 𝑘 input variables which are elements of 𝑦⃗ [17, 18]. Alternatively this 

new function can be viewed as an 𝑛-input function which is degenerate in 𝑘 input 

variables. 

2.2 Theorems 

Theorem 1. Given the three unique forms of the POE expression 𝑐 = 𝑦𝑘𝑦𝑙 =

𝑦𝑘(𝑦𝑘⨁𝑦𝑙⨁1) = (𝑦𝑘⨁𝑦𝑙⨁1)𝑦𝑙 where the number of input variables 𝑛 is evenly 

divisible by three, the number of input variables appearing in the first EXOR factor of 𝑐 

added to the number of input variables appearing in the second EXOR factor of 𝑐 is at 

most 
4

3
𝑛 in at least one of three unique forms. Proof. Let 𝑟 denote the number of input 

variables in the vector component 𝑦𝑘. Considering the number of input variables in the 

vector component 𝑦𝑙 and expression 𝑦𝑘⨁𝑦𝑙, the equation 

𝑀𝑖𝑛(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑦𝑙), 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑦𝑘⨁𝑦𝑙)) reaches a maximum when 𝑦𝑙 and 𝑦𝑘⨁𝑦𝑙 both 

consist of 𝑛 − 𝑟 input variables not appearing in 𝑦𝑘 plus 
1

2
𝑟 input variables shared with 

𝑦𝑘. As a result, the number of input variables is ℎ1(𝑟) = 𝑟 + (𝑛 − 𝑟 +
1

2
𝑟) = 𝑛 +

1

2
𝑟 for 
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the forms 𝑦𝑘𝑦𝑙 and 𝑦𝑘(𝑦𝑘⨁𝑦𝑙⨁1); the number of input variables is ℎ2(𝑟) = 2 ×

(𝑛 − 𝑟 +
1

2
𝑟) = 2𝑛 − 𝑟 for the form (𝑦𝑘⨁𝑦𝑙⨁1)𝑦𝑙. The equation 𝑀𝑖𝑛(ℎ1, ℎ2) reaches a 

maximum when 𝑟 =
2

3
𝑛; therefore the number of input variables is at most 𝑛 +

1

2
×

2

3
𝑛 =

4

3
𝑛 in one of the three unique forms.  

Example. Let 𝑛 = 6, 𝑦𝑘 = 𝑥0⨁𝑥1⨁𝑥2⨁𝑥3⨁1, and 𝑦𝑙 = 𝑥1⨁𝑥2⨁𝑥3⨁𝑥4⨁𝑥5. 

The POE expression 𝑦𝑘𝑦𝑙 collectively has nine input variables, which is greater than 

4

3
6=8. From Theorem 1 at least one of the alternative POE expression forms of 𝑦𝑘𝑦𝑙 will 

not exceed eight input variables. The form 𝑦𝑘(𝑦𝑘⨁𝑦𝑙⨁1), which collectively has seven 

input variables, is the most compact form. 

2.3 Matrix Inversion 

Given an invertible matrix 𝑀𝐹 consisting of real entries, Gaussian Elimination 

computes 𝑀𝐹
−1 as the product of three types of elementary row operation matrices: those 

which scale a row, those which swap two rows, and those which either add one row to or 

subtract one row from another row. Performing each elementary row operation creates a 

new remainder matrix as shown in (1). As these remainder matrices evolve they typically 

become sparser and increasingly similar to the identity matrix. An inverse matrix 

decomposition produced by Gaussian Elimination can be used to solve for the original 

function as in (2).  

𝑀𝑘. . . (𝑀3(𝑀2(𝑀1𝑀𝐹)))  =  𝐼 (1) 

𝑀𝐹 = 𝑀1
−1𝑀2

−1𝑀3
−1 …𝑀𝑘

−1
  (2) 
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In the typical application of Gaussian Elimination on real-valued matrices, 

elementary row operations are employed first to solve for an upper triangle matrix and 

then to solve for the identity matrix. This two-phase process can be visualized as solving 

lower-triangle matrix entries from the left-most column to the right-most column, then 

solving upper-triangle entries from the right-most column to the left-most column. The 

entries in a column are individually processed through elementary row operations called 

forward substitution and backward elimination. When elementary row operations are 

employed, forward substitution is defined as the operation rowi + rowj → rowi given that 

matrix entry aii is zero and aji is nonzero, and backward elimination is defined as the 

operation rowj - rowi → rowj given that matrix entry aii is nonzero and aji = aii. Gaussian 

Elimination can also be performed with elementary column operations. When elementary 

column operations are employed, forward substitution is defined as the operation columni 

+ columnj → columni given that matrix entry aii is zero and aij is nonzero, and backward 

elimination is defined as the operation columnj – columni → columnj given that matrix 

entry aii is nonzero and aij = aii. In the first phase of Gaussian Elimination, solving for a 

lower triangle matrix could be performed using either elementary row or elementary 

column operations. 

A GF(2) variant of Gaussian Elimination can be used to compute the inverse of an 

invertible Boolean matrix. In GF(2) Gaussian Elimination, matrix multiplication and 

addition operations become vector-based AND and EXOR operations. Considering 

elementary row operations with GF(2) matrices, there is no operation analogous to 

scaling a row, nor is there a difference between row subtraction operations and row 
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addition operations. Two rows can be swapped via three modulo-2 (i.e., EXOR) row 

addition operations. Consequently GF(2) Gaussian Elimination can be performed by 

using only elementary row addition operations. Because GF(2) elementary row addition 

operations are self-inverse, any GF(2) function inverse decomposition can be simplified 

as follows. 

𝑀𝐹 = 𝑀1
−1𝑀2

−1𝑀3
−1 …𝑀𝑘

−1 = 𝑀1 𝑀2 𝑀3 …𝑀𝑘  (3) 
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3 

Linear Reversible Circuit Synthesis 

3.1 Overview 

Expanding [20, 21],  

… reversibility in a gate or circuit means that the gate or circuit implements a 

bijective correspondence between the input and output sets. In particular, the two-input, 

two-output controlled-NOT (CNOT) gate, illustrated in Figure 3.1 and defined in Table 

3.1, does precisely this for the exclusive or (EXOR) operation. When the implemented 

correspondence is in fact linear, then the implementing gate or circuit is defined as a 

linear reversible gate or circuit. Note that linear reversible circuits form a natural subclass 

of the class of reversible circuits. 

Figure 3.1. The reversible circuit schematic of the CNOT gate. 

 

Table 3.1. CNOT gate truth table. 

Input Output 
D1 D D1 D2 

0 

0 

1 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0 

1 

1 

0 

 

When primitive swap gates are unavailable, linear reversible circuits can be GF(2) 

synthesized solely from CNOT gates which will be the treatment herein. Moreover, linear 

reversible circuits often play a bridging role in more complex reversible circuits. For 
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example, linear reversible circuits can realize permutation functions or can prepare 

affine-linear functions used on the control lines of a Toffoli gate. 

Given a Boolean input vector 𝑥⃑ of length n, an invertible GF(2) matrix 𝑀 of 

dimension nn, and Boolean output vector 𝑦⃑ of length n, the general equation for 

Boolean linear reversible functions is 𝑦⃑ = 𝑀𝑥⃑. The matrix M represents the GF(2) linear 

function to be performed by a linear reversible circuit, with each row of M corresponding 

to a reversible circuit line whose output value is the EXOR sum of corresponding input 

variables. For instance, the GF(2) product of the input vector 𝑥⃑ = [x1, x2, ... , xn]
T
 and the 

matrix in Figure 3.2 is 𝑦⃑ = [x1, x1 ⊕ x2, x3, x4, ... , xn]
T
. This matrix is an example of an 

elementary row addition matrix. Elementary row addition matrices are similar to the 

identity matrix except that they contain one off-diagonal entry with a value of 1. Each 

elementary row addition matrix synthesizes to one CNOT gate with a control value equal 

to the column of the off-diagonal entry and a target value equal to the row of the off-

diagonal entry. Multiplication with the matrix in Figure 3.2 performs the elementary row 

addition operation Row1 ⊕ Row2 → Row2; this matrix is synthesized as a CNOT gate with 

a control line of one and a target line of two. For convenience this type of gate will be 

referred to as an adjacent CNOT-down gate, and if the control line is immediately below 

the target line it will be referred to as an adjacent CNOT-up gate. 

(

  
 

1 0 0 0 ⋯ 0
1 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
0 0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 1)

  
 

 

Figure 3.2. The matrix representation of an adjacent CNOT-down gate. 
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When elementary row operations are restricted to modulo-2 row addition, 

Gaussian Elimination can be adapted to synthesize linear reversible circuits over GF(2). 

As Gaussian Elimination of a function evolves, synthesis is performed by converting 

each modulo-2 row addition to an ordered pair representing CNOT gate control and 

target values. These values are stored in an output-side CNOT gate list, as applying the 

CNOT gate list to a reversible circuit in forward order executes the linear reversible 

function M
–1

. Applying a Gaussian Elimination-generated CNOT gate list to a reversible 

circuit in reverse order executes the linear reversible function M.  

Alternative syntheses can be generated several ways. In the typical case where M
–

1
≠M, M

–1
 can be synthesized to an input-side CNOT gate list which may be shorter than 

the original. Similarly, alternative syntheses can be generated from the transposed matrix 

M
T
 and its inverse. Due to the linear algebra property (AB)

T
 = B

T
A

T
, a CNOT gate list 

resulting from transposed matrix synthesis must have the target and control values of 

each gate swapped before it can be used [6]. 

Each elementary row addition operation is denoted as CNOT(control, target) 

where control = rowmodifying and target = rowmodified for each Mi. For example, in (4) the 

matrix MF1 represents the function 𝑓([𝑎, 𝑏, 𝑐, 𝑑]T) = [𝑎, 𝑎⨁𝑏, 𝑎⨁𝑏⨁𝑐, 𝑑]T; Gaussian 

Elimination generates the CNOT gate list CNOT(1, 2), CNOT(1, 3), and CNOT(2, 3). 

 

𝑀𝐹1 = [

1 0 0 0
1 1 0 0
1 1 1 0
0 0 0 1

], 𝑀𝐹1
−1 = [

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

] [

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

] [

1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1

] (4) 
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Figure 3.3. The GF(2) Gaussian Elimination-based synthesis output of function MF1. 

 

Performing GF(2) Gaussian Elimination with elementary column operations leads 

to the decomposition in (5) and (6). In this case GF(2) Gaussian Elimination generates a 

CNOT gate list from input to output, with each elementary column operation 

corresponding to a CNOT(control, target) gate where control = columnmodified and target 

= columnmodifying for each Mi. Under the convention that rows are processed from bottom 

to top in the first phase, column operation-based Gaussian Elimination of MF1 synthesizes 

the gates CNOT(2, 3), CNOT(1, 3), and CNOT(1, 2). While this resulting gate list is 

identical to the prior list produced with row operations, the list will typically be different 

in larger and more complicated functions. 

(((𝑀𝐹𝑀1)𝑀2)𝑀3)…𝑀𝑘 =  𝐼  (5) 

 

𝑀𝐹 = 𝑀𝑘
−1 …𝑀3

−1𝑀2
−1𝑀1

−1 = 𝑀𝑘 …𝑀3 𝑀2 𝑀1   (6) 
 

3.2 Subrow Elimination-based Methods for Inverting GF(2) Matrices 

The Four Russians Method for inverting a GF(2) matrix (4RMI) [5] and its related 

linear reversible circuit synthesis method “Algorithm 1” [6] are variants of GF(2) 

Gaussian Elimination. While GF(2) Gaussian Elimination iteratively processes entries in 

a single column, 4RMI and “Algorithm 1” use subrow elimination to iteratively process 

entries in m adjacent columns. In our implementation of “Algorithm 1” the subrow width 

variable m is computed as ⌊½𝑙𝑜𝑔2𝑛 +  ½⌋. As a result m tends to have small values such 

as two, three, or, when synthesising linear reversible circuits with 128 through 511 lines, 
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four. The key idea “Algorithm 1” inherits from 4RMI is that equivalent subrows are 

guaranteed to occur whenever 2
m
 < n - i + 1, given that elementary row operations are 

used and the left-most unprocessed lower-triangle entries are in the range aii through ani. 

For dense matrices where 2
m+1

 < n - i + 1 frequently holds, it is likely that the majority of 

elementary row operations needed to process m adjacent columns can be performed in 

one O(𝑛) pass. This leaves each column except the last with an O(1) forward substitution 

and all columns with O(𝑙𝑜𝑔2𝑛) backward eliminations. These substitution and 

elimination operations can be performed via GF(2) Gaussian Elimination or a table 

lookup when m is small. 

The “Algorithm 1” method uses a strategy of iteratively processing n/m sets of m 

adjacent columns to achieve an upper-triangle matrix, transposing the matrix, and again 

iteratively processing m columns to achieve an identity matrix. The corresponding linear 

reversible circuit is synthesized from the function decomposition derived in (7), (8), and 

(9). 

 

𝑀𝑘 …(𝑀𝑗+3(𝑀𝑗+2(𝑀𝑗+1(𝑀𝑗. . . (𝑀3(𝑀2(𝑀1𝑀𝐹))))𝑇))))  =  𝐼 (7) 

 

𝑀𝐹 = 𝑀1
−1𝑀2

−1𝑀3
−1 …𝑀𝑗

−1(𝑀𝑘
−1)𝑇...(𝑀𝑗+3

−1 )𝑇(𝑀𝑗+2
−1 )𝑇(𝑀𝑗+1

−1 )𝑇 (8) 

 

𝑀𝐹 = 𝑀1 𝑀2 𝑀3 …𝑀𝑗 𝑀𝑘
𝑇𝑀𝑘−1

𝑇 𝑀𝑘−2
𝑇 ...𝑀𝑗+3

𝑇 𝑀𝑗+2
𝑇 𝑀𝑗+1

𝑇   (9) 

 
In “Algorithm 1” subrow elimination, operations are performed through a table 

with 2
m
 entries. This table operates similarly to the tag storage component of a direct-

mapped cache, with each entry consisting of either an INVALID marker or a valid row 

index. The table position of each valid row index is computed by treating each 

corresponding subrow as an m-bit number. Because zero subrows are treated as solved, it 
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is unnecessary to have or use table index 0. Subrow elimination is performed on each 

column by first setting all table entries to INVALID, then processing subrows [a(i, i), a(i, i + 

1), a(i, i + 2), ... a(i, i + m - 1)] through [a(n, i), a(n, i + 1), a(n, i + 2), ... a(n, i + m - 1)] as follows: 

 

For each j from i to n  

  If table_entry[a(j, i), a(j, i + 1), a(j, i + 2), ... a(j, i + m - 1)] = INVALID 

    table_entry[a(j, i), a(j, i + 1), a(j, i + 2), ... a(j, i + m - 1)] := j 

  Else 

    CNOT(table_entry[a(j, i), a(j, i + 1), a(j, i + 2), ... a(j, i + m - 1)], j)  

 

 

Performing “Algorithm 1” on function MF1 using m = 2 results in row1 being 

stored in the table, row2 being stored in the table, a subrow elimination with row2 

modifying row3, and a backward elimination with row1 modifying row2. This yields the 

linear reversible circuit shown in Figure 3.4, going from output toward input, a CNOT(2, 

3) gate and a CNOT(1, 2) gate. 

 

Figure 3.4. The “Algorithm 1” synthesis output of function MF1 using m = 2. 

 

Linear reversible circuit synthesis via Gaussian Elimination has an upper bound 

of O(n
2
) CNOT gates, which typically is not minimal. Previously Patel, et. al. [6] 

established that the “Algorithm 1” method has an upper bound of O(n
2
/log2n) CNOT 

gates. While “Algorithm 1” is “asymptotically optimal up to a multiplicative constant” 
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[6], i.e., bounded, it is too simplistic to find an exact minimum solution to the function y 

= [x1, x1  x2, x1  x2 x3, x1 x2 x3 x4]
T
 illustrated in Figure 3.5 [22]. 

 

 

Figure 3.5. A 4×4 linear function, the corresponding “Algorithm 1” circuit realization 

(middle), and an exact minimum circuit realization (right). 

 

As an alternative to “Algorithm 1”, three linear reversible circuit synthesis 

methods are introduced herein: the Alternating Elimination with Cost Minimization 

method (AECM), the Multiple CNOT Gate method (MCG), and several variants of the 

Gauss-Jordan Elimination with Column Operations (GJCO) method. Both the AECM and 

MCG methods were developed to reduce CNOT gate counts in small-sized to medium-

sized circuits. The GJCO method was developed to reduce quantum gate counts.  

 

 

 

Figure 3.6. A CNOT gate-based circuit and two logically equivalent quantum 

gate-based circuits. 

 

The mechanism by which the GJCO method reduces quantum gate counts is 

illustrated in Figure 3.6 and reasoned as follows: In many quantum technologies CNOT 

gates are implemented by groups of pseudo-Hadamard, controlled-Z, and inverse pseudo-

Hadamard gates. When adjacent CNOT gates use the same target lines, pseudo-
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Hadamard-inverse/pseudo-Hadamard gate pairs result; these gate pairs can be eliminated 

from the circuit. Since a series of backward eliminations using column operations 

synthesizes groups of CNOT gates that use the same target lines, synthesis methods that 

use column operations are of interest. 

In comparison with the “Algorithm 1,” the AECM, MCG, and GJCO methods 

solve rows and columns in a data dependent, nondeterministic order which provides the 

greatest cost reduction. The main heuristic cost function depends on the GF(2) linear 

function 𝑀 and its inverse (10). When synthesis begins, these matrices correspond to the 

input function specification, and as CNOT gates are synthesized, these matrices 

correspond to a remainder function more closely resembling the identity matrix. An 

alternative cost function (11) is based on the sparseness of a matrix and its inverse. The 

alternative cost function facilitates synthesis of a permutation of an input linear reversible 

function specification [22]. 

∑ ∑ ((𝑀(𝑖,𝑗)⨁𝐼(𝑖,𝑗)) + (𝑀(𝑖,𝑗)
−1 ⨁𝐼(𝑖,𝑗)))

𝑛
𝑗=𝑖

𝑛
𝑖=1  (10) 

 

−2𝑛 + ∑ ∑ (𝑀(𝑖,𝑗)
−1 + 𝑀(𝑖,𝑗))

𝑛
𝑗=𝑖

𝑛
𝑖=1    (11) 

3.3 Alternating Elimination 

The AECM method is built on the Alternating Elimination method [21]. The 

Alternating Elimination method extends the Gaussian Elimination approach of forward 

substitution and backward elimination to iteratively process diagonal entries. Since there 

are n! possible orderings of diagonal matrix entries, Alternating Elimination can generate 
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a large number of functionally equivalent circuit solutions which have a range of CNOT 

gate counts. 

Because AECM is based on Alternating Elimination, it will always converge to a 

solution for any invertible GF(2) matrix given as input [21] and therefore cannot be 

trapped in a local minimum. The AECM method iteratively compares O(n) matrix 

diagonalizations and then commits to the diagonalization which produces the greatest 

cost reduction per CNOT gate ratio. It is possible, though rare, that for one iteration all 

matrix diagonalizations will result in a negative cost reduction per CNOT gate.  

The AECM diagonalization function has four stages: preparation, forward 

substitution, row-based backward elimination, and column-based backward elimination. 

In each stage the changes in cost of choosing different CNOT gates are compared. The 

preparation stage performs preprocessing through an O(n) search to find row and column 

forward substitutions which reduce cost by two or more. Using a cost reduction of at least 

two is based on testing which showed that in over half the syntheses examined it 

produced lower CNOT gate counts than using a cost reduction of at least one or skipping 

the preprocessing stage. Using a cost reduction of at least three was in some instances 

superior and in other instances inferior to using at least two. Each CNOT gate 

synthesized in this stage replaces two or more CNOT gates which would have been 

synthesized in the third and fourth stages. 

If the diagonal matrix entry associated with the current iteration is a 0, then a 

forward substitution stage is used. In this stage either a row or column forward 

substitution is chosen through an O(n) search to find the CNOT gate which establishes a 
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1 on the diagonal and results in the lowest-cost remainder function. When it is necessary 

to perform a forward substitution, a check is made to ensure that the forward substitution 

CNOT gate was not synthesized in the first stage. This situation is unusual but possible. 

In these cases the CNOT gate list can be rearranged to detect pairs of identical CNOT 

gates. Because CNOT gates are self-inverse, all detected identical CNOT gate pairs can 

be erased.  

In the row-based backward elimination stage O(n) eliminations are performed to 

process column entries which are equal to 1. Unlike Gauss-Jordan Elimination which 

performs eliminations using the diagonally intersecting row, here each row elimination 

employs an O(n) search to find the lowest-cost backward elimination operation. Similarly 

in the column-based backward elimination stage O(n) eliminations are performed to 

process row entries which are equal to 1, each employing an O(n) search to find the 

lowest-cost backward elimination operation. 

Performing one row or column addition with a cost difference computation takes 

O(n) time. Therefore the entire AECM diagonalization function takes O(n) · (O(n) + O(n) 

+ O(n
2
) + O(n

2
) ≈ O(n

3
) time. Since the outer AECM loop requires O(n) iterations 

through O(n) comparisons, the total time is O(n) · O(n) · O(n
3
) ≈ O(n

5
). 

In order to support partial syntheses the AECM algorithm uses the parameter 

threshold. Using AECM with threshold = 0 causes a complete synthesis to be 

performed. Using AECM with larger threshold values causes synthesis to terminate 

when the cost of the remainder function c1 goes below threshold. In the outermost 

loop of the algorithm, CNOT gate selection is performed by comparing gain3 with 
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gain2. These gain values are computed as (Cost(f k – 1) – Cost(f k))/(Gates (f k) – 

Gates(fk – 1)) for remainder function f at iteration k. The AECM algorithm can be 

extended to handle occurrences in which these ratios are equal, thus facilitating algorithm 

extensions such as recursion and probabilistic gate selection. 

3.4 The Multiple CNOT Gate Method  

The MCG synthesis method synthesizes linear reversible circuits as a collection 

of linear subfunctions, and each of these subfunctions may correlate to two or more 

CNOT gates. Subfunction selection is based solely on cost minimization, and 

consequently the MCG method is completely outside the Gaussian Elimination family of 

methods. Herein the MCG synthesis method is restricted to two-CNOT-gate 

subfunctions. This is a practical choice, as larger subfunctions require significant 

increases in computation time. 

The two-CNOT-gate subfunctions can be categorized as one of three types: 1) 

subfunctions of two elementary row operations corresponding to two CNOT gates 

synthesized from output toward input; 2) subfunctions of two elementary column 

operations corresponding to two CNOT gates synthesized from input toward output; 3) 

subfunctions of one elementary row operation and one elementary column operation 

representing one CNOT gate synthesized from output toward input and another 

synthesized from input toward output. The MCG method iteratively compares the cost of 

applying all possible two-CNOT-gate subfunctions and commits to the pair of CNOT 

gates which produces the greatest cost reduction. In the event that the cost reaches a local 

minimum, synthesis temporarily switches to AECM until the cost drops below the local 
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minimum. In this situation a flag is set indicating that MCG failed to converge and MCG 

synthesis resumes. In each iteration, MCG retrieves a two-CNOT-gate subfunction from 

an O(n
4
) length list. Performing elementary row or column operations and cost difference 

computations on each two-CNOT-gate subfunction requires O(n) time. Since the 

maximum cost is 2n
2
, the smallest cost 0, and the minimum cost reduction is 1 at each 

iteration, the two-CNOT-gate function search takes at most O(n
2
) outermost loop 

iterations. Therefore the total time is O(n
4
) · O(n) · O(n

2
) ≈ O(n

7
). 

Like AECM, MCG can be extended to perform more sophisticated gate selections 

in iterations where multiple minimum-cost alternatives exist. This will be demonstrated 

later using a probabilistic gate selection. Also, the speed of the MCG algorithm can be 

improved by using precalculated two-CNOT-gate subfunctions. In the above MCG 

algorithm all possible CNOT gate sequences are generated, and many will be redundant. 

For instance, the two-CNOT-gate function CNOT(1, 2) followed by CNOT(3, 4) is 

equivalent to CNOT(3, 4) followed by CNOT(1, 2). If MCG is extended to use three-

CNOT-gate subfunctions, a greater variety of redundant sequences will be generated. 

3.5 Variants of Gauss-Jordan Elimination  

There are multiple ways to create variants of the Gauss-Jordan Elimination 

algorithm for linear reversible synthesis. The first variant, named GJCO1, will employ 

the most rudimentary form of Gauss-Jordan; i.e., performing O(n) iterations of O(1) 

forward substitutions followed by O(n) backward eliminations. Consequently the GJCO1 

method has an upper bound of O(n
2
) CNOT gates. Although it is possible to process 

matrix rows and columns in any order, for simplicity all Gauss-Jordan Elimination 



26 

 

variants will use a convention of processing matrix elements from top to bottom and from 

left to right. 

The remaining Gauss-Jordan Elimination variants introduced herein use 

combinations of the following seven strategies. A variant of the “Algorithm 1” method 

which is optimized for quantum linear reversible circuit synthesis will be included for 

comparison.  

 

Strategies for Quantum Linear Reversible Circuit Synthesis  

1. Use elementary column operations. Using elementary column operations with 

GF(2) Gaussian Elimination may require up to n – 1 column elimination operations per 

row. This corresponds to the synthesis of up to n – 1 CNOT gates with the same target 

line per row, minimizing quantum gate counts.  

2. Use a Gauss-Jordan Elimination approach for substitution and elimination 

operations. Gauss-Jordan Elimination-based linear reversible circuit synthesis of parallel 

circuits was introduced in [23], but herein it will be used in the context of serial circuits. 

Gauss-Jordan Elimination has the advantage of being a single-phase algorithm and, in 

linear reversible circuit synthesis using elementary column operations, this creates 

sequences of up to n – 1 CNOT gates with the same target line being grouped together. 

3. Use variable-width subcolumn eliminations before processing each row, 

searching from the longest possible subcolumns to the shortest subcolumns. This strategy 

is illustrated using matrix MF3 in (12). 
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𝑀𝐹3 =

[
 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0

𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 𝑎36

𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 𝑎46

𝑎51 𝑎52 𝑎53 𝑎54 𝑎55 𝑎56

𝑎61 𝑎62 𝑎63 𝑎64 𝑎65 𝑎66]
 
 
 
 
 

 (12) 

The first and second rows of MF3 have already been processed and are equal to 

their corresponding identity matrix rows. Before performing substitution and elimination 

operations on matrix cell a33, subcolumn eliminations are performed on equal 

subcolumns of width four, three, and finally two. The width-four subcolumn searches 

begin with a comparison of [a33, a43, a53, a63]
T
 with all subcolumns to the left of the third 

column, [a32, a42, a52, a62]
T
 and [a31, a41, a51, a61]

T
. If [a33, a43, a53, a63]

T
=[a32, a42, a52, 

a62]
T
 then the subcolumn elimination C2 ⊕ C3 → C2 is performed and the gate CNOT(2, 

3) is added to the input-side gate list. Similarly if [a33, a43, a53, a63]
T
=[a31, a41, a51, a61]

T
 

then the subcolumn elimination C1 ⊕ C3 → C1 is used and the gate CNOT(1, 3) is added 

to the input-side gate list. Next [a34, a44, a54, a64]
T
 is compared with all subcolumns to the 

left of the third column, followed by [a35, a45, a55, a65]
T
 and [a36, a46, a56, a66]

T
 using the 

same comparison. Because a column cannot be equal to any other column in an invertible 

matrix, at this stage no comparisons are necessary between subcolumns on and to the 

right of the third column. 

The width-three subcolumn searches begin with a comparison of [a33, a43, a53]
T
 

with all subcolumns to the left and right of the third column. Next is a comparison of [a34, 

a44, a54]
T
 with all subcolumns to the left of the third column and to the right of the fourth 

column, then a comparison of [a35, a45, a55]
T
 with all subcolumns to the left of the third 

column and to the right of the fifth column, and lastly a comparison of [a36, a46, a56]
T
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with all subcolumns to the left of the third column. The width-two subcolumn searches 

are similar, beginning with a comparison of [a33, a43]
T
 with all subcolumns to the left and 

right of the third column, then a comparison of [a34, a44]
T
 with all subcolumns to the left 

of the third column and to the right of the fourth column, then a comparison of [a35, a45]
T
 

with all subcolumns to the left of the third column and to the right of the fifth column, 

and lastly a comparison of [a36, a46]
T
 with all subcolumns to the left of the third column. 

In all subcolumn searches only columns on and to the right of the diagonally intersecting 

column are permitted to modify other columns, thus ensuring solved rows are not 

disturbed. 

There are two qualifying requirements for subcolumns to be considered as 

acceptable for use in subcolumn elimination. First, the uppermost subcolumn entry must 

be equal to 1 to avoid disturbing solved columns. Second, the number of entries equal to 

1 in a subcolumn must be greater than or equal to a specified minimum subcolumn 

density parameter (dmin). Using a minimum subcolumn density parameter maximizes the 

effectiveness of isolated subcolumn eliminations. Synthesising the same function with 

different minimum subcolumn density parameter values can give a range of results 

depending on the dimensions of the circuit and whether CNOT gate count or quantum 

gate count is of interest.  

The algorithm for variable-width subcolumn elimination is as follows: 

//i is the index of the row currently being processed 

//M is an n by n linear reversible function  

//Arrays use 1-based indexes 

//dmin is the minimum subcolumn density parameter 
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n := M.columns 

IF i = n THEN return 

FOR c1 FROM i TO n BY 1 

  IF (M(i, c1) = 1 AND M.Subcolumn(c1, i, n) has at least  

  dmin entries = 1) THEN 

    FOR c2 FROM i - 1 TO 1 BY -1 

      IF M.Subcolumn(c1, i, n) = M.Subcolumn(c2, i, n) THEN 

        DoColumnCNOT(M, c1, c2) 

r := n - 1 //Second row from bottom index 

IF dmin <= 2 THEN 

  boundaryrow := i 

ELSE 

  boundaryrow := i + dmin - 2 

WHILE r > boundaryrow  

  FOR c1 FROM i TO n BY 1 

    IF (M(i, c1) = 1 AND M.Subcolumn(c1, i, r) has at least  

    dmin entries = 1) THEN 

      FOR c2 FROM i - 1 TO 1 BY -1 

        IF M.Subcolumn(c1, i, r) = M.Subcolumn(c2, i, r) THEN 

          DoColumnCNOT(M, c1, c2) 

      FOR c3 FROM c2 + 1 TO n BY 1 

        IF M.Subcolumn(c1, i, r) = M.Subcolumn(c3, i, r) THEN 

          DoColumnCNOT(M, c1, c3) 

  r := r – 1 
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4. Use a cost minimization approach in subcolumn elimination. During 

subcolumn elimination, when two or more equivalent subcolumns are discovered on or to 

the right of a subcolumn being processed, a series of partial syntheses using different 

column orderings is performed. The partial synthesis with the lowest-cost result is 

chosen. The cost function in equation (10) is defined as the sum of differences between a 

given remainder function and the identity matrix added to the sum of differences between 

the inverse of a given remainder function and the identity matrix. For simplicity and 

effective quantum gate count minimization, these partial syntheses use one subcolumn to 

eliminate all equivalent subcolumns. In instances where the subcolumn [a(i, i), a(i + 1, i), a(i + 

2, i), ... a(i + m – 1, i)]
T
 is one of the matching subcolumns, it is used to modify all other 

columns.  

5. Use a cost minimization approach in forward substitution. When multiple 

columns can be used to perform forward substitution, a partial synthesis is performed 

using each available column. The partial synthesis works through all elementary row 

operations for the current row being processed, and then computes the circuit cost. The 

partial synthesis with the lowest cost is selected. 

6. Use multiple passes. For the “Algorithm 1” variant which uses column 

operations, seven syntheses will be performed using subcolumn widths between 2 and 8. 

For the new Gauss-Jordan Elimination-based methods, seven syntheses will be performed 

using minimum subcolumn density parameter values between 1 and 7. 

7. Use gate reordering. Following experimentation, an iterative three-stage gate 

reordering approach was adopted to postprocess CNOT gate lists from input to output: 1) 
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when two separate groups of CNOT gates with the same target line are detected, an 

attempt is made to move the first group toward the output so it is adjacent to the second 

group; 2) if 1) fails, an attempt is made to move the second, third, fourth,… and nth 

groups of CNOT gates with the same target line toward the input so they are adjacent to 

the first group; and 3) if 2) fails, an attempt is made to individually relocate each CNOT 

gate from the second, third, fourth,… and nth groups mentioned previously into groups as 

close to the input as possible. This method is applied n times to synthesized CNOT gate 

lists, once per each possible target line.  

The new “Algorithm 1” and Gauss-Jordan Elimination-based methods are 

organized as follows: 

A1CO: employs strategies 1, 6, and 7. 

GJCO1: employs strategies 1, 2, and 7. 

GJCO2: employs strategies 1, 2, 3, 6, and 7. 

GJCO3: employs strategies 1, 2, 3, 4, 6, and 7. 

GJCO4: employs strategies 1, 2, 3, 5, 6, and 7. 

GJCO5: employs strategies 1, 2, 3, 4, 5, 6, and 7. 

 

With regard to the last strategy, the function in equation (13) [6] will be used to 

illustrate gate reordering using GJCO1 and A1CO. The synthesis output of GJCO1 is 16 

CNOT gates, shown in Figure 3.7, and 30 quantum gates, shown in Figure 3.8. The 

synthesis output of A1CO is 15 CNOT gates, shown in Figure 3.9, and 35 quantum gates, 

shown in Figure 3.10. Gate reordering on the GJCO1 circuit results in no change. After 
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gate reordering, the A1CO circuit in Figure 3.11 shows the 14
th

 CNOT gate has moved to 

the 10
th

 position, resulting in 33 quantum gates in Figure 3.12.  

 

[
 
 
 
 
 
1 1 0 0 0 0
1 0 0 1 1 0
0 1 0 0 1 0
1 1 1 1 1 1
1 1 0 1 1 1
0 0 1 1 1 0]

 
 
 
 
 

 (13) 

 

 

Figure 3.7. The 16-gate, GJCO1 linear reversible circuit realization of the function in 

(13). 

 

 

Figure 3.8. The 30-gate GJCO1 quantum linear reversible circuit realization of the 

function in (13). 
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Figure 3.9. The 15-gate, A1CO linear reversible circuit realization of the function in (13). 

 

 

Figure 3.10. The 35-gate, A1CO quantum linear reversible circuit realization of the 

function in (13) which contains two redundant gates. 

 

Figure 3.11. The 15-gate, A1CO linear reversible circuit realization of the function in 

(13) after gate reordering. 

 

 

Figure 3.12. The 33-gate, A1CO quantum linear reversible circuit realization of the 

function in (13) after gate reordering. 
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For comparison the above methods will be tested with probabilistic variants of the 

AECM method and MCG method, named AECMP and MCGP respectively. In the 

AECM method and MCG method, whenever there are two or more subfunctions which 

yield equivalent cost reductions selection defaults to the first subfunction encountered. In 

the probabilistic variants subfunction selection is random. 

3.6 Experimental Results 

A set of tests similar to that used in [20] was performed on circuits with 8 to 100 

lines; each set consisted of synthesising 100 randomized linear reversible circuits with 

multiple methods. The n-line circuit randomization function used 2n
2
 operations on the 

identity matrix, and each of these operations represented either a random distant CNOT 

gate or a random distant SWAP gate. AECMP and MCGP were run seven times per 

function to attempt to make a more fair comparison with the new methods which used 

multiple passes. In addition, MCGP testing was restricted to 24 or fewer lines due to long 

run times and known performance drop-off above this circuit dimension. All results were 

recorded in terms of both CNOT gate counts and, after gate reordering, quantum gate 

counts. Compared with the new methods, “Algorithm 1”, AECMP, and MCGP were 

expected to produce lower CNOT gate counts but higher quantum gate counts. 

The results for average CNOT gate counts and quantum gate counts are shown in 

Table 3.2 and Table 3.3 respectively. Figure 3.13 and Figure 3.14 illustrate the best 

performing methods using a normalized gate count. Examining the new methods in both 

CNOT gate counts and quantum gate counts, A1CO and GJCO1 performed poorly 

whereas GJCO2, GJCO3, GJCO4, and GJCO5 performed better. In circuits with more 
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than 40 lines GJCO2 was the most likely method to find the lowest CNOT gate count. In 

circuits with more than 16 lines GJCO4 was the most likely method to yield the lowest 

quantum gate count, although by 100 lines GJCO2 achieved similar performance. Table 

3.4 shows the best-performing minimum subcolumn density parameters of GJCO4 for 

quantum gate counts. As the number of lines increased, GJCO4 performed best with a 

minimum subcolumn density parameter value of either four or five. Similar results were 

found in GJCO2, GJCO3, and GJCO5.  

The quantum gate count reductions due to gate reordering ranged from 0 to 

19.7%. Another benefit of gate reordering was that all pairs of identical CNOT gates that 

could be placed adjacent to each other were identified and deleted. This is a known issue 

with AECM-based methods (and indirectly MCG-based methods) [22]. No pairs of 

identical CNOT gates were discovered in the syntheses of any of the other methods. 

Both AECMP and MCGP produced low CNOT gate counts for small circuits but 

also comparatively low quantum gate counts (following gate reordering) in circuits with 8 

through 20 lines. This last result was unanticipated and indicates a possible direction for 

developing synthesis methods designed specifically for small quantum linear reversible 

circuits. 
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Table 3.2. Comparisons of linear reversible circuit synthesis methods (average 

CNOT gates). 

Lines A1CO GJCO1 GJCO2 GJCO3 GJCO4 GJCO5 A1 AECMP MCGP 

8 27.87 31.5 25.56 25.39 25.33 25.29 28.01 20.3 19.38 

12 60.37 71.55 54.83 55.02 54.03 54.57 62 42.84 39.47 

16 103.32 129.46 93.22 93.39 91.71 92.58 107.97 74.54 68.75 

20 158.72 197.68 138.71 140.81 136.81 138.73 164.64 115 107.66 

24 222.4 286.1 193.8 195.75 192.28 193.54 234.16 166.47 160.33 

28 294.2 391.94 254.61 257.81 253.63 256.41 317.06 230.33 

 

32 377.81 511.26 323.48 328.54 323.32 326.48 375.05 303.65 

 

36 469.87 646.85 399.24 404.76 400.27 405.09 469.57 392.37 

 

40 568.57 799.67 482.2 488.82 481.99 491.91 570.37 493.38 

 

44 679.37 969.66 573.8 580.09 578.56 583.6 681.85 606.02 

 

48 799.93 1154.9 669.28 676.56 672.7 682.97 800.54 731.67 

 

52 927.36 1353.6 772.15 781.86 777.84 789.66 929.18 875.63 

 

56 1066 1568.9 881.05 888.81 889.43 902.11 1068.7 1033.9 

 

60 1208.3 1794.9 991.91 1008.1 1003.5 1018.4 1216.1 1200.9 

 

64 1360.1 2045 1114.2 1128.7 1132.7 1147.6 1371.4 1380.5 

 

68 1516.9 2312.3 1241.5 1261.1 1260.6 1281 1542.2 1570.8 

 

72 1683.4 2590.8 1378 1394.5 1397.7 1420.8 1716.2 1790.1 

 

76 1854 2885.5 1512.8 1537.8 1541.7 1563.5 1901.4 2021.5 

 

80 2035.3 3202.4 1658 1680 1687.4 1708.1 2096.3 2254.6 

 

84 2220 3526.6 1808.4 1835.2 1845.3 1871.6 2300.3 2507.9 

 

88 2412.8 3875 1965 1990 2005.3 2042.2 2513.7 2774.7 

 

92 2615.9 4230.8 2129.2 2158 2168 2208 2737.1 3057.2 

 

96 2825.3 4611.8 2291.8 2326.3 2341.3 2383.7 2971.3 3351.4 
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100 3041.6 5000.2 2466.4 2498.5 2521.1 2559.5 3210.9 3653.8   

 

Table 3.3. Comparisons of quantum linear reversible circuit synthesis methods 

(average quantum gates). 

Lines A1CO GJCO1 GJCO2 GJCO3 GJCO4 GJCO5 A1 AECMP MCGP 

8 59.14 53.54 51.45 51.13 50.7 50.53 63.53 50.43 48.99 

12 116.72 106.07 102.05 101.54 98.74 98.92 130.98 100.62 97.12 

16 189.64 175.64 168.47 166.74 161.67 161.66 215.61 169.11 164.43 

20 281.19 255.52 243.85 244.21 235.79 237.59 315.52 254.34 251 

24 383.59 356.32 337.59 340.48 325.7 327.3 433.4 359.54 364 

28 496.23 474.62 442.07 445.96 427.4 430.34 569.82 492.64 

 

32 626.14 605.76 557.18 564.49 540.85 545.54 697.37 640.09 

 

36 763.09 752.61 684.49 695.69 666.03 670.9 862.11 815.55 

 

40 914.68 917.49 823.1 839.15 802.75 812.27 1031.9 1016.9 

 

44 1071 1100.8 972.61 988.4 954.24 961.99 1223.5 1243.6 

 

48 1245.2 1296.6 1131.1 1152.2 1109.2 1123.7 1412.4 1491.8 

 

52 1421.3 1507.5 1302.5 1324 1278.8 1294.5 1629.1 1771.8 

 

56 1615.6 1735.4 1480.5 1504.9 1458.6 1471.7 1854.8 2085.7 

 

60 1812.9 1973.2 1666.1 1700.3 1643.2 1666.4 2090.2 2416.1 

 

64 2017.3 2234.6 1864.5 1899.9 1844.9 1870.3 2334.5 2765.1 

 

68 2229.1 2514.4 2078.3 2118.2 2055.2 2084.1 2611.1 3141.1 

 

72 2456.7 2805.9 2296.8 2337.3 2272.9 2305.9 2889.2 3576.8 

 

76 2690.5 3112.2 2522 2567.6 2502.9 2535.9 3181.6 4030 

 

80 2932.9 3440.4 2758.1 2807.6 2738.2 2772.7 3477.1 4485.9 

 

84 3183.9 3776.8 3005.3 3056.6 2993.7 3031.4 3801.1 4981.7 

 

88 3449.2 4136.7 3266 3322.5 3249.8 3299.8 4133.2 5505.1 
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92 3724.6 4503.7 3528.3 3589.1 3511.1 3563.9 4471.1 6055.5 

 

96 4003.6 4898.9 3799.5 3866.3 3790.1 3850.2 4842.6 6628.9 

 

100 4289.6 5297.4 4077 4150.4 4074 4132.6 5192.6 7217.4   

 

 

 

Figure 3.13. The average CNOT gate counts of synthesizing 100 randomized 

linear reversible circuits with multiple methods. 
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Figure 3.14. The average quantum gate counts of synthesizing 100 randomized 

linear reversible circuits with multiple methods. 
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Table 3.4. Best performing minimum density subcolumn parameter (dmin) 

frequencies corresponding to quantum gate counts produced by the GJCO4 method. 

Lines dmin=1 dmin=2 dmin=3 dmin=4 dmin=5 dmin=6 dmin=7 

8 29 33 19 14 5 0 0 

12 12 21 30 18 12 6 1 

16 0 19 37 20 17 7 0 

20 0 9 25 33 18 15 0 

24 0 3 27 35 20 12 3 

28 0 0 21 47 23 8 1 

32 0 1 13 50 29 6 1 

36 0 0 20 47 28 3 2 

40 0 0 15 47 29 9 0 

44 0 0 7 65 25 2 1 

48 0 0 3 63 33 1 0 

52 0 0 4 64 30 1 1 

56 0 0 6 61 27 6 0 

60 0 0 2 59 34 5 0 

64 0 0 2 55 39 4 0 

68 0 0 2 64 29 5 0 

72 0 0 1 63 35 1 0 

76 0 0 1 66 32 1 0 

80 0 0 0 54 46 0 0 

84 0 0 0 61 37 2 0 

88 0 0 1 63 36 0 0 

92 0 0 0 68 32 0 0 

96 0 0 0 69 31 0 0 

100 0 0 0 60 39 1 0 

 

3.7 Conclusion 

Strategies for improving both CNOT and quantum gate counts in linear reversible 

circuits were introduced and tested in several synthesis methods. Best performance 

depended on the number of lines, and whether CNOT or quantum gate counts were of 

chief importance. For circuits of 40 lines or more, the best performing methods used 
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elementary column operations, a Gauss-Jordan Elimination approach, variable-width 

subcolumn eliminations, multiple passes, and gate reordering. For circuits near 100 lines, 

the best results asymptotically approached approximately 1.64n
2
/log2n CNOT gates and 

2.71n
2
/log2n quantum gates. The results also indicated that the Algorithm 1 and A1CO 

methods, which are based closely on 4RMI, were regularly outperformed by other 

methods; this is likely a consequence of using fixed-width subrow/subcolumn 

eliminations and permitting subrow/subcolumn eliminations on matrix columns which 

are sparse. 

Among the tested methods GJCO4 produced the minimum quantum gate count 

most often. The GJCO3 and GJCO5 methods selected subcolumn eliminations based on 

cost, but they often produced slightly higher CNOT and quantum gate counts than the 

simpler GJCO2 method produced. This seems to parallel previous results [22] in which 

cost-based methods performed worse as n increased.  
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4 

EXOR-AND-Based Logic Synthesis 

4.1 Overview  

The idea for EPOE synthesis came from analysis of the following function: 

 

Figure 4.1. A logic function used to discuss redundant cubes in SOP minimization. 

 

This function has been used frequently in Portland State University Digital 

Electronics I courses as a means to discuss redundant cubes. Often students synthesize 

the above function as the five–cube expression 𝑏𝑑 ∨ 𝑎𝑏𝑐 ∨ 𝑎𝑐𝑑 ∨ 𝑎𝑏𝑐 ∨ 𝑎𝑐𝑑. However, 

the four–cube expression 𝑎𝑏𝑐 ∨ 𝑎𝑐𝑑 ∨ 𝑎𝑏𝑐 ∨ 𝑎𝑐𝑑 is a cover for the function, and the 

cube 𝑏𝑑 is redundant. 

Another issue about this function is how to efficiently synthesize an expression 

for quantum computing. Because the expression 𝑎𝑏𝑐 ∨ 𝑎𝑐𝑑 ∨ 𝑎𝑏𝑐 ∨ 𝑎𝑐𝑑 is a DSOP 

expression, it can be used as an ESOP expression. Considering that Toffoli quantum costs 

go up exponentially as the number of inputs increases, the author used an ad hoc greedy-

search approach to generate the expression 𝑑⨁(𝑎⨁𝑐⨁1)(𝑑⨁𝑏⨁1). This latter 

expression is a type of factored ESOP expression which can be realized in a reversible 

circuit without ancilla lines; more specifically, it can be realized using one Toffoli gate 
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and several low-cost CNOT gates. Further, the latter expression consists of five literals 

which makes it intriguing for classical logic synthesis as well. Thus began an 

investigation into practical ways to synthesize logic functions into these types of 

expressions. 

In order to formalize the greedy-search approach, the concept of an approximate 

cover (or fractional cover) and its converse the approximate implicant (or fractional 

implicant) was developed. For simplicity of implementation and to guarantee 

convergence, in EPOE synthesis the approximate covering criterion equation restricts 

POE expressions to those which cover more ON-set minterms that OFF-set minterms. 

Arguably this approach is a compromise. While it is true that ESOP expressions can 

include cubes which are completely in the OFF-set, the concern in EPOE synthesis was 

that permitting such flexibility would lead to a significant increase in the search space. 

There are two challenges in using an approximate cover criterion. The first 

challenge is how best to set the value of 𝑤. For EPOE synthesis the following analysis 

yielded a “best guess” value of 𝑤 = 2
3⁄  [13]. 

… two similar functions, F1 and F2 shown in Figure 4.2 and Figure 4.3 

respectively, will each be synthesized twice and judged strictly on AND gate 

counts. The function 𝐹1 is synthesized in Figure 4.2a using a greater than 2/3 

fractional criterion. Under this restriction the most efficient covering selection is 

comprised of disjoint groups 𝑐𝑒𝑓 and 𝑎𝑐′𝑑𝑒𝑓, realized by one three-input AND 

gate and one five-input AND gate. This results in the disjoint ESOP 𝐹1 =

𝑐𝑒𝑓⨁𝑎𝑐′𝑑𝑒𝑓. In contrast in Figure 4.2b the 2/3 covering criterion is violated. 
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Consequently the synthesis in Figure 4.2b has more steps and is realized by one 

two-input AND gate, one three-input AND gate, and one five-input AND gate. 

This results in the non-disjoint ESOP 𝐹1 = 𝑒𝑓⨁𝑐′𝑒𝑓⨁𝑎𝑐′𝑑𝑒𝑓. Violating the 2/3 

covering criterion in the choice of product 𝑒𝑓 leads to an additional AND gate. 

 

Figure 4.2. The Karnaugh maps of alternative ESOP syntheses of the function F1: a) for 

expression 𝑐𝑒𝑓⨁𝑎𝑐′𝑑𝑒𝑓 and b) for expression 𝑒𝑓⨁𝑐′𝑒𝑓⨁𝑎𝑐′𝑑𝑒𝑓. 

 

The function 𝐹2 is synthesized in Figure 4.3a using a greater than 2/3 covering 

criterion. Under this restriction the most efficient covering selection is comprised 

of non-disjoint groups 𝑒𝑓, 𝑐′𝑑′𝑒𝑓, and 𝑎′𝑏′𝑐′𝑑𝑒𝑓 which requires one two-input 

AND gate, one four-input AND gate, and one six-input AND gate. This results in 

the non-disjoint ESOP 𝐹2 = 𝑒𝑓⨁𝑐′𝑑′𝑒𝑓⨁𝑎′𝑏′𝑐′𝑑𝑒𝑓. In contrast in Figure 4.3b 

the 2/3 covering criterion is violated. Consequently the synthesis in Figure 4.3b 

has more steps and is realized by one two-input AND gate, one three-input AND 

gate, one four-input AND gate, and one six-input AND gate. This results in the 
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non-disjoint ESOP 𝐹2 = 𝑒𝑓⨁𝑐′𝑒𝑓⨁𝑐′𝑑𝑒𝑓⨁𝑎′𝑏′𝑐′𝑑𝑒𝑓. Again, violating the 2/3 

covering criterion in the choice of product 𝑐′𝑒𝑓 leads to an additional AND gate. 

b)

 

Figure 4.3. The Karnaugh maps of alternative ESOP syntheses of function F2: a) for 

expression 𝑒𝑓⨁𝑐′𝑑′𝑒𝑓⨁𝑎′𝑏′𝑐′𝑑𝑒𝑓 and b) for expression 𝑒𝑓⨁𝑐′𝑒𝑓⨁𝑐′𝑑𝑒𝑓⨁𝑎′𝑏′𝑐′𝑑𝑒𝑓. 

 

Based on the above examples, the threshold value for the fractional 

covering criterion occurs at the point when the AND gate with the smallest 

number of inputs performs an asserting role and all subsequent AND gates, each 

of which covers one-fourth the number of minterms as compared to the prior gate, 

perform an inhibiting role. Under these conditions the total number of asserted 

minterms is 𝑚 = 2𝑘 − (2𝑘−2 + 2𝑘−4 + ⋯+ 20) for some even integer k. Based 

on this threshold, expressions must satisfy a 𝑙𝑖𝑚𝑘→∞ (
𝑚

2𝑘) =
2

3
 covering criterion 

in order to be acceptable. 

 

In practice, the value 𝑤 = 2
3⁄  is more likely to produce efficient synthesis of reversible 

circuits for quantum computing than classical digital circuits. This appears to be due to 

the increased complexity of real-world functions as compared to the above functions. 
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The second challenge in using an approximate cover criterion is how to efficiently 

group together sets of ON-set minterms for analysis. A spectral approach was adopted for 

the synthesis methods described herein. Using the Hadamard transform permits quick 

analysis of the number of minterms in restricted subfunctions |(𝑓│𝑥𝑖
)| and |(𝑓│𝑥𝑖

)|, but 

more importantly it permits quick analysis of the number of minterms in restricted 

subfunctions |(𝑓│𝑦𝑖
)| and |(𝑓│𝑦𝑖

)| where 𝑦𝑖 is an affine-linear function of one or more 

𝑥𝑖 variables. Excluding the functions 𝑓 = 0 and 𝑓 = 1, all functions will have some form 

of a bias (i.e., |(𝑓│𝑥𝑖
)| ≠ |(𝑓│𝑥𝑖

)| for at least one 𝑥𝑖 input variable). POE expressions are 

generated by iteratively selecting spectral coefficients with the largest magnitude, using 

the sign of these coefficients to select restricted subfunctions [12], and then recomputing 

spectral coefficients until an approximate implicant is detected. 

The following example illustrates spectral coefficient selection for the four-

minterm function in Figure 4.4. There are two coefficients with the same maximum 

absolute value: the value 𝑆𝑐⊕𝑑 = −4 indicates |(𝑓│𝑐⊕𝑑)| = ½(𝑆0 − 𝑆𝑐⊕𝑑) = ½(6 −

(−4)) = 5, and the value 𝑆𝑎⊕𝑏⊕𝑐⊕𝑑 = 4 indicates |(𝑓│𝑎⊕𝑏⊕𝑐⊕𝑑⊕1)| = ½(𝑆0 +

𝑆𝑎⊕𝑏⊕𝑐⊕𝑑) = ½(6 + 4) = 5. Iterating the same analysis on the restricted subfunctions 

|(𝑓│𝑎⊕𝑏⊕𝑐⊕𝑑⊕1)| and |(𝑓│𝑐⊕𝑑)| leads to one of the following equivalent POE 

expressions: (𝑎 ⊕ 𝑏 ⊕ 𝑐 ⊕ 𝑑 ⊕ 1)(𝑐 ⊕ 𝑑), (𝑎 ⊕ 𝑏 ⊕ 𝑐 ⊕ 𝑑 ⊕ 1)(𝑎 ⊕ 𝑏), or 

(𝑐 ⊕ 𝑑)(𝑎 ⊕ 𝑏). One weakness of this approach is that some potentially good 

coefficients, such as 𝑆𝑎⊕𝑏, are initially overlooked. 
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Figure 4.4. The Karnaugh map and corresponding spectral coefficients of an example 4×1 

switching function. 
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4.2 Theoretical Comparisons with Other Approaches 

A GF(2) matrix representation for POE expressions was chosen because of its 

applicability to reversible circuits. The idea was to use CNOT gates and NOT gates 

intensively and reduce the number of Toffoli gates, and then determine if it had 

applications in classical logic. The mathematical approach essentially is the same one 

employed by Meinel and Theobald [9], Günther and Drechsler [10], and Karpovsky, 

Stanković, and Astola [11] in their works for classical logic.  

Later it was discovered that the expressions were compatible with the 

pseudoproduct EXOR-AND formulation of Luccio and Pagli [8]. However, their 

formulation is less directly applicable to the synthesis of reversible and quantum circuits. 

For instance, a pseudoproduct is defined as the canonical expression of a pseudocube, a 

pseudocube being an explicit list of ON-set minterms with particular properties. A POE 

expression is defined quite differently [12], and has no requirement for examination of an 

explicit list of minterms. Furthermore, in EPOE synthesis a POE expression can be an 

approximate implicant of a function which cannot be constructed from an explicit list of 

ON-set minterms. Another fundamental difference is the concept of canonical and 

noncanonical variables within a pseudoproduct. This concept does not have a parallel in 

POE expressions. Lastly, unlike pseudoproducts, POE expressions are thought of as 

having a number of circuit realizations (i.e., 0.29 × 2𝑝2
𝑝!⁄  different circuit realizations 

of any POE expression 𝑐 which is a product of 𝑝 entries of 𝑦⃗ [12]). In quantum logic 

having a large number of circuit realizations facilitates the synthesis of groups of linear 

reversible circuits separated by Toffoli gates. 
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Further research into the pseudoproduct formulation clarified that Ishikawa et al. 

first synthesized EXOR-AND-EXOR (ESPP) circuits [7]. They used an algorithm similar 

to cube calculus methods used in ESPRESSO-II [14], EXMIN2 [24], and EXORCISM4 

[25]. Their results were superior for a number of small functions. Unfortunately they did 

not publish their synthesis times, so it is unknown what the performance-to-time tradeoff 

of their algorithm is. Further, Ishikawa et al. did not investigate reversible and quantum 

computing applications of their work. 

4.3 Introduction to XAX 

A proof-of-concept program named XAX developed by the author employs three 

algorithms, the first for EPOE synthesis of completely specified functions, the second for 

EPOE synthesis of incompletely specified functions, and the third for SPOE synthesis of 

incompletely specified functions [12]. The second and third algorithms employ a second 

spectrum in order to assess the number of don’t-care minterms in a restricted subfunction; 

i.e., the spectrum 𝑆𝐷𝐶 which is the Hadamard transform of 𝑓𝐷𝐶, and spectrum 𝑆𝑂𝑁∨𝐷𝐶 

which is the Hadamard transform of 𝑓𝑂𝑁 ∨ 𝑓𝐷𝐶 . Considering the third algorithm for SPOE 

synthesis used on completely specified functions, i.e., incompletely specified functions 

with an empty DC-set, the second spectrum is still required to both ensure that POE 

expressions may intersect one another and that each POE expression covers as many ON-

set minterms as possible. 

All algorithms compute POE expressions through spectral coefficients in 

restricted subfunctions; i.e., 𝑓│𝑦0𝑦1𝑦2… expressions in which each 𝑦𝑖 expression 

corresponds to a spectral coefficient which has a maximum absolute value. When there 
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are two or more spectral coefficients with the same maximum absolute value, the first 

coefficient found is selected by default. Alternatively selection can be performed 

randomly or based on the coefficient associated with the fewest input variables (which is 

known as greedy selection in XAX). These selection modes can be combined with a 

policy of excluding 𝑦𝑖 expressions from consideration when they contain more than a 

user-specified number of input variables.  

The coefficient selection mode is one of three algorithmic decisions which affect 

POE expression construction. The second algorithmic decision is the choice to discard all 

unused spectral information at each iteration, i.e., discarding the complement spectra 

corresponding to 𝑓│𝑦0
, 𝑓│𝑦0𝑦1

, 𝑓│𝑦0𝑦1𝑦2……. Discarding complement spectra simplifies 

the algorithm; although retaining and using this information may be viable, it is beyond 

the scope of the methods presented herein. The third algorithmic decision is the selection 

of which input variable to exclude in restricted subfunctions whenever 𝑦𝑖 contains more 

than one 𝑥𝑖 input variable. Depending on the function, changing this 𝑥𝑖-exclusion policy 

may have no effect on synthesis or change the cost by a small percentage. By default, the 

input variable with the highest index is selected. These algorithmic decisions would 

appear to pose a considerable challenge to developing variants of these algorithms which 

perform backtracking. 

For ease of programming [12], these algorithms encode vector elements in little 

endian format; i.e., a format in which the least significant bit in mathematical notation is 

stored at the lowest order memory location. Consequently a minterm is encoded as 

𝑥⃗ → 2𝑛−1𝑥𝑛−1 + 2𝑛−2𝑥𝑛−2 + 2𝑛−3𝑥𝑛−3 …+ 20𝑥0; spectral coefficients are of the form 
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[𝑆0, 𝑆𝑥0
, 𝑆𝑥1

, 𝑆𝑥0⨁𝑥1
… , 𝑆𝑥0⨁…𝑥𝑛−3⨁𝑥𝑛−2⨁𝑥𝑛−1

]. In these algorithms the vector 𝑦⃗ is 

decomposed into three components: rows of the matrix 𝑀 as 𝑦.𝑚[], elements of the 

vector 𝑏⃗⃗ as 𝑦. 𝑏[], and number of 𝑝 factors in 𝑦0𝑦1𝑦2 …𝑦𝑝−1 as 𝑦. 𝑝. For example, the 

three elements 𝑦.𝑚[0] = 00112 and 𝑦.𝑚[1] = 11002, 𝑦. 𝑏[0] = 0 and 𝑦. 𝑏[1] = 1, and 

𝑦. 𝑝 = 2 represent the POE expression 𝑦0𝑦1 = (𝑥0⨁𝑥1)(𝑥2⨁𝑥3⨁1). 

 It is possible to reduce EPOE and SPOE synthesis time for degenerate and 

autosymmetric functions [17, 18]. Specifically, using spectral methods it is possible to 

detect if there exists one or more 𝑦𝑖 expressions such that 𝑓│𝑦𝑖
= 𝑓│𝑦𝑖

. In the worst case, 

the search for degenerate and autosymmetric functions will yield nothing except an 

increase in synthesis time. Consequently detection of degenerate and autosymmetric 

functions is not integrated into XAX. 

4.4 XAX EPOE Synthesis of Completely Specified Functions  

The XAX EPOE synthesis program generates one EPOE structure per switching-

function output, and this EPOE structure consists of a polarity bit and a list of POE cubes. 

Synthesis proceeds as follows: First, a single-output switching function 𝑓 and 

approximate cover criterion 𝑤 in the range 0.5 < 𝑤 < 1 are passed to the synthesis 

function. Prior to synthesis, if |𝑓| < 𝑤 × 2𝑛 is satisfied then the remainder function 𝑓𝑟𝑒𝑚 

is assigned as 𝑓𝑟𝑒𝑚 ← 𝑓, 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 ← 0; otherwise 𝑓𝑟𝑒𝑚 ← 𝑓⨁1, 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 ← 1. If the 

function is incompletely specified, all DC-minterms are treated as OFF-set minterms. 

Then the main synthesis subprogram, shown below, is called. 

 

𝑆 ← FHT(𝑓𝑟𝑒𝑚) //Fast Hadamard Transform 
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while 𝑆[0] > 1 

 𝑦. 𝑝 ← 0 //prepare to compute 𝑦0 

 CalcGate1(𝑆, 𝑤, 𝑦) //i.e., 𝑦0 𝑦1 𝑦2… 𝑦𝑝−1 

 EPOEList.Add(𝑦) 

 𝑓𝑟𝑒𝑚 ← 𝑓𝑟𝑒𝑚⨁𝑦 

 𝑆 ← FHT(𝑓𝑟𝑒𝑚) 

if 𝑆[0] = 1 then 

 EPOEList.Add(CalcMintermGate(𝑓𝑟𝑒𝑚)) 

 

Extending [12], the CalcGate1 function begins by searching for the largest 

magnitude spectral coefficient, denoted as 𝑆[𝑧] where 𝑧 is an integer in the range 

0 < |𝑧| < 2𝑛. Once 𝑧 is selected, the value 𝑦𝑝 is set to 𝑧 according to the sign of 𝑧; i.e., 

𝑦.𝑚[𝑦. 𝑝] ← 𝑧 and either 𝑦. 𝑏[𝑦. 𝑝] ← 1 when 𝑆[𝑧] > 0 (meaning the restricted function 

𝑓│𝑦𝑝
 covers the most minterms) or 𝑦. 𝑏[𝑦. 𝑝] ← 0 when 𝑆[𝑧] ≤ 0 (meaning the restricted 

function 𝑓│𝑦𝑝
 covers the most minterms). Then the variable 𝑦. 𝑝 is incremented. This 

process creates an implicit POE cube 𝑐 = 𝑦0𝑦1𝑦2 …𝑦𝑝−1. If 𝑐 covers 𝑤 × 2𝑛−1 minterms 

then the CalcGate1 function returns, otherwise a new spectrum 𝑆′ is computed. The 

spectrum of the restricted function, 𝑆′, corresponds to a switching function which has 

been reduced to dimension (𝑛 − 1)×1. Using a reduced dimension function reduces 

computation time but requires that variables be remapped from 𝑆 to 𝑆′. The CalcGate1 

function is called recursively, and after each recursion all variable mappings in 

𝑦𝑖+1, 𝑦𝑖+2, 𝑦𝑖+3 … are restored through bitwise manipulations. In the following CalcGate1 
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algorithm the operators ∨, ∧, and ⊕ denote bitwise-OR, bitwise-AND, and bitwise-

Exclusive-OR operations respectively: 

Function CalcGate1(𝑆, 𝑤, 𝑦): 

𝑧 ← 1 //little endian encoding for 𝑦𝑖 = 𝑥0 

for each 𝑗 from 2 to 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ − 1 

 if Abs(𝑆[𝑗]) > Abs(𝑆[𝑧]) then 

  𝑧 ← 𝑗 

𝑦. 𝑏[𝑦. 𝑝] ← (𝑆[𝑧] > 0) 

𝑦.𝑚[𝑦. 𝑝] ← 𝑧 //a binary encoded EXOR sum 

𝑦. 𝑝 ← 𝑦. 𝑝 + 1 //a POE of 𝑦. 𝑝 elements of 𝑦⃗ 

𝑝𝑙𝑜𝑐𝑎𝑙 ← 𝑦. 𝑝 

if (𝑆[𝑧] > 0) then 

 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 ← (𝑆[0] + 𝑆[𝑧])/2 

else 

 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 ← (𝑆[0] − 𝑆[𝑧])/2 

if 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 > 𝑤 × 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ/2 then 

 return 

//compute restricted subfunction 

𝑆′ ← new integer array of length 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ/2 

𝑆′[0] ← 𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 ← ShiftLeft(1, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐿𝑜𝑔2(𝑧))) 

𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐿 ← 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 − 1 
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𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐻 ← 𝑂𝑛𝑒𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡(𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐿) 

𝑘 ← 1 

if (𝑆[𝑧] > 0) then 

 //compute spectrum of 𝑓│𝑦𝑝−1
 

 for each 𝑗 from 1 to 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ − 1 

  if (𝑗 ∧ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 = 0) then 

   𝑆′[𝑘] ← (𝑆[𝑗] + 𝑆[𝑗 ⊕ 𝑧])/2 

   𝑘 ← 𝑘 + 1 

else //compute spectrum of 𝑓│𝑦𝑝−1
 

 for each 𝑗 from 1 to 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ − 1 

  if (𝑗 ∧ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 = 0) then 

   𝑆′[𝑘] ← (𝑆[𝑗] − 𝑆[𝑗 ⊕ 𝑧])/2 

   𝑘 ← 𝑘 + 1 

CalcGate1(𝑆′, 𝑤, 𝑦) 

//upon return 𝑦. 𝑝 will be increased 

//remap new 𝑦.𝑚 expressions 

for each 𝑗 from 𝑝𝑙𝑜𝑐𝑎𝑙 to 𝑦. 𝑝 − 1 

 𝑦.𝑚[𝑗] ← (𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐿 ∧ 𝑦.𝑚[𝑗]) ∨ ShiftLeft(𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐻 ∧ 𝑦.𝑚[𝑗], 1) 

return 
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4.5 XAX EPOE Synthesis of Incompletely Specified Functions 

The algorithm for EPOE synthesis of incompletely specified functions is similar 

to the above algorithm with these differences: initially 𝑓𝑂𝑁 is analyzed rather than 𝑓, a 

second spectrum representing the DC-set is required, and the remainder function 

computation ignores DC-minterms. 

 

𝑆 ← FHT(𝑓𝑟𝑒𝑚) //Fast Hadamard Transform 

𝑆𝐷𝐶 ← FHT(𝑓𝐷𝐶)  

while 𝑆[0] > 1 

 𝑦. 𝑝 ← 0 //prepare to compute 𝑦0 

 CalcGate2(𝑆, 𝑆𝐷𝐶 , 𝑤, 𝑦) 

 EPOEList.Add(𝑦) 

 𝑓𝑟𝑒𝑚 ← 𝑓𝑟𝑒𝑚⨁𝑦(𝑓𝑂𝑁 ∨ 𝑓𝑂𝐹𝐹) 

 𝑆 ← FHT(𝑓𝑟𝑒𝑚) 

if 𝑆[0] = 1 then 

 EPOEList.Add(CalcMintermGate(𝑓𝑟𝑒𝑚)) 

 

The CalcGate2 algorithm extends the CalcGate1 algorithm with a preference for 

restricted functions which cover the DC-set. A helper function, below, computes the 

number of DC-minterms covered by either 𝑓│𝑦𝑖
 or 𝑓│𝑦𝑖

 depending on which of these 

restricted functions covers the most 1-minterms. 
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Function CoveredMinterms (𝑆𝑎, 𝑆𝑏, 𝑧):  

if (𝑆𝑎[𝑧]  > 0) then 

 return (𝑆𝑏[0] + 𝑆𝑏[𝑧])/2 

else 

 return (𝑆𝑏[0] − 𝑆𝑏[𝑧])/2 

 

Function CalcGate2(𝑆, 𝑆𝐷𝐶 , 𝑤, y): 

𝑧 ← 1 //encoding for 𝑦𝑖 = 𝑥0 

𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 = CoveredMinterms(𝑆, 𝑆𝐷𝐶 , 𝑧)  

for each 𝑗 from 2 to 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ − 1 

 if (Abs(𝑆[𝑗]) > Abs(𝑆[𝑧])) OR (Abs(𝑆[𝑗]) = Abs(𝑆[𝑧]) AND  

   𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 < CoveredMinterms(𝑆, 𝑆𝐷𝐶 , 𝑧))   

 then 

  𝑧 ← 𝑗  

  𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 ← CoveredMinterms(𝑆, 𝑆𝐷𝐶 , 𝑧) 

𝑦. 𝑏[𝑦. 𝑝] ← (𝑆[𝑧] > 0) 

𝑦.𝑚[𝑦. 𝑝] ← 𝑧 //a binary encoded EXOR sum 

𝑦. 𝑝 ← 𝑦. 𝑝 + 1 //a POE of 𝑦. 𝑝 elements of 𝑦⃗ 

𝑝𝑙𝑜𝑐𝑎𝑙 ← 𝑦. 𝑝 

𝑐𝑜𝑣𝑒𝑟𝑒𝑑1𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 ← CoveredMinterms(𝑆, 𝑆, 𝑧) 

𝑐𝑜𝑣𝑒𝑟𝑒𝑑0𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 ← 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ/2 − 𝑐𝑜𝑣𝑒𝑟𝑒𝑑1𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 − 𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 

if 𝑐𝑜𝑣𝑒𝑟𝑒𝑑1𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 > 𝑤 × (𝑐𝑜𝑣𝑒𝑟𝑒𝑑0𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 + 𝑐𝑜𝑣𝑒𝑟𝑒𝑑1𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠) then 
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 return 

//compute restricted subfunction 

𝑆′ ← new integer array of length 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ/2 

𝑆′[0] ← 𝑐𝑜𝑣𝑒𝑟𝑒𝑑1𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 

𝑆𝐷𝐶′ ← new integer array of length 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ/2 

𝑆𝐷𝐶
′[0] ← 𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 ← ShiftLeft(1, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐿𝑜𝑔2(𝑧))) 

𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐿 ← 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 − 1 

𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐻 ← 𝑂𝑛𝑒𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡(𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐿) 

𝑘 ← 1 

if (𝑆[𝑧] > 0) then  

 //compute spectrum of 𝑓│𝑦𝑝−1
 

 for each 𝑗 from 1 to 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ − 1 

  if (𝑗 ∧ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 = 0) then 

   𝑆′[𝑘] ← (𝑆[𝑗] + 𝑆[𝑗 ⊕ 𝑧])/2 

   𝑆𝐷𝐶
′[𝑘] ← (𝑆𝐷𝐶[𝑗] + 𝑆𝐷𝐶[𝑗 ⊕ 𝑧])/2 

   𝑘 ← 𝑘 + 1 

else //compute spectrum of 𝑓│𝑦𝑝−1
 

 for each 𝑗 from 1 to 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ − 1 

  if (𝑗 ∧ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 = 0) then 

   𝑆′[𝑘] ← (𝑆[𝑗] − 𝑆[𝑗 ⊕ 𝑧])/2 

   𝑆𝐷𝐶
′[𝑘] ← (𝑆𝐷𝐶[𝑗] − 𝑆𝐷𝐶[𝑗 ⊕ 𝑧])/2 
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   𝑘 ← 𝑘 + 1 

CalcGate2(𝑆′, 𝑆𝐷𝐶
′, 𝑤, 𝑦) 

//upon return 𝑦. 𝑝 will be increased 

//remap new 𝑦.𝑚 expressions 

for each 𝑗 from 𝑝𝑙𝑜𝑐𝑎𝑙 to 𝑦. 𝑝 − 1 

 𝑦.𝑚[𝑗] ← (𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐿 ∧ 𝑦.𝑚[𝑗]) ∨ ShiftLeft(𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐻 ∧ 𝑦.𝑚[𝑗], 1) 

return 

 

4.6 XAX SPOE Synthesis of Incompletely Specified Functions 

Extending [12], there is one XAX SPOE synthesis algorithm for both completely 

and incompletely specified functions. The algorithm for SPOE synthesis is similar to the 

EPOE algorithms with these differences: initially 𝑓𝑂𝑁 is analyzed rather than 𝑓, a second 

spectrum representing the union of the ON-set and DC-set is used, all POE expressions 

are implicants of the union of the ON-set and DC-set, and the remainder function 

computation creates a logical sum of POE expressions. 

 

𝑆 ← FHT(𝑓𝑟𝑒𝑚) //Fast Hadamard Transform 

𝑆𝑂𝑁∨𝐷𝐶 ← FHT(𝑓𝑂𝑁∨𝐷𝐶)  

while 𝑆[0] > 1 

 𝑦. 𝑝 ← 0 //prepare to compute 𝑦0 

 CalcGate3(𝑆, 𝑆𝑂𝑁∨𝐷𝐶 , 𝑦) 

 SPOEList.Add(𝑦) 
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 𝑓𝑟𝑒𝑚 ← 𝑓𝑟𝑒𝑚𝑦̅ 

 𝑆 ← FHT(𝑓𝑟𝑒𝑚) 

if 𝑆[0] = 1 then 

 SPOEList.Add(CalcMintermGate(𝑓𝑟𝑒𝑚)) 

 

Function CalcGate3(𝑆, 𝑆𝑂𝑁∨𝐷𝐶 , 𝑦): 

𝑧 ← 1 //encoding for 𝑦𝑖 = 𝑥0 

𝑂𝑁𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 = CoveredMinterms(𝑆, 𝑆𝑂𝑁∨𝐷𝐶 , 𝑧)  

for each 𝑗 from 2 to 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ − 1 

 if (Abs(𝑆[𝑗]) > Abs(𝑆[𝑧])) OR (Abs(𝑆[𝑗]) = Abs(𝑆[𝑧]) AND  

   𝑂𝑁𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 < CoveredMinterms(𝑆, 𝑆𝑂𝑁∨𝐷𝐶 , 𝑧)) then 

  𝑧 ← 𝑗  

  𝑂𝑁𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 ← CoveredMinterms(𝑆, 𝑆𝑂𝑁∨𝐷𝐶 , 𝑧) 

𝑦. 𝑏[𝑦. 𝑝] ← (𝑆[𝑧] > 0) 

𝑦.𝑚[𝑦. 𝑝] ← 𝑧 //a binary encoded EXOR sum 

𝑦. 𝑝 ← 𝑦. 𝑝 + 1 //a POE of 𝑦. 𝑝 elements of 𝑦⃗ 

𝑝𝑙𝑜𝑐𝑎𝑙 ← 𝑦. 𝑝 

//return if 𝑦 represents an implicant 

if 𝑂𝑁𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 = 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ/2 then 

 return 

𝑆′ ← new integer array of length 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ/2 

𝑆′[0] ← CoveredMinterms(𝑆, 𝑆, 𝑧) 
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𝑆𝑂𝑁∨𝐷𝐶′ ← new integer array of length 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ/2 

𝑆𝑂𝑁∨𝐷𝐶
′[0] ← 𝑂𝑁𝐷𝐶𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 ← ShiftLeft(1, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝐿𝑜𝑔2(𝑧))) 

𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐿 ← 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 − 1 

𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐻 ← 𝑂𝑛𝑒𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡(𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐿) 

𝑘 ← 1 

if (𝑆[𝑧] > 0) then  

 //compute spectrum of 𝑓│𝑦𝑝−1
 

 for each 𝑗 from 1 to 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ − 1 

  if (𝑗 ∧ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 = 0) then 

   𝑆′[𝑘] ← (𝑆[𝑗] + 𝑆[𝑗 ⊕ 𝑧])/2 

   𝑆𝑂𝑁∨𝐷𝐶
′[𝑘] ← (𝑆𝑂𝑁∨𝐷𝐶[𝑗] + 𝑆𝑂𝑁∨𝐷𝐶[𝑗 ⊕ 𝑧])/2 

   𝑘 ← 𝑘 + 1 

else //compute spectrum of 𝑓│𝑦𝑝−1
 

 for each 𝑗 from 1 to 𝑆. 𝐿𝑒𝑛𝑔𝑡ℎ − 1 

  if (𝑗 ∧ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑏𝑖𝑡 = 0) then 

   𝑆′[𝑘] ← (𝑆[𝑗] − 𝑆[𝑗 ⊕ 𝑧])/2 

   𝑆𝑂𝑁∨𝐷𝐶
′[𝑘] ← (𝑆𝑂𝑁∨𝐷𝐶[𝑗] − 𝑆𝑂𝑁∨𝐷𝐶[𝑗 ⊕ 𝑧])/2 

   𝑘 ← 𝑘 + 1 

CalcGate3(𝑆′, 𝑆𝑂𝑁∨𝐷𝐶
′, 𝑦) 

//upon return 𝑦. 𝑝 will be increased 

//remap new 𝑦.𝑚 expressions 
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for each 𝑗 from 𝑝𝑙𝑜𝑐𝑎𝑙 to 𝑦. 𝑝 − 1 

 𝑦.𝑚[𝑗] ← (𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐿 ∧ 𝑦.𝑚[𝑗]) ∨ ShiftLeft(𝑚𝑎𝑠𝑘𝑏𝑖𝑡𝑠𝐻 ∧ 𝑦.𝑚[𝑗], 1) 

return 

 

4.7 Postprocessing   

Extending [12], after an EPOE or SPOE expression is computed it can be 

modified in two independent postprocessing stages. Both postprocessing stages employ 

LCC operations to transform POE cubes into a more optimal form. The first 

postprocessing stage minimizes the number of input variables in each POE cube. This 

requires examining 2𝑝−1 forms of each 𝑦𝑖 sum.  

The second postprocessing stage minimizes the total number of unique 𝑦𝑖 sums, 

ignoring polarity. The goal of this stage is to reduce the number of corresponding EXOR 

gates, although doing so will increase gate fan-out. First those unique 𝑦𝑖 sums consisting 

of two or more input variables are stored in an initial sum list along with their respective 

number of POE references. Then, starting with those sums which contain the most input 

variables and ending with those sums which contain exactly two input variables, an 

attempt is made to transform all instances of a sum to any other sum in the initial sum 

list. Those sums which cannot be transformed are stored in a committed sum list which 

augments the initial sum list. One consequence of this refactoring is the creation of POE 

cube expressions which contain 𝑦𝑖 sums of more than 𝑛 − 𝑝 + 1 input variables. 

There are other options for postprocessing. For instance, it may be desirable to 

decompose some POE expressions into simpler forms when technology-specific costs can 
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be reduced. Another option is using LCC operations with GF(2) matrix inversion 

methods to generate a reduced row echelon form of a POE expression. Further, if two 

different POE expressions are functionally equivalent their reduced row echelon forms 

will be identical. 

4.8 Complexity   

Extending [12], Selezneva describes an ESPP decomposition method in which 

groups of 𝑛 + 1 Zhegalkin polynomials [26], i.e., 𝑛 + 1 cubes of a positive polarity 

Reed-Muller expansion, are factored into at most two low-complexity pseudoproducts. If 

these groups are created from Hamming codes for block sizes 𝑛 = {3,7,15,31, … } [27], 

Selezneva’s method results in an upper bound of 2𝑛+1/(𝑛 + 1) POE cubes per switching 

function. Therefore, EPOE expressions can be viewed as having 

𝑂((2𝑛2
𝑛!⁄ )2𝑛−⌈log2 𝑛+1⌉+1

) equivalent forms. The function 2𝑛−log2(𝑛+1)+1 is used for XAX 

POE-cube-list memory allocation and has been sufficient for all (default mode) EPOE 

and SPOE syntheses performed thus far. 

In XAX EPOE synthesis of completely specified functions, each gate uses one 

𝑂(𝑛2𝑛) FHT function call and recursive spectrum computations of order 𝑂(2𝑛 + 2𝑛−1 +

2𝑛−2 + … ); therefore gate computation is order 𝑂(𝑛2𝑛 + 2𝑛+1). In total the complexity 

of XAX synthesis is 𝑂((𝑛 + 2)22𝑛+1/(𝑛 + 1)) ≈ 𝑂(22𝑛). In XAX EPOE and SPOE 

synthesis of incompletely specified functions, complexity increases by a power of two, 

yielding 𝑂((𝑛 + 2)22𝑛+2/(𝑛 + 1)) ≈ 𝑂(22𝑛). 

To calculate the postprocessing complexity requires a conservative estimate for 𝑝. 

In a XAX EPOE expression where 𝑤 = 2/3, it holds that 𝑝 ≤ 𝑛 − 2 for all or all but one 
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of the POE cubes. The complexity of the first postprocessing stage is approximately 

𝑂((𝑛 − 2)22𝑛−2/(𝑛 + 1)) ≈ 𝑂(22𝑛); in practice this stage requires significantly less 

time than synthesis due to highly sequential memory accesses. The complexity of the 

second postprocessing stage is approximately 𝑂((𝑛 − 2)23𝑛/(𝑛 + 1)) ≈ 𝑂(23𝑛); in 

practice this stage requires time which is closer to a linear increase over synthesis time. 

4.9 Experimental Results  

All three algorithms are integrated into the XAX program. The default mode of 

XAX performs EPOE synthesis of completely specified multi-output functions; the 

“don’t care” EPOE mode, activated by using the command-line option “-d,” performs 

EPOE synthesis of incompletely specified multi-output functions; and, the SPOE mode, 

activated by using the command-line option “-o,” performs SPOE synthesis of 

incompletely specified multi-output functions. In the following experiments XAX 

synthesis of MCNC benchmarks [28] and Espresso benchmarks [29] is compared in a 

variety of modes. The XAX EPOE syntheses are run 16 times using the following 

approximate cover criterion values with the best result taken: 0.510417, 0.541667, 

0.572917, 0.604167, 0.635417, 0.666667,0.697917, 0.729167, 0.760417, 0.791667, 

0.822917, 0.854167, 0.885417, 0.916667, 0.947917, 0.979167. 

The default output format of XAX is a single multi-output Verilog file. For 

example, the EPOE and SPOE syntheses of the well-known benchmark function “rd53” 

is shown below. In both syntheses the Verilog expression “assign y3 = 

x[0]^x[1];” defines the combination logic expression “y3” which is used to generate 

outputs f[0] ,  f[1],  and f[2]. In order to have a fair comparison with previous work 
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which did not share expressions across outputs, XAX includes the command-line option 

“-s” to generate a collection of single-output syntheses; i.e., all experiments except for 

Experiment 3 use XAX with the command-line option “-s”. 

 

//XAX EPOE synthesis of rd53, w = 0.510417 

module rd53 (x, f); 

input [4:0] x; 

output [2:0] f; 

wire c0; 

wire c1; 

wire c2; 

wire c3; 

wire c4; 

wire c5; 

wire y3; 

wire y5; 

wire y11; 

wire y18; 

wire y16; 

wire y17; 

wire y1f; 

assign y3 = x[0]^x[1]; 

assign y5 = x[0]^x[2]; 
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assign y11 = x[0]^x[4]; 

assign y18 = x[3]^x[4]; 

assign y16 = x[1]^x[2]^x[4]; 

assign y17 = y16^x[0]; 

assign y1f = y17^x[3]; 

assign c0 = x[0] & x[1] & x[2]; 

assign c1 = ~y18 & ~y16 & x[0]; 

assign c2 = y3 & y5 & ~y18 & y11; 

assign c3 = y1f; 

assign c4 = ~y3 & ~y5; 

assign c5 = ~y18 & y17; 

assign f[0] = c0^c1^c2; 

assign f[1] = c3; 

assign f[2] =  1 ^ c4^c5; 

endmodule 

 

//XAX SPOE synthesis of rd53 

module rd53 (x, f); 

input [4:0] x; 

output [2:0] f; 

wire c0; 

wire c1; 

wire c2; 
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wire c3; 

wire c4; 

wire c5; 

wire c6; 

wire y3; 

wire y5; 

wire ya; 

wire yc; 

wire y12; 

wire y14; 

wire y1c; 

wire y1f; 

assign y3 = x[0]^x[1]; 

assign y5 = x[0]^x[2]; 

assign ya = x[1]^x[3]; 

assign yc = x[2]^x[3]; 

assign y12 = x[1]^x[4]; 

assign y14 = x[2]^x[4]; 

assign y1c = x[2]^x[3]^x[4]; 

assign y1f = y3^y1c; 

assign c0 = x[0] & x[1] & x[2] & x[3]; 

assign c1 = x[0] & x[1] & x[4] & yc; 

assign c2 = x[2] & x[3] & x[4] & y3; 
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assign c3 = y1f; 

assign c4 = y3 & yc; 

assign c5 = y5 & y12; 

assign c6 = ya & y14; 

assign f[0] = c0|c1|c2; 

assign f[1] = c3; 

assign f[2] = c4|c5|c6; 

endmodule 

 

A common relative cost approximation for an SOP expression or ESOP 

expression is the literal count. Considering the above multi-level logic definitions, using a 

literal count fails to quantify expression sharing and fan-out costs. For instance, in the 

expressions (𝑥0⨁𝑥1)𝑥2 ∨ (𝑥0⨁𝑥1)𝑥3 and (𝑥0⨁𝑥4)𝑥2 ∨ (𝑥0⨁𝑥1)𝑥3 there are six literals; 

in terms of literal fcount there is no cost benefit for the prior expression sharing the 

Exclusive-OR sum (𝑥0⨁𝑥1) in two products. Therefore, as in prior work [7, 18, 31] 

herein the main metric in the following synthesis experiments will be the total number of 

technology-independent AND/OR/NAND/NOR gate inputs (TI, or µ). In this metric, 

inverters are free and fan-out is unlimited.  

Two refinements of this cost metric are the total number of gate inputs in a high-

level CMOS implementation (µC) and the total number of gate inputs in a high-level 

FPGA implementation (µF). These names are used for historical reasons; it is important to 

note that the high-level FPGA cost may not correlate to cost in modern FPGA 

implementations. In the high-level CMOS metric there are no Exclusive-OR gate 
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primitives, so a two-input Exclusive-OR expression costs four using a four-input gate 

primitive of the form 𝑥0𝑥1 ∨ 𝑥0𝑥1. Consequently all k-input Exclusive-OR expressions 

cost 4(𝑘 − 1); i.e., each k-input Exclusive-OR expression is factored into two-input 

Exclusive-OR expressions and implemented as a multi-level circuit consisting of four-

input gates of the form 𝑥0𝑥1 ∨ 𝑥0𝑥1. In the high-level FPGA metric a two-input 

Exclusive-OR expression costs two. Reevaluating the above expressions, the expressions 

(𝑥0⨁𝑥1)𝑥2 ∨ (𝑥0⨁𝑥1)𝑥3 costs µC = 4 + (2 + 2) + 2 = 10 and µF = 2 + (2 + 2) + 2 =

8; the expression (𝑥0⨁𝑥4)𝑥2 ∨ (𝑥0⨁𝑥1)𝑥3 costs µC = (4 + 4) + (2 + 2) + 2 = 14  and 

µF = (2 + 2) + (2 + 2) + 2 = 10. 

4.9.1 Experiment 1. 

In the first experiment, shown in Table 4.1, XAX EPOE synthesis for completely 

specified functions is compared with the ESPP logic synthesizer of Ishikawa et al. [7]. 

The best XAX EPOE results used approximate cover criterion values ranging from 

0.5104167 through 0.760417. Because the ESPP logic synthesizer was permitted to 

iterate continuously until a minimum set of pseudoproducts was computed, it was 

expected that their method would produce near-minimum EXOR-AND-EXOR costs. 

However, in several benchmark functions XAX performed better than ESPP, the 

difference being extreme in the case of “rd84”. This is a cause for concern, raising the 

question whether or not the ESPP logic synthesizer became trapped in a local minimum 

or had some sort of bug. 
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Function  

#TI 

ESPP 

(CMOS) 

#TI 

XAX -s 

(CMOS) 

XAX 

CMOS 

%diff. 

from Post- 

processing  

#TI 

ESPP 

(FPGA) 

#TI 

XAX -s 

(FPGA) 

XAX 

FPGA 

%diff. 

from Post- 

processing  

XAX 

Time (s) 

bw 380 613 14.40% 239 409 6.60% 1.249 

clip 408 422 16.80% 324 237 12.20% 0.525 

con1 57 56 0.00% 38 36 0.00% 0.192 

inc 207 385 14.40% 121 260 6.50% 1.257 

misex1 172 211 18.50% 125 142 9.00% 1.464 

rd53 72 87 21.60% 46 45 13.50% 0.418 

rd73 214 180 30.80% 122 78 23.50% 0.308 

rd84 622 282 30.40% 306 131 22.50% 0.195 

sao2 297 504 28.70% 219 347 15.40% 0.421 

Z5xp1 82 272 8.40% 56 167 5.10% 0.747 

Z9sym 203 143 36.70% 135 73 27.70% 0.236 

z4 87 112 0.00% 57 58 0.00% 0.2 

Geomean 181.7237 217.8252   117.8986 124.9878   0.458512 

 

Table 4.1. Total gate inputs (#TI) for XAX EPOE and ESPP [7] synthesis of selected 

MCNC benchmark functions. 

4.9.2 Experiment 2. 

In the first experiment the incompletely specified function “bw” was treated as a 

completely specified function in which the DC-minterms were included in the OFF-set. 

In order to quantify the performance of the two XAX EPOE algorithms, the second 

experiment synthesized a number of incompletely specified functions (including “bw”) 

with the two XAX EPOE algorithms. As can be seen in Table 4.2, the CMOS cost 

percentage difference between the two algorithms varied widely, from near 0 to 

approximately 50%. This variation indicates that improvements were highly function 

dependent. Furthermore, because POE expression computation is heuristic, it is possible 
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for the completely specified EPOE synthesis algorithm to perform better than the 

incompletely specified EPOE synthesis algorithm. 

 

Table 4.2. Total gate inputs (#TI) of both XAX EPOE synthesis methods of selected 

incompletely specified MCNC and Espresso benchmark functions. 

4.9.3 Experiment 3. 

In order to have a more modern test of the XAX EPOE algorithms, in the third 

experiment a number of benchmark functions of up to 26 primary inputs which had 

previously been synthesized with EXORCISM4 [25] were selected. All functions were 

synthesized again with EXORCISM4, and both the EXORCISM4 results and the XAX 

EPOE results were compared as one multi-output circuit; specifically, the function “spla” 

was synthesized with the XAX EPOE algorithm for incompletely specified functions and 

all others with the XAX EPOE algorithm for completely specified functions. This would 

allow the cube sharing across multiple outputs that occurs in EXORCISM4 to be 

compared with the Exclusive-OR-sum-of-input sharing across multiple outputs that 

occurs in the XAX EPOE algorithms. While it is possible for the XAX EPOE algorithms 

to share POE expressions across multiple outputs, the greedy-search algorithm rarely 

Function 

#TI XAX 

-s 

(CMOS)

#TI XAX 

-s -d 

(CMOS)

% diff. 

#TI XAX 

-s 

(FPGA)

#TI XAX 

-s -d 

(FPGA)

% diff. 
XAX -s 

Time (s)

XAX -s -d 

Time (s)

bw 613 581 5.20% 409 388 5.10% 0.83 0.62

ex1010 5964 5032 15.60% 3620 2416 33.30% 2.79 1.10

exp 954 870 8.80% 638 564 11.60% 0.91 1.73

inc 385 314 18.40% 260 207 20.40% 0.85 0.44

misex3c 3668 3221 12.20% 2544 2140 15.90% 10.89 11.56

pdc 4506 2339 48.10% 3522 1636 53.50% 63.80 52.59

spla 4837 4817 0.40% 3833 3793 1.00% 67.58 61.57

Geomean 1950.36 1617.63 1356.11 1054.86 5.06 4.10
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finds such POE expressions; increasing POE expression sharing is a topic for future 

work. 

The experiment 3 results in Table 4.3 show that the XAX EPOE algorithms 

performed much better on average, but in a number of specific functions EXORCISM4 

performed better. While it is difficult to predict which method would produce the best 

results, some general observations would be that XAX EPOE synthesis tends to work 

better than ESOP with sparse functions, symmetric functions, and autosymmetric 

functions (i.e., those functions which can be GF(2) transformed into a simpler form). In 

the majority of functions EXORCISM4 took what appears to be exponentially less time 

than the XAX EPOE algorithms took, and this would seem to follow from a comparison 

of two-level logic with three-level logic; however, in a few benchmarks where 

EXORCISM4 was dealing with a relatively large cube list the time difference between 

two-level ESOP synthesis and three-level EPOE synthesis was reversed. One direction 

for future research would be to create an ESOP-postprocessing algorithm to bridge the 

gap between these two synthesis methods. The best XAX EPOE results used approximate 

cover criterion values ranging from 0.5104167 through 0.916667. 
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Table 4.3. Total CMOS gate inputs (#TI) for EXORCISM4, EXORCISM4 with 

quality=16, and XAX EPOE/EPOE with don’t cares using multi-output synthesis of 

selected Espresso benchmark functions. 

4.9.4 Experiment 4. 

Because the XAX program has numerous command line options to control POE 

expression selection, the fourth experiment was devised as a tournament to see which 

options performed best. The XAX EPOE algorithm for completely specified functions 

was used for all tests, and the results were generated as a collection of single output 

syntheses. Three modes were compared, the default mode, the greedy mode, and a 

random mode. Within both the default mode and greedy mode tests, the maximum 

number of input variables in each 𝑦𝑖 sum was either one, two, three, or unrestricted. In 

the random mode tests whenever two 𝑦𝑖 expressions were found to cover an equivalent 

number of minterms, selection would change from the 𝑦𝑖 expression found first to the one 

Function #TI EX4 Time EX4
#TI EX4 -

q16

Time EX4     

-q16

#TI XAX -

o   -s
XAX Time (s)

add6 1354 0.05 1282 0.38 217 0.173

alu4 6097 0.61 5913 4.22 3766 0.747

cps 7974 0.19 7658 2.19 5500 1660.488

duke2 1745 0.02 1648 0.22 1918 149.53

ex5 2412 0.03 2370 0.31 1072 0.8

in7 498 0.001 478 0.04 545 838.912

misex3 9705 1.8 9586 16.94 10384 1.985

spla (dc) 6300 0.37 6132 4.29 4054 56.968

table3 4964 0.06 4925 0.85 5180 2.243

table5 4703 0.05 4653 0.68 5672 10.538

vg2 2616 0.04 2615 0.49 1605 815.177

Geomean 3306 0.0722 3217 0.863 2310 17.492
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found later based on command-line options: “-r 0” denotes changing selection 1/n of the 

time, “-r 1” denotes changing selection 1/2n of the time, “-r 2” denotes changing 

selection 1/4n of the time, and “-r 3” denotes changing selection 1/8n of the time,. 

The CMOS cost results for experiment 4 are shown in Table 4.4. The best 

performing mode was the greedy mode using an unrestricted number of input variables in 

each 𝑦𝑖 sum, although several other modes performed similarly. At the most extreme the 

default mode results when using an unrestricted number of input variables in each 𝑦𝑖 sum 

had 8.39% more gate inputs than the best-performing mode. The relative performance of 

the different modes was similar considering FPGA costs. 

 

Table 4.4. Total CMOS gate inputs (#TI) for XAX EPOE default mode, greedy 

mode, and random mode syntheses of selected MCNC benchmark functions. 

4.9.5 Experiment 5. 

The fifth experiment repeated the fourth experiment with the XAX SPOE 

algorithm. Again the best performing mode was the greedy mode using an unrestricted 

Function -i 1 -i 2 -i 3 without -i -i 1 -i 2 -i 3 without -i -r 0 -r 1 -r 2 -r 3 Best % diff.

bw 782 654 613 613 782 654 613 613 628 630 608 613 608 0.82%

clip 1869 566 411 423 1869 602 411 411 437 431 423 424 411 2.84%

con1 66 56 56 56 66 56 56 56 56 56 56 56 56 0.00%

inc 443 387 387 387 443 391 387 387 393 394 378 387 378 2.33%

misex1 250 215 211 211 250 215 211 211 241 227 211 211 211 0.00%

rd53 261 135 103 87 261 135 103 87 82 87 87 82 82 5.75%

rd73 1367 548 323 180 1367 558 323 168 208 196 198 192 168 6.67%

rd84 2895 1096 653 282 2895 1148 582 281 328 309 317 268 268 4.96%

sao2 748 504 508 504 748 496 492 492 520 510 504 500 492 2.38%

Z5xp1 713 318 272 272 713 318 272 272 279 273 276 272 272 0.00%

Z9sym 828 165 153 143 828 165 153 138 150 137 131 140 131 8.39%

z4 375 128 112 112 375 126 112 112 112 111 112 112 111 0.89%

Default Mode Greedy Mode Random Mode
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number of input variables in each 𝑦𝑖 sum, although several of the particular functions for 

which the greedy mode performed best were different than in the fourth experiment. At 

the most extreme the default mode results when using an unrestricted number of input 

variables had 10.45% more gate inputs than the best-performing mode. As in the fourth 

experiment the relative performance of the different modes was similar considering 

FPGA costs. It was then decided to focus on CMOS total number of gate inputs, which 

parallels the SPP comparisons performed by others previously [18, 31]. 

 

Table 4.5. Total CMOS gate inputs (#TI) for XAX SPOE default mode, greedy 

mode, and random mode syntheses of selected MCNC benchmark functions. 

4.9.6 Experiment 6. 

The sixth experiment compared the XAX SPOE algorithm with the SPPk 

algorithm of Ciriani [30] with respect to literals and synthesis time. While comparing 

literal counts in three-level logic could be considered academic, it does allow for the 

Function -i 1 -i 2 -i 3 without -i -i 1 -i 2 -i 3 without -i -r 0 -r 1 -r 2 -r 3 Best % diff.

bw 478 478 506 506 478 476 489 489 631 594 535 526 476 5.93%

clip 1306 695 514 453 1306 660 514 458 488 507 482 429 429 5.30%

con1 36 32 35 35 36 32 35 35 71 35 35 67 32 8.57%

inc 237 263 249 249 237 272 269 269 337 291 287 253 237 4.82%

misex1 163 176 180 180 163 176 180 180 226 184 192 192 163 9.44%

rd53 191 100 80 72 191 100 80 72 72 72 72 72 72 0.00%

rd73 1011 431 274 215 1011 431 282 207 295 239 286 215 207 3.72%

rd84 2292 919 613 421 2292 915 608 398 505 577 437 445 398 5.46%

sao2 601 501 520 555 601 499 497 544 672 622 605 584 497 10.45%

Z5xp1 669 299 305 305 669 299 292 292 352 312 317 309 292 4.26%

Z9sym 861 216 216 232 861 216 216 232 268 236 244 220 216 6.90%

z4 513 172 106 106 513 166 106 106 106 106 106 106 106 0.00%

Default Mode Greedy Mode Random Mode
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XAX SPOE algorithm to be run with a single postprocessing stage. (The XAX command-

line option “-p” selects use of a single postprocessing stage.)  

The SPPk algorithm is a heuristic EXOR-AND-OR synthesis program for 

completely specified functions which uses the parameter k to control the number of prime 

pseudoproduct implicants considered in a cover for a function. In its most speculative 

mode, SPPk with k = 0 (or SPP0), computation time is exponentially faster than in an 

exact SPP synthesis; SPP0 syntheses produced a number of literals comparable to one 

half the number of literals in an exact SOP synthesis plus one half the number of literals 

in an exact SPP synthesis. Table 4.6 illustrates that XAX SPOE consistently 

outperformed SPP0 in literal counts; also, the synthesis times were typically significantly 

better for the XAX SPOE algorithm, assuming a speedup adjustment of 50 for integer 

performance of i7-2600K/Pentium III 450. 

 

Table 4.6. Literals for XAX SPOE using a single postprocessing stage, SPPk where k = 0 

(SPP0), and Exact SPP [30] synthesis of selected Espresso benchmark functions. 

Function
Literals 

XAX -o -s -p

XAX 

Time (s)
Literals SPP0

SPP0 Time 

(s/50)

Literals 

SPP

SPP Time 

(s/50)  

add6 189 0.83 1212 0.32 * *

addm4 684 0.92 939 149.08 520 546.8

amd 610 0.313 905 1936.52 * *

dist 541 0.26 639 0.46 422 1238.5

f51m 166 0.31 216 0.26 146 6.78

m4 783 0.75 785 1.28 646 362.46

max1024 882 0.53 1098 3.84 * *

max512 676 0.4 693 0.8 517 252.18

mlp4 522 0.42 643 0.14 318 15.56

newcond 135 0.15 166 0.24 122 311.74

Geomean: 433.24 0.43 624.78 2.07 * *
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4.9.7 Experiment 7. 

The seventh experiment compared the SPOE algorithm with exact minimum SOP 

and exact minimum SPP in terms of CMOS cost [31]. Compared to the exact minimum 

SPP method in the sixth experiment, this later algorithm had specialized methods for 

remapping autosymmetric functions to make synthesis more tractable; this approach 

could be applied to XAX algorithms (or in general any synthesis algorithm), albeit at a 

time penalty for functions which are not autosymmetric. The results are shown in Table 

4.7. The XAX SPOE algorithm CMOS costs were typically closer to the exact minimum 

SPP costs than the exact minimum SOP costs. 

 

Table 4.7. Total CMOS gate inputs (#TI) for exact-minimum SOP, XAX SPOE, and 

Exact SPP [31] synthesis of selected Espresso benchmark functions. 

4.9.8 Experiment 8. 

The eighth experiment compared the XAX SPOE algorithm in the greedy mode 

with the ORAX algorithm [18]. The ORAX algorithm remaps autosymmetric functions 

[17] and applies exact-minimum SOP synthesis on the result. For some autosymmetric 

functions this approach produced results which are not only lower in CMOS cost but also 

Function #TI SOP #TI XAX -o -s
XAX 

Time (s)

#TI Exact 

SPP

5xp1 341 297 0.78 64

adr4 415 140 0.20 117

life 746 209 0.50 180

mlp4 853 817 0.30 524

rd53 171 72 0.70 64

rd73 883 215 0.70 207

rd84 2029 421 0.10 420

z4 311 106 0.60 100

Geomean: 551.68 216.93 0.40 158.23
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require less time. Table 4.8 shows that the greedy mode XAX SPOE syntheses typically 

had lower CMOS costs and exponentially longer synthesis times than ORAX did. 

 

Table 4.8. Total CMOS gate inputs (#TI) for XAX SPOE and ORAX synthesis of 

selected Espresso benchmark functions. 

 

4.10 Conclusion 

In this section the theory of EXOR-AND-based synthesis was expanded and 

related to previous work [12]. Three spectral algorithms for EPOE and SPOE were 

presented. All three algorithms use a heuristic approach rather than relying on an input 

cube list or computing prime implicant expressions. Compared to heuristic SPP methods, 

the spectral methods are fast, synthesizing functions of up to 26 inputs at a rate of (at 

worst) approximately 6 1/2 minutes per output. In terms of classical digital technology, 

the results for EPOE synthesis were variable, sometimes better than ESPP synthesis and 

Function
#TI XAX -

o -g -s

XAX Time 

(s)
#TI ORAX

ORAX 

Time (s/50)

add6 327 0.57 1377 0.019

adr4 140 0.28 233 0.0028

dekoder 55 0.18 433 *

f51m 263 0.67 395 0.0044

m1 197 0.159 183 0.0034

max1024 1308 0.648 1146 0.015

newcwp 39 0.3 41 0.0016

radd 140 0.39 233 0.002

rd53 72 0.3 83 0.0012

rd73 207 0.42 495 0.0014

sqn 119 0.27 219 0.0014

wim 94 0.423 87 *

z4 106 0.77 157 0.0024

z9sym 232 0.55 368 0.0022

Geomean: 152.9 0.403 255.2 0.003
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other times worse than ESOP synthesis; the results for SPOE synthesis were more 

consistently superior to heuristic SPP synthesis, but provide no guarantee that 

performance will be superior to SOP synthesis. Consequently the presented algorithms 

are better suited to tournament or hybrid synthesis implementation than to stand-alone 

implementation.  
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5 

Summary 

New methods for linear reversible circuit synthesis and EXOR-AND-based circuit 

synthesis were presented herein. The new linear reversible circuit synthesis methods are 

the AECM method, the MCG method, and the GJCO method variants. Three new EXOR-

AND-based circuit synthesis methods were implemented in the program XAX: an EPOE 

synthesis method for completely specified functions, an EPOE synthesis method for 

incompletely specified functions, and an SPOE synthesis method for incompletely 

specified functions [12]. 

The linear reversible circuit experiments demonstrated that the new methods 

consistently outperformed previous methods in terms of both CNOT gate counts and 

quantum gate counts. One unexpected result was that for small circuits the MCG method 

often produced the lowest quantum gate counts of all the methods, even though it was not 

designed to emphasize pseudo-Hadamard-inverse/pseudo-Hadamard gate pairs. Further, 

MCG can readily be adapted to produce permutation syntheses. Considering that building 

reliable reversible quantum computers of up to 10 qubits still poses technical challenges, 

it seems worthwhile to develop variants of MCG which further reduce gate counts. For 

large linear reversible circuits the GJCO variants could be extended numerous ways, such 

as using deeper searches to achieve better subcolumn eliminations or through 

evolutionary approaches. 

To facilitate the development of EXOR-AND-based circuit synthesis methods, 

terms relating to POE expressions have been formally defined [12] and extended. Among 
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these new terms is the LCC operation and product transformation. Three heuristic 

EXOR-AND-based circuit synthesis algorithms were presented, as well as LCC-based 

postprocessing algorithms. These algorithms were implemented in the program XAX. In 

the XAX EPOE and SPOE experiments, product transformation typically achieved 

additional gate count reduction at a reasonable time penalty. In the XAX EPOE 

experiments, using an approximate cover criterion of 𝑤 = 2
3⁄  was typically not the best; 

consequently a multi-pass approach is suggested for best results using a small number of 

different approximate cover criterion values. In the XAX SPOE experiments, the best 

results were achieved using both a greedy approach and performing a small number of 

passes using a different maximum number of literals per EXOR factor (as shown in Table 

4.5, and comparing Table 4.8 with previous work [12]). Future work in this area would 

be to investigate the speedup gained by performing XAX synthesis in hardware and 

developing iterative extensions of the EXOR-AND-based circuit synthesis algorithms.  
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