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Abstract

We have developed an efficient computational framework for simulating mul-
tiple earthquake cycles with off-fault plasticity. The method is developed
for the classical antiplane problem of a vertical strike-slip fault governed by
rate-and-state friction, with inertial effects captured through the radiation-
damping approximation. Both rate-independent plasticity and viscoplastic-
ity are considered, where stresses are constrained by a Drucker-Prager yield
condition. The off-fault volume is discretized using finite differences and
tectonic loading is imposed by displacing the remote side boundaries at a
constant rate. Time-stepping combines an adaptive Runge-Kutta method
with an incremental solution process which makes use of an elastoplastic
tangent stiffness tensor and the return-mapping algorithm. Solutions are
verified by convergence tests and comparison to a finite element solution.
We quantify how viscosity, isotropic hardening, and cohesion affect the mag-
nitude and off-fault extent of plastic strain that develops over many ruptures.
If hardening is included, plastic strain saturates after the first event and the
response during subsequent ruptures is effectively elastic. For viscoplasticity
without hardening, however, successive ruptures continue to generate addi-
tional plastic strain. In all cases, coseismic slip in the shallow sub-surface is
diminished compared to slip accumulated at depth during interseismic load-
ing. The evolution of this slip deficit with each subsequent event, however,
is dictated by the plasticity model. Integration of the off-fault plastic strain
from the viscoplastic model reveals that a significant amount of tectonic off-
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set is accommodated by inelastic deformation (∼0.1 m per rupture, or ∼10%
of the tectonic deformation budget).

Keywords: earthquake cycle, plasticity, Drucker-Prager, finite difference
method

1. Introduction1

Field observations reveal regions of highly damaged rock (containing2

abundant microfractures) surrounding a fault core, which many attribute3

to thousands of years of seismogenic cycling during which earthquakes shat-4

ter the rocks in the vicinity of the fault (Chester and Logan, 1986; Chester et5

al., 1993; Shipton et al., 2005; Mitchell and Faulkner , 2009; Faulkner et al.,6

2010; Ben-Zion and Sammis , 2011). Understanding how an earthquake will7

propagate is intimately tied to the evolution of these damage zones. Im-8

portant and unsolved problems include the relationship between the degree9

of off-fault yielding and mechanical properties of fault zone material, how10

damage zones evolve with increasing cumulative slip, and how damage zones11

affect subsequent rupture.12

Current models for dynamic rupture have led to much insight into earth-13

quake propagation, the generation of high-frequency ground motion, and the14

influence of plasticity on rupture propagation (Templeton and Rice, 2008;15

Ma and Andrews , 2010; Dunham et al., 2011a,b; Kaneko and Fialko, 2011;16

Xu et al., 2012a,b; Shi and Day , 2013; Gabriel et al., 2012, 2013). Although17

the inclusion of a plastic material response has been shown to reduce stress18

and slip velocities at the rupture front to reasonable values, little work has19

been done to understand the evolution of a damage zone (and its impact on20

rupture) over multiple event sequences. In particular, most dynamic rupture21

models currently make the assumption of a uniform background stress and22

are limited to single-event simulations where rupture is artificially initiated23

via a stress perturbation imposed on the fault. Earthquake cycle models,24

on the other hand, generate self-consistent initial conditions because of their25

ability to handle varying time scales. Cycle models developed in the bound-26

ary integral or boundary element context were limited to simulations in a27

uniform, linear elastic whole- or half-space (Lapusta et al., 2000; Tullis et al.,28

2012). Recent developments, however, have shown how to incorporate more29

realistic features (material heterogeneities or inelastic deformation, for exam-30

ple) into the earthquake cycle framework (Johnson and Segall , 2004; Kaneko31

2
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et al., 2011; Barbot et al., 2012; Aagaard et al., 2013; Erickson and Dunham,32

2014; Thompson and Meade, 2016; Allison and Dunham, 2017).33

In this work we study the role of plasticity throughout the earthquake34

cycle. The computational method is developed for the classical antiplane35

problem of a vertical strike-slip fault governed by rate-and-state friction.36

The off-fault material is idealized as a Drucker-Prager elastic-plastic solid37

and stresses are constrained by a depth-dependent yield condition. Inertia38

is approximated with radiation damping. Within the context of a time-39

stepping method, we solve the resulting equilibrium equation (a nonlinear,40

elliptic partial differential equation) for the displacement increment.41

Although computational plasticity is most commonly addressed in a finite42

element framework, we develop a finite difference method, as the latter is43

easy to program, efficient, and can be applied in a straightforward manner in44

order to obtain a numerical approximation to the solution (Scalerandi et al.,45

1999). Recent work in summation-by-parts finite difference methods has46

furnished high-order accurate schemes that enforce boundary and interface47

conditions in a stable manner (through the simultaneous-approximation-term48

technique) (Kreiss and Scherer , 1974, 1977; Nordström et al., 2007; Svärd49

and Nordström, 2014). These methods provide a framework for proving50

convergence for linear and nonlinear problems, which is fundamental in order51

to obtain credible numerical approximations. In this work, an initial analysis52

is done of the underlying continuum problem to show it satisfies an energy53

estimate (in this case, dissipation of mechanical energy in the absence of non-54

trivial boundary conditions or source terms). The computational method55

then provides a spatial discretization that mimics the energy estimate of the56

continuum problem and proves stability of the method.57

The paper is organized as follows: In section 2 we state the continuum58

problem solved in this work. A rate-and-state frictional fault is embedded in59

an elastoplastic solid and the equation for static equilibrium is solved within60

the context of a time-stepping method that imposes remote loading and fault61

slip (in a manner consistent with a fault friction law), deferring specific de-62

tails to later sections. Section 3 provides details of the Drucker-Prager model63

for rate-independent plasticity that defines the constitutive relation (as vis-64

coplasticity is a straight-forward extension of the associated algorithms, de-65

tailed in section 7.2). This is described in terms of the material response at66

a particular point in the solid, and provides a procedure for evolving stress67

and plastic strain given a history of total strain. Section 4 applies the results68

of section 3, detailing the derivation of the incremental form of the contin-69

3
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uum problem of section 2 and obtaining the governing equation solved within70

the time-stepping method. In section 5 we show conditions under which the71

resulting boundary value problem for the solid satisfies the Drucker stabil-72

ity condition. We also establish conservation of the incremental internal73

energy in the absence of nontrivial boundary conditions. Section 6 details74

the spatial discretization, specifically a finite difference method for variable75

coefficients satisfying a summation-by-parts (SBP) rule with weak enforce-76

ment of boundary conditions through the simultaneous-approximation-term77

(SAT) technique. The combined method will be denoted throughout the78

paper as SBP-SAT. We show that the semi-discrete problem using the SBP-79

SAT method mimics the energy balance of the continuum problem. In sec-80

tion 7 we describe the time stepping method for the overall problem. The81

solid displacement, stress, and plastic strain are updated in response to time-82

dependent boundary conditions obtained by updating fault slip in a manner83

consistent with the friction law. At each time step we solve numerically84

the incremental equilibrium equation for the solid using an iterative Newton85

procedure with the return mapping algorithm to calculate stresses consistent86

with the constitutive theory. The extension of the algorithms to viscoplas-87

ticity is also detailed. In section 8 we present convergence tests and compar-88

isons with numerical solutions from a finite element code to verify our finite89

difference method. In section 9 we apply our method to earthquake cycle90

simulations, and conclude in section 10 with a discussion.91

2. The Continuum Problem92

In this work we assume two-dimensional antiplane shear deformation. The93

equation for static equilibrium in the medium is given by94

∂σxy
∂y

+
∂σxz
∂z

= 0, (y, z) ∈ [−Ly, Ly]× [0, Lz], (1)95

where σxy and σxz are the relevant components of the stress tensor σ. The96

constitutive relation (Hooke’s law) relates stress to elastic strain through the97

relations98

σxy = µ(γxy − γpxy), (2a)99

σxz = µ(γxz − γpxz), (2b)100

4
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Figure 1: Schematic diagram for antiplane shear deformation where u(t, y, z) is the out-
of-plane displacement. We displace the sides y = ±Ly at a constant rate, with free surface
conditions on the top and bottom. A frictional fault at y = 0 is embedded in an elastic-
plastic medium.

for out-of-plane displacement u(t, y, z), shear modulus µ, total engineering101

strains102

γxy = ∂u/∂y (3a)103

γxz = ∂u/∂z, (3b)104

and plastic engineering strains γpxy, γ
p
xz. Plastic deformation evolves according105

to a flow rule of the form106

γ̇pxy = λPxy, (4a)107

γ̇pxz = λPxz, (4b)108

where λ is the magnitude of the plastic strain rate (a positive, scalar function109

of the stress), which is nonzero only when plastic deformation occurs. Pxy, Pxz110

are dimensionless, (generally nonlinear) functions of the stress, determine111

how the plastic strain rate is partitioned between different components, and112

specified by the particular plasticity model (Chen and Han, 1988; Simo and113

Hughes , 1998). More details are given in section 3.114

A vertical, strike slip fault governed by a rate-and-state friction law lies115

at the interface y = 0 (Dieterich, 1979; Ruina, 1983) (see Figure 1) where116

we impose the condition that the jump in displacement is equal to the fault117

slip, ∆u, namely118

u(t, 0+, z)− u(t, 0−, z) = ∆u(t, z). (5)119

5
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In addition, we require that the components of the traction vector on the120

fault be equal and opposite across the interface, which, for antiplane motion,121

reduces to the second interface condition122

σxy(t, 0
+, z) = σxy(t, 0

−, z). (6)123

Slow tectonic loading is imposed by displacing the remote boundaries at a124

constant relative rate Vp and the top and bottom boundaries are assumed125

to be free surfaces. We assume the solution u is anti-symmetric across the126

fault interface (i.e. u(t, y, z) = −u(t,−y, z) for 0 ≤ y ≤ Ly) so that (6)127

is satisfied by construction, and so we may focus on one side of the fault,128

namely (y, z) ∈ [0, Ly]× [0, Lz] (see Erickson and Dunham (2014) for details129

and a discussion on the choice of boundary conditions). For the one-sided130

problem the boundary conditions are thus given by131

u(t, 0, z) = ∆u/2, (7a)132

u(t, Ly, z) = Vpt/2, (7b)133

σxz(t, y, 0) = 0, (7c)134

σxz(t, y, Lz) = 0. (7d)135

In the rate-and-state friction framework, shear stress on the fault, denoted136

τ (and related to σxy as detailed below), is equated with frictional strength137

through the relation138

τ = σnf(V, ψ), (8)139

where140

V = ∆u̇ (9)141

denotes the slip velocity, ψ is an internal state variable, σn is the effective142

normal stress and f is a friction coefficient that takes the particular form143

f(V, ψ) = a sinh−1

(
V

2V0

eψ/a
)

(10)144

(Dieterich, 1979; Ruina, 1983). We assume the state variable ψ evolves to145

the aging law form of evolution, namely146

dψ

dt
=
bV0

Dc

(
e(f0−ψ)/b − V

V0

)
. (11)147

6

This article is licensed under Attribution-NonCommercial-NoDerivs [CC BY-NC-ND]



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

With the aging law, state can evolve in the absence of slip, and therefore148

may be more suitable for modeling the interseismic period. In equations (10)149

and (11), a and b are dimensionless parameters quantifying the direct effect150

and state evolution, respectively, f0 is a reference friction at a reference slip151

velocity V0, and Dc is the state evolution distance (Marone, 1998).152

In section 7 we describe how the slip ∆u is obtained in a manner consistent153

with the fault friction law (8), where τ is related to σxy through the following.154

Solving the equilibrium equation (1) provides the quasistatic stresses σxy, σxz.155

Since disregarding inertia entirely is known to cause slip velocity V → ∞156

in finite time (after which no solution exists), we incorporate the radiation157

damping approximation to inertia (Rice, 1993). Thus τ is defined to be158

τ = σxy(t, 0, z)− ηradV (12)159

where −ηradV is the stress due to radiation damping and ηrad = µ/(2cs)160

is half the shear-wave impendance (not to be confused with viscosity η for161

viscoplastic flow) for shear wave speed cs =
√
µ/ρ and material density ρ.162

3. Elastoplastic Constitutive Theory163

In this section we review the Drucker-Prager elastoplastic constitutive164

theory that is used to evolve stress and plastic strain (in response to an165

imposed total strain history at a particular material point).166

3.1. Drucker-Prager Plasticity167

Throughout this work we assume infinitesimal strains. Hooke’s law (intro-168

duced in (2) for the antiplane setting) can be expressed generally by169

σ = C : (ε− εp) (13)170

where ε and εp are the total and plastic strain tensors. The fourth order171

elasticity tensor Cijkl for an isotropic solid is given by172

Cijkl = Kδijδkl + µ (δikδjl + δilδjk − (2/3)δijδkl) , (14)173

where K is the bulk modulus. Stresses in the medium are constrained by a174

Drucker-Prager yield condition, see Figure 2. For rate-independent response175

with linear, isotropic hardening, the yield function is given by176

F (σ, γp) = τ̄ − (σY + hγp), (15)177

7
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−σkk/3

τ̄

hγp + c cos(φ)

elastic domain, F < 0

yield surface, F = 0
plastic response

elastic response

inadmissible

sin(φ)
1

Figure 2: The Drucker-Prager yield condition for yield function F . Elastic response occurs
for states of stress that lie below the yield surface, while plastic response occurs for states
on the surface. States above the yield surface are inadmissible. The slope of the line
is defined by the angle of internal friction φ, while the y−intercept depends further on
cohesion c and hardening modulus h.

where γp is the hardening parameter (equivalent plastic strain, defined below)178

and h is the hardening modulus. In this work we assume h > 0 is constant (we179

say the response is strain-softening if h < 0, and perfectly plastic if h = 0).180

The elastic domain in stress space is given by Eσ = {(σ, γp) : F (σ, γp) ≤ 0}181

and plastic flow ensues when the yield condition182

F (σ, γp) = 0 (16)183

is met. The second invariant of the deviatoric stress is184

τ̄ =
√
sijsij/2 (17)185

for sij = σij − σkkδij/3. The yield stress is given by186

σY = −(σkk/3) sinφ+ c cosφ, (18)187

where c is the cohesion and φ is the internal friction angle. Plastic strain188

evolves according to the flow rule (introduced in equation (4)) given by189

ε̇pij = λPij, (19)190

8
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where λ =
√

2ėpij ė
p
ij is the deviatoric plastic strain rate for epij = εpij−εpkkδij/3.191

Thus192

γp(t) =

∫ t

0

λ(s) ds, (20)193

and Pij (specified in the next section) quantifies how plastic strain is dis-194

tributed between different components of the plastic strain rates. The con-195

stitutive theory is closed by including the Kuhn-Tucker loading/unloading196

(complementarity) conditions197

λ ≥ 0, F ≤ 0, λF = 0, (21)198

(which ensure that plastic flow can only occur if stresses lie on the yield199

surface) and the consistency (persistency) condition200

λḞ = 0, (22)201

so that if plastic flow occurs, the stress state must persist on the yield surface202

for some positive period of time.203

3.2. Elastoplastic Tangent Stiffness Tensor204

In rate form, Hooke’s law (13) expresses stress rate in terms of total strain205

rate, namely206

σ̇ij = Cep
ijklε̇kl, (23)207

where the continuum elastoplastic tangent stiffness tensor Cep
ijkl = Cep

ijkl(σ)208

is a nonlinear function of stress. We derive this tensor following Simo and209

Hughes (1998), by first taking the time derivative of the yield function, and210

then using (19) and the time derivative of (20):211

Ḟ =
∂F

∂σij
σ̇ij +

∂F

∂γp
γ̇p =

∂F

∂σij
Cijkl(ε̇kl − ε̇pkl) +

∂F

∂γp
γ̇p212

=
∂F

∂σij
Cijklε̇kl − λ(

∂F

∂σij
CijklPkl −

∂F

∂γp
). (24)213

Assuming that214

(
∂F

∂σij
CijklPkl −

∂F

∂γp
) > 0, (25)215

9
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(in order to ensure consistency with (21)-(22), see Simo and Hughes (1998)216

for more details), we can solve Ḟ = 0 for λ, namely217

λ =
〈 ∂F
∂σij

Cijklε̇kl〉
∂F
∂σmn

CmnopPop − ∂F
∂γp

, (26)218

where the brackets denote the ramp function 〈x 〉 = x+|x|
2

. Taking the time219

derivative of the stress and substituting in the flow rule yields220

σ̇ij = Cijkl(ε̇kl − λPkl) = Cijkl

(
ε̇kl −

〈 ∂F
∂σmn

Cmnopε̇op〉
∂F
∂σqr

CqrstPst − ∂F
∂γp

Pkl

)
, (27)221

which allows us to express the continuum elastoplastic tangent stiffness tensor222

Cep
ijkl =




Cijkl if λ = 0,

Cijkl −
CijopPopCmnkl

∂F
∂σmn

∂F
∂σqr

CqrstPst− ∂F
∂γp

if λ > 0.
(28)223

Note that Cep is symmetric in the same manner as the elastic tensor given224

in (14) (namely, that Cep
ijkl = Cep

jikl = Cep
ijlk = Cep

klij), if the flow rule (19) is225

associative (i.e. if Pij = ∂F
∂σij

). For Drucker-Prager plasticity,226

Pij = sij/(2τ̄) + (β/3)δij, (29)227

where β determines the degree of plastic dilatancy. Thus the flow rule is228

associative only if β = sin(φ).229

Expression (28) is thus230

Cep
ijkl =




Cijkl if λ = 0,

Cijkl −
µ2

τ̄2 sijskl+
µK
τ̄

[sin(φ)sijδkl+βδijskl]+βK
2 sin(φ)δijδkl

µ+βK sin(φ)+h
if λ > 0

(30)231

and associativity (symmetry of Cep
ijkl) holds in the general case if β = sinφ.232

4. The Governing Equation in Incremental Form233

Because of the nonlinearity of the constitutive relation (2), a typical ap-234

proach taken is to consider the rate form, given by (23), and posit the equi-235

librium equation (1) in terms of an infinitesimal displacement increment du236

10
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(Chen and Han, 1988; Simo and Hughes , 1998; Dunne and Petrinic, 2006).237

In this section we derive the incremental equilibrium equation as well as the238

specific forms of the relevant elastoplastic moduli. Note that although du is239

an infinitesimally small increment in the continuum setting, it is taken to be240

finite when the problem is discretized in time as done in section 7.241

In the case of antiplane strain, the only non-zero strains are γxy, γxz.242

For notational purposes, we therefore denote the relevant components of243

the fourth-order tensor C as Cxyxy = C11, Cxyxz = C12, Cxzxy = C21, and244

Cxzxz = C22. We use similar notation to denote relevant components of the245

elastoplastic tangent stiffness tensor, Cep, introduced in the previous section.246

Using the rate form (23) allows us to replace (2) with an expression solely247

in terms of increments of stress dσ and strain dγ, namely248

dσxy = Cep
11dγxy + Cep

12dγxz, (31a)249

dσxz = Cep
21dγxy + Cep

22dγxz, (31b)250

where251

dγxy =
∂du

∂y
, dγxz =

∂du

∂z
(32)252

are the incremental total engineering strains and du is the (infinitesimal)253

displacement increment.254

Relations (31), along with the strain-displacment relations (32) are substi-255

tuted into the incremental form of the equilibrium equation (1) and produce256

the nonlinear equilibrium equation for du given by257

∂

∂y

[
Cep

11

∂du

∂y
+ Cep

12

∂du

∂z

]
+

∂

∂z

[
Cep

21

∂du

∂y
+ Cep

22

∂du

∂z

]
= 0. (33)258

Recall that the elastoplastic moduli Cep
11 , C

ep
12 , C

ep
21 and Cep

22 in equation (33)259

depend nonlinearly on the stress. Forming the 2× 2 matrix260

C̄ep(σ) =

[
Cep

11 Cep
12

Cep
21 Cep

22

]
(34)261

(matrix C̄ is formed analogously), we derive conditions in section 5 such that262

det C̄ep > 0, as is required for well-posedness.263

Specified background stresses in the medium, denoted σ0
xx, σ

0
yy, σ

0
zz are264

depth variable (see section 9), and the initial background shear stresses are265

given by σ0
xy and σ0

xz. Note that from (30), antiplane deformation can activate266

11
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changes in normal stresses (for example, dσxx = Cep
xxxydγxy+C

ep
xxxzdγxz) unless267

the relevant components of the tangent stiffness tensor are zero. This scenario268

can be avoided with the assumption β = 0 and σ0
xx = σ0

yy = σ0
zz, which we269

make for the rest of this work.270

In this work we assume isotropic elastic moduli C11 = C22 = µ, and271

C12 = C21 = 0.272

For antiplane strain the specific components for the elastoplastic stiffness273

tensor (30) are thus274

Cep
11 =

{
µ if λ = 0,

µ− µσ2
xy/τ̄

2

1+h/µ
if λ > 0,

(35)275

276

Cep
22 =

{
µ if λ = 0,

µ− µσ2
xz/τ̄

2

1+h/µ
if λ > 0,

(36)277

and278

Cep
12 = Cep

21 =

{
0 if λ = 0,

−µσxyσxz/τ̄2

1+h/µ
if λ > 0.

(37)279

Note that matrix C̄ep is symmetric and in the antiplane setting, Drucker-280

Prager reduces to von-Mises plasticity. Equation (17) reduces to281

τ̄ =
√
σ2
xy + σ2

xz (38)282

and the corresponding flow rule (19) is given by283

γ̇pxy = λ
σxy
τ̄
, γ̇pxz = λ

σxz
τ̄
. (39)284

The yield stress (18) reduces to285

σY = −(σ0
kk/3) sinφ+ c cosφ. (40)286

5. Incremental Energy Balance287

We now switch from tensor notation used in previous sections to ma-288

trix/vector notation, in order to facilitate comparison with the discrete for-289

mulation we derive in the next section. We also assume, for ease of the290

analysis in the following sections, that the boundary conditions for the in-291

cremental problem (33) involve general boundary data dgL, dgR, dgT and dgB292

at the left, right, top and bottom boundaries (respectively) namely,293
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du(t, 0, z) = dgL(t, z), (41a)294

du(t, Ly, z) = dgR(t, z), (41b)295

Cep
21

∂du

∂y
+ Cep

22

∂du

∂z

∣∣∣∣
z=0

= dgT (t, y), (41c)296

Cep
21

∂du

∂y
+ Cep

22

∂du

∂z

∣∣∣∣
z=Lz

= dgB(t, y). (41d)297

Later, however, we outline how we specify incremental boundary conditions298

so as to impose fault slip, slow tectonic loading and free surface conditions,299

as expressed in (7).300

Assuming the solution to (33) with boundary conditions (41) is sufficiently301

smooth, we multiply (33) by the incremental velocity du̇ and integrate by302

parts, yielding the following energy balance303

d

dt
dE =

∫ Lz

0

du̇ dσxy

∣∣∣∣
Ly

0

dz +

∫ Ly

0

du̇ dσxz

∣∣∣∣
Lz

0

dy, (42)304

where the incremental internal energy is defined by305

dE =
1

2

∫ Ly

0

∫ Lz

0

dUT C̄ep(σ) dUdydz (43)306

for vector307

dU =

[
∂du/∂y

∂du/∂z

]
.308

The symmetric 2× 2 matrix C̄ep has eigenvalues309

λ1, λ2 =

{
µ if λ = 0,

µ, h/(1 + h/µ) if λ > 0
(44)310

and (25) implies that 1 + h/µ > 0. C̄ep is therefore positive definite for rate-311

independent plasticity if and only if h > 0 (Horn and Johnson, 1985). If312

h < 0, det(C̄ep) = λ1λ2 ≤ 0, which results in a loss of ellipticity of the equi-313

librium equation (33) and a loss of solvability. This case violates Drucker’s314

first stability postulate (requiring dUT C̄ep(σ) dU > 0) and can lead to prob-315

lems including loss of uniqueness of the solution (Drucker , 1959; Jain, 1989;316
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Bower , 2010). For the case h ≤ 0, the constitutive theory therefore requires317

modification (through the introduction of rate dependence, for example).318

Thus for rate-independent plasticity, h > 0 is required; however, viscosity in319

the viscoplastic model ensures a positive definite matrix, even if h = 0 (see320

section 7.2).321

Note that in terms of increments, the rate of change of the internal energy322

can be decomposed into the sum of the rate of change of the mechanical (elas-323

tic strain) energy and the plastic dissipation (a positive quantity), namely,324

d

dt
dE =

d

dt

∫ Ly

0

∫ Lz

0

1

2
[dU e]T C̄ dU e dy dz +

∫ Ly

0

∫ Lz

0

[dU e]T C̄ dU̇p dy dz,

(45)325

where dU e = dU − dUp, is the vector of elastic strains and the plastic strain326

vector is327

dUp =

[
dγpxy

dγpxz

]
.328

For simplicity in the analysis only (see Erickson and Dunham (2014) for329

details), we may take the boundary data dgL = dgR = dgT = dgB = 0 and330

show that (42) reduces to331

d

dt
dE = 0, (46)332

showing conservation of the incremental internal energy (or dissipation of the333

incremental mechanical energy) in the absence of source terms and nontrivial334

boundary conditions (i.e., in the absence of work done by body forces or335

surface tractions).336

6. The Spatial Discretization337

The nonlinearities present in the governing equation (33) with boundary338

conditions (41) make analytical solutions difficult, if not impossible to obtain,339

except perhaps in certain limiting cases. SBP-SAT finite difference methods340

are often used, however, to obtain numerical approximations to solutions341

of nonlinear problems (e.g., Navier-Stokes from fluid mechanics (Nordström342

et al., 2007)), although the stability analysis can be challenging and is gen-343

erally approached by consideration of the linearized or “frozen coefficient”344

problem. If the solution is sufficiently smooth (which is not guaranteed for345
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our problem), the linearized analysis is often enough to ensure convergence346

for the nonlinear problem (Gustafsson, 2008).347

We discretize equation (33) using the second-order accurate, narrow-348

stencil, summation-by-parts (SBP) finite difference operators for second deriva-349

tives, originally defined in Mattsson and Nordström (2004) for constant co-350

efficients, and for variable coefficients in Mattsson (2011). Time-dependent351

boundary conditions are imposed and the elastoplastic moduli Cep
11 , C

ep
12 , C

ep
21352

and Cep
22 are nonlinear functions of the current stress state (or equivalently, of353

the displacement increment). We use a Newton’s method with line search to354

solve the nonlinear equation, detailed in section 7.3. At each time step, and355

each iteration of Newton’s method we consider the moduli as frozen, spatially356

variable coefficients, and use the static counterpart of the spatial discretiza-357

tion of the anisotropic acoustic wave equation in heterogeneous media (Virta358

and Mattsson, 2014).359

We apply second-order accurate SBP operators and introduce the 2D360

operators by first considering one spatial dimension. The 1D domain y ∈361

[0, L] is discretized into Ny + 1 grid points y0, y1, ..., yNy with grid spacing362

∆y = L/Ny. First derivatives are approximated by ∂u
∂y
≈ Du, where u =363

[u0, u1, ... uNy ]
T is the grid function and matrix D = H−1Q is an Ny + 1×364

Ny+1 finite difference operator. H and Q are also Ny+1×Ny+1 matrices and365

the building blocks for the SBP operators. H is a diagonal, positive definite366

quadrature matrix defining a discrete norm on the space of grid functions367

||u||2H = uTHu, (47)368

and Q is an almost skew-symmetric matrix such that Q+QT = diag[−1, 0, 0, ...0, 1].369

The SBP operators are derived such that they mimic integration-by-parts370

and provide a discrete energy estimate (that mimics its continuum coun-371

terpart). Namely, the relation

∫ L

0

u
∂u

∂y
dy =

1

2

[
u2(L)− u2(0)

]
is obtained372

by integration-by-parts and is mimicked discretely by uTH(Du) = 1
2
u(Q +373

QT )u = 1
2
(u2

N−u2
0). If p(y) defines the variable coefficient, the narrow-stencil374

second derivative operator for variable coefficients is given by375

∂

∂y
(p(y)

∂

∂y
) ≈ Dp

2 = H−1(−Mp + pBS), (48)376

where B = diag [−1, . . . 1], and S approximates the first derivative operator377

on the boundary. Matrix Mp = DTHpD+Rp, where Rp = (∆y)3

4
(D2)TC2pD2378
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(correcting the typographical error in equation (21) in Erickson and Dunham379

(2014)) is a positive definite damping matrix and C2 = diag[0, 1, 1, ..., 1, 1, 0]380

(Mattsson, 2011). Matrix p = diag[p(y0), p(y1), ... p(yNy)] is a Ny+1×381

Ny + 1 coefficient matrix (all coefficient matrices are denoted similarly, with382

bold notation).383

In 2D, we discretize the domain [0, Ly]× [0, Lz] with an Ny + 1×Nz + 1-384

point grid, defined by385

yi = i∆y, i = 0, 1, ..., Ny, ∆y = Ly/Ny, (49a)386

zi = i∆z, i = 0, 1, ..., Nz, ∆z = Ly/Nz, (49b)387

where ∆y and ∆z are the grid spacings in each direction. Thus ui,j ≈388

u(yj, zi). Letting N = (Ny + 1)(Nz + 1), the N × 1 grid vector u in 2D is389

given by390

u = [uT0 , uT1 , ..., uTNy ] (50)391

where392

ui = [u0,i, u1,i, , ..., uNz ,i], for i = 0, ..., Ny. (51)393

The 2D variable coefficient p(y, z) defined on [0, Ly]× [0, Lz] is transformed394

to the N × N diagonal matrix p = diag[pT0 ,p
T
1 , ..., pTNy ] using analogous395

notation. To form the SBP finite difference operators in 2D we make use of396

the Kronecker product. Recall that if matrix A is size p× q and B is r × s397

then the Kronecker product of the two is of size pr × qs and given by398

A⊗B =



a0,0B · · · a0,NB

...
...

aN,0B · · · aN,NB


 . (52)399

In addition, the following identities hold:400

(A⊗B)(C⊗D) = (AC)⊗ (BD), (53a)401

(A⊗B)−1 = (A−1 ⊗B−1) if A and B are invertible, (53b)402

(A⊗B)T = AT ⊗BT . (53c)403

We can thus extend any 1D operator P to 2D (in the y and z direction,404

respectively) by405

Py = (P⊗ I), (54a)406

Pz = (I⊗P). (54b)407
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The first and second derivative operators in 2D are thus408

∂

∂y
≈ Dy, (55a)409

∂

∂z
≈ Dz, (55b)410

∂

∂y

(
p(y, z)

∂

∂y

)
≈ Dp

2y = H−1
y

[
−DT

y pHyDy −Rp
y + pBySy

]
, (55c)411

∂

∂z

(
p(y, z)

∂

∂z

)
≈ Dp

2z = H−1
z

[
−DT

z pHzDz −Rp
z + pBzSz

]
, (55d)412

where Rp
y,R

p
z are positive definite damping matrices in 2D (see Erickson413

and Dunham (2014) for details). The equilibrium equation (33), along with414

boundary conditions (41), is thus discretized by415

D
Cep11
2y du + DyC

ep
12Dzdu + DzC

ep
21Dydu + D

Cep22
2z du + PL + PR + PT + PB = 0,

(56)416

where du is the incremental displacement grid vector, and the SAT penalty417

vectors are given by418

PL = H−1
y (αL + βH−1

z (−Cep
11Sy −Cep

12Dz)
T )HzE0(duL − dgL)(57a)419

PR = H−1
y (αR + βH−1

z (Cep
11Sy + Cep

12Dz)
T )HzEN(duR − dgR) (57b)420

PT = −H−1
z (Iy ⊗ E0)([−Cep

22Szdu−Cep
21Dydu]T − dgT ) (57c)421

PB = −H−1
z (Iy ⊗ EN)([Cep

22Szdu + Cep
21Dydu]B − dgB). (57d)422

Recall that the coefficient matrices in (56) depend nonlinearly on the stress σ.423

The notation duL is the restriction of the grid vector du to the left boundary424

and duR,duT ,duB, are the restrictions to the right, top and bottom bound-425

aries (respectively). Vector dgL is the boundary data dgL evaluated at the426

grid and dgR,dgT ,dgB are defined analogously. Matrices E0 and EN map427

the restricted vectors to full-length (N × 1 length) vectors (see Erickson and428

Dunham (2014) for details). Virta and Mattsson (2014) derive conditions429

on the penalty parameter β and penalty matrices αL, and αR such that a430

semi-discrete energy estimate can be obtained. Following their analysis, the431

semi-discrete incremental internal energy dE (a slightly modified analog of432

(43)) is defined433

dE =
1

2
dUT (Hy⊗Hz)C̄

epdU+
1

2
duT (RCep11

y ⊗Hz)du+
1

2
duT (Hy⊗RCep22

z )du+U1+U2.

(58)434
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In (58), vector dU = [Dydu Dzdu]T , the positive-definiteness of the 2N ×435

2N , block diagonal matrix436

C̄ep =

[
Cep

11 Cep
12

Cep
21 Cep

22

]
(59)437

follows from that of C̄ep, and U1, U2 are positive quantities, see Appendix438

A. Assuming zero-boundary data, as in the continuum problem, the semi-439

discrete equations are shown to satisfy the energy estimate440

d

dt
dE ≤ 0, (60)441

which ensures stability of the method, see Appendix A for more details. Note442

that for our application problems in section 9 we desire better resolution near443

the fault and free surface, and therefore consider a non-uniform grid spacing.444

In appendix A we detail the stability analysis for a grid with non-uniform445

spacing; the uniform grid spacing assumed in this section (to maintain flow446

of the discussion) is a special case.447

7. Time Stepping448

In this section we explain the time stepping method for the overall prob-449

lem. This is done by first updating slip and the state variable along the450

frictional fault. The update to slip, along with the remaining boundary con-451

ditions, generates an increment of load. Updates to the displacement, stresses452

and plastic strains (that occur in the volume in response to the load) are then453

computed.454

We introduce a time discretization so that notationally, superscripts on455

a particular field imply we are considering a finite increment over a discrete456

time step. We assume the system is equilibrated at time tn with stresses con-457

sistent with the constitutive theory of section 3. Slip and state variable along458

the fault are updated via a Runge-Kutta method with adaptive time stepping459

(see section 7.4 for details). These updates provide the incremental bound-460

ary data dgn+1
L along the fault, which, together with dgn+1

R ,dgn+1
T ,dgn+1

B ,461

correspond to an increment of load applied over the time step dt = tn+1− tn462

that drives the system to a new state. In what follows, we describe the lat-463

ter part update, namely, how the displacement increment and the associated464
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stresses and plastic strains are updated in response to the load in a manner465

that accounts for plastic response.466

Let the discrete equilibrium equation (56)-(57) be denoted E(dσ) = b467

where vector b stores the incremental boundary data. At tn+1 we wish to468

obtain both stress and displacement increments that satisfy469

E(dσn+1) = bn+1 (61)470

and are consistent with the constitutive theory of section 3, where dσn+1
471

is related to the displacement increment dun+1 through a discrete form of472

constitutive relation (31) (which we define shortly) and the discretized strain-473

displacement relations (32).474

To obtain the displacement, stresses and strains at time tn+1 we first475

apply a backward-Euler discretization to the flow rule (19) and equivalent476

plastic strain477

γp,n+1
xy = γp,nxy + dλn+1

σn+1
xy

τ̄ n+1
(62a)478

γp,n+1
xz = γp,nxz + dλn+1σ

n+1
xz

τ̄ n+1
, (62b)479

γp,n+1 = γp,n + dλn+1, (62c)480

where dλn+1 = λn+1dt. A direct linearization of this discretization implies481

an associated discrete, incremental form of the constitutive relation given by482

dσn+1
ij = Cepijkl(σn+1)dεn+1

kl (63)483

where Cep is the consistent tangent stiffness tensor (and a function of the484

stress at the end of the time step), derived in the next section. The fully485

discrete equilibrium equation can thus be expressed486

E(Cep(σn+1)dun+1) = bn+1, (64)487

and is a nonlinear function of dun+1.488

To solve (64) we proceed via a Newton-type method which utilizes the489

partial derivative490

∂E
∂dun+1 =

∂E
∂dσn+1

ij

Cepijkl(σn+1)
∂dεn+1

kl

∂dun+1 (65)491
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and incorporates the consistent tangent stiffness tensor. We set iteration492

index k = 0 and compute an initial, elastic guess dun+1,(k) to the displace-493

ment increment, obtained by assuming Cep = C and solving (64). Consistent494

stresses σn+1,(k) associated with dun+1,(k) are obtained from the return map-495

ping algorithm which is based on the backward Euler discretization (62), and496

detailed in the next section. Deferring specific details until section 7.4, if497

the new, consistent stress state satisfies equilibrium, then the final fields are498

those at iteration k, and the process is considered done.499

If equilibrium is not satisfied, however, the displacement increment dun+1,(k)
500

must be adjusted (and thus adjustments to the stress and plastic strains must501

be made).502

The displacement increment is updated by solving (64) via an iterative503

Newton-type method that solves the linearized equilibrium problem504

E(Cep(σn+1,(k))dun+1,(k+1)) = bn+1. (66)505

and the return mapping algorithm provides associated consistent stresses506

σn + 1, (k + 1) (Simo and Hughes , 1998; de Souza Neto et al., 2008). This507

iterative procedure continues until equilibrium has been satisfied with an508

appropriate convergence criterion met (see section 7.3). The displacement509

un+1 = un+dun+1 can then be formed from the converged value of the finite510

increment dun+1.511

7.1. The Return Mapping Algorithm512

Within the Newton iteration described in the previous section, the finite513

displacement increment dun+1,(k) is obtained and stresses consistent with the514

plastic constitutive theory must be updated (Simo and Hughes , 1998). In515

this section we describe how to obtain σn+1,(k). First, the strains associated516

with dun+1,(k) are computed517

γn+1,(k)
xy = γnxy + dγn+1,(k)

xy , (67a)518

γn+1,(k)
xz = γnxz + dγn+1,(k)

xz , (67b)519

and allow us to compute the elastic trial state (denoted with asterisk ∗)520

γ∗,p,n+1,(k) = γp,n, (68a)521

σ∗,n+1,(k)
xz = µ(γn+1,(k)

xz − γp,nxz ) = σnxz + µdγn+1,(k)
xz , (68b)522

σ∗,n+1,(k)
xy = µ(γn+1,(k)

xy − γp,nxy ) = σnxy + µdγn+1,(k)
xy , (68c)523
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assuming no additional plastic strain has accrued over the time step.524

The final stress state at time tn+1 must satisfy F ≤ 0, where the yield525

function is defined in (15) for yield stress (40). If the elastic trial stresses sat-526

isfy F ≤ 0, then they are accepted as the final stresses. If the trial stresses lie527

outside the yield surface (F > 0), however, they are be “mapped back” onto528

the yield surface by adjusting the plastic strains so that F (σn+1, (k),γp,n+1,(k)) =529

0 is satisfied (Simo and Hughes , 1998).530

Substituting equations (62a-b) into (68b-c) yields531

σ∗,n+1
xy = σn+1

xy (1 + µdλn+1/τ̄ n+1) (69a)532

σ∗,n+1
xz = σn+1

xz (1 + µdλn+1/τ̄ n+1). (69b)533

From (69) we calculate534

τ̄ ∗,n+1 =

√
(σ∗,n+1

xy )2 + (σ∗,n+1
xz )2

535

= τ̄ n+1 + µdλn+1. (70)536

Re-arranging (70), noting that F (σn+1,γp,n+1) = 0, and substituting in (62c)537

yields the plastic consistency condition538

dλn+1 = F (σ∗,n+1,γ∗,p,n+1)/(h+ µ), (71)539

where γ∗,p,n+1 is given by (68c). Finally, solving (69) for σn+1
xy and σn+1

xz540

yields541

σn+1,(k)
xy =

σ
∗,n+1,(k)
xy

1 + µdλn+1,(k)/τ̄ n+1
=
σ
∗,n+1,(k)
xy (τ̄ ∗,n+1,(k) − µdλn+1,(k))

τ̄ ∗,n+1,(k)
(72a)542

σn+1,(k)
xz =

σ
∗,n+1,(k)
xz

1 + µdλn+1,(k)/τ̄ n+1,(k)
=
σ
∗,n+1,(k)
xz (τ̄ ∗,n+1,(k) − µdλn+1, (k))

τ̄ ∗,n+1,(k)
,(72b)543

which expresses the final stress state entirely in terms of the computed elastic544

trial stresses.545

The consistent elastoplastic tangent stiffness tensor Cepijkl in (64) is ob-546

tained by a linearization of the return-mapping algorithm. We derive these547

consistent moduli in Appendix B, with specific components (ommitting su-548

perscripts n+ 1) given by (bold face notation is not used as these moduli are549

derived independently of a spatial discretization)550

Cep11 =

{
µ if λ = 0,

µ− µσ2
xy/τ̄

2

1+h/µ
− dλµ2

τ̄

[
1−

(σxy
τ̄

)2
]

if λ > 0,
(73)551
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552

Cep22 =

{
µ if λ = 0,

µ− µσ2
xz/τ̄

2

1+h/µ
− dλµ2

τ̄

[
1−

(
σxz
τ̄

)2
]

if λ > 0,
(74)553

and554

Cep12 = Cep21 =

{
0 if λ = 0,

−µσxyσxz/τ̄2

1+h/µ
− dλµ2

τ̄

[
1− σxyσxz

τ̄2

]
if λ > 0,

(75)555

which agree with the continuum moduli in the limit that dλ→ 0.556

It has been shown for many problems that using the consistent tangent557

moduli (73)-(75) with discretization (64) (to compute numerical solutions558

to (33)) then the quadratic convergence rate typical of Newton-type itera-559

tive methods is achieved. This rate of convergence is often lost, however, if560

the continuum tangent moduli (35)-(37) are used instead (Simo and Taylor ,561

1985). In our application problems we thus use the consistent elastoplastic562

moduli and leave the comparison of Newton convergence results to future563

work.564

7.2. Extension to Viscoplasticity565

Classical Perzyna viscoplasticity (Perzyna, 1966, 1971) is obtained from566

rate-independent plasticity by replacing the yield condition (16) with F (σ,γp) =567

ηλ, where η > 0 is the viscosity.568

A viscoplastic response alters the return mapping algorithm in the previous569

section through the following: If the computed elastic trial stresses are such570

that F (σ∗,n+1,γ∗,p,n+1) > 0, then equations (70) and (71) are replaced with571

τ̄ ∗,n+1 = τ̄ n+1 + µ
F n+1

η
dt (76)572

and573

dλn+1 = F (σ∗,n+1,γ∗,p,n+1)/(η/dt+ h+ µ). (77)574

The consistent elastoplastic tangent moduli (73)-(75) can also be derived575

from linearizing the return-mapping algorithm (see Appendix B), yielding576

Cep11 =




µ if λ = 0,

µ− µσ2
xy/τ̄

2

η/µ
dt

+1+h/µ
− dλµ2

τ̄

[
1−

(σxy
τ̄

)2
]

if λ > 0,
(78)
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Cep22 =




µ if λ = 0,

µ− µσ2
xz/τ̄

2

η/µ
dt

+1+h/µ
− dλµ2

τ̄

[
1−

(
σxz
τ̄

)2
]

if λ > 0,
(79)

and577

Cep12 = Cep21 =

{
0 if λ = 0,

− µσxyσxz/τ̄2

η/µ
dt

+1+h/µ
− dλµ2

τ̄

[
1− σxyσxz

τ̄2

]
if λ > 0.

(80)

Note that for a fixed η, if dt → 0, the consistent elastoplastic moduli (78) -578

(80) approach the elastic moduli. Furthermore, for η > 0, we can take h = 0579

and still guarantee that C̄ep is positive definite.580

7.3. Newton Iteration with Return-Mapping581

We let k = 0, dun+1,(k) be the initial (elastic) guess for the displacement582

increment dun+1, and iterate as follows.583

Step 1: Compute the strain increments584

dγn+1,(k)
xy = Dydun+1,(k), (81a)585

dγn+1,(k)
xz = Dzdun+1,(k). (81b)586

Step 2: Compute the elastic trial state and use the return mapping algorithm587

to obtain the consistent stresses σ
n+1,(k)
xy ,σ

n+1,(k)
xz and plastic strain γp,n+1,(k).588

Step 3: Check if equilibrium is sufficiently satisfied. That is, check if a589

stopping criterion is met, for example, ||E(Cep(σn+1,(k))dun+1,(k))−bn+1|| <590

tol), where tol is a specified tolerance. If so, set un+1 = un + dun+1,(k),591

the remaining fields are those at iteration (k), and the Newton iteration592

is complete. Otherwise set k = k + 1, solve E(Cep(σn+1,(k))dun+1,(k+1)) =593

bn+1 for dun+1,(k+1) and return to step 1, iterating until the Newton method594

converges and equilibrium is met.595

7.4. Time Stepping Method596

In this section we provide details of time stepping for the overall prob-597

lem, which includes details of the update to slip and the state variable along598

the fault, and provides an initial guess for the off-fault fields. As stated in599

section 2, rate-and-state friction, as used in our algorithm, provides the set600

of differential equations (9)-(11) that are used to evolve the fault boundary601

displacement (i.e., fault slip). We modify the method from Erickson and602

Dunham (2014) in order to incorporate off-fault plasticity. Bold-face type is603
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again used to denote spatially discrete quantities. We assume the body is604

equilibrated (with consistent stresses) at time tn and that Vn and ψn are605

known. The following time-stepping method is illustrated in the context of a606

forward Euler step, but we use Matlab’s adaptive, fourth order Runge-Kutta607

method with a relative tolerance of 10−7.608

609

Step 1. Update slip and state on the fault by explicitly integrating610

∆un+1 = ∆un + dtVn (82a)611

ψn+1 = ψn + dtG(Vn,ψn). (82b)612

Step 2. Set the boundary data in (41):

dgn+1
L = dtVn/2,

dgn+1
R = dtVp/2,

dgn+1
T = dgn+1

B = 0,

form bn+1 and solve for an elastic increment dun+1,(0); i.e., take Cep = C and613

solve the discrete equation (64).614

615

Step 3. Correct the initial elastic guess dun+1,(0) by iterating following the616

Newton procedure in section 7.3 until convergence is reached, thus obtaining617

un+1,σn+1
xy ,σn+1

xz ,γp,n+1
xy ,γp,n+1

xz ,γp,n+1.618

619

Step 4. Compute the shear stress τ n+1
qs = σn+1

xy |y=0 on the fault.620

621

Step 5. Equate shear stress with frictional strength τ n+1
qs − ηradV

n+1 =622

σnf(Vn+1,ψn+1) and solve for the updated slip velocity Vn+1 (solved using623

a local, safe-guarded Newton method) and return to step 1.624

8. Convergence Tests and Comparison with Finite Element Solu-625

tion626

We conduct two studies to verify our numerical method. The first study627

is a convergence test of our spatial discretization and time-stepping for an628

elastic problem; the second study is a comparison test with a finite element629

solution for the same plasticity model.630
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For the first study we proceed with the method of manufactured solutions631

and show that our numerical solution is converging to the exact solution at632

the correct rate (Roache, 1998). The nonlinearity introduced by plasticity633

makes this procedure difficult, thus we solve the anisotropic elastic version634

by assuming that the elastoplastic moduli do not vary with stress or time,635

but rather in space only. We want to check that our incremental procedure636

will provide a numerical approximation to the exact solution to the non-637

incremental equilibrium equation638

∂

∂y

[
Cep

11(y, z)
∂u

∂y
+ Cep

12(y, z)
∂u

∂z

]
+

∂

∂z

[
Cep

21(y, z)
∂u

∂y
+ Cep

22(y, z)
∂u

∂z

]
= 0,

(83)639

where the moduli in (83) are known functions of space. Let the exact displace-640

ment (denoted with a hat) to (83) be that given in Erickson and Dunham641

(2014), namely642

û(t, y, z) =
δ

2
K(t)Φ(y, z) +

Vpt

2
[1− Φ(y, z)] +

τ∞

µ
y, (84)643

which provides the exact (elastic) stresses (also denoted with hats)644

σ̂xy = Cep
11(y, z)∂û/∂y + Cep

12(y, z)∂û/∂z (85a)645

σ̂xz = Cep
21(y, z)∂û/∂y + Cep

22(y, z)∂û/∂z. (85b)646

Appropriate source terms are added to (83) so that û is indeed the solu-647

tion. In the construction of the exact solution (84), K(t) controls the time-648

dependency of the solution, δ is the total slip that occurs during the event,649

τ∞ is a parameter that defines the remote stress, and Φ describes the spatial650

dependency of the solution. The specific forms are given by651

δ = Vpt̄+ Vmint̄, (86a)652

K(t) =
1

π

[
tan−1(

t− t̄
tw

) +
π

2

]
+
Vmin

δ
, (86b)653

Φ(y, z) =
H(H + y)

(H + y)2 + z2
, (86c)654

where t̄ denotes the event time, tw denotes the time scale over which the event655

occurs, Vmin defines a minimum slip velocity throughout the simulation, and656
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H defines a locking depth. For the elastic moduli, we assume the following657

forms658

Cep
11 = µ− µc1(y, z)2/|c|2

1 + h/µ
, (87a)659

Cep
22 = µ− µc2(y, z)2/|c|2

1 + h/µ
, (87b)660

Cep
12 = Cep

21 = −µc1(y, z)c2(y, z)/|c|2
1 + h/µ

, (87c)661

where662

c1(y, z) =
H2

1

H2
1 + z2

L2
1

L2
1 + y2

, (88a)663

c2(y, z) =
H2

2

H2
2 + z2

L2
2

L2
2 + y2

(88b)664

and |c|2 = c2
1 + c2

2. Thus the moduli form a symmetric, positive definite665

matrix C̄ep if h > 0. The exact slip along the fault is666

∆û(t, z) = 2û(t, 0, z) = δK(t)Φ(0, z) + Vpt[1− Φ(0, z)], (89)667

with slip velocity668

V̂ (t, z) =
∂u∗

∂t
|y=0+ − ∂u∗

∂t
|y=0− = δK ′(t)Φ(y, z) + Vp [1− Φ(0, z)] . (90)669

Lastly, since τ̂(t, z) = σ̂xy(t, 0, z), we can solve (8) for the exact state variable670

ψ̂ = a ln

[
2V0

V̂
sinh

(
τ̂ − ηradV̂

σna

)]
(91)671

which implies that a source term must also be added to state evolution672

ψ̇ = G(V, ψ) + s(t, z) (92)673

where674

s =
˙̂
ψ −G(V̂ , ψ̂). (93)675

All parameter values used in the convergence tests are given in Table 1.676

At the end of the simulation (tf = 70 years), we compute the relative error677
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Table 1: Parameters used in the manufactured solution convergence tests.

Parameter Definition Value
Lz fault length 24 km
Ly off-fault domain length 24 km
`Z z-length scale for coordinate transform 5 km
`Y y-length scale for coordinate transform 5 km
H locking depth 14 km
L1 y-length scale for c1 5 km
H1 z-length scale for c1 6 km
L2 y-length scale for c2 4 km
H2 z-length scale for c2 5 km
ρ density 2670 kg/m3

µ shear modulus 30 GPa
h hardening modulus 30 GPa
σn normal stress on fault 50 MPa
τ∞ remote shear stress 40 MPa
tf final simulation time 70 years
t̄ event nucleation time 35 years
tw timescale for event duration 10 s
a rate-and-state parameter 0.015
b rate-and-state parameter 0.02
Dc critical slip distance 0.4 m
Vp plate rate 10−9 m/s
V0 reference velocity 10−6 m/s
f0 reference friction coefficient 0.6
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Table 2: Relative error in the discrete H- and energy-norms with N = Nx = Ny. The
rate of convergence approaches 2, as expected for a method with second-order accuracy.

N ErrorH(h) Rate ErrorE(h) Rate
24 1.030× 10−3 – 1.236× 10−3 –
25 2.867× 10−4 1.845 3.514× 10−4 1.814
26 7.433× 10−5 1.947 9.242× 10−5 1.927
27 1.883× 10−5 1.981 2.360× 10−5 1.970
28 4.741× 10−6 1.990 5.967× 10−6 1.984

between the exact and the numerical approximation in both the discrete678

H−norm and the energy-norm, defined by679

ErrorH(h) = ||u− û||H/||û||H (94a)680

ErrorE(h) = ||u− û||E/||û||E (94b)681

where682

||u||2H =
M∑

i=1

||dui||2H (95a)683

||u||2E =
M∑

i=1

dEi (95b)684

where ||du||2H = (du)T (Hy⊗Hz)(du), M is the number of adaptive, Runge-685

Kutta time steps and dE is the incremental internal energy defined by (58).686

Table 2 shows that we are achieving second-order convergence, as expected.687

Because this first verification study confirmed convergence for an anisotropic688

elastic problem, the purpose of the next study is to validate our results with689

plasticity. For the second validation study, we compare results of the solution690

to a boundary value problem subject to Drucker-Prager plasticity. Results691

from our finite difference code are compared to those from a finite element692

solution using the OpenSees Software Framework (Mazzoni et al., 2009) and693

available at http://opensees.berkeley.edu.694

We want to confirm that our incremental approach using equation (33)695

(in the context of the time stepping method outlined in the previous section)696

solves the non-incremental form of the governing equation (1), on the domain697
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(y, z) ∈ [0, L]× [0, L] with boundary conditions given by698

u(0, z) = 0 (96a)699

u(L, z) = g(z) (96b)700

σxz(y, 0) = 0 (96c)701

σxz(y, L) = 0. (96d)702

Boundary data g(z) and all parameter values are listed in Table 3. Stresses703

are subject to the Drucker-Prager yield condition (15) with constant yield704

stress σY . We assume an equal grid spacing ∆ = ∆y = ∆z of both 1 km705

(Ny = Nz = 24) and 200 m (Ny = Nz = 120). Figure 3 shows solutions706

from the finite difference solution to the plastic boundary value problem707

with ∆ = 200 m, along with the elastic counterpart of the same boundary708

value problem, in order to illustrate the differences between the two mate-709

rial models. Figure 3(a-c) show the displacement and two relevant stress710

components of the plastic solution (in dashed lines) and the elastic solution711

(solid lines) at different z-values. Figure 3(d-f) are the equivalent fields at712

various y-values. Although plasticity mildly affects the displacement field,713

the stresses are significantly reduced in amplitude, particularly near x = 24714

km. Fig. 4 compares contours from the finite difference and finite element715

solution with ∆ = 1 km. The finite difference solution is plotted in solid716

colors, while the finite element solution is plotted with black circles. The717

displacement fields in Fig. 4(a-b) are quite similar, but error is visible in the718

computed stresses, particularly in Fig. 4(d) near y = 24 km. This error is719

visibly decreased when mesh refining, as shown in Figure 5. Absolute and rel-720

ative errors between the computed fields using the two methods are denoted721

by errau = ||uFD − uFE||2 and errru = ||uFD − uFE||2/||uFE||2, respectively,722

and errors for other fields are defined analogously. Results shown in Table 4723

suggest the two methods produce similar results.724

9. Application725

We are interested in how changes in viscosity, isotropic hardening and726

cohesion affect features of the earthquake cycle. We find that all three pa-727

rameters influence the magnitude and off-fault extent of plastic strain, and728

that in all cases, plasticity affects the amount of slip on the fault in the729

shallow sub-surface during each rupture. We use the combined spatial dis-730

cretization and time-stepping method detailed in previous sections to sim-731
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Table 3: Parameters used in antiplane plastic case for comparision of FDM and FEM.

Parameter Definition Value
Lz fault length 24 km
Ly off-fault domain length 24 km
µ shear modulus 32.038 GPa
ρ material density 2670 kg/m3

g(z) right boundary condition − cos(πz/12) + 1 (m)
σY yield stress 4 MPa
φ angle of internal friction 0
h hardening modulus 32.038 GPa

Table 4: Absolute and relative error between our finite difference solution and that ob-
tained from the finite element code in the discrete L2-norm for Ny = Nz = 24, 120.

N errau errru erraσxy errrσxy erraσxx errrσxz
24 1.06× 100 3.27×10−2 1.72× 100 3.72× 10−2 4.76× 10−2 3.22× 10−2

120 9.87× 10−2 3.04× 10−3 1.92× 10−1 4.14× 10−3 3.81× 10−3 2.70× 10−4

ulate multiple earthquake cycles with off-fault plasticity. The fault is gov-732

erned by rate-and-state friction with depth-variable parameters a and b (see733

Fig. 6a). Where a − b < 0 defines the velocity-weakening (seismogenic)734

zone, below which the fault creeps interseismically. As an initial study,735

we assume that the effective normal stresses in the medium are given by736

σ0
xx = σ0

yy = σ0
zz = −(ρ − ρw)gz + Patm where ρw is the density of water, g737

is the acceleration due to gravity and atmospheric pressure Patm is set to 0.1738

MPa. The yield stress (15) is thus linearly increasing with depth, see Figure739

6b. We assume the pore-pressure in the fault is higher than in the surround-740

ing rock so that although the effective stresses off the fault are depth-variable,741

effective normal stress on the fault is constant below some depth, see Fig-742

ure 6b (Rice, 1992). Fixing the internal friction parameter φ sets the slope743

of the yield stress and the yield stress at Earth’s surface can be increased744

or decreased by changing the value of the cohesion c, which we assume is745

constant with depth. We vary cohesion between 40 and 50 MPa, which are746

reasonable depth-averaged values of those derived from Hoek-Brown param-747

eters for many rock strength models (Roten et al., 2016). The parameters748

we use in our simulations are given in Table 5.749

To determine grid spacing for our application simulations, Ranjith (2008)750
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Table 5: Parameters used in application simulations.

Parameter Definition Value
Lz fault length 24 km
Ly off-fault domain length 24 km
µ shear modulus 36 GPa
ρ density 2800 kg/m3

cs shear wave speed 3.586 km/s
ρw density of water 1000 kg/m3

σn normal stress on fault depth-variable
τ∞ remote shear stress 10−7 MPa
a rate-and-state parameter depth-variable
b rate-and-state parameter depth-variable
Dc critical slip distance 8 mm
Vp plate rate 10−9 m/s
V0 reference velocity 10−6 m/s
f0 reference friction coefficient 0.6
c cohesion variable
h hardening modulus variable
φ internal friction angle arctan(0.6)
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Figure 3: Contours of solution to (1) with boundary conditions (96) for elastic (solid
lines) and plastic (dashed lines) material response. (a)-(b) displacement and (c)-(f) stress
components. Plastic effects are seen most prominently in the stress contours which are
reduced due to the yield condition.

found that for antiplane sliding between two anisotropic elastic materials,751

instability occurs for wave numbers below the critical wave number752

kcr =
2(b− a)σn
Dc µ∗

, (97)753
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Figure 4: Contours of solution to (1) with boundary conditions (96) for plastic material
response using the finite difference method (solid lines) and the finite element solution
(black dots). (a)-(b) displacement and (c)-(f) stress components, with Ny = Nz = 24
points.

where754

µ∗ =
√

det(C̄ep). (98)755

Thus the length scale756

h∗ =
2π

kcr
=

πDcµ
∗

(b− a)σn
(99)757
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Figure 5: Contours of solution to (1) with boundary conditions (96) for plastic material
response using the finite difference method (solid lines) and the finite element solution
(black dots). (a)-(b) displacement and (c)-(f) stress components, with Ny = Nz = 120
points.

must be resolved by the grid to ensure accuracy of the solution.758

As in Erickson and Dunham (2014), we also need to resolve the region759

of rapid strength degradation immediately behind the tip of a propagating760

rupture, which is typically much smaller than h∗, and involves the rate-761

and-state parameters a and b in a different manner. By analogy to the762
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Figure 6: (a) Frictional parameters a− b vary with depth. (b) Normal stress σn on fault
vs. normal stresses in medium.

corresponding elastic problem (Ampuero and Rubin, 2008), we anticipate763

that this length scale will be approximately764

Lb =
µ∗Dc

b σn
. (100)765

For all of our simulations, events nucleate near the transition zone from766

velocity weakening to velocity strengthening (at a depth of approximately 10767

km) and we chose values for parameters η and h primarily for computational768

(grid resolution) purposes. Since we use a variable grid spacing, we resolve769

h∗ and Lb in our simulations with at least 60 and 5 grid points (respectively)770

near the free surface, with fewer (down to 12 and 1 grid point, respectively)771

at the nucleation depth, which we note seems less than desirable. To test that772

this grid spacing is adequate, however, we double the number of grid points773

for one scenario and the results appear qualitatively similar, see Appendix C.774

For the viscoplastic simulations we resolve the viscous relaxation time scale775

η/µ with at least 5 time steps.776

For some parameter regimes, plastic yielding during the interseismic pe-777

riod is possible. For example, a decrease in cohesion c decreases the size of the778

elastic domain, so that plastic yielding can occur at lower stress states, see779
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Figure 7: Snapshots of cumulative slip profiles plotted at 5-a intervals during interseismic
period when max(V ) ≤ 1 mm/s and dashed red profiles plotted at 1 s intervals during
quasi-dynamic rupture for (a) elastic reference case, (b) η = 0 GPa-s, h = 20 GPa, c = 50
MPa, and (c) η = 36 GPa-s, h = 0 GPa, c = 50 MPa.

Figure 2. Although in reality plastic yielding may occur during all phases of780

the earthquake cycle, we chose to explore scenarios where plastic response is781

limited to the coseismic phase. This choice was made because viscoplasticity782

introduces the time scale η/h which must be resolved by the time-stepping783

method. For small values of η/h, the effective response during rupture is784

plastic. Unfortunately, small η/h cannot be resolved during the interseis-785

mic phase without taking unreasonably small time steps, thus we considered786

large values of c such that plastic response occurs only at those stress levels787

attained during rupture. The study of plastic yielding during all phases of788

the earthquake cycle are deferred to future work.789

Figures 7 and 8 show cumulative slip profiles plotted at 5-a intervals790

during the interseismic period, which we define to be when max(V ) ≤ 1791
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Figure 8: Snapshots of cumulative slip profiles plotted at 5-a intervals during interseismic
period when max(V ) ≤ 1 mm/s and dashed red profiles plotted at 1 s intervals during
quasi-dynamic rupture for (a) η = 28 GPa-s, h = 0 GPa, c = 50 MPa, (b) η = 36 GPa-s,
h = 20 GPa, c = 50 MPa, and (c) η = 36 GPa-s, h = 20 GPa, c = 40 MPa.

mm/s, and in dashed red contours every 1 s during quasi-dynamic rupture.792

Figure 7(a) is the elastic reference case used in Erickson and Dunham (2014),793

where periodic cycles emerge. Slip below the velocity-weakening region creeps794

interseismically and approximately 3 m of slip occurs at the surface during795

each event. Note that during each event, the upper section of the fault796

catches up with slip at depth, characteristic of an elastic material response.797

For the plastic simulations, in all cases we found that after the first rupture,798

slip in the shallow surface is less than the slip at depth. The evolution of this799

slip deficit with each subsequent event is dictated by the plasticity model,800

however.801

Figure 7(b) shows results from considering rate-independent plasticity802

with hardening parameter h = 20 GPa and cohesion c = 50 MPa. Plastic803
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Figure 9: Off-fault equivalent plastic strain for η = 0 GPa-s, h = 20 GPa, c = 50 MPa
after the first, second, eight and eighteenth rupture events. The magnitude and off-fault
extent (∼100 m during first rupture only) of plastic strain effectively saturates after the
first event.

response occurs during the first event when the rupture reaches approxi-804

mately 3 km depth, but has only a slight influence on slip above this depth.805

During the first rupture, a small slip deficit emerges above ∼1 km depth.806

Because hardening causes the yield surface to expand, the response during807

subsequent events is effectively elastic and the slip deficit remains largely un-808

changed. Figure 7(c) shows results from a viscoplastic simulation (without809

hardening) with η = 36 GPa-s and c = 50 MPa. The slip deficit in the upper810

3 km increases with subsequent ruptures, and after the tenth event, the slip811

deficit at the surface is approximately 2 m.812

To assess the sensitivity to viscosity, we decrease η from 36 to 28 GPa-s,813

seen in Figure 8(a). The slip deficit in the upper 3 km also increases with814

subsequent rupture, and after the 10th event the slip deficit at the surface is815

approximately 3 m, suggesting that the slip deficit will increase at a faster816

rate for lower values of η for the viscoplastic model without hardening. Figure817

8(b) shows results from combined viscoplastic and hardening effects. For818

η = 36 GPa-s, h = 20 GPa and c = 50 MPa, the slip deficit increases with819

each rupture, but at a decreasing rate, and reaches a limiting value of ∼1 m.820

Decreasing the cohesion to 40 MPa, as shown in Figure 8(c), gener-821

ates a larger slip deficit (approximately 3.5 m at the surface after the 10th822
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Figure 10: Off-fault equivalent plastic strain for η = 36 GPa-s, h = 0 GPa, c = 50 MPa
after the first, second, eight and eighteenth rupture events. The magnitude and off-fault
extent (additional ∼100 m per rupture) of plastic strain increases at an approximately
constant rate with each rupture during the first 18 events.

event) than the analogous simulation in Figure 8(b), although with hardening823

present this deficit also saturates after several ruptures.824

For the values we considered, cohesion determines the depth at which825

plastic response occurs during rupture (confined to about 1-2 km below826

Earth’s surface). Figure 9 illustrates the evolution in off-fault equivalent827

plastic strain for the rate-independent simulation from Figure 7(a), during828

the first, second, eighth and eighteenth events. The first event generates829

plastic strain at depths above ∼1 km and off the fault to about 200 m at the830

surface. The maximum value at the fault surface is approximately 0.7 mil-831

listrain and little increase in either extent or magnitude occurs after the first832

event. Figure 10 is the analogous figure for the viscoplastic model without833

hardening from Figure 7(b). The first event generates a maximum value of834

0.06 millistrain at the fault surface, extending out to approximately 300 m835

and to a depth of ∼1 km. During all subsequent events the maximum value836

of plastic strain increases.837

Adding hardening to the viscoplastic model decreases the magnitude and838

extent of additional plastic strain with each rupture, see Figure 11, so that839

by the eighteenth rupture, the distribution remains relatively unchanged by840

subsequent events. Figure 12 illustrates the effect of a decrease in cohesion841
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Figure 11: Off-fault equivalent plastic strain for η = 36 GPa-s, h = 20 GPa, c = 50 MPa
after the first, second, eight and eighteenth rupture events. The magnitude and off-fault
extent (∼100 m during first rupture only) of plastic strain increases at an approximately
decreasing rate with each rupture. After 18 events, the extent has saturated at < 1 km at
the surface.

(from 50 to 40 MPa) which effectively lowers the yield stress so that plastic842

straining occurs at lower depths compared to previous simulations. Com-843

pared to the results shown in Figure 11, a decrease in cohesion increases the844

depth of plastic strain from 1 to 2 km during the first event. In addition, a845

decrease in cohesion generates more plastic strain and with greater extent.846

By the eighteenth event, plastic strain extends beyond 2 km at the surface.847

The amount of tectonic offset accommodated by plastic strain, up(t, z),848

can be computed by integrating the off-fault plastic strain, namely849

up(t, z) = 2

∫ Ly

0

γpxy(t, y, z) dy. (101)850

At the surface z = 0, the time history of up is plotted in Figure 13 and illus-851

trates how much tectonic offset is accommodated by inelastic deformation for852

different plasticity models. In particular, when rate-independent plasticity853

with hardening is used (cyan), the amount of offset due to inelastic deforma-854

tion is about 0.2 m after the first event and increases almost negligibly after855

the first event. If a viscoplastic relaxation is added (green), however, the856

amount of offset is lower during the first event, but increases with each rup-857

ture, reaching approximately 0.2 m after ∼10 events. An increasing amount858
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Figure 12: Off-fault equivalent plastic strain for η = 36 GPa-s, h = 20 GPa, c = 40 MPa
after the first, second, eight and eighteenth rupture events. The magnitude and off-fault
extent (∼1 km during first rupture only) of plastic strain increases at an approximately
decreasing rate with each rupture. After 18 events, the extent has begun to saturate near
2 km.

of offset accommodated by inelastic deformation occurs with each rupture859

for the viscoplastic models without hardening (black, blue, red), with lower860

values of viscosity generating greater amounts of inelastic deformation. For861

η = 20 GPa-s, for example, approximately 2 m of tectonic off-set is accommo-862

dated by inelastic strain after ∼10 events. The rate-independent simulation863

with hardening present (cyan) reveals that an upper limit to the amount of864

inelastic deformation exists, by virtue of the fact that hardening causes in865

expansion of the yield surface, as illustrated in Figure 2. The viscoplastic866

simulations with hardening (green and purple) show that inelastic yielding867

continues to occur (with greater overall amounts for lower values in cohesion),868

but at a decreasing rate, i.e for decreasing dup/dt. Only the viscoplastic sim-869

ulations without hardening (black, blue, red) reveal that inelastic yielding870

continues to occur with an increasing amount of plastic strain accruing with871

each event (dup/dt ≥ 0).872

10. Discussion873

We have developed a finite difference method to account for off-fault874

plastic response over many quasi-dynamic ruptures. The computational875
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Figure 13: Time history of integrated plastic strain at the surface showing amount of
tectonic offset accommodated by inelastic deformation.

framework can model both rate-independent plasticity and viscoplasticity, al-876

though we found that isotropic hardening is necessary in the rate-independent877

model for solveability of the underlying equations. We considered a Drucker-878

Prager model (which reduces to von-Mises plasticity in the antiplane scenario879

we considered) with a depth-dependent yield stress. Numerical results were880

verified through convergence tests and comparisons with the solution from a881

finite element software package. Future work includes a deeper exploration882

of parameter space. For example, the inclusion of a depth dependency of883

the internal friction angle and cohesion (like those derived in Roten et al.884

(2016)) will be considered. The effects of hardening and viscosity will fur-885

ther be explored, as our choices for these parameters were chosen primarily886

for efficiency of computation.887

For the parameter study in this work, we found that viscosity, hardening,888

and cohesion all influence the extent and magnitude of off-fault plastic strain889

and all scenarios give rise to a shallow slip deficit. The inclusion of hard-890
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ening in all models sets an upper limit on the slip deficit, which is reached891

at a faster rate for lower values of viscosity. The viscoplastic models with892

no hardening, however, give rise to the largest slip deficits which increase893

continuously with subsequent rupture. Our results suggest that cumulative894

inelastic deformation over the course of many events can account for a sig-895

nificant amount of tectonic offset. We found that per rupture, ∼0.1 m of896

integrated plastic strain accrues, corresponding to ∼10% of the tectonic de-897

formation budget. Results from our model compare well to the observations898

of Meade et al. (2013) who estimate that 6% ± 9% of deformation occurs off899

of several major strike-slip faults.900
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Appendix A. The Coordinate Transform and Penalty Parameters909

As stated in section 6, we desire finer grid resolution in the domain near910

the fault and close to the free surface z = 0. Using coordinate transforms,911

we map the (y, z) grid in [0, Ly] × [0, Lz] with unequally spaced nodes, to a912

computational domain (ξ1, ξ2) ∈ [0, 1]×[0, 1] with equal grid spacings (Nξ1 +1913

and Nξ2 + 1 grid points in each direction, with ∆ξ1 = 1/Nξ1 ,∆ξ2 = 1/Nξ2).914

We let N = (Nξ1 + 1)(Nξ2 + 1). The mapping is given by915

y = `Y tan(tan−1(Ly/`Y )ξ1) (A.1a)916

z = `Z tan(tan−1(Lz/`Z)ξ2). (A.1b)917

Parameters `Y , `Z > 0 control the strength to which nodes are clustered918

near the fault and surface (respectively). The mapping (A.1) is invertible,919

with ∂y
∂ξ1
, ∂z
∂ξ2

> 0. The Jacobian J of the transformation is920

J =

[
∂y
∂ξ1

0

0 ∂z
∂ξ2

]
(A.2)921
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with determinant |J| = ∂y
∂ξ1
⊗ ∂z

∂ξ2
where ∂y

∂ξ1
denotes the diagonal coefficient922

matrix, and ∂y
∂ξ1

−1
is its inverse (reciprocals along the diagonal). Using the923

notation introduced in section 6, the SBP-SAT discretization of (33) on the924

computational domain is given by925

0 = Da11
2ξ1

du + Dξ1a12Dξ2du + Dξ2a21Dydu + Da22
2ξ2

du + P̃L + P̃R + P̃T + P̃B,
(A.3)926

where the SAT penalty vectors enforcing boundary conditions (41) are927

P̃L = H−1
ξ1

(αL + βH−1
ξ2

(−a11Sξ1 − a12Dξ2)T )Hξ2E0(duL − dgL)(A.4a)928

P̃R = H−1
ξ1

(αR + βH−1
ξ2

(a11Sξ1 + a12Dξ2)T )Hξ2EN(duR − dgR)(A.4b)929

P̃T = −H−1
ξ2

(Iξ1 ⊗ E0)([−a22Sξ2du− a21Dξ1du]T − d̃gT ) (A.4c)930

P̃B = −H−1
ξ2

(Iξ1 ⊗ EN)([a22Sξ2du + a21Dξ1du]B − d̃gB) (A.4d)931

where the modified boundary data are932

d̃gT = ∂y
∂ξ1

dgT (A.5a)933

d̃gB = ∂y
∂ξ1

dgB. (A.5b)934

The modified diagonal coefficient matrices in (A.4) are935

a11 = Cep
11( ∂y

∂ξ1

−1 ⊗ ∂z
∂ξ2

) (A.6a)936

a12 = Cep
12 (A.6b)937

a21 = Cep
21 (A.6c)938

a22 = Cep
22( ∂y

∂ξ1
⊗ ∂z

∂ξ2

−1
) (A.6d)939

correspond to the moduli940

a11 = Cep
11
∂ξ1
∂y

(A.7a)941

a12 = Cep
12 (A.7b)942

a21 = Cep
21 (A.7c)943

a22 = Cep
22
∂ξ2
∂z

(A.7d)944

of the transformed (continuous) problem, and we use the notation a11i,j =945

a11(yj, zi) as in section 6. Letting946
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Ā =

[
a11 a12

a21 a22

]
, (A.8)947

symmetry of Ā follows that of the 2 × 2 matrix C̄ep given by (34). That Ā948

is positive-definite also follows from C̄ep: Express Ā via the Schur decompo-949

sition Ā = XTSX, where950

S =

[
a11 0

0 a22 − a21a
−1
11 a12

]
(A.9)951

and952

X =

[
I a−1

11 a12

0 I

]
. (A.10)953

Since S is a diagonal matrix, its eigenvalues lie along the diagonal. Positive-954

definiteness of C̄ep guarantees that each element along the diagonal of Cep
11955

is positive and the transformation (A.1) maintains that the diagonal matrix956

a11 has positive elements. The diagonal matrix a22 − a21a
−1
11 a12 = ( ∂y

∂ξ1
⊗957

∂z
∂ξ2

−1
)[Cep

11]−1(Cep
11C

ep
22−Cep

12C
ep
21) has positive elements by construction of the958

mapping and positive-definiteness of C̄ep. Thus positive-definiteness of Ā959

follows from that of S by the Sylvester Law of Inertia (Golub and Van Loan,960

2013).961

Applying the energy method to (A.3) and a proper choice of penalty962

parameters (given shortly) yields d
dt

dE ≤ 0, where963

dE =
1

2
dUT (Hξ1⊗Hξ2)ĀdU+

1

2
duT (Ra11

ξ1
⊗Hξ2)du+

1

2
duT (Hξ1⊗Ra22

ξ2
)du+U1+U2,

(A.11)964

where dU = [Dξ1du Dξ2du]T . U1 and U2 are non-negative quantities that965

that arise from the weak enforcement of Dirichlet conditions, detailed shortly.966

Note that uniform grid spacing, as considered in section 6, is the special967

case `Y , `Z →∞ and the transformation merely scales the overall size of the968

domain. In the case of uniform grid spacing, Ā = C̄ep. The stability results969

of section 6 are thus a special case of the results here.970

The penalty parameters in (A.4) are derived in Virta and Mattsson (2014)971

and given here. The N × N diagonal coefficient matrix a11 has j, kth entry972

a11j,k . Virta and Mattsson (2014) find that penalty parameter β = −1,973
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and penalty (diagonal) matrices αL, αR have components obtained by first974

defining diagonal matrices b1L,b1R,b2L and b2R which have components975

b1Lj,j = βp(∆ξ1)λLj/(a11j,1)2 (A.12a)976

b1Rj,j = βp(∆ξ1)λRj/(a11j,Nξ1
)2 (A.12b)977

b2Lj,j = δp(∆ξ1)λj,1/(a22j,1)2 (A.12c)978

b2Rj,j = δp(∆ξ1)λj,Nξ1/(a22j,Nξ1
)2 (A.12d)979

along the diagonal, where βp = 36/99 and δp = 1/2 (for the second order980

operators we consider),981

λLj = min(λj,0, λj,1), j = 0, .., Nξ2 (A.13a)982

λRj = min(λj,Nξ1−1, λj,Nξ1 ), j = 0, .., Nξ2 , (A.13b)983

and984

λj,k =
1

2

(
a11j,k + a22j,k −

√
(a11j,k − a22j,k)

2 + 4(a12j,k)
2
)
. (A.14a)985

The positive quantities given in the incremental internal energy are986

U1 = UT
LH3TLUL (A.15a)987

U2 = UT
RH3TRUR (A.15b)988

for vectors989

UL = [duL
T (Ba11Sξ1du)TL (a12Dξ1du)TL]T , (A.16a)990

UR = [duR
T (Ba11Sξ1du)TR (a12Dξ1du)TR]T , (A.16b)991

H3 = diag([Hξ1 ⊗Hξ2 , Hξ1 ⊗Hξ2 , Hξ1 ⊗Hξ2 ]). (A.16c)992

Matrix Ba11 is a coefficient matrix for a11 formed in a special way (see Virta993

and Mattsson (2014) for details). Matrices994

TL =



−αL −1 −1
−1 b1R 0
−1 0 b2R


 (A.17a)995

and996

TR =



−αR −1 −1
−1 b1L 0
−1 0 b2L


 (A.18a)997
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are shown to be positive semi-definite if998

αLj,j ≤ − 1

b1Rj,j

− 1

b2Rj,j

, j = 0, ..., Nξ2 (A.19a)999

αRj,j ≤ − 1

b1Rj,j

− 1

b2Rj,j

, j = 0, ..., Nξ2 (A.19b)1000

(Virta and Mattsson, 2014).1001

Appendix B. The Consistent Tangent Moduli1002

The consistent tangent moduli for both rate-independent and viscoplas-1003

ticity are derived here simultaneously. Applying a backward-Euler discretiza-1004

tion to the flow rule (19), we have1005

σn+1
ij = Cijkl(ε

n+1
kl − εp,n+1

kl ) = Cijkl(ε
n+1
kl − εp,nkl − dλn+1 s

n+1
kl

2τ̄n+1
). (B.1)1006

The consistent elastoplastic tangent stiffness tensor Cep,n+1
ijkl =

∂σn+1
ij

∂εn+1
kl

can be1007

computed by first defining a few terms. Following Simo and Hughes (1998),1008

let nij = sij/2τ̄ . Then1009

∂nij
∂skl

=
1

τ̄

[
1

2
Iijkl − nijnkl

]
, (B.2)1010

where the fourth order, symmetric identity tensor1011

Iijkl =
1

2
[δikδjl + δilδjk] . (B.3)1012

It is a quick exercise to show that1013

n∗,n+1
ij = nn+1

ij , (B.4)1014

and therefore we have1015

∂τ̄ ∗,n+1

∂εn+1
kl

=
1

τ̄ ∗,n+1
σ∗,n+1
kl µ = 2µn∗,n+1

kl = 2µnn+1
kl . (B.5)1016

Next, recall the plastic consistency condition (71), which can be expressed1017

τ̄ ∗,n+1 − σY − hγnp = (η/dt+ µ+ h)dλn+1 (B.6)1018
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where the rate-independent case is obtained by taking η = 0. Taking the1019

partial derivative of (B.6) yields1020

∂τ̄ ∗,n+1

∂εn+1
kl

= (η/dt+ µ+ h)
∂dλn+1

∂εn+1
kl

. (B.7)1021

Re-arranging (B.7) and substituting in (B.5) yields1022

∂∆λn+1

∂εn+1
kl

=
2µ

η/dt+ µ+ h
nn+1
kl . (B.8)1023

Also note that we have,1024

Cijmn
∂smn
∂εkl

= 2µ
∂sij
∂εkl

. (B.9)1025

Therefore1026

∂nn+1
ij

∂εn+1
kl

=
∂n∗,n+1

ij

∂εn+1
kl

=
∂n∗,n+1

ij

∂σ∗,n+1
mn

∂σ∗,n+1
mn

∂εn+1
kl

=
∂n∗,n+1

ij

∂σ∗,n+1
mn

Cmnkl = 2µ
∂n∗,n+1

ij

∂σ∗,n+1
kl

= 2µ
∂nn+1

ij

∂sn+1
kl

.

(B.10)1027

When plastic straining is occuring (i.e. when λ > 0), we can compute the1028

consistent elastoplastic tangent stiffness tensor by taking the partial deriva-1029

tive of equation (B.1)1030

Cep,n+1
ijkl =

∂σn+1
ij

∂εn+1
ij

= Cijkl −
∂dλn+1

∂εn+1
kl

µnn+1
ij − dλn+1µ

∂nn+1
ij

∂εn+1
kl

(B.11)1031

= Cijkl −
2µ

η/dt+ µ+ h
nn+1
kl 2µnn+1

ij − dλn+12µ(2µ
∂nn+1

ij

∂sn+1
kl

) (B.12)1032

= Cijkl −
4µ2

η/dt+ µ+ h
nn+1
kl nn+1

ij − dλn+14µ2 1

τ̄n+1

[
1

2
Iijkl − nn+1

ij nn+1
kl

]
.(B.13)1033

and the specific case for antiplane motion given in (73)-(75) for rate-independent1034

plasicity, and (78)-(80) for viscoplasticity follow, using the notation Cep11 =1035

Cepxyxy, Cep22 = Cepxzxz, Cep12 = Cepxyxz, Cep21 = Cepxzxy.1036

Appendix C. Mesh Refinement1037

We double the number of grid points used in the simulation shown in1038

Figure 7(c) with η = 36, h = 0 and c = 50 MPa, see Fig. C.14. Although a1039

bit more slip occurs with each rupture when mesh refining (note last event1040

for each simulation, for example), the results appear qualitatively similar.1041
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Figure C.14: Snapshots of cumulative slip profiles plotted at 5-a intervals during inter-
seismic period when max(V ) ≤ 1 mm/s and dashed red profiles plotted at 1 s intervals
during quasi-dynamic rupture for η = 36 GPa-s, h = 0 GPa, c = 50 MPa for (a) the coarse
grid simulation from Fig. 7(c) (plotted again for ease of comparison) and (b) results when
using twice the number of grid points.
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