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Abstract

Subthreshold oscillations in combination with large-amplitude oscillations generate mixed-

mode oscillations (MMOs), which mediate various spatial and temporal cognition and mem-

ory processes and behavioral motor tasks. Although many studies have shown that canard

theory is a reliable method to investigate the properties underlying the MMOs phenomena,

the relationship between the results obtained by applying canard theory and conductance-

based models of neurons and their electrophysiological mechanisms are still not well under-

stood. The goal of this study was to apply canard theory to the conductance-based model of

pyramidal neurons in layer V of the Entorhinal Cortex to investigate the properties of MMOs

under antiepileptic drug conditions (i.e., when persistent sodium current is inhibited). We

investigated not only the mathematical properties of MMOs in these neurons, but also the

electrophysiological mechanisms that shape spike clustering. Our results show that pyrami-

dal neurons can display two types of MMOs and the magnitude of the slow potassium cur-

rent determines whether MMOs of type I or type II would emerge. Our results also indicate

that slow potassium currents with large time constant have significant impact on generating

the MMOs, as opposed to fast inward currents. Our results provide complete characteriza-

tion of the subthreshold activities in MMOs in pyramidal neurons and provide explanation to

experimental studies that showed MMOs of type I or type II in pyramidal neurons under anti-

epileptic drug conditions.

Introduction

The entorhinal cortex (EC) plays a pivotal role in the generation of theta and gamma rhythms

during rapid-eye-movement sleep, memory function, learning, and exploring behaviors in

awake animals [1–5]. The EC is a vital part of the temporal lobe that acts as an intermediary in

the neocortical-hippocampal network. Incoming information to the hippocampus is mostly

transmitted by stellate cells through the prefrontal pathway in layer II of the EC; whereas out-

going information from the hippocampus is transmitted through layer V of the EC.
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Morphological studies of layer V have shown that the majority of cells in this layer are pyra-

midal neurons, which display a robust, rhythmic subthreshold activity similar to stellate cells

[2]. It has been also shown that pyramidal neurons in layer V of the EC might contribute to the

generation of spontaneous seizures after status epilepticus, to immobility in the awake animal,

and to slow-wave sleep [6–9]. Importantly, spontaneous seizures have been shown to be affected

considerably by subthreshold oscillatory activities of these neurons [10–12]. Studies of antiepi-

leptic drugs, in which persistent sodium current (Inap) is inhibited with drugs such as riluzole

and phenyton, have interestingly showed that pyramidal neurons still exhibit subthreshold

oscillations [4, 11–13], which probably contribute to the abnormal firing patterns of pyramidal

neurons under antiepileptic drug conditions. Therefore, the main goal of this study is to investi-

gate the properties of STOs in pyramidal neurons when Inap is inhibited, and to examine the

relationship between these subthreshold activities and the firing patterns in pyramidal neurons.

These STOs are small-amplitude oscillations (< 10 mV), and are intrinsic neuronal phe-

nomena that persist during synaptic transmission block [14–16]. STOs were first reported in

myelinated nerves [17], and have since been observed in many neuron types, such as inferior

olive [18], squid giant axon [19], EC [2, 20], hippocampal CA1 [21], pyloric dilator [22], neo-

cortex [23], thalamus [24], and spinal motoneurons [25, 26]. Many experimental studies have

suggested that STOs influence a variety of neural behaviors, such as the size of bursting (or

spike clustering) [27], synaptic plasticity [21–25, 27, 28], rhythmic activities at the network

level [29, 30], spike discharge panel and spike clustering [2, 21–25, 27–29], perception and

memory [31, 32], synchronous activities [33], and motor coordination [34]. The properties of

STOs are usually investigated by injecting a chirp signal (i.e., a sinusoidal current with increas-

ing frequencies) into neurons, while its synaptic receptors are blocked [29]. Under this condi-

tion, the membrane potential of resonant neurons displays the maximum response (or STO)

for stimuli with frequency matching the neurons’ resonant frequency.

The resonance frequencies are usually examined through linearized models of resonant

neurons [35, 36]. One of the drawbacks of linearized models, however, is the disregard of the

firing region of neural oscillations by removing the Hodgkin-Huxley sodium and potassium

currents that mediate the action potential [36]. This limitation has impeded efforts to examine

the effects of STO phenomena on the firing patterns of neurons, thus inhibited a better under-

standing of how such phenomena might impact neural encoding. Therefore, the focus of this

study is on the nonlinear properties of conductance-based (CB) models, in order to improve

our understanding of the role of STO phenomenon in shaping the firing pattern, and also to

investigate the electrophysiological mechanisms underlying those firing patterns of pyramidal

neurons in layer V of the EC.

It is now widely accepted that the presence of a potassium channels with slow kinetics

induces the STO phenomena in many neurons. However, the effect of potassium channels in

regulating these phenomena in epilepsy remains poorly understood. There are over 70 potas-

sium channel genes in the mammalian body, however only few of them have been linked to

diseases. Among these genes, KCNQ1 and KCNE1 underlie diseases including epilepsy and

cardiac arrhythmias. KCNQ1 in conjunction with KCNE1 encode slow non-inactivating

potassium current (Iks) [37]. The mutations in this current leads to altered resting potential,

disruption of neural firing pattern, increased neurotransmitter release and calcium influx,

which in turns could generate hyperexcitability and epileptic phenotype. On the other hand,

recent studies showed that mutation in Inap could greatly impact inherited epilepsies because

of its role in sustaining epileptic discharges and long membrane depolarization [12]. There-

fore, Inap is the target of many antiepileptic drugs such as riluzole, phenytoin and topiramate

([12] and references therein). Riluzole can inhibit Inap, which accounts for about 1% of the

sodium current, without altering the transient sodium current (Ina) thereby sustain normal

Mixed-mode oscillations in pyramidal neurons
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neuronal excitability and information processing. Inhibition of Inap causes the loss of neuronal

repetitive firing and the emergence of STOs and spikes (action potentials), termed mixed-

mode oscillations [38]. In this study, therefore, we used a model of pyramidal neurons in layer

V of EC in which the persistent sodium channel is inhibited to simulate the effect of riluzole in

order to investigate the separate effect of Iks on the STO phenomenon.

Many experimental and theoretical studies have shown that the combination of STO and

spiking phenomena in resonant neurons result in complex oscillatory activity, called mixed-

mode oscillations (MMOs) [2, 14, 20, 39–43]. The concept of MMOs was first proposed in the

Belousove–Zhabotinsky reaction [44], and has been subsequently reported in several models

and experiments in biological and chemical systems [20, 45–47]. In this study, we are dealing

with two types of MMOs, the first of which we call type I MMOs. In this type, the depolariza-

tion of membrane potential results in STO phenomena around the steady-state potential; then

further depolarization results in action potentials (spikes) at the peak of STOs generating

MMOs [48]. The STO phenomenon in MMOs mainly play a timing role and control the spike

clustering (groups of action potentials separated by silent STO periods) [49–53]. By consider-

ing this role for STOs, the authors suggest that there is another type of MMO in which small-

amplitude oscillations (presumably STOs) emerge after the spike and during the repolarization

period. In literature, this type of MMO is known as pseudo-plateau bursting [39, 40, 54]. Dur-

ing these small-amplitude oscillations, neurons cannot fire action potentials. The ability to

delay the generation of the next action potential is similar to the timing role of STO phenom-

ena in type I MMOs. Therefore, we consider the combination of spike followed by STO-type

oscillations in these neurons as type II MMOs.
From the mathematical point of view, there are several methods for analysing the MMO

phenomena in nonlinear systems with multiple timescales, such as neurons. These methods

include break-up/loss of stability of a Shilnikov homoclinic orbit [46], break-up of an invariant

torus [55], and a subcritical Hopf bifurcation (HB) with an appropriate return mechanism

[56]. However, these mechanisms cannot completely explain all MMO features in a nonlinear

system, such as in neurons [57]. Due to these limitations, the present study employs canard

theory, which can examine transient dynamics in multiple timescale systems [58].

The classic canards are generic and were initially studied by Benoit et al. through nonstan-

dard analysis [59]. These canards describe the fast transition from small-amplitude STOs to

large-amplitude oscillation (i.e., spikes) during the variation of a parameter. Recently, Wech-

selberger et al. reported that a class of three-dimensional canards, called type-I folded nodes,

produces small-amplitude oscillations in MMOs [60]. Afterwards, several studies applied

canard theory to the CB model of neurons to predict the number of STOs per spike in MMOs

[61–65]. However, further research has yet to explore how the mathematical results of such

studies relate to the neuronal electrophysiological mechanisms.

The first goal of this study is therefore to apply canard theory to the CB model of pyramidal

neurons in layer V of the EC to investigate the properties of their MMO behaviors. It has been

shown that these neurons have non-inactivating potassium current (Iks) and persistent sodium

current (Inap). These currents mediate subthreshold activities with amplitudes in the 3–5 mV

range and frequencies in the 5–15 Hz range [2, 33]. It has also been shown that these neurons

can display MMOs [2]. Based on this finding, Jalics et al. developed a compartmental model

derived from that of Acker et al., in which they examined the number of STOs per spike in

MMOs. They used three-time-scale, singular perturbation stability analysis to show that these

neurons can display both MMOs and a seemingly chaotic firing pattern [33, 48]. We mainly

investigate the range of parameters in which the STO phenomena shape the spike cluster. This

information is expected to improve understanding of the effects which ionic currents in pyra-

midal neurons have on information encoding in the EC [29].

Mixed-mode oscillations in pyramidal neurons
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The second goal of this study is to bridge the gap between the theoretical results obtained

by the canard theory and the electrophysiological mechanisms that could potentially underlie

the mathematical predictions. To this end, we first identify the ranges of maximum conduc-

tances of ionic currents wherein the MMOs exist then discuss the electrophysiological behav-

iors resulting from these ionic currents in those ranges. Various factors are considered, such as

the input current, the evolution of membrane potential, the states of activation and inactiva-

tion functions, the time constants of membrane potential and ionic currents, the magnitude of

maximum conductances, and the dynamics of ionic currents. Accordingly, this paper is orga-

nized as follows: Section 2 presents the full and reduced compartmental biophysical single-

neuron models of pyramidal cells. Section 3 analyses how varying specific parameters impacts

MMOs by using canard theory. Moreover, Section 3 discusses how the results obtained by

applying canard theory to the reduced model can be interpreted in terms of electrophysiologi-

cal mechanisms. It should be noted that, in this study, we examine the entire range of each

parameter within which it is physiologically feasible for MMOs to exist; but we do not examine

the number of STOs per spike in MMOs [53, 54, 56, 60].

In this study, our overarching goal was to apply canard theory to the CB model of pyrami-

dal neurons in layer V of EC to investigate the electrophysiological mechanisms underlying

information coding efflux from hippocampus to neocortex. We develop a correlated mathe-

matical and electrophysiological understanding of the impact of subthreshold activities on the

firing behaviour (i.e. spike clustering) of pyramidal neurons. Our findings improve our under-

standing of the contributions of ionic currents to shaping spike clustering.

Method

Conductance-based model

In this study, we analyzed a single-compartment biophysical model of pyramidal cells in layer

V of the EC. This model, which was introduced by Acker et al. and modified by Jalics et al. [33,

48], generates MMOs over a range of parameter values. The model consists of slow non-inacti-

vating potassium (Iks) and persistent sodium (Inap) currents, with standard Hodgkin–Huxley

potassium (Ik), sodium (Ina), and leak currents (IL) [66]. As shown in Fig 1, the current balance

Fig 1. Conductance-based model of pyramidal neurons. The model composed of a capacitor and five parallel

resistors. The constant resistor represents the passive leakage current, gleak. Four other resistors correspond to the

active conductances, gks, gnap, gk, gna. The gk and gna are conductances of Hodgkin-Huxley model for generating fast

action potentials. Ek, Ena and EL are the reversal potentials of potassium, sodium and leak currents respectively.

https://doi.org/10.1371/journal.pone.0178244.g001
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equation is,

C
dV
dt
¼ Iinp � Iks � Inap � Ik � Ina � IL ð1Þ

where Iinp is the applied bias (DC) current (μA/cm2), C is the membrane capacitance (μF/cm2),

V is the membrane potential (mV), Iks = gks mks (V−EK), InaP = gnaP mnaP (V–Ena), Ik = gk n4

(V−EK), Ina = gna mna
3 hna (V−Ena), and IL = gL (V–EL). Ex and Gx (x = ks, k, nap, na, L) are the

Nernst (reversal) potential (mV) and the maximal conductance (μS/cm2), respectively. All gat-

ing variables follow a first-order differential equation with the form of,

dx
dt
¼

x1ðVÞ � x
txðVÞ

; x ¼ ðmks;mnap; n;mna; hnaÞ ð2Þ

where,

x1ðVÞ ¼
axðVÞ

axðVÞ þ bxðVÞ
;

txðVÞ ¼
1

axðVÞ þ bxðVÞ
: ð3Þ

The definition of αx, βx and the parameter values are defined in the S1 File. x1(V) denotes

the steady-state function of gating variables, and τx(V) represents the time constant functions.

Eqs 1 and 2 define the full six-dimensional model of a pyramidal cell in the layer V of EC.

The behavior of this model varies in three particular regions: (A) at Iinp< 0.8802 (μA/cm2),

damped oscillation converges to a stable rest state; (B) at 0.8802 < Iinp< 0.99406 (μA/cm2), a

bi-stability region exists and includes both a stable resting state and spike solutions; and (C) at

Iinp> 0.99406 (μA/cm2), stable periodic solutions exist. States in (A) and (B) are separated by

unstable, small-amplitude oscillation caused by a subcritical HB. Moving from the first region

to the second region, the trajectory follows a repelling unstable manifold, which is reminiscent

of two-dimensional canard phenomenon. Moreover, the periodic solution in region (C) is

related to the spiking behavior of neurons.

Reduced model

The reduced model of pyramidal neurons in layer V of the EC was introduced by Jalics et al.

[48], as follows:

C
dV
dt
¼ Iinp � gksmksðV � EKÞ � gnapmnap1ðVÞðV � EnaÞ

� gkn4ðV � EnaÞ � gnam3
na1ðVÞhna1ðVÞðV � EnaÞ

� gLðV � ELÞ ¼ f ðV;mks; nÞ

ð4Þ

dmks

dt
¼

mks1ðVÞ � mks

tksðVÞ
¼ gðV;mksÞ ð5Þ

dn
dt
¼

n1ðVÞ � n
tnðVÞ

¼ hðV; nÞ ð6Þ

Mixed-mode oscillations in pyramidal neurons
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They used steady-state (in)activation functions and time constant functions to reduce the

full model. Fig 2 illustrates these functions. Given that the bifurcation diagram of the reduced

model is similar to that of the full six-dimensional model (not shown), Jalics et al. [48] con-

cluded that the behaviour dynamics of the full and reduced models are comparable. Generally,

the main reduction principle is elimination of the Hodgkin–Huxley spiking currents [67, 68]

because Hodgkin–Huxley currents do not affect the membrane potential in the subthreshold

range [68]. However, the elimination of Hodgkin–Huxley currents leads to a qualitative

change in neuronal dynamics. Therefore, we reduced the full model using a different approach

as described below in order to avoid changing the neuronal dynamics.

In the reduced pyramidal neuron model the persistent sodium current (Inap) was inhibited,

which causes the spiking threshold of the neuron to increase. Therefore, a higher input current

Iinp was needed in order to activate the cell and examine its behaviour [48]. This increase also

helps to sustain both firing rate and the level of current while the dynamics are eliminated.

Importantly, our results show that pyramidal neuron model with inhibited Inap exhibits two

types of MMOs.

In the reduced model, a single equilibrium loses its stability by a subcritical HB at Iinp =

16.93 (μA/cm2), and the neuronal behavior switches among four regions (Table 1).

Fig 2. The evolutions of dynamics of the pyramidal cells in layer V of EC. a) Steady-state (in)activation functions. b) Voltage-dependent time constant

functions (τmKS = 90 msec).

https://doi.org/10.1371/journal.pone.0178244.g002

Table 1. Neuronal oscillation types for different values of input current.

(μA/cm2) DO* STO MMO Spiking

Iinp< 16.90 Yes ─ ─ ─
16.90 < Iinp< 16.93 ─ Yes ─ ─
16.93< Iinp< 18.26 ─ ─ Yes ─
Iinp > 18.26 ─ ─ ─ Yes

*DO stands for damping oscillations.

https://doi.org/10.1371/journal.pone.0178244.t001

Mixed-mode oscillations in pyramidal neurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0178244 June 7, 2017 6 / 20

https://doi.org/10.1371/journal.pone.0178244.g002
https://doi.org/10.1371/journal.pone.0178244.t001
https://doi.org/10.1371/journal.pone.0178244


We investigate the mechanisms underlying this behavior in the reduced model with Inap = 0

and Iinp� 17 (μA/cm2), unless otherwise mentioned. The variables V, mks, and n evolve on dis-

tinct timescales. For the membrane potential V, the time constant is calculated by τV = C / gT,

where gT is obtained by,

gT ¼ gksmks þ gkn
4 þ gnam

3

na1ðVÞhna1ðVÞ ð7Þ

The time constant of mks is τks = 90 (msec), whereas that of n can be obtained from the

equation of the activation variable (Eq 2). The results show that the time constant of V changes

faster than those of mks and n, thereby creating one fast and two slow variables in the system

(this relationship is further discussed in the following section). Moreover, setting C to the

smaller values (i.e. C! 0) decreases the time constant of V. Therefore, C is considered as the

parameter of the dimensionless singular perturbation problem in this model [63]. Herein, at C
� 0, mks and n are regarded as slow variables and V is the only fast variable in the model. By

taking advantage of these assumptions, we show that the MMO patterns in the reduced model

emerge through a canard mechanism, as a result of the existence of a folded node singularity

[57, 60, 69]. The existence of these folded node singularities guarantees the existence of STO

phenomena in these neurons [60].

Geometric singular perturbation theory (GSPT). The reduced model (Eqs 4–6) is a sin-

gularly perturbed system and consists of one fast variable (V) and two slow variables (mks and

n). We apply GSPT to analyze the model and determine whether its MMOs are canard-

induced oscillations [70, 71]. GSPT separates the analysis of the model into two low-dimen-

sional limiting problems by reducing the singular perturbation parameter C to 0.

The first system is a one-dimensional system at the fast timescale (τ1 = τ / ε) and called the

layer system, which describes the fast dynamics and is given by,

C
dV
dt1

¼ f ðV;mks; nÞ ;

dmks

dt1

¼ 0 ;

dn
dt1

¼ 0 :

ð8Þ

The second system is a two-dimensional system at the slow timescale (τ) and called the

reduced system, which describes the evolution of slow variables (mks and n) and is given by (4)

with C = 0.

0 ¼ Iinp � gksmksðV � EKÞ � gnapmnap1ðVÞðV � EnaÞ

� gkn4ðVÞðV � EnaÞ � gnam3
na1ðVÞhna1ðVÞðV � EnaÞ

� gLðV � ELÞ ¼ f ðV;mks; nÞ ;

dmks

dt
¼

mks1ðVÞ � mks

tksðVÞ
¼ gðV;mksÞ ;

dn
dt
¼

n1ðVÞ � n
tnðVÞ

¼ hðV; nÞ :

ð9Þ

The trajectory of the reduced system lies on the critical manifold S defined by S = {(V, mks,

n) 2 R3: f (V, mks, n) = 0}. Furthermore, the critical manifold equation can be solved explicitly

Mixed-mode oscillations in pyramidal neurons
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for one of the slow variables (mks and n). Therefore, the critical manifold can be given as,

mksðV; nÞ ¼
Iinp � gkn4ðV � EkÞ � gnam3

na1ðVÞhna1ðVÞðV � EnaÞ � gLðV � ELÞ

gksðV � EkÞ
ð10Þ

Fig 3 illustrates that at Iinp = 17.5 (μA/cm2), the critical manifold S is a folded surface, which

characterizes a large number of physiological systems with multiple timescales, such as neu-

rons [57]. This property allows these systems to change from one state to another, such as

between the spiking and subthreshold regions. In Fig 3, the critical manifold S is composed of

three surfaces divided by two fold-curves (L+ and L−). The middle surface (light blue) is the

space of repelling points (@f / @V> 0), and the upper (red) and lower (dark blue) surfaces are

Fig 3. The critical manifold for reduced model of EC neurons. The critical manifold with fold-curves (L+ and L-) and their projections [P(L+) and P(L-)]. L+

and L- are the upper and lower fold-curves respectively. P(L+) and P(L-) are the projections of L+ and L- onto the lower and upper sheets of the critical

manifold respectively. The upper sheet (red color) and lower sheet (dark blue color) are attracting sheets. The middle sheet (light blue color) is repelling

sheet.

https://doi.org/10.1371/journal.pone.0178244.g003
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the spaces of attracting points (@f / @V< 0). Fold-curves are obtained by,

L� ¼ fðV;mks; nÞ 2 R
3 : f ðV;mks; nÞ ¼ 0

and
@f
@V
ðV;mks; nÞ ¼ 0g

ð11Þ

This equation yields two values for the membrane potential (V) and two equations for mks

in the form of mks = mks(n). The fold-curves L− and L+ are projected vertically (along one-

dimensional sets; V, mks0, and n0) onto the upper P(L−) and lower P(L+) surfaces, respectively;

whereas mks0 and n0 are regarded as constants. To analyze the behavior of the reduced flow

(when C! 0) on the critical manifold S, we project the reduced system onto the two-dimen-

sional subspace (V and n). The reduced flow can be described by three equations: 1) A differ-

ential equation for V, which is given by implicitly differentiating f = 0; 2) the differential

equation for n (Eqs 6 and 3) the explicit form of the critical manifold for mks (Eq (8)). The

implicit differentiation of f = 0 leads to,

�
df
dV

dV
dt
¼

df
dn

dn
dt
þ

df
dmks

dmks

dt
ð12Þ

where dmks/dt and dn/dt satisfy Eqs 5 and 6, respectively, and mks satisfies Eq 10. Given that

the critical manifold S is given as a two-dimensional graph Eq 10, we project the reduced

model onto (V, n) as,

� fV _V ¼ fmksgðV;mksÞ þ fnhðV; nÞ ; ð13Þ

_n ¼ hðV; nÞ ð14Þ

where fV, fmks, and fn are df/dV, df/dmks, and df/dn, respectively; and _V and _n are dV/dt and

dn/dt, respectively. This system is singular along the fold-curves, @f / @V = 0. Hence, we desin-

gularize the system by rescaling time with τ = t / (@f / @V). The desingularized system is given

by,

V 0 ¼ fmksgðV;mksÞ þ fnhðV; nÞ ; ð15Þ

n0 ¼ � fVhðV; nÞ : ð16Þ

Where V´ and n´ are V and n derived from the new timescale τ. The phase portrait of Eqs 15

and 16 are identical to that of Eqs 13 and 14, respectively; but the direction of flow in the unsta-

ble slow manifold (@f / @V> 0) is reversed because of time rescaling. In general, the desingu-

larized system exhibits two forms of singularities—ordinary and folded. An ordinary

singularity is an equilibrium of the reduced system (Eqs 13 and 14) and is given by,

f ðV;mks; nÞ ¼ 0 ;

mks ¼ mks1ðVÞ ;

n ¼ n1ðVÞ :

ð17Þ
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By contrast, folded singularities are categorized as node, saddle, or saddle-node based on

the type of equilibrium of the desingularized system. Folded singularities are obtained by,

f ðV;mks; nÞ ¼ 0 ;

fmksgðV;mksÞ þ fnhðV; nÞ ¼ 0 ;

@f
@V
¼ 0 :

ð18Þ

Although folded singularities are not the equilibria of the reduced flow, they make it possi-

ble for the reduced flow to cross the fold-curve in finite time. These solutions are called “singu-

lar canard”. When arriving at the fold-curve, the absence of folded singularities causes the

reduced flow to jump along the fast fibers and move away from the subthreshold region with-

out producing any STOs [62]. A particular type of three-dimensional canards (canard of

folded node) is responsible for STOs in MMOs [60]. In the present model, one folded node

singularity (with negative eigenvalues) on the lower fold-curve (L−) and/or upper curve (L+)

exists under control conditions (Fig 4). Under this condition, all parameters are represented

by the physiological values introduced by Acker et al. [33].

Results and discussion

The range of parameters

In this section, we determine the parameter ranges in which the desingularized system main-

tains a folded node singularity. We specifically examine singularities for various values of gks,
gna, and gk. Fig 4 shows that the desingularized system exhibits a three-branched n-nullcline

(green curves; L+, L─, and NN) and a single-branch V-nullcline (red curve) and satisfies fmks.g
(V,mks) + fn.h(V,n) = 0.

The curve NN satisfies h(V,n) = 0, and both curves L+ and L─ satisfy fV = 0. Ordinary singu-

larities are placed at the intersection of V-nullcline with NN, whereas folded singularities are

Fig 4. In control condition, the singularities, V-nullcline (red) and n-nullcline (green) for I = 17.5 (μA/cm2). In the

Region of interest (ROI), the existence of folded node on L- (filled blue cycle, d) indicates the occurrence of type I MMOs

(left-trace and right-lower-trace). In this model, there is also a folded node on L+ (filled blue cycle, b), which shows there

is also the type II MMOs in this model (right-upper-trace). In control condition, there is also a stable folded focus on L+

(a), folded saddle on L-(c) and saddle point on NN (e).

https://doi.org/10.1371/journal.pone.0178244.g004
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placed at the intersections of V-nullcline with L+ and L─. Fig 5 shows that changing gks affects

the singularities of the desingularized system by moving V-nullcline up or down. At gks<
−9.388 (μS/cm2), n-nullcline (L+, L−, and NN) does not change and V- and n-nullclines do

not intersect; thus, no critical point exists within this range. V-nullcline moves down with

inceasing gksz. At gks = −9.388 (μS/cm2), V-nullcline and L+ collide, resulting in the emergence

of a saddle-node bifurcation point (SN1), which is called a type-I folded saddle-node and is

regarded as a standard saddle-node bifurcation of folded singularities [72, 73]. With further

increase in gks, two equilibria, namely folded focus (A1) and folded saddle (B1), originate from

SN1 and diverge from each other on L+. In addition, a stable node on NN curve (C1) emerges;

this node is an ordinary singularity and represents the equilibrium of the Eqs 4−6. As gks is

increased to 0.514 (μS/cm2), the folded saddle B1 moves to the right and the stable node C1

moves down and to the left. At gks = 0.514 (μS/cm2), a transcritical bifurcation (TR1) occurs

where B1 and C1 collide and coalesce. This folded singularity bifurcation is a type II folded sad-

dle-node [72, 73].

As a consequence of this bifurcation, the folded saddle point becomes the folded node. At

gks between 0.514 and 1.66 (i.e., gks = 1 (μS/cm2)), the equilibria on L+ are the folded focus (A3)

and the folded node (B2). Moreover, the equilibrium on NN (C3) becomes a saddle point. At

gks = 1.66 (μS/cm2), the second type I folded saddle-node bifurcation (SN2) occurs on L−. At gks
between 1.66 and 2.29 (i.e., gks = 2 (μS/cm2)), the folded focus (A5) and the folded node (B4)

occur on L+, and a saddle point (C3) occurs on NN. Similarly, a folded saddle (D1) and a folded

node (E1) occur on L−, which originate from SN2 and subsequently diverge from each other.

Fig 5. The folded and ordinary singularities on nullclines for changing gks (μS/cm2). Filled cyan circles (E1 and B2-B8) on L+ and L- curves are stable

folded node and unfilled cyan circles (B1 and D1-D5) are folded saddle. Filled blue triangles (SN1 and SN2) are type-I folded saddle-node bifurcation

(standard saddle-node bifurcation). Filled blue diamond (HB) is Hopf bifurcation for gks = 2.937 (μS/cm2). Filled blue rectangulars (TR1 and TR2) are type-II

folded saddle-node bifurcation (transcritical bifurcation). Violet-color filled and unfilled cycles (A1-A8) are stable and unstable folded fuci respectively. Filled

and unfilled cyan circles (C1-C6) on NN curve are stable and saddle point respectively, which are ordinary singhularities of system (15) and (16).

https://doi.org/10.1371/journal.pone.0178244.g005
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The appearance of the folded node on L− corresponds to an MMO, which is a combination

of STO and spiking. As gks is increased to 2.29 (μS/cm2), the second type II folded saddle-node

bifurcation occurs on L−, where E1 and C3 coalesce at a transcritical bifurcation (TR2). At gks>
2.29 (μS/cm2), the system does not show type I MMOs. At gks between 2.29 and 2.94 (μS/cm2),

a stable point (C4) and a folded saddle (E2) occur on NN and L−, respectively. At gks = 2.94 (μS/

cm2), the system undergoes a supercritical HB on L+, whereas at gks> 2.94 (μS/cm2), an unsta-

ble folded focus (A8) occurs on L+.

Figs 6 and 7 show the effects of gna on singularities of the desingularized system. Varied gna
values influence V-nullcline and n-nullcline in the (n, V)-phase-plane. At gna< 3.35 (μS/cm2),

only a stable node (A) exists (Fig 6(A)). At gna = 3.35 (μS/cm2), a fold in the critical manifold

emerges and SN1 and SN2 occur on the fold-curve (Fig 6(B)).

With further increase in gna, the fold-curve splits into two L+ and L− fold-curves. At gna
between 3.35 and 40.85 (μS/cm2), a folded saddle and a folded node occur on L+, two folded

saddles occur on L−, and a stable point occurs on NN (Fig 6(C)). At gna = 40.85 (μS/cm2),

the system undergoes a supercritical HB on L+, as shown in Fig 6(D). In addition, the folded

saddle on L− coalesces with the stable node on NN through a type II folded saddle-node bifur-

cation. With further increase in gna (i.e., gna = 50 (μS/cm2)), a folded focus occurs on L+, a

folded node occurs on L−, and a saddle point occurs on NN (Fig 7(A)). Similar to gks, the

appearance of the folded node on L− corresponds to a type I MMO, which is a combination of

STO and spiking.

Fig 6. The folded and ordinary singularities on nullclines for changing gna (μS/cm2). a) gna = 1 (μS/

cm2), b) gna = 3.36 (μS/cm2), c) gna = 20 (μS/cm2), and d) gna = 40.86 (μS/cm2). The phase space of this

system contains a single branch V-nullcline (red line) and three branches n-nullcline (green line) including L+

(upper horizontal line), L- (lower horizontal line) and NN (vertical curve). The color convention for equilibria is

similar to Fig 5.

https://doi.org/10.1371/journal.pone.0178244.g006
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At gna = 64.57 (μS/cm2), the folded saddle and folded node coalesce at a type I folded sad-

dle-node bifurcation (Fig 7(B)). As gna is increased further (i.e., gna = 80 (μS/cm2)), no folded

singularity occurs on L− (Fig 7(C)). At gna = 104.46 (μS/cm2), a transcritical bifurcation (type-

II folded saddle-node bifurcation) occurs on L+, and two equilibria, namely saddle and unsta-

ble points, occur on NN (Fig 7(D)). At gna> 104.46 (μS/cm2), the only equilibrium, which is

an ordinary stable point, occurs on NN.

On the other hand, changing gk does not affect the position of both nullclines, but affects

the folded singularities. In this case, the type I folded saddle-node bifurcation at gk = 5.92 (μS/

cm2) and the type-II folded saddle-node bifurcation at gk = 42.6 (μS/cm2) occur on L−. At 5.92

< gk< 42.6 (μS/cm2), a folded node on L− and a folded node on L+ occur. This result indicates

that both type I and type II MMOs occur in this range. Analysis of this phenomenon is beyond

the scope of this paper.

Significance of MMOs

The MMOs are significant because STOs in both subthreshold (type I MMOs) and suprathres-

hold (type II MMOs) ranges influence the amplification of synaptic inputs, the sensitivity of

the neuron to transient inputs, the regulation of neuronal firing rate, and the synchronization

of neural network at a specific frequency [11, 12, 38, 74]. In this section, we investigate the

effect of IKS on the STO phenomenon in both types of MMOs from electrophysiological point

of view.

Fig 7. The folded and ordinary singularities on nullclines for changing gna (μS/cm2). a) gna = 50 (μS/

cm2), b) gna = 64.57 (μS/cm2), c) gna = 80 (μS/cm2), and d) gna = 104.76 (μS/cm2). The phase space of this

system contains a single branch V-nullcline (red line) and three branches n-nullcline (green line) including L+

(upper horizontal line), L- (lower horizontal line), and NN (vertical curve). The color convention for equilibria is

similar to Fig 6.

https://doi.org/10.1371/journal.pone.0178244.g007
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In the previous section, the numerical analysis of a desingularized system (Eqs 15 and 16)

was presented. According to these results, pyramidal neurons display two types of MMOs in

two different ranges of gks. Specifically, for 0.514 < gks< 1.66 (i.e., gks = 1 (μS/cm2)) and for

1.66< gks< 2.29 (i.e., gks = 2 (μS/cm2)), there exist one type I MMO and one type II MMO,

respectively. These two ranges are within the physiological ranges defined in previous experi-

mental studies [4, 33, 75]. Fig 8 shows the evolution of membrane potential (V), n, and mks for

two values of these ranges of parameters.

For gks = 2 (μS/cm2), the membrane potential starts to depolarize in response to the injec-

tion of input current, Iinp (Fig 8(A)). As shown in Fig 2, the time constants of n (τn) and mks

(τmks) are larger than the time constant of membrane potential (τV). Therefore, both the tran-

sient potassium (Hodgkin-Huxley potassium channel or K+-channel) and the slow non-acti-

vating potassium channel (KS-channel) are activated with a considerable delay. Particularly,

KS-channel is activated with more delay than K+-channel because of its very large value of

time constant (τmks = 90 (msec)). Therefore, for the first few seconds of membrane oscillation,

these channels cannot oppose the changes in membrane potential. As a result, the membrane

potential (V) sharply rises to the depolarization values. At V ~ −55 (mV), however, the K+-

channel and, with delay, the KS-channel are activated (n and mks start to increase). The activa-

tion of these channels moves the positive K+ ions from the intracellular to the extracellular

region, which in turn hyperpolarizes the membrane potential.

This displacement forms a force against the membrane depolarization which is similar to

the behavior of resonator ion channels discussed in pyloric dilator neurons [35]. At V ~ −45

(mV), K+- and KS- channels can neutralize the effect of Iinp and decrease the membrane poten-

tial; this, in turn, partially inactivates both ion channels. At this point, the partial inactivation

of K+- and KS- channels allows Iinp to increase the membrane potential to depolarization val-

ues, which in turn activates both ion channels, but with considerable delays. The interaction

between Iinp and the K+- and KS- channels leads to the small-amplitude oscillation (STOs) in

the membrane potential.

In the last convex curve of STOs (before the action potential), K+- and KS- channels hyper-

polarize the membrane potential more than before (downwards convex curve), which in turn,

decreases the values of n and mks more than the previous period (further inactivates K+- and

KS- channels). Consequently, Iinp depolarizes the membrane potential more sharply than the

previous periods and triggers the action potential. Note that the time constant values of K+-

and KS- channels are larger than the time constant of V. Therefore, they cannot be activated

fast enough to avoid the depolarization of membrane potential towards the threshold of action

potential.

Fig 8 (B) shows that the membrane potential of pyramidal neurons can display type II

MMOs for gks = 1 (μS/cm2). Decreasing gks decreases the effect of the terms gks. mKS. (V − EK)

in Eq 4. Therefore, the potassium channels (K+- and KS- channels) cannot counterbalance the

effect of Iinp on rapid depolarization of the membrane potential. Therefore, the injection of Iinp
sharply increases the membrane potential and triggers the action potential. At the top of the

action potential, the K+- and KS- channels are properly activated to sharply decrease the mem-

brane potential to −23 (mV).

It should be noted that the decrease in membrane potential is mostly caused by the K+-

channel (variable n). At this point, the KS-channel does not reach its maximum activation

value. The interaction between Iinp and the potassium channels (mostly the K+-channel) leads

to the small-amplitude oscillation (STOs) in the membrane potential. After several STOs, the

activation value of the KS-channel reaches its maximum value. At this point, the rate of K+

ions moving from the intracellular to the extracellular region is very high, resulting in a sharp

decrease of the membrane potential.
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Fig 8. The evolution of variables in the reduced model of pyramidal neurons for Iinp = 17.2 (μA/cm2). a) For gks = 2 (μS/

cm2), the membrane potential displays the type I MMO (upper trace), activation variable of K+-channel, n (middle trace), and

activation variable of KS-channel, mks (lower trace). b) For gks = 1 (μS/cm2), the membrane potential shows the type II MMO

(upper trace), activation variable of K+-channel, n (middle trace), and activation variable of KS-channel, mks (lower trace).

https://doi.org/10.1371/journal.pone.0178244.g008
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Although canard theory has been previously used to analyze the behavior of neuronal mod-

els under normal conditions [76], our study is the first to apply canard theory to examine a

neuronal model under antiepileptic drug conditions. Additionally, our mathematical analysis

shows that MMOs of type 1 and type 2 could be seen in pyramidal neurons when Inap is inhib-

ited but in different ranges of gks. To our knowledge, this is the first time the two types of

MMOs have been demonstrated in a single neuronal model. Importantly, there is mounting

evidence in literature that supports such predictions. For instance, both types of MMOs have

been observed in pyramidal neurons under antiepileptic drug condition when Inap was blocked

using pharmacological agents [13, 74, 77]. This shows that our results are biologically valid.

These results indicate that the type of MMO depends on the maximum conductance (gks) of

Iks. Accordingly, this explains why MMOs of type 1 or type 2 have been seen in these experi-

mental studies–probably due to the magnitude of Iks in these studies.

Conclusion

Although several studies have applied canard theory to different neural models and predicted

important mathematical characteristics of these models, the discussion of the electrophysiolog-

ical mechanisms that underlie the mathematical predictions has attracted less attention [64,

73, 78, 79]. This study provides a more in-depth investigation of the relationship between the

mathematical characteristics and the electrophysiological mechanisms of MMOs in pyramidal

neurons under antiepileptic drug conditions. It also showed that the magnitude of slow potas-

sium currents is critical for determining the type of the emerging MMO. For the questions

posed in this study, slow outward currents, as opposed to fast inward currents, have a major

impact on the properties of the MMO phenomena.
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