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ABSTRACT 

Shivakumar, Ashutosh. M. S. C. E., Department of Computer Science and Engineering, 

Wright State University, 2017.Smart EV Charging for Improved Sustainable Mobility 

 

The landscape of energy generation and utilization is witnessing an unprecedented 

change. We are at the threshold of a major shift in electricity generation from utilization of 

conventional sources of energy like coal to sustainable and renewable sources of energy 

like solar and wind. On the other hand, electricity consumption, especially in the field of 

transportation, due to advancements in the field of battery research and exponential 

technologies like vehicle telematics, is seeing a shift from carbon based to Lithium based 

fuel. Encouraged by 1. Decrease in the cost of Li – ion based batteries 2. Breakthroughs in 

battery chemistry research - resulting in increased drive range 3. Government incentives 

and tariff concessions by utilities for EV owners in the form of tax credits, EV – only 

parking spaces, free charging equipment etc., the automobile market, especially the 

passenger vehicle market, is witnessing a steady growth in the sale of electric vehicles. 

This has resulted in Electric Vehicles contributing to the electricity load resulting in two 

challenges 1. At the supply end, it contributes as a potential micro energy storage system 

to fit the time gap between the demand for electricity and the supply of renewable and/or 

low cost electricity generation; and, 2. At the consumer-end, it creates a necessity to make 

energy consumption as sustainable and renewable as possible, while preserving battery life. 
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In this thesis work we attempt to provide multiple practical solutions to address 

these needs by advancing existing technologies in the industry. Firstly, we have developed a 

“Joint EV-Grid Solution for Robust and Low-Complexity Smart Charing”, where we have 

designed and implemented a distributed smart charging algorithm, which runs in the EV 

with load and pricing information collected from Grid through the charging station. It is 

responsible for optimizing the charge plan of the user’s vehicle based on his/her preference 

and ensure a full charge before departure. The objective could be minimizing the electricity 

cost per charge session or maximizing the renewable energy usage. For instance, by setting 

the preference to optimize the algorithm according to “Price”, the additional demand is 

scheduled to off-peak hours (i.e., incurring the least cost). Alternatively, by setting the 

preference to “Renewables” the EV charges based on the maximum availability of 

renewable energy sources, thereby maximizing the utilization of renewable energy 

resources which may lead to reduced cost, if not minimize it.  

Furthermore, we have improved on our initial approach by introducing “Smart 

Charging Solution through Usage/Charging Pattern Learning” where we have used 

machine learning algorithms like Logistic regression and Fuzzy Logic to enable EVs to 

learn the usage and charging pattern of users and prepare a charging plan that is 

personalized at the users’ end and prevents potential smart-changing-caused demand peaks 

by distributing the net load throughout the day.  

Through our experiment studies we were successful in creating a distributed 

Charging algorithm and a Machine Learning system that could cater to the said 

requirements through innovative charging strategies. Consequently, helping us create a 

sustainable, win – win situation for both electricity consumer and producer.                         



v 
 

 

 

 

Table of Contents 
Chapter 1. Introduction ................................................................................................... 1 

1.1 Current Electric Vehicle Trends ........................................................................... 1 

1.2 Motivation ............................................................................................................ 3 

1.2.1 Government regulations and international treaties ....................................... 3 

1.2.2 Load Management ........................................................................................ 4 

1.2.3 Cheaper Energy Consumption ...................................................................... 6 

1.2.4 Personalization .............................................................................................. 6 

1.2.5 Conformation to a Fully - Autonomous Future ............................................ 7 

1.3 Our Solution ......................................................................................................... 7 

1.3.1 A Joint EV-Grid Solution for Robust and Low-Complexity Smart Charing 7 

1.3.2 An improved Smart Charging Solution through Usage/Charging Pattern 

Learning 10 

Chapter 2. A Joint EV-Grid Solution for Robust and Low-Complexity Smart 

Charing ............................................................................................................................ 11 

2.1 System Description ............................................................................................ 11 

2.1.1 Information Source for Load Data .............................................................. 11 

2.1.2 Assumptions ................................................................................................ 11 

2.1.3 Algorithm Description ................................................................................ 12 

2.1.4 Proposed System Architecture .................................................................... 17 

2.1.5 System Operation ........................................................................................ 18 

2.2 Algorithm Evaluation ......................................................................................... 19 

2.2.1 Power-grid is the only source of electricity ................................................ 20 

2.2.2 Power-grid and Home Energy storage are the sources of energy ............... 25 

2.2.3 Summary and Comparison of Results......................................................... 30 

2.2.4 Conclusion .................................................................................................. 32 

Chapter 3. A Machine Learning approach to Smart Charging of EVs ..................... 33 

3.1 Assumption......................................................................................................... 33 



vi 
 

3.1.1 System (Vehicle) Assumptions ................................................................... 34 

3.1.2 User Profile Assumptions ........................................................................... 34 

3.2 Smart - Charging System Visualization ............................................................. 35 

3.2.1 System description ...................................................................................... 36 

3.2.2 System function .......................................................................................... 38 

3.3 Implementation................................................................................................... 38 

3.3.1 Main Model Data ........................................................................................ 39 

3.3.2 Generation of Derived Features for the Classifier ...................................... 57 

3.3.3 Choice of Classifier Algorithms ................................................................. 58 

3.3.4 Implementation of Classification Algorithms ............................................. 60 

3.3.5 Scheduler..................................................................................................... 92 

Chapter 4. Conclusions and Future Work ................................................................... 96 

4.1 Conclusions ........................................................................................................ 96 

4.2 Future Work ....................................................................................................... 97 

4.2.1 Improving User/Driver Profiling ................................................................ 97 

4.2.2 Dealing with Security Threats .................................................................... 98 

4.2.3 Mitigate Structural Defects at Power Distribution Networks ..................... 99 

REFERENCES .............................................................................................................. 100 

 

  



vii 
 

 

 

 

Table of Figures 
Figure 1.1 Worldwide Electric and Hybrid vehicle adoption since 2010 ........................... 2 

Figure 1.2 California Duck – Curve (Courtesy: California ISO)........................................ 5 

Figure 2.1 Smart – Charging Logical View ...................................................................... 12 

Figure 2.2 Smart – Charging Proposed Architecture ........................................................ 17 

Figure 2.3 Smart charging visualizer depicting normal full – rate charging of EVs ........ 21 

Figure 2.4 Smart charging visualizer depicting normal half – rate charging of EVs ....... 22 

Figure 2.5 EV charging visualizer depicting smart – charging scenario with actual grid 

load information ................................................................................................. 23 

Figure 2.6 EV charging visualizer depicting smart – charging scenario with hour ahead 

predicted grid load information ......................................................................... 24 

Figure 2.7 EV smart - charging visualizer depicting smart – charging scenario with day 

ahead predicted grid load information ............................................................... 25 

Figure 2.8 EV charging visualizer depicting normal charging of EVs without smart 

charging and presence of solar energy ............................................................... 26 

Figure 2.9 Smart charging visualizer depicting half – rate charging of EVs .................... 27 

Figure 2.10 EV smart - charging visualizer depicting smart – charging scenario with 

perfect grid load information and solar energy ................................................ 28 

Figure 2.11 EV smart - charging visualizer depicting smart – charging scenario with hour 

ahead predicted grid load information and solar energy .................................. 29 

Figure 2.12 EV smart - charging visualizer depicting smart – charging scenario with day - 

ahead predicted grid load information and solar energy. ................................. 30 

Figure 3.1 Smart charging system .................................................................................... 36 

Figure 3.2 Smart Charging Classifier Flow-chart ............................................................. 39 

Figure 3.3 Graphical representation of typical charging profile #1 for home – maker at 

S.O.C = 100% for Charging pattern 1.1 ............................................................ 40 

file:///C:/Users/Ashutosh/Google%20Drive/SubmissionDraft/Master_Thesis_Ashutosh_Shivakumar.docx%23_Toc483552365
file:///C:/Users/Ashutosh/Google%20Drive/SubmissionDraft/Master_Thesis_Ashutosh_Shivakumar.docx%23_Toc483552366
file:///C:/Users/Ashutosh/Google%20Drive/SubmissionDraft/Master_Thesis_Ashutosh_Shivakumar.docx%23_Toc483552367


viii 
 

Figure 3.4 Graphical representation of typical charging profile #1 for home – maker at 

S.O.C = 75% for Charging pattern 1.2. ............................................................... 41 

Figure 3.5 Graphical representation of typical charging profile #1 for home – maker at 

S.O.C = 50% for Charging pattern 1.3 ................................................................ 41 

Figure 3.6 Graphical representation of typical charging profile #2 for home – maker at 

S.O.C = 100% for Charging pattern 2.1 .............................................................. 42 

Figure 3.7 Graphical representation of typical charging profile for home – maker at S.O.C 

= 75% for Charging pattern 2.2. .......................................................................... 42 

Figure 3.8 Graphical representation of typical charging profile for home – maker at S.O.C 

= 50% for Charging pattern 2.3. .......................................................................... 43 

Figure 3.9 Graphical representation of typical charging profile #3 for home – maker at 

S.O.C = 100% for Charging pattern 3.1. ............................................................. 44 

Figure 3.10 Graphical representation of typical charging profile #3 for home – maker at 

S.O.C = 75% for Charging pattern 3.2 ................................................................ 44 

Figure 3.11 Graphical representation of typical charging profile #3 for home – maker at 

S.O.C = 50% for Charging pattern 3.3. ............................................................... 45 

Figure 3.12 Graphical representation of typical charging profile for daily - commuter at 

S.O.C = 100% for Charging pattern 4.1 .............................................................. 46 

Figure 3.13 Graphical representation of typical charging profile #1 for daily commuter at 

S.O.C = 75% for Charging pattern 4.2 ................................................................ 46 

Figure 3.14 Graphical representation of typical charging profile #1 for daily commuter at 

S.O.C = 50% for Charging pattern 4.3 ................................................................ 47 

Figure 3.15 Graphical representation of typical charging profile #2 for daily commuter at 

S.O.C = 100% for Charging pattern 5.1. ............................................................. 47 

Figure 3.16 Graphical representation of typical charging profile #2 for daily commuter at 

S.O.C = 75% for Charging pattern 5.2. ............................................................... 48 

Figure 3.17 Graphical representation of typical charging profile #2 for daily commuter at 

S.O.C = 50% for Charging pattern 5.3 ................................................................ 48 

Figure 3.18 Graphical representation of typical charging profile #3 for daily commuter at 

S.O.C = 100% for Charging pattern 6.1 .............................................................. 49 



ix 
 

Figure 3.19 Graphical representation of typical charging profile #3 for daily commuter at 

S.O.C = 70% for Charging pattern 6.2 .............................................................. 50 

Figure 3.20 Graphical representation of typical charging profile #3 for daily commuter at 

S.O.C = 50% for Charging pattern 6.3 .............................................................. 50 

Figure 3.21 Graphical representation of typical charging profile for delivery person at 

S.O.C = 100% for Charging pattern 7.1 ............................................................ 51 

Figure 3.22 Graphical representation of typical charging profile #1 for delivery person at 

S.O.C = 75% for Charging pattern 7.2. ............................................................. 52 

Figure 3.23 Graphical representation of typical charging profile #1 for delivery person at 

S.O.C = 50% for Charging pattern 7.3. ............................................................. 52 

Figure 3.24 Graphical representation of typical charging profile #2 for delivery person at 

S.O.C = 100% for Charging pattern 8.1 ............................................................ 53 

Figure 3.25 Graphical representation of typical charging profile #2 for delivery person at 

S.O.C = 75% for Charging pattern 8.2 .............................................................. 53 

Figure 3.26 Graphical representation of typical charging profile #2 for delivery person at 

S.O.C = 50% for Charging pattern 8.3 .............................................................. 54 

Figure 3.27 Graphical representation of typical charging profile #3 for delivery person at 

S.O.C = 100% for Charging pattern 9.1 ............................................................ 54 

Figure 3.28 Graphical representation of typical charging profile #3 for delivery person at 

S.O.C = 75% for Charging pattern 9.2 .............................................................. 55 

Figure 3.29 Graphical representation of typical charging profile for delivery person at 

S.O.C = 50% for Charging pattern 9.3 .............................................................. 55 

Figure 3.30 Classifier 2_1_1. Decreasing cost function with number of iterations ......... 62 

Figure 3.31 Classifier 1_3_1. Decreasing cost function with number of iterations ......... 64 

Figure 3.32 Classifier 3_2_1. Decreasing cost function with number of iterations ......... 65 

Figure 3.33 Overall View of Fuzzy Logic Design ............................................................ 77 

Figure 3.34 Frequency of battery discharge ..................................................................... 78 

Figure 3.35 Number of Plug-In ......................................................................................... 78 

Figure 3.36 Duration of Plug-In........................................................................................ 79 

Figure 3.37 Battery Usage ................................................................................................ 79 

Figure 3.38 Implementation with same logistic regression training data ......................... 80 



x 
 

Figure 3.39 Problem in identifying inference rule for case [6 3 54 13]............................ 83 

Figure 3.40 Problem in identifying inference rule for case [6 3 54 13]............................ 84 

Figure 3.41 No rule is fired for input [55 1 52.166 8.145] to judge output profile .......... 85 

Figure 3.42 Degree of membership for “Battery Usage” feature ..................................... 86 

Figure 3.43 Changed degree of membership of “Battery Usage” feature ........................ 87 

Figure 3.44 Rules get fired for case [55 1 52.166 8.145] or relevant cases ...................... 87 

Figure 3.45 Final view of fuzzy inference rules ............................................................... 88 

Figure 3.46 Proposed home – maker charging schedule .................................................. 93 

Figure 3.47 Proposed Regular commuter charging schedule ........................................... 94 

Figure 3.48 Proposed Delivery person charging schedule................................................ 94 

 

  



xi 
 

 

 

 

Tables 
Table 2.1 Sample charging plan........................................................................................ 15 

Table 2.2 Comparison of results ....................................................................................... 30 

Table 3.1 Confusion Matrix (Test Data1 = Least Noise).................................................. 66 

Table 3.2 Confusion Matrix (Test Data2 = Medium Noise) ............................................. 67 

Table 3.3 Confusion Matrix (Test Data3 = High Noise) .................................................. 69 

Table 3.4 Summary of Test Results .................................................................................. 71 

Table 3.5 Fuzzy Inference Methods used by genfis3 ....................................................... 76 

Table 3.6 Confusion matrix representation ....................................................................... 81 

Table 3.7 Implementation and change in FIS with test data used in logistic regression .. 82 

Table 3.8 Solution to improve classifier ........................................................................... 84 

Table 3.9 Calculation of F measure under Less Noisy conditions ................................... 88 

Table 3.10 Calculation of F measure under Medium Noise conditions ........................... 90 

Table 3.11 Calculation of F measure under High Noise conditions ................................. 91 

 

  



xii 
 

 

 

 

ACKNOWLEDGEMENT 

 

I would like to express my sincere gratitude to the following people, who have 

contributed to my knowledge through this thesis. 

The Department of Computer Science and Engineering, Wright State University 

for facilitating close collaboration between students and faculty to push the frontiers of 

research inch by inch every day. Dr. Yong Pei, my thesis guide for teaching me the essence 

of engineering design and inspiring me every day with his optimism and positive energy. 

Dr. Tanvi Banerjee, for introducing me to the fascinating world of “Machine Learning” 

and patiently answering my endless stream of questions. Miteshkumar Vasoya for his 

contributions to the Machine Learning parts of the thesis. 

Special thanks to Sebastian Kaluza and Julia Sohnen at BMW Technology Office, 

Mountain View, California for giving me an opportunity to dive into the innovative world 

of “Sustainable Mobility”. Dr. Thomas Braunl, University of Western Australia, Perth, 

Australia for expanding the boundaries of my knowledge of the automotive world. 

Last but not the least, my parents, for being my backbone throughout this journey. 



 

1 
 

 

 

Chapter 1. Introduction 

1.1 Current Electric Vehicle Trends 

Electric energy consumption and generation is witnessing an unprecedented 

change. There is a shift in electricity generation from utilization of conventional sources of 

energy like coal to sustainable and renewable sources of energy like solar and wind. On 

the other hand, energy consumption, especially in the field of transportation, due to 

advancements in the field of battery research and exponential technologies like vehicle 

telematics, is seeing a shift from petroleum based to electricity based fuel.   

In recent years, the automotive market, especially the passenger vehicle market, is 

witnessing a steady growth in the sale of electric vehicles. Particularly, consumers in states 

like California, the biggest automotive market in the USA, are among the earlier adopters 

of Electric vehicles for transportation[1]. EVs are expected to become one of the major 

automobiles in the USA and worldwide as shown in Figure 1.1[2].  
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The following reasons explain this trend: 

1. Decrease in battery costs leading to affordable electric cars[3], [4].  

2. Breakthroughs in Li – ion battery chemistry research (e.g., high energy density 

of Lithium anode) - resulting in increased drive range[5].  

3. Rapid expansion of fast charging station network.  

4. Entry of major automobile manufacturers like General Motors, BMW, Ford, 

Honda, Toyota etc. into the EV market.  

5. Increased vehicle durability due to lesser number of moving parts used in 

manufacturing[6].  

6. Government incentives and tariff concessions by utilities for EV owners in the 

form of tax credits, EV – only parking spaces, free charging equipment etc.[7]. 

This has resulted in Electric Vehicles contributing to the electricity load resulting 

in two new challenges: 1. EV charging demands significant increase in electricity 

consumption at home, which may worsen the already-stressful peak-to-average demand 

pattern in the Grid as evident in the Duck curve shown in Figure 1.1; and, 2. At the 

 Figure 1.1 Worldwide Electric and Hybrid vehicle adoption since 2010  
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consumer-end, it creates a necessity to make energy consumption as sustainable and 

renewable as possible, while preserving battery life. 

Hence, through this thesis work we attempt to provide multiple practical solutions 

to these problems using existing technologies in the industry. 

1.2 Motivation 

We list the motivating factors for this thesis work in the following section. 

1.2.1 Government regulations and international treaties 

              To reduce the harmful carbon emissions due to burning of fossil fuels. Fossil fuels 

that are the primary cause for climate change and as per the Paris Climate Agreement that 

came into force on 4th November 2016 and ratified by 144[8], [9] countries of the world, 

have proposed to prevent the global average temperature not more than 2 degree Celsius[8]. 

This requires all regulations and policy to comply with the 100% clean energy 

objective[10]. 

In addition to the “Paris Agreement” states within the US namely, California, 

Connecticut, Rhode Island, Oregon, New York, New Jersey, Oregon, Rhode Island, Maine, 

Maryland, Massachusetts and Vermont follow a California state regulation called ‘ZEV’ 

(Zero Emission Vehicle) program that mandates all automotive manufacturers to market, 

develop and research electric vehicles that generate fewer global warming emissions[11]. 

Further, countries like China and Europe have started programs for widespread integration 

of renewable energy resources into their power grid and subsidies for Electric Vehicle 

consumers. 
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These regulations have necessitated automotive manufacturers and utilities across 

the world to find ways to collaborate to meet the respective emission goals set by the 

governments. This has given rise to an increase in the financial outlay towards research 

and development for innovative technologies like Li-ion batteries and standardization of 

Vehicle to Grid communication protocols like ISO 15118. It has also led to the entry of 

‘Home Energy Management’ systems that use batteries to store excess electric energy 

derived from solar/wind energy, or being charged at the valley of duck curve; and then use 

it to meet the energy needs of the people at peak hours. 

Since the above stated technologies play an important role in charging of EVs, there 

is a strong need for seamless integration of these technologies to make the charging process 

economical, renewable and sustainable. 

1.2.2 Load Management 

Load management also known as ‘Demand Side Management’ is a process in which 

utilities balance the supply-demand of electricity by using special tariffs to influence 

customer usage. This allows utilities to reduce demand during periods of peak usage by 

encouraging customers to charge during off-peak times by reducing the tariffs[12]. 

Figure 1.2 represents the net load curve. This net load is necessary for the utilities 

to make decisions on the generation capacity. For our case study, we have used the duck – 

curve representation of net - load of the state of California, USA as shown in Figure 1.2. 
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From the Figure 1.2 [13], we infer that there is a sharp ramp of demand from 3:30 

pm to 7:30 pm leading into a peak at 8:00pm. The depth of this ramp increases with each 

passing year due to the increase in the integration of renewable resources. This integration 

during late afternoon reduces the need for drawing power from the grid. However, as the 

day grows into early evening, there is a strong demand of electricity as majority of the 

people return from work and turn-on appliances at homes. If electric – vehicles charge 

during this period they act as additional load to the grid, thereby contributing to the stress 

on the distribution transformers. 

Hence, there is a benefit for both the Grid and household to ensure charging of 

electric vehicles during off-peak times to reduce the burden on grid and lower the cost to 

the consumer. 

 Figure 1.2 California Duck – Curve (Courtesy: California ISO) 
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1.2.3 Cheaper Energy Consumption 

One of the most important motivating factors for introducing smart – charging 

technology for charging EVs is to reduce the cost of energy consumption to the end user. 

The source of energy for electricity generation today is dominated by natural gas and coal. 

The usage of these fuel types contributes to the cost of charging and environmental 

pollution. The use of a level – 2 (240V) AC charging station contributes to the total 

household energy consumption. This cost of EV charging increases considerably during 

periods of peak energy consumption. Additionally, if we expand EV transportation to large 

service sector vehicles like mail – delivery vans, buses and trucks the cost of charging these 

vehicles with larger batteries will increase even more. To get a perspective on the scale and 

cost of charging, consider the following example: 

Example: Let us assume a commuter must cover 50 miles every day and let cost per mile 

of the vehicle is 0.23 USD (including fuel, tires, maintenance and registration) [14]. On 

scaling this to a year the cost increases to about $4200 USD for a single vehicle. It is a 

significant expense. Hence, there is a need to reduce the price of charging on electric 

vehicles so that the money saved can be used for other household needs. 

1.2.4 Personalization 

In today’s world, there is strong demand for personalization of goods and services. 

Personalization contributes accurately to the needs of people. This increases user – 

convenience. We believe EV charging is no different and envision a charging system where 

an EV owner can choose between ‘Renewable - Friendly’ or ‘Cost – Effective’ modes of 

charging.  When the charging preference is set to ‘Renewable - Friendly’ mode, the vehicle 
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charges during presence of high availability of solar energy; similarly, if ‘Cost – Effective’ 

charging mode is chosen, the preference is given to charge according to the time of day, 

representing the minimum cost of power. Customer preference could change based on their 

requirement and available charging facilities (Ex: Presence or absence of Home Energy 

management system). Hence, in an actual implementation it is important that we provide 

the customers with the choice of charging based on their needs. 

1.2.5 Conformation to a Fully - Autonomous Future 

Presently, we are witnessing an increased impetus given to application of Artificial 

Intelligence in development of technologies. This has led to creation of automobile driving 

platforms like Autonomous driving, which seek to increase safety and reduce the burden 

of driving. The extension of this concept to EV charging, where the electric vehicle learns 

from the driving profile of the user, results in: 1. User convenience: where the user does 

not have to worry about charging, as the vehicle autonomously takes care, based on learnt 

user - profile. 2. Prolongation of the EV battery life, by preventing over – charging or 

unnecessarily-frequent charging [15]. 

1.3 Our Solution 

Through this thesis work, we propose two smart charging solutions with increasing 

learning capabilities to address the issues discussed in the previous section: 

1.3.1 A Joint EV-Grid Solution for Robust and Low-Complexity Smart Charing 

We have designed and implemented a distributed smart charging algorithm, which 

runs in the EV with load and pricing information collected from Grid through the charging 
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station. It is responsible for optimizing the charge plan of the user’s vehicle based on his/her 

preference and ensure a full charge before departure. The objective could be minimizing 

the electricity cost per charge session or maximizing the renewable energy usage. For 

instance, by setting the preference to optimize the algorithm according to “Price”, the 

additional demand is scheduled to off-peak hours (i.e., incurring the least cost). 

Alternatively, by setting the preference to “Renewables” the EV charges based on the 

maximum availability of renewable energy sources, thereby maximizing the utilization of 

renewable energy resources which may lead to reduced cost, if not minimize it.  

However, it should be noted that as cost of electricity is decided corresponding to 

the demand, all vehicles might charge at those periods of time when the demand for power 

is minimum. This leads to change of Grid demand pattern, which must be correctly 

predicted to produce robust charging plan. Due to the limited information, available at each 

individual EV, it is difficult to produce such prediction reliably and accurately.  

In a way, similar to a hybrid Mobile and Cloud system, such as Google Earth, in 

this project, we explore the load prediction capabilities that is already made available by 

the Grid  to reduce the complexity at the EV’s on-board charging unit. In addition, the grid, 

with the most complete information about the usage, can produce the load prediction more 

accurately and faster. We will exam the robustness of our charging algorithm by producing 

charging plan based on predicted load data received from the Grid through a cellular link. 

Particularly, the smart charging algorithm running on the Electronic Control Unit 

(ECU) in the EV, receives information pertaining to the day-ahead or hour-ahead predicted 

demand, the two load predictions currently made available by the Grid. In addition, the 
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Grid may also provide information about availability of renewable resource. The 

communication between charging station and EV is governed by the high-level client-

server charging protocol ISO 15118, which is currently under development. The charging 

station in turn receives this information from the database of the Utilities (i.e., Grid) via a 

cellular link.  

To prove the viability of the smart charging algorithm and analyze the economic 

benefits of integration of Home Energy Storage systems into the charging mechanism, we 

have considered the following two cases: 1. Charging of EVs by considering the price 

curve, corresponding to the energy demand 2. Charging EVs by considering the availability 

of renewable energy from the home energy system along with the price curve. Furthermore, 

we analyze these two cases in the following charging strategies: 1. Regular charging 

without optimization (i.e., plug in and charge); 2. Regular charging but with reduced 

charging rate, e.g., at half power; 3. EV charging by using the smart charging algorithm. 

We use these methods to understand the benefits of smart – charging over normal charging 

at full and half – rate of power transfer.  

Moreover, we will examine the robustness of the smart charging algorithm by 

evaluating the amount of cost benefit attained even if no perfect load information is 

available. Thus, the total cost of charging will be compared when the charging schedule is 

produced based on: 1. Actual demand curve from the utility. 2. Hour-ahead prediction 

demand curve; and, 3. Day-ahead prediction of demand curve. Intuitively, the charging 

schedule based on the actual demand curve will produce the minimal cost; however, it is 

not possible to predict it perfectly in practice. The hour-ahead and day-ahead predictions, 

on the other hand, provide a realistic way to obtain the load information; but prediction 
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error may lead to the mismatch, and result in sub-optimal solutions. Our goal is to 

investigate the robustness and accuracy of using the day-ahead and hour-ahead predictions 

and its impact on the actual cost. If the charging cost based on day-ahead and hour-ahead 

predictions are not significantly more than the actual one, we demonstrate that charging 

decisions can be made in advance, e.g., by a day, giving the user, an estimate of his energy 

costs and the utilities an approximation of the total load. It will help us validate the 

achievable benefit of smart charging in the real-world operations. 

1.3.2 An improved Smart Charging Solution through Usage/Charging Pattern 

Learning  

In a future dominated by various applications of artificial intelligence in our daily 

driving habits, we envision a user-friendly EV, that can make charging decisions on behalf 

of the owner/driver according to his/her usage and charging behavior, and make itself 

adequately charged for the owner/driver to begin driving at the time of departure. It is 

important to prevent the electric vehicle from overcharging to preserve the durability of the 

battery. This can be accomplished by logging the owner/user’s charging data and 

classifying it to a user-profile class, based on various usage/charging patterns, and 

preparing a charging schedule for the same.  

Hence, through this approach, we explore machine-learning paradigms, namely, 

Fuzzy-logic and Logistic Regression in this thesis, to build these decision-making 

capabilities into the car and make the whole charging process devoid of human 

interference. 
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Chapter 2. A Joint EV-Grid Solution for Robust and Low-

Complexity Smart Charing 

In this chapter, we propose a grid-assisted EV smart charging algorithm. The 

proposed algorithm has the following features: 

1. To shift the EV charging to off – peak time. 

2. Integration of renewable energy, e.g., stored in the batteries of the Home Energy 

Management system. 

In this chapter, we present a detailed description of the algorithm, a system 

architecture and explain the results of the localized optimization algorithm approach to 

smart charging of Electric Vehicles.  

2.1 System Description 

2.1.1 Information Source for Load Data 

All information pertaining to the predicted and actual load is inferred from the 

California ISO database [16]. 

2.1.2 Assumptions 

We make the following assumptions for algorithm implementation: 
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1. Total EV battery storage: 30kWh 

2. Full charging rate: 7kW for a 240V level 2 charging station. 

3. Half charging rate: 3kW for a 240V level 2 charging station. 

       4. We assume the total power transmitted from the charging station and received by 

the EV are equal. We neglect the power loss due to resistance, capacitance and 

inductance of the intermediate circuitry.  

2.1.3 Algorithm Description 

 

 

 

 

 

Figure 2.1 Smart – Charging Logical View 
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The above diagram represents the logical view of the smart charging algorithm. The 

description of each term associated with this algorithm is found in Section 2.1.3.1. 

2.1.3.1 Input parameters 

2.1.3.1.1 Price preference (%): 

It represents one of the choice used by the customer to optimize the charging schedule. 

“Cost of charging” is predicted on a day-ahead or hour-ahead basis as per demand information from 

the public utility commission. The charging plan is prepared according to this predicted data, but 

the actual cost has to be calculated based on the real demand which may be different from the 

prediction. The outcome also reflects the robustness of the charging algorithm to such disparity. 

By setting a “Price” preference of 100 percent would enable the EV to optimize the 

charging algorithm to prepare a charging plan corresponding to minimum cost of charging.  

2.1.3.1.2 Renewable preference (%): 

It denotes the criteria used by the customer to optimize the charging algorithm as 

per “maximum availability of renewable energy” parameter. “Maximum availability of 

renewable energy” is the day-ahead or hour-ahead prediction. The cost for the same is 

calculated based on the renewable energy service provider (Example. The solar panel or 

the home energy system leasing entity). 

Example: Setting a price preference of 100 percent would enable the EV to optimize the 

charging algorithm to prepare a charging plan corresponding to the time of day 

corresponding to the maximum availability of solar energy.  

Note: Provisions have been made in the algorithm for customers to set a combination of 

the two preferences. 
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Example: Setting a price preference of 60 percent and 40 percent for renewables would 

enable the EV to optimize the charging algorithm to prepare a charging plan corresponding 

to the respective proportion “Maximum availability of renewable energy” and “Price 

preference”. 

2.1.3.1.3 Arrival Time or start time (HH:MM): 

It is the time at which the charging session begins for the Electric vehicle. The start 

time, for the sake of demonstration, at present, can be set at the beginning of one full hour 

(Ex: 06:00, 16:00 etc.) 

2.1.3.1.4 Departure Time (HH:MM): 

It is the time at which the charging session ends for the electric vehicle. It represents 

the hard deadline by which the EV must stop charging. The departure time, for the sake of 

demonstration, at present, can be set at the beginning of one full hour (Ex: 06:00, 16:00 

etc.) and should always be after the “start time”. 

2.1.3.1.5 Present State of Charge (%): 

It represents the percentage of energy in the battery of the EV at that instant of time. 

The algorithm prepares cost and/or renewable optimized charging schedule to add the 

remaining percentage of energy to the battery.  

Ex: 60% SOC means, the battery has 60% of total energy that can be stored by the EV, at 

that instant of time. Hence, the algorithm prepares a charging plan for the remaining 40% 

of battery capacity to be filled by the departure time. 
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2.1.3.2 Output parameters  

2.1.3.2.1 Charging Plan 

It is a data structure, represented by a file or a two-dimensional array sent by the 

EV to the charging station that depicts the charging plan in the form of energy requirements 

in kWh (kilowatt hour) at each instant of time from the beginning of each full hour. The 

charging plan is optimized to transmit the maximum electrical energy before the departure 

time for minimum cost and/or maximum availability of renewable energy based on the 

customer preference. It is calculated, based on the day or hour-ahead prediction of electrical 

energy demand in the form of cost and/or availability of renewable energy. 

Example: 

Table 2.1 Sample charging plan 

TimeStamp DayAheadPredictionPrice  Actual 

Cost 

Renewable  Plan 

06:00 10.76 11.48 0 0 

07:00 12.16 12.64 0 0 

08:00 13.1 12.94 0.52 0 

09:00 13.24 13.2 1.65 0 

10:00 13.19 13.29 2.47 7 

11:00 13.01 13.16 2.66 7 

12:00 12.82 12.98 2.89 7 

13:00 12.73 13.05 2.86 7 

14:00 12.73 12.78 2.47 7 

15:00 12.73 13.15 1.79 0 

16:00 12.81 13.32 0.74 0 

17:00 13.4 14.62 0 0 

18:00 14.9 15.28 0 0 

19:00 15.19 15.09 0 0 

20:00 14.99 14.77 0 0 

21:00 14.54 14.33 0 0 

22:00 13.77 13.41 0 0 
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The terms used in the charging plan in Table 2.1. are described as follows: 

1. TimeStamp: Represents the time of day to indicate the parameters of charging 

at that instant. It is created at the beginning of every full hour. 

2. Day/Hour Ahead Prediction Price: This field represents the day- or hour- 

ahead predicted values of price information derived from the demand curve of 

the utility. 

3. Actual Cost: It represents the actual price of power at that instant of time. 

4. Renewable: This field represents the cost of the predicted renewable energy. 

5. Plan: This field represents the instants at which power has been transmitted from 

the charging station to the Electric Vehicle based on the decision of the charging 

algorithm.  

6. Energy transmitted (kWh): It is the maximum possible energy in kWh 

transferred from the charging station to EV before the departure time but not greater 

than the maximum capacity in kWh of the battery in the EV. 

23:00 12.66 12.47 0 0 

00:00 10.98 10.85 0 0 

01:00 10.33 10.34 0 0 

02:00 9.94 9.98 0 0 

03:00 9.73 9.92 0 0 

04:00 9.69 10 0 0 

05:00 9.98 10.53 0 0 
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2.1.4 Proposed System Architecture 

Figure. 2.2 represents the proposed system for the implementation of the smart 

charging scenario. 

 

Figure 2.2 Smart – Charging Proposed Architecture 

The description of the terms used in Figure 2.2 is given below: 

1. EVCC (Electric Vehicle Charging Controller): ECU (Electronic Control Unit) 

within the Electric Vehicle, which implements the communication between the 

EV and the SECC. 
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2. SECC (Supply Equipment Communication Controller): Entity, which 

implements the communication to one or multiple EVCCs in compliance with 

the ISO 15118 communication protocol. 

3. ISO 15118: ISO 15118 standardizes the communication between Electric 

Vehicles (EV), including Battery Electric Vehicles and Plug-In Hybrid Electric 

Vehicles, and the Electric Vehicle Supply Equipment (EVSE)[17]. 

4. EVSE (Electric Vehicle Supply Equipment) or charging Station: It is system 

in the charging setup of electric vehicles responsible for providing electric 

energy from the installation premises to the electric vehicles and enable 

communication between them[17]. 

5. Smart Charging Dashboard: It is a graphical representation of the smart 

charging algorithm.  

6. Utilities Database: contains the day ahead or hour ahead prediction and the 

actual cost and availability of renewable energy resources. This data will be used 

for the creation of charging plan. 

7. PLC (Power Line Communication): A communication protocol, which 

enables sending data over power cables[18]. 

2.1.5 System Operation 

The operation of the proposed system architecture in Figure 2.2 is described below: 

1. The smart charging dashboard, hosted on either an Amazon EC2 Web service 

or a local server, simulating the Graphical User Interface (GUI) displayed on 
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the Human Machine Interface (HMI) in the infotainment system of the car, 

receives the inputs from the user in the form of “Price Preference” and/or 

“Renewable Energy Preference”,” Arrival Time”,” Departure Time”. 

2. The parameters submitted are passed on to the ECU (Electronic Control Unit) in 

the EV. The ECU hosts the “Smart Charging Algorithm”. On receiving the 

parameters, information of “predicted cost” and “Availability of Renewable 

Energy resources” from the utilities database via the SECC to the EVCC, the 

algorithm, computes the charging plan and passes it to the SECC via the EVCC. 

3. The SECC directs the charging station to deliver the required power, to the EV, 

according to the charging plan. 

2.2 Algorithm Evaluation 

To prove the viability of the smart charging algorithm and its capability to utilize 

the renewable energy source for EV charging, we have compared the results of its 

application in two main cases, namely, 1. Power Grid is the only electricity source with 

renewable energy integration in scale. 2. Home Energy Storage integrated with Power grid 

as the source of electricity. Each of these cases are further subdivided to four approaches, 

namely, 1. Normal EV Charging 2. EV charging at half-rate 3. EV charging using smart 

charging algorithm with perfect grid load cost information 4. EV charging using smart 

charging algorithm with predicted power grid load and cost information (day- or hour- 

ahead prediction). The four approaches employed in each case are used to analyze: 1. The 

economic benefits of smart charging, when compared to the existing normal EV charging 

and EV charging at half charge rate. 2. The accuracy between actual and predicted day-



 

20 
 

ahead and hour-ahead cost of charging. This is important as charging plans can only be 

created based on these predictions. The algorithm must provide robust charging plan such 

that the most of the cost benefit can still be attained when using day-ahead and/or hour-

ahead predictions. 

2.2.1 Power-grid is the only source of electricity 

In this case, we assume that the power-grid is the only source of electricity. 

2.2.1.1 Normal EV Charging 

In this case, we charge the EV by the existing mechanism without optimization. 

The Figure 2.3 below evaluated a normal charging mechanism and the results have been 

tabulated in Table 2.2. As 6 pm is normally the time a person return home, we choose the 

start time at 6 pm. This will also be the start of peak hours on the Duck curve as home 

appliances are turned on now. If normal charging is used, EV will start charging at this 

very same time, which likely incur the higher utility cost due to higher price. 
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Figure 2.3 Smart charging visualizer depicting normal full – rate charging of EVs 

2.2.1.2 Normal EV charging at half rate 

In this case, we are incorporating the first level of smartness by reducing the EV 

charging rate by half (3kW). This has been implemented to examine the extent of decrease 

in the total charging cost by simply reducing the charging rate to explore the valley of the 

Duck curve. The graph in Figure 2.4., illustrates the case. 
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Figure 2.4 Smart charging visualizer depicting normal half – rate charging of EVs 

2.2.1.3 EV smart - charging with actual grid load information. 

In this case, we evaluate the effectiveness of application of smart charging 

algorithm into EV charging, with actual grid load information, which postpone the 

charging until a later time during the valley. Refer Figure 2.5. 
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Figure 2.5 EV charging visualizer depicting smart – charging scenario with actual 

grid load information 

2.2.1.4 EV charging using smart charging algorithm with Hour – ahead prediction. 

In this case, we evaluate the application of smart – charging algorithm to the load 

information obtained on an hour – ahead basis. 
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Figure 2.6 EV charging visualizer depicting smart – charging scenario with hour 

ahead predicted grid load information 

2.2.1.5 EV smart - charging using smart charging algorithm with Day – ahead 

prediction. 

In this case, we evaluate the application of smart – charging algorithm to the load 

information obtained on a day – ahead basis. Please refer Figure 2.7 
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Figure 2.7 EV smart - charging visualizer depicting smart – charging scenario with 

day ahead predicted grid load information 

2.2.2 Power-grid and Home Energy storage are the sources of energy 

In this case, we consider the power – grid and the Home Energy Storage, used to 

store the renewable energy – solar, as the source of energy for charging. 

2.2.2.1 Normal EV charging.  

We charge the EV by the existing mechanism devoid of optimization. The graph 

below   gives a clear description of the mechanism. The normal charging cannot make use 

of the availability of the Home Energy Storage.  
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Figure 2.8 EV charging visualizer depicting normal charging of EVs without smart 

charging and presence of solar energy 

2.2.2.2 Normal EV charging at half rate 

In this case, we are incorporating the first level of smartness by reducing the EV 

charging rate. This is implemented to examine the extent of decrease in the total charging 

cost by reducing the charging rate. The following graph, illustrates the case. 
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Figure 2.9 Smart charging visualizer depicting half – rate charging of EVs 

2.2.2.3 EV smart - charging with actual grid load information 

In this case, we evaluate the effectiveness of application of smart charging 

algorithm into EV charging, with actual grid load information and ability to utilize the 

home energy storage. Please refer Figure 2.10 
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Figure 2.10 EV smart - charging visualizer depicting smart – charging scenario with 

perfect grid load information and solar energy 

2.2.2.4 EV charging using smart charging algorithm with Hour – ahead prediction 

In this case, we evaluate the application of smart – charging algorithm to the load 

information obtained on an hour – ahead basis. 
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Figure 2.11 EV smart - charging visualizer depicting smart – charging scenario with 

hour ahead predicted grid load information and solar energy 

2.2.2.5 EV charging using smart charging algorithm with Day – ahead prediction 

In this case, we evaluate the application of smart – charging algorithm to the load 

information obtained on a day – ahead basis. 
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Figure 2.12 EV smart - charging visualizer depicting smart – charging scenario with 

day - ahead predicted grid load information and solar energy. 

2.2.3 Summary and Comparison of Results 

Table 2.2 Comparison of results 

                               

From Table 2.2, we infer the following results. 

Time 

of 

charge 

Present 

energy 

(kWh) 

Required 

energy 

(kWh) 

Cost-day 

ahead 

incurred 

(cents) 

Cost-hour 

ahead 

incurred 

(cents) 

Cost- 

actual 

incurred 

(cents) 

Cost – actual 

incurred 

(half - rate, 

non-smart) 

(cents) 

Cost charging 

(full-rate, non-

smart) (cents) 

18:00pm - 

5:00am 

0.00 30.00 357.60 357.60 357.60 379.32 510.19 

6:00 am - 

17:00pm 

0.00 30.00 93.40 93.40 93.40 124.26 201.27 
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2.2.3.1 Case 1: Power – Grid is the only source of energy 

1. We have set a charging time from 18:00pm to 5:00am, because the highest and 

the lowest cost of charging are present within this interval. This represents an 

ideal time – span to illustrate the benefits of smart charging over regular 

charging. Further, it is the time when most the EV driving population charge 

their vehicles. 

2. The cost of charging at full rate without smart charging, 510.19 cents are greater 

by 152.59 cents compared to the cost of charging with smart charging algorithm. 

Further, the cost of charging at half-rate (3kW) without smart-charging is higher 

by 21.72 cents compared to charging at full rate with smart charging (6.6kW ~ 

7kW) [19], clearly demonstrating economic benefits of smart – charging 

algorithm.  

3. The cost of charging for day-ahead, hour-ahead and actual tariff for charging is 

357.60 cents. This proves that the predictions are as good as the actual tariff and 

can be used to make decisions pertaining to charging in advance, by a day or 

hour. 

2.2.3.2 Case 2: Home solar energy source with power grid is the source of energy 

1. We have set a charging time from 6:00am to 17:00pm, as majority of the solar 

energy is captured within this time – span. Moreover, it represents the ideal time-

span to illustrate the use of smart-charging algorithm to maximize the integration 

of renewable energy resource for EV charging.  
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2. Further, we observe that by charging at half – rate (3kW), instead of full-rate we 

can reduce the charging costs by 201.27 – 124.26 = 77.01 cents. However, the 

cost of charging at half rate is still higher by 124.26 – 93.40 = 30.86 cents 

compared to cost incurred due to smart – charging.  

3. The cost of charging at full-rate (7kW) without smart charging is higher by 

201.47 – 93.40 = 108.07 cents.  

2.2.4 Conclusion 

From the above calculations, we can conclude that: 

1. The smart charging algorithm enable EVs to charge intelligently to accommodate 

the maximum availability of solar energy.  

2. The smart-charging algorithm is the better alternative compared to the 1. 

Charging by half-rate 2. Charging by full-rate as it incurs the least cost of 

charging. 

            3. The day-ahead and the hour-ahead predictions of demand and hence the tariff 

can be used to make charging decisions in advance, by a day or hour. 

Consequently, EV load information to the utilities in advance, which allows 

them to prepare for any unseen issues pertaining to overloading. 

4. The predicted load by the utility can be reliably used to make charging decisions 

because the cost incurred due to predictions are approximately equal to the cost 

due to the actual load.   
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Chapter 3. A Machine Learning approach to Smart Charging 

of EVs 

In this chapter, we present the second solution to further improve the smart charging 

performance by using machine-learning paradigms namely, logistic regression and fuzzy 

logic. One of the major goals of this new solution is to produce charging schedule that: 1. 

Better harness the renewable energy; 2. Mitigate the potential peak demand caused by 

simultaneous EV charging because of smart charging (Approach 1); and, 3. Improve the 

battery life by optimizing the charging cycles. Thus, we will explore the individual EV’s 

usage/charging pattern to provide the flexibility in its charging cycle, such as time and 

frequency. This approach was considered, to explore the following cases: 1. Profiling and 

classification of users based on customer charging habits to produce personalized charging 

plans. Contributing to improvements in the durability of the battery 2. Introduce autonomy 

into charging to prevent human interaction, which is the weakest element in the link.  

3.1 Assumption 

For the sake of practicality and convenience, we have made the following 

assumptions to build the machine learning model. They can be classified into:  
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3.1.1 System (Vehicle) Assumptions 

1. EV will become the main stream passenger automobile. We assume there will 

be no difference in the EV driving characteristics, compared to the present day 

Internal Combustion Engine(ICE) vehicles. This assumption is essential, 

because the success of EVs depends on their seamlessness into mainstream 

adoption. 

2. The total battery capacity is 40kWh. 

3. As the discharge curve of the Li – ion based battery is linear for most of the 

duration; we generalize it to a linear function of time.  

4. Regenerative braking - a modern day feature in all electric vehicles, responsible 

for converting the kinetic energy of a moving object or vehicle into a form of 

energy, here electricity, to be stored for immediate or future use, has been 

ignored as its contribution to the cumulative energy at any given instant of time 

does not significantly contribute to the drive. 

3.1.2 User Profile Assumptions 

EV charging habits of the general population can be inferred from their driving 

habits. We classify this correlation into three categories: 

3.1.2.1 Category 1 

Higher frequency of usage of the EV (Frequency of usage is defined as the number 

of round trips between two locations) but less battery consumption per trip. This would 

result in a higher number of plug-ins from the charging station, but lesser consumption of 

electric energy. Homemakers and the elderly are prime representatives of this class. 
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3.1.2.2 Category 2 

Through this category, we target the second most automobile driving population in 

i.e. the office – commuters and students. For these class of people the usage of the EV is 

to commute between residence to workplace, with frequency of around trips being minimal 

and battery usage being minimal (about 30%). Here the number of plug-ins from charging 

station can be low and the energy derived from the grid is calculated to be low owing to 

lower usage.  

3.1.2.3 Category 3  

This category represents the heavy users, for example sale person, mail – delivery 

and public transportation. High battery consumption and high frequency of usage are the 

characteristics of this case. The main characteristics of this class of users are low plug-in 

number and higher electric energy consumption. 

In this thesis, we limit our attention to these 3 categories: Homemaker, Daily 

commuter and Delivery person, that represent the three-major trends in driving 

characteristics of most the driving population. Thus, they represent the three classes for the 

smart charging classifier. 

3.2 Smart - Charging System Visualization 

 To visualize operation of the smart charging case, we propose a systems 

engineering approach as shown in Figure 3.1 
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Figure 3.1 Smart charging system 

Figure 3.1. represents the smart – charging system visualization implemented using the 

machine learning approach. The components that constitute the system are described in the 

following section. 

3.2.1 System description 

1. EV Charging Controller(EVCC): ECU (Electronic Control Unit) within the 

Electric Vehicle, that implements the communication between the EV and the 

SECC. It contains a memory module that stores the charging profiles and the 

software implementations of the classifier algorithm and the charge scheduler. 

It is also responsible for monitoring the battery status during charging process 

and sharing the battery state of charge info to the profiler and the scheduler. 
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2. Profiler: Currently it is a database in the EVCC that contains the labelled 

charging profiles of the three most prominent charging patterns. The stored 

profiles under consideration are 1. Home – maker 2. Regular – commuter 3. 

Delivery person. In future work, we expect to develop an autonomous profiler 

which can create new profiles by monitoring the usage/charging patterns. 

3. Classifier: It is the implementation of the machine learning algorithms like 

logistic regression or fuzzy logic used to classify the charging data based on the 

profiles in the profiler. 

4. Scheduler: The scheduler is responsible for preparing a charging plan based on 

the class chosen by the classifier. 

5. Battery: The battery in the EV is used mainly for propulsion. It is arranged in 

the form of cells, modules and packs with cells representing the fundamental 

form a battery can take. Several cells are arranged in series or in parallel to 

constitute a module and similarly a group of modules are arranged in series or in 

parallel to constitute a battery pack[20]. 

6. EVSE (Electric Vehicle Supply Equipment) or charging Station: It is system 

in the charging setup of electric vehicles responsible for providing electric 

energy for the charging of electric vehicles. 

7. Electric Grid: An electric grid is an interconnected network of generating 

stations, transmission lines and distribution transformers used to transmit power 

from the generating end to the end users[21].  
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3.2.2 System function 

1. The charging data consisting of plug in time, plug out time, departure time, initial 

state of charge is logged by the EVCC. The machine learning algorithm 

consisting of the profiler and the classifier which learns this charging pattern 

over time and classifies the user into one of the different profiles of users, 

currently limited to: 1. Home – maker (Representing medium usage) 2. Regular 

– commuter (Representing light usage) 3. Delivery person (Representing heavy 

- usage).  

2. This profile info along with the next probable departure time is sent to the 

scheduler. The scheduler prepares a charging plan per this information and sends 

it to the charging station via the Power Line Communication (PLC) in 

accordance with the ISO 15118 protocol.  

3. The charging station receives the charging plan from the EVCC and transfers 

power to the EV accordingly. 

3.3 Implementation 

For feature creation, a mathematical model of the charging behavior for each profile 

was created.  A preprocessing algorithm is used to derive the high-level features for easier 

classification between the output classes. This feature data is then given as an input to the 

classifier that outputs the corresponding class. 

Figure 3.2. Gives a schematic of our approach to the profiler and classifier setup. 
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Figure 3.2 Smart Charging Classifier Flow-chart 

The description of each of the elements in the flowchart are given below: 

3.3.1 Main Model Data 

We have chosen three different patterns of charging data, representative of each 

profile on a given day. These driving data primarily represent the weekday driving habits. 

The waveforms in the ensuing subsections are used to provide a pictorial representation of 

the data. 

3.3.1.1 Charging Profile: Home-maker 

Charging Pattern 1.1 Typical charging profile #1 for home-maker starting S.O.C. = 

100% 

We have assumed the typical charging profile #1 for home – maker: 

7-9am  Drop kids at school and/or Grocery shopping 
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10-11am  home errand 

2-3pm  pickup kids from school 

5-7pm  other activities  

Based on the above schedule we have come up with 3 possible main cases of 

charging characteristics and 3 subcases. The subcases represent the 3-different starting 

S.O.C. (State of Charge). 

Figure 3.3 Graphical representation of typical charging profile #1 for home – maker 

at S.O.C = 100% for Charging pattern 1.1 

Charging Pattern 1.2 Typical charging profile #1 for home-maker starting S.O.C. = 

75% 
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Figure 3.4 Graphical representation of typical charging profile #1 for home – maker 

at S.O.C = 75% for Charging pattern 1.2. 

Charging Pattern 1.3 Typical charging profile #1 for home-maker starting S.O.C. = 

50% 

 

Figure 3.5 Graphical representation of typical charging profile #1 for home – maker 

at S.O.C = 50% for Charging pattern 1.3 

Charging Pattern 2.1 Typical charging profile #2 for home-maker starting S.O.C. = 

100% 

The following section represents typical charging profile #2 for the home – maker class: 

5-7am  Gym and exercise 
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8-10am  Drop kids at school 

2-4pm  pickup kids from school 

5-7pm  other activities  

 

Figure 3.6 Graphical representation of typical charging profile #2 for home – maker 

at S.O.C = 100% for Charging pattern 2.1 

Charging Pattern 2.2 Typical charging profile #2 for home-maker starting S.O.C. = 

75% 

 

Figure 3.7 Graphical representation of typical charging profile for home – maker at 

S.O.C = 75% for Charging pattern 2.2. 
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Charging pattern 2.3 Typical charging profile #2 for home-maker starting S.O.C. = 

50% 

Figure 3.8 Graphical representation of typical charging profile for home – maker at 

S.O.C = 50% for Charging pattern 2.3. 

Charging Pattern 3.1 Typical charging profile #3 for home-maker starting S.O.C. = 

100% 

We have assumed the following typical charging profile #3 for a home – maker. 

10am-1pm  yoga/arts/martial arts class 

5-7pm  other activities  
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Figure 3.9 Graphical representation of typical charging profile #3 for home – maker 

at S.O.C = 100% for Charging pattern 3.1. 

Charging pattern 3.2 Typical charging profile #3 for home-maker at starting S.O.C. 

= 75% 

 

Figure 3.10 Graphical representation of typical charging profile #3 for home – 

maker at S.O.C = 75% for Charging pattern 3.2 
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Charging pattern 3.3 Typical charging profile #3 for home-maker starting S.O.C. = 

50% 

 

Figure 3.11 Graphical representation of typical charging profile #3 for home – 

maker at S.O.C = 50% for Charging pattern 3.3. 

3.3.1.2 Charging Profile: Daily Commuter 

Assumption: Daily commuter do not charge during afternoon (or at work place). Further, 

for each charging pattern we have considered 3 different starting SOCs. 

Based on this assumption we propose the following schedule for the daily commuter class.  

9am-6pm  office usage (20-mile drive back and forth at 0.25kwh / mile) 

Charging pattern 4.1 Typical charging profile #1 for Daily Commuter at starting 

S.O.C. = 100% 
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Figure 3.12 Graphical representation of typical charging profile for daily - 

commuter at S.O.C = 100% for Charging pattern 4.1 

Charging pattern 4.2 Typical charging profile for Daily Commuter at starting S.O.C. 

= 75% 

 

Figure 3.13 Graphical representation of typical charging profile #1 for daily 

commuter at S.O.C = 75% for Charging pattern 4.2 

Charging pattern 4.3 Typical charging profile #1 for Daily Commuter at starting 

S.O.C. = 50% 
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Figure 3.14 Graphical representation of typical charging profile #1 for daily 

commuter at S.O.C = 50% for Charging pattern 4.3 

Charging pattern 5.1 Typical charging profile #2 for Daily Commuter at starting 

S.O.C. = 100% 

We propose the following schedule for the daily commuter class: 

9am-6pm  office usage (20-mile drive back and forth at 0.27kwh / mile) 

7pm-8pm  Dinner (10-mile drive back and forth at 0.27kwh / mile) 

 

 
Figure 3.15 Graphical representation of typical charging profile #2 for daily 

commuter at S.O.C = 100% for Charging pattern 5.1. 
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Charging pattern 5.2 Typical charging profile #2 for Daily Commuter at starting 

S.O.C. = 75% 

 

Figure 3.16 Graphical representation of typical charging profile #2 for daily 

commuter at S.O.C = 75% for Charging pattern 5.2. 

Charging pattern 5.3 Typical charging profile #2 for Daily Commuter starting S.O.C. 

=50% 

 

Figure 3.17 Graphical representation of typical charging profile #2 for daily 

commuter at S.O.C = 50% for Charging pattern 5.3 

Charging pattern 6.1 Typical charging profile #3 for Daily Commuter at starting 

S.O.C. = 100% 
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We have assumed the following pattern for charging. 

8am-5pm  office usage (20-mile drive back and forth at 0.27kwh / mile) 

6am-7am  Gym/Exercise (10-mile drive back and forth at 0.27kwh / mile) 

7pm-8pm  Dinner (10-mile drive back and forth at 0.27kwh / mile) 

 

Figure 3.18 Graphical representation of typical charging profile #3 for daily 

commuter at S.O.C = 100% for Charging pattern 6.1 

Charging pattern 6.2 Typical charging profile #3 for Daily Commuter at starting 

S.O.C. = 70% 
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Figure 3.19 Graphical representation of typical charging profile #3 for daily 

commuter at S.O.C = 70% for Charging pattern 6.2 

Charging pattern 6.3 Typical charging profile #3 for Daily Commuter starting S.O.C. 

= 50% 

 

Figure 3.20 Graphical representation of typical charging profile #3 for daily 

commuter at S.O.C = 50% for Charging pattern 6.3 

Note: Increasing slop in graph denotes battery charging. Constant slop denotes no change 

in battery charging level. Between 5pm and 7pm, the SOC increases from 1% to 35%. 

From the duck curve in Figure 1.1, we know that the prices will be very high during this 

period. If the car decides to charge at 3.5kW (0.5 * 7kW), after two hours we end up with 

17.5% which is just enough to complete the “Dinner” trip. 
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3.3.1.3 Charging Profile: Delivery Person 

Charging pattern 7.1 Typical charging profile #1 for Delivery Person starting S.O.C. 

= 100% 

We propose the following schedule for the Delivery person. For each different 

charging pattern, we have proposed three different sub – patterns, each representative of a 

different starting SOC. 

9am-6pm  Delivery person usage (80 miles for USPS delivery at 0.27kwh / mile). 

 

Figure 3.21 Graphical representation of typical charging profile for delivery person 

at S.O.C = 100% for Charging pattern 7.1 

Charging pattern 7.2 Typical charging profile #1 for Delivery Person starting S.O.C. 

= 75%. 
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Figure 3.22 Graphical representation of typical charging profile #1 for delivery 

person at S.O.C = 75% for Charging pattern 7.2. 

Charging pattern 7.3 Typical charging profile #1 for Delivery Person starting S.O.C. 

= 50% 

 

Figure 3.23 Graphical representation of typical charging profile #1 for delivery 

person at S.O.C = 50% for Charging pattern 7.3. 

Charging pattern 8.1 Typical charging profile #2 for Delivery Person starting S.O.C. 

= 100% 

We have assumed the following schedule for the Delivery person. 

9am-12pm  Delivery (50 miles at 0.27kwh / mile) 
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1pm-6pm   Delivery (50-mile drive back and forth at 0.27kwh / mile) 

 

Figure 3.24 Graphical representation of typical charging profile #2 for delivery 

person at S.O.C = 100% for Charging pattern 8.1 

Charging pattern 8.2 Typical charging profile for Delivery Person starting S.O.C. = 

75% 

 

Figure 3.25 Graphical representation of typical charging profile #2 for delivery 

person at S.O.C = 75% for Charging pattern 8.2 

Charging pattern 8.3 Typical charging profile #2 for Delivery Person starting S.O.C. 

= 50% 
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Figure 3.26 Graphical representation of typical charging profile #2 for delivery 

person at S.O.C = 50% for Charging pattern 8.3 

Charging pattern 9.1 Typical charging profile #3 for Delivery Person starting S.O.C. 

= 100% 

We propose the following schedule for the delivery person class. 

8am- 12pm  Delivery usage (60-mile drive at 0.27kwh / mile) 

1pm -   6pm Delivery usage (40-mile drive at 0.27kwh / mile) 

 

Figure 3.27 Graphical representation of typical charging profile #3 for delivery 

person at S.O.C = 100% for Charging pattern 9.1 
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Charging pattern 9.2 Typical charging profile #3 for Delivery Person starting S.O.C. 

= 75% 

 

Figure 3.28 Graphical representation of typical charging profile #3 for delivery 

person at S.O.C = 75% for Charging pattern 9.2 

Charging pattern 9.3 Typical charging profile #3 for Delivery Person starting S.O.C. 

= 50% 

 

Figure 3.29 Graphical representation of typical charging profile for delivery person 

at S.O.C = 50% for Charging pattern 9.3 

 

 



 

56 
 

3.3.1.4 Main model data description 

This section contains a description of all the main features extracted from the 

charging patterns from subsections 3.3.1.1 to 3.3.1.3: 

1. Time Stamp: It represents the hourly time stamps at which data has been 

sampled. 

2. Number of Plug ins: Denotes the number of times each user has plugged the 

charging cable from the charging station to the electric vehicle. 

3. SOC (State of charge): Represents the available battery charge in terms of 

percentage. The battery capacity chosen for our model is 40kWh. 

4. Difference in SOC: Primarily used to signify the battery consumed on an hourly 

basis. This data is inferred indirectly from the SOC at the beginning of vehicle 

journey and the time at which it is plugged back in to charge. 

5. Plug – in / plug - out: Represents the state of plugin of the charging cable into 

the electric vehicle. State 1 signifies “plugged-in” state and 0 signifies “plugged-

out” state. 

6. Duration of Plug-out: Represents the time duration of total plug-out 

(Disconnection between the charging station and the EV) time in minutes. 

7. Class: Represents the numeric label of the class. Class 1. Homemaker, Class 2. 

Daily commuter, Class 3. Delivery person.  
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8. Number of Instances of Battery Usage: Represents the number of times the EV 

is in a state of relative motion. Consequently, this term represents the number of 

times the battery is used.  

3.3.2 Generation of Derived Features for the Classifier 

As it was not possible to compare the 24 data points of an entire day of a profile 

with the 24 data points of another profile for classification, we needed a mechanism to 

consolidate the data corresponding to 24 time – instants of a day into a single data point. 

This led to the conceptualization of a preprocessing algorithm.  The preprocessing 

algorithm is used to aggregate the data of an entire day (24 hrs.). This data, used as feature 

for classification, contributes to better distinguishability between profiles thus helping in 

better decision-making. 

 Further, on close observation it can be observed that some features in the main 

model can be derived from the other features. For example: “Duration of Plug-out” can be 

inferred from the “Plug-in instance” data, whenever the EV is unplugged from the charging 

station, indicated by 0 we combine the number of repetitions of these 0s and multiply the 

same with hourly data to find the total plug-out time.  

The following data represent the derived high-level features used as inputs to the Classifier. 

1. Number of Instances of Battery Usage: Based on our literature survey, we 

found out that the people in the service industry like public transport and mail - 

delivery had the highest stop and move instances than the rest of the population. 

Similarly, we infer from section 3.3.1.1. that typical homemakers have more 
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stop-move instances than daily-commuters as they have a higher frequency of 

usage of personal vehicles. 

2. Plug-In Number: We understand from section 3.3.1.1. that Home-makers have 

a higher “Number of charger plugins” than other profiles as they return home 

more often than the other two profiles.  

3. Battery Consumption: We infer from the main model that the Battery 

consumption is higher for the “Delivery person” profile than the other two 

profiles as they logged a higher number of driving miles and have higher stop 

and move instances than the other two profiles. 

4. Duration of Plug-In: The duration of plug-in is highest for the home-maker as 

the EVs tend to be parked for a longer duration than the other two profiles. 

From the above inferences, we can conclude the said features to be the feature inputs into 

the classifier algorithm. 

3.3.3 Choice of Classifier Algorithms 

The main aim of our project is to prototype a charging system, and bring it to 

fruition as soon as possible. To do so, we needed algorithms that could help us reduce our 

development time and simultaneously produce tangible results to draw more informed 

conclusions. Further, the following details of our problem domain helped us narrow down 

our search for the appropriate classifier algorithm. 
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3.3.3.1 Limitation in the number of data points for the features 

The number of data points that could be used, considering one data point a day for 

the nine patterns resulted in a decrease in feature data size. Hence, we needed an algorithm 

that can work on this limited amount of data.  

3.3.3.2 Possibility of high variations in data pattern from one day to another 

A person may exhibit a charging pattern of a homemaker for two days and Daily 

commuter on the third. This created a requirement for us to use an algorithm that can 

accommodate drastic change in charging behavior and yet produce a charging plan to keep 

the EV charged for the following day. We also give the user the option to override the 

charging plan in case of drastic change from daily routine. In the future, we expect to build 

a combination of big data, deep learning cross different data sets including, e.g., text 

calendar/txt/social media, and context aware computing technologies that can be used to 

leverage both structured and unstructured data generated by EV users to create richer and 

more accurate profiles to personalize driving/charging or other activities.  

3.3.3.3 Need for interpretability and Simplicity 

Even though charging in the EV is autonomous without the need for human 

intervention, it is important to display the results of this charging behavior to the owner or 

the technician for monitoring or debugging purposes. Hence, there is a need to represent 

the membership functions as linguistic variables. 

This led us to choose Fuzzy logic as our algorithm of choice as we could define its 

membership functions using linguistic variables thereby making it comprehensive. The 

membership functions also provide a range to accommodate noise as input variables. 
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Further, the GUI (Graphic User Interface) development environment on Matlab 

makes it convenient to reduce the development time needed to prototype the charging 

system. Further, we include logistic regression in the implementation to compare the 

performance of Fuzzy Logic with a conventional learning algorithm. 

3.3.4 Implementation of Classification Algorithms 

3.3.4.1 Logistic Regression Approach “One versus One” 

The charging profile learnt by the vehicle must be classified into three classes. This 

creates an issue with logistic regression as it is a binary classifier. Consequently, “One 

versus one” approach was chosen to address this multi-class classification problem. 

According to this approach, we build three classifiers that compare only two classes each, 

then the test data is fed to all the three classifiers and a “Voting-Scheme” is implemented, 

where majority of votes received for the correct predictions by the three classifiers 

determines the final output class.  

Example: if there are three output classes 1 = Homemaker, 2 = Daily Commuter and 3 = 

Delivery Person, we build three classifiers, namely, Classifier2_1_1 (Classifier that 

separates class 2 and 1 with class 2 being the positive class), similarly Classifier1_3_1 and 

Classifier3_2_1. If given test data point is assigned to class 1 by two classifiers, then 

irrespective of the output from the third classifier the test data point is considered to belong 

to class 1.  

3.3.4.1.1 Classifier2_1_1 

 (To be read as: Classifier that separates class 2 and 1 with class 2 being the positive 

class) 
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The following subsections represent the specifications of the logistic regression classifier. 

3.3.4.1.1.1 Inputs 

1. Features 

a. Number of Instances of Battery Usage 

b. Plug-In Frequency 

      c. Battery Consumption 

 d. Duration of Plug-In 

2. Initial Theta Values 

Ɵ0 = 1 Ɵ1 = 1 Ɵ2 = 1 Ɵ3 = 1 Ɵ4 = 1 

3. Step Size: α = 0.01 

3.3.4.1.1.2 Outputs  

 1. Output Classes 

  a. Home-maker (1)  b. Daily-Commuter (2) c.Delivery 

person (3)  

 2. Final Theta Values 

Ɵ0 = 0.1206 Ɵ1 = -4.6406 Ɵ2 = -8.164 Ɵ3 = 4.8992 Ɵ4 = -2.2427 

 3. Cost Function 

Minimum value for 10000 iterations = 0.3629 
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Figure 3.30 Classifier 2_1_1. Decreasing cost function with number of iterations 

 

3.3.4.1.2 Classifier1_3_1 

(Classifier that separates class 1 and 3 with class 1 being the positive class) 

3.3.4.1.2.1 Inputs 

 1. Features 

 a. Number of Instances of Battery Usage 

 b. Plug-In Frequency 

 c. Battery Consumption 

 d. Duration of Plug-In 
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      2. Initial Theta Values: 

 Ɵ0 = 1 Ɵ1 = 1 Ɵ2 = 1 Ɵ3 = 1 Ɵ4 = 1 

     

      3. Step Size: α = 0.01 

3.3.4.1.2.2 Outputs 

 1. Output Classes 

  a. Home-maker (1)      b. Daily-Commuter (2)    c. Delivery person (3)  

  2. Final Theta Values 

Ɵ0 = 0.1206 Ɵ1 = -4.6406 Ɵ2 = -8.164 Ɵ3 = 4.8992 Ɵ4 = -2.2427 

 3. Cost Function: 

  Minimum value for 10000 iterations = 0.0119 



 

64 
 

 

Figure 3.31 Classifier 1_3_1. Decreasing cost function with number of iterations 

 

3.3.4.1.3 Classifier3_2_1 

(Classifier that separates class 3 and 2 with class 3 being the positive class) 

3.3.4.1.3.1 Inputs 

 1. Features 

  a. Number of Instances of Battery Usage 

  b. Plug-In Frequency 

  c. Battery Consumption 

  d. Duration of Plug-In 

 2. Initial Theta Values 
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Ɵ0 = 1 Ɵ1 = 1 Ɵ2 = 1 Ɵ3 = 1 Ɵ4 = 1 

     

 3. Step Size: α = 0.01 

3.3.4.1.3.2 Outputs  

 1. Output Classes 

 a. Home-maker (1)  b. Daily-Commuter (2)  c. Delivery person (3)  

 2. Final Theta Values 

Ɵ0 = 2.7002 Ɵ1 = -1.2141  Ɵ2 = -1.0015  Ɵ3 = 2.4875   Ɵ4 = 27.9840 

 3. Cost Function 

 Minimum value for 10000 iterations = 0.0181 

 

Figure 3.32 Classifier 3_2_1. Decreasing cost function with number of iterations 
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In order, to achieve higher generalizability, we have conducted 3 tests on the 

classification algorithm by introducing noise to a varying degree of low medium and high. 

This gives us the performance measure of the classifiers under 3 varying noise conditions. 

This helps in evaluating the best (least noise) and the worst case (High noise) conditions.  

3.3.4.1.4 Confusion Matrix (Test Data1 = Least Noise) 

 

Table 3.1 Confusion Matrix (Test Data1 = Least Noise) 

 

a. Home-Maker 

 

Prediction 

0 1 

Actual 

0 27 5 

1 4 13 

Threshold = 0.5 

Recall = 76.47% 

Precision = 72.22% 

F1 Score = 0.74 

b. Delivery Person 

 

Prediction 

0 1 

Actual 

0 34 0 

1 0    15 

Threshold = 0.5 

Recall = 100% 

Precision = 100% 

F1 Score = 1 

 

c. Daily Commuter 

 

Prediction 

0 1 

Actual 

0 28 4 

1 5 12 

Threshold = 0.5 
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Recall = 70.5% 

Precision = 75% 

F1 Score = 0.72 

  
 

3.3.4.1.4.1 Comments 

1. The confusion matrix in Table 3.1 is calculated from a test data consisting of 

49 samples. Each sample represents a day’s driving characteristic of a profile. 

2. From the above calculation of the confusion matrix and the F1 measure, we can 

deduce that the F1 score for the Delivery person class, which represents the 

service industry EV driving population, is high, which is an indication that, this 

class is easily identifiable compared to the other two. 

3. The F1 score for the Homemaker and the Daily Commuter are comparable at 

0.74 and 0.72 respectively. This tells us that the charging behaviors of these two 

classes are comparable and hence a slightly more complexity or data in model 

implementation is needed to achieve a higher F1 score. 

3.3.4.1.5 Confusion Matrix (Test Data2 = Medium Noise) 

 

Table 3.2 Confusion Matrix (Test Data2 = Medium Noise) 
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a. Home-Maker 

 

Prediction 

0 1 

Actual 

0 26 5 

1 15 0 

Threshold = 0.5 

Recall = 0% 

Precision =0% 

F1 Score = 0 

b. Delivery Person 

 

Prediction 

0 1 

Actual 

0 10 22 

1 7 7 

Threshold = 0.5 

Recall = 50% 

Precision = 24.137% 

F1 Score = 0.325 

 

c.  Daily Commuter 

 

Prediction 

0 1 

Actual 

0 25 4 

1 9 8 

Threshold = 0.5 

Recall = 47.058% 

Precision = 66.66% 

F1 Score = 0.5517 
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3.3.4.1.5.1 Comments 

1. The above confusion matrix is calculated from a test data consisting of 46 

samples. Each sample representing a day is driving characteristic of a profile.  

2. From the above calculation of the confusion matrix and the F1 measure, we can 

deduce that there is a considerable reduction in the F Measure values. From 

this, we understand that Logistic Regression algorithms are more susceptible to 

noise.  

3. This can be improved by employing outlier detection techniques to remove 

outliers before feeding them into the algorithms. 

3.3.4.1.6 Confusion Matrix (Test Data 3 = High Noise) 

 

Table 3.3 Confusion Matrix (Test Data3 = High Noise) 

 

a. Home-Maker 

 

Prediction 

0 1 

Actual 

0 12 27 

1 8 8 

Threshold = 0.5 

Recall = 50% 

Precision = 27.58% 

F1 Score = 0.3558 

b. Delivery Person 

Recall = 22.22% 

Precision = 33.33% 

F1 Score = 0.2667 

 

Prediction 

0 1 

Actual 

0    36      4 

1    7      2  

Threshold = 0.5 

 

c.   Daily Commuter 
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Prediction 

0 1 

Actual 

0    16      9 

1    19      5  

Threshold = 0.5 

Recall = 20.833% 

Precision = 35.71% 

F1 Score = 0.2632 

 

3.3.4.1.6.1 Comments 

1. The above confusion matrix is calculated from a test data consisting of 49 

samples. Each sample representing a day’s driving characteristic of a profile.  

2. From the above calculation of the confusion matrix and the F1 measure, the 

scores are comparable to one another. 

3. The F1 score for the Homemaker, Delivery person and Daily commuter classes 

are significantly less compared to the previous trials. This is clear indication 

that the logistic regression classifier performs poorly in the presence of high 

noise in the dataset. We can improve this performance by using better classifiers 

like Support Vector Machines and employing outlier detection techniques. 

3.3.4.1.7 Summary of results 

 

 

 

 

 



 

71 
 

Table 3.4 Summary of Test Results 

 

Test 1 

Best Case 

Less Noisy Data 

Test 2 

Average Case 

Medium Noisy Data 

Test 3 

Worst Case 

High Noisy Data 

   

Class 

Precision Recall F 

measure 

Precision Recall F 

measure 

Precision Recall F 

measure 

     1 0.722  0.764   0.740       0     0        0        0     0       0 

     2 0.75    0.70   0.720 0.666 0.470   0.551    0.091  0.077  0.088 

     3      1    1        1 0.241 0.500   0.325       0     0       0 

Average 

F 

measure 

                     

                  0.820 

                        

                      0.355 

                      

                   0.029 

 

3.3.4.1.7.1 Comments 

 

1. The Table 3.4 represents the summary of the test results with different levels of 

noise. 

2. We use 1 data point per day to represent the charging characteristics of a profile. 

So, less information pertaining to each profile (for ex. Home – maker’s frequent 

charge and discharge characteristic – a distinguishable factor from the other two 

profiles- is not apparent) is available.  The classifier assumes that the home – 

maker and the delivery person to have similar information based on similar 

battery usage. 

            3. When additional noise – in the form of random data - is added from best case to 

average case the classifier has less information to classify the profiles as we 

use 1 data point/day. Hence, it readily outputs lesser precision and recall values 
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for both home – maker and delivery person, which appear to be similar owing 

to their battery consumption. 

4. As we move into the high noisy data – introduced by changing the profile 

labels (for ex. Delivery person’s label changed to home – maker etc.) the 

values correspondingly decrease further. 

3.3.4.2 Fuzzy Logic Approach 

The following design considerations are made to classify the data into different 

classes. They are presented with each subsequent consideration being an improvement over 

its predecessor.  

3.3.4.2.1 1-hour interval 

The initial design consideration was to sample data at an hourly basis. However, to 

successfully classify profiles on the said basis, we created rules for each hour. This 

unnecessarily increased the complexity of the Fuzzy Inference system, as charging 

characteristics of profiles at an hourly resolution would not give us enough details to 

perform a successful classification. Hence, two other approaches were considered, 

wherein, 1. The data for an entire day would be divided into 5 sections 2. Cumulative data 

was collected for an entire day to perform a classification. 

3.3.4.2.2 5 sections throughout a day 

The following assumptions are made about the features before implementing them 

in the 5 sections a day FIS (Fuzzy Inference System). 
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1. Time feature: The day is divided into 5 sections, namely, Early-Morning 

(12am to 4am), Morning (4am to 11am), Afternoon (11am to 4pm), Evening 

(4pm to 8pm), and Night (8pm to 12 am). 

From the charging data, we infer that the charging characteristics of 

all the profiles remain the same late night and “Early-morning”. However, the 

charging characteristics will differ significantly in the “Morning”, “Afternoon” 

and “Evening” time slots. Hence, we use these three timeslots for our Fuzzy 

Inference Rules. 

       Each feature row is decided by combining the data of four time-stamps. 

                        DP (1, :) = [4, 0, 0, 0]; 

DP (2, :) = [11, 0, 14, 120]; 

DP (3, :) = [16, 0, 28, 300]; 

DP (4, :) = [20, 1, 14, 120]; 

  DP (5, :) = [24, 1, 0, 0]; 

2. Battery usage: The Home-maker class has low and medium usage whereas 

Delivery Person will have high and medium usage. 

3. Plug-In Number: Daily-commuter and Delivery-person will have low and 

medium “Plug – In Number” whereas home-maker will have a “High” Plug – 

In Number. 

4. Duration of Plug-Out: Daily commuter and Delivery person will have a longer 

Duration of Plug – Out whereas home – maker class will have a low duration 

of plug - out. 
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3.3.4.2.2.1 Implementation       

The following data points represent the 5 inputs given to the FIS: 

 IN1(1, :) = [10, 1, 10, 120]; 

 IN1(2, :) = [12, 2, 3, 60]; 

 IN1(3, :) = [16, 3, 10, 60]; 

 IN1(4, :) = [20, 4, 11, 120]; 

 IN1(5, :) = [24, 4, 0, 0]; 

            Output: Homemaker 

Further, we observed that even if there was a change in the length of inputs the FIS 

made the right decisions. Hence, we infer that the Fuzzy Inference System can be a robust 

system, whose performance is independent of the number of inputs given to it. 

IN2(1, :) = [19, 1, 25, 600]; 

IN2(2, :) = [24, 1, 0, 0]; 

IN2(3, :) = [5, 0, 0, 0]; 

           Output: Daily-commuter 

IN3(1, :) = [12, 1, 40, 180]; 

            IN3(2, :) = [18, 2, 20, 240]; 

            IN3(3, :) = [24, 2, 0, 0]; 

           Output: Delivery-person 

The outputs generated from each of the input data point are combined to unearth 

the final output. Consequently, genfis3 which generates fuzzy inference system from data 

using fuzzy c-means clustering was implemented. 

fismat = genfis3(Xin, Xout,'mamdani'); 
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Fuzzy C-Means Clustering takes a dataset and a desired number of clusters and 

returns optimal cluster centers and membership grades for each data point. 

In our case, Xin is an input dataset which has fixed number of features (columns), 

but variable number of data instance throughout day (rows). Xout is output for different 

input data points (rows) in 3 membership profiles. 

The implementation is as shown below: 

% read fuzzy inference system model 

Model = readfis('EV_FIS_trapFunction'); 

% evaluate fuzzy inference system model output for given input 

Xout = evalfis (Xin, Model); 

And then genfis3 is called: 

fismat = genfis3(Xin, Xout, 'mamdani'); 

From fismat variable, I received all (3) clusters range as below: 

                outputRange(1,:) = fismat.output(1).range; 

                outputRange(2,:) = fismat.output(2).range; 

                outputRange(3,:) = fismat.output(3).range; 

Using this method, different clusters have been created and based on the 3 output 

profiles, each cluster will return a membership function value for the respective class 

(profile). The highest membership function from each of the output profile, will be selected 

for the day. 

A minimum of 3 input rows (data points) are needed to achieve clear distinguishability, for 

each cluster. 
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The following fuzzy inference methods are used by genfis3 to produce the aggregate 

output. 

Table 3.5 Fuzzy Inference Methods used by genfis3 

 

 

 

 

 

 

 

 

3.3.4.2.3 1 data point per day 

A different feature set has been used for this case: 

            1. Plug-in Time per day: Data type - float 

        2. Battery usage per day (only discharging): Data type -  float 

3. Number of Plug-ins per day: Data type -  Integer 

4. Number of battery discharge: Data type -  Integer 

                 Example. A UPS driver services 200-300 delivery points in a day. Each of these delivery 

points require a stop and start mechanism, which implies that there is a battery usage at 

each sequence.  So, if we exclude the stops at the traffic lights etc. The number of 

delivery points, itself is a relatively high number corresponding to a high number of 

battery usage. 

Inference Method Default 

AND prod 

OR probor 

Implication prod 

Aggregation sum 

Defuzzification wtaver 
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3.3.4.2.3.1 Fuzzy Inference System 

 

 

 

Figure 3.33 Overall View of Fuzzy Logic Design 

The following screenshots represent the membership functions:  
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Figure 3.34 Frequency of battery discharge 

 

 

 

Figure 3.35 Number of Plug-In 
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Figure 3.36 Duration of Plug-In 

 

 

 

Figure 3.37 Battery Usage 



 

80 
 

 

 

Figure 3.38 Implementation with same logistic regression training data 

3.3.4.2.3.2 Confusion Matrix 

To evaluate the performance of the fuzzy inference system used above we have 

implemented the following confusion matrix. The evaluation is conducted based on the F1 

score or the F measure. 
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Table 3.6 Confusion matrix representation 

 

 

Predicted 

Home-maker Daily Commuter Delivery Person 

Actual 

Home-maker 10 0 0 

Daily Commuter 2 11 0 

Delivery Person 3 0 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average F measure = 0.8578 

 

 

 
Predicted 

Not Home-maker Home-maker 

Actual 
Not Home-maker 20 5 

Home-maker 0 10 

 
Predicted 

Not Daily Commuter Daily Commuter 

Actual 
Not Daily Commuter 22 0 

Daily Commuter 2 11 

 
Predicted 

Not Delivery Person Delivery Person 

Actual 
Not Delivery Person 23 0 

Delivery Person 3 9 

 Precision Recall F measure 

Home-maker 0.1666 1 0.7999 

Daily Commuter 1 0.8461 0.9166 

Delivery Person 1 0.75 0.8571 
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3.3.4.2.3.2.1 Comments 

From the F measure as shown in the above Tables we infer that the F-measure is 

the highest for the Daily commuter class. From this we infer that the Daily Commuter class 

is highly distinguishable by the Fuzzy inference system. 

3.3.4.2.4 Implementation and change in FIS with test data used in logistic 

regression 

This implementation is to avoid cases where it cannot predict output from any of profiles. 

Table 3.7 Implementation and change in FIS with test data used in logistic 

regression 

Output 

Profile 

# of battery 

usage while 

Plug-Out per 

day 

 
Battery 

Consumption 

per day 

 
Plug-In 

Frequency 

per day 

 

Total 

Plug-

In 

time 

per 

day 

Home-

maker 

Low 

and 

Low 

and 

 

Low 

and 

 

Short 

Medium Medium High Long 

Medium Low Medium Long 

Medium Medium Medium Long 

Daily 

Commuter 

Low and 

Low 

and 

Low 

and Short 

Medium Medium 

Medium Low 

Low Medium 

High and High and Low and Short 
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3.3.4.2.5 Fuzzy Rules 

The below case illustrates the implementation of the Fuzzy rules created from the 

Table 3.7. 

Example. Daily-commuter 

3.3.4.2.5.1 Input Features 

1. Number of battery usage while Plug-Out time = 6 

2. Number of Plug-ins per day = 3 

3. Battery usage per day (only discharging) = 54 

4. Plug-in Time per day = 13 

 

 

Figure 3.39 Problem in identifying inference rule for case [6 3 54 13] 

Delivery 

Person 
Medium 
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Problem: From the above Table, we infer that none of the output classes are triggered.  

This is attributed to the lack of rules governing the extra cases. 

Solution: Add additional rule to improve the classifier as shown in Table 3.4 

Table 3.8 Solution to improve classifier 

 

 

 

Figure 3.40 Problem in identifying inference rule for case [6 3 54 13] 

Output 

Profile 

# of battery 

usage while 

Plug-Out per 

day 

Plug-In 

Frequency per 

day 

Battery 

Consumption per 

day 

Total 

Plug-In 

time per 

day 

Daily 

Commuter 

Medium Medium Medium Long 
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Post addition of corrective rules to the model on test data, there were some points 

where it cannot classify irrespective of the profiles. Hence, more number of fuzzy inference 

rules may be required or degree of fuzzy membership needs to be changed according to 

given test data, which can correctly classify for all cases. 

For example, there is a data point with [55 1 52.166 8.145]. From given 

membership values for features given below, it caused error of not classifying in any 

classes because of lack of rule firing. There are 2 reasons for the misclassification:  1. Lack 

of number of rules and other. 2. Misjudging degree of membership function for one of the 

feature. 

 

Figure 3.41 No rule is fired for input [55 1 52.166 8.145] to judge output profile 
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Figure 3.42 Degree of membership for “Battery Usage” feature 

[55 1 52.166 8.145] case belongs to delivery person`s profile. However, from Figure 3.42 

given above, degree of membership starts at 58, which limits high battery usage case. 

To solve this problem, the membership is changed so that it matches the output. 
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Figure 3.43 Changed degree of membership of “Battery Usage” feature 

 

 

Figure 3.44 Rules get fired for case [55 1 52.166 8.145] or relevant cases 
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From Figure 3.44 it is evident that the rules get fired for the case [55 1 52.166 8.145]. 

Hence, we solve the problem. 

 

Figure 3.45 Final view of fuzzy inference rules 

 

Table 3.9 Calculation of F measure under Less Noisy conditions 

Test 1: (less noise) Data size = 80 

 

Predicted 

Home-maker 

Daily 

Commuter 

Delivery 

Person 

Actual 

Home-maker 25 2 0 

Daily 

Commuter 

0 27 0 

Delivery 

Person 

0 0 26 
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Predicted 

Not Home-maker Home-maker 

Actual 

Not Home-maker 25 2 

Home-maker 0 53 

 

 

 

Average F measure = 0.9873 

 

Predicted 

Not Daily 

Commuter 

Daily Commuter 

Actual 

Not Daily 

Commuter 

27 2 

Daily Commuter 0 51 

 

Predicted 

Not Delivery 

Person 

Delivery Person 

Actual 

Not Delivery 

Person 

26 0 

Delivery Person 0 54 

 Precision Recall F measure 

Home-maker 0.9636 1 0.9814 

Daily Commuter 0.9622 1 0.9807 

Delivery Person 1 1 1 
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3.3.4.2.6 Test 2: (Medium noise) data size = 46 

      Table 3.10 Calculation of F measure under Medium Noise conditions 

 

 Precision Recall F measure 

Home-maker 0.6429 0.8182 0.7200 

Daily Commuter 0.7143 0.8824 0.7895 

Delivery Person 1 0.9091 0.9524 

 

Average F measure = 0.8206 

3.3.4.2.6.1 Comments 

1. The above case represents the performance of the classifier for medium noise 

level data. 

2. This evaluation is needed to check the robustness of the algorithm, when fed 

with noisy data. 

 

Predicted 

Home-maker 

Daily 

Commuter 

Delivery 

Person 

Actual 

Home-maker 9 5 0 

Daily 

Commuter 

2 15 0 

Delivery 

Person 

0 1 10 
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3.3.4.2.7 Test 3: (High noise) data size = 48 

Table 3.11 Calculation of F measure under High Noise conditions 

 

 

Predicted 

Home-maker 

Daily 

Commuter 

Delivery 

Person 

Actual 

Home-maker 0 17 15 

Daily 

Commuter 

14 2 0 

Delivery 

Person 

0 0 0 

 

 Precision Recall F measure 

Home-maker 0 0 0 

Daily Commuter 0.1053 0.1250 0.1142 

Delivery Person 0 0 0 

 

Average F measure = 0.0381 

3.3.4.2.7.1 Comments 

1. We infer from Table 3.7. that the average F- measure for data of size 48 is 

very low compared to the other two cases. 

2. This high level of noise in the data was created by exchanging the labels of 

the existing test data to represent the high noise in the data. 
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3.3.4.2.8 Possibilities to improve F measure (accuracy in prediction): 

1. Change membership of features and output profile. 

2. Modify/add additional rules, which have minimum or no effect on best-case 

scenario. 

3.3.5 Scheduler 

The scheduler is responsible for preparing the charging plan based on the selected 

profile information from the classifier. The motivation for the scheduler is to spread the 

charging load throughout the day, to prevent the contribution of EV charging to demand 

peaks. In this section, we present the rationale behind the creation of charging plans 

corresponding to the individual profiles. 

3.3.5.1 Profile: Home – maker 

The charging plan for this profile mainly takes place during the day as maximum 

usage of EV takes place during maximum availability of solar energy.  Consequently, to 

harness this renewable energy, the scheduler proposes the following charging plan. The 

departure time from the profiler in this case is assumed to be 15:00, as shown in Figure 

3.50. 
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Figure 3.46 Proposed home – maker charging schedule 

 

3.3.5.2 Profile: Regular commuter 

For this profile, the charging does not have to take place frequently as the number 

of miles driven daily is less. So, we propose the EV to charge only if the battery goes below 

a certain threshold. We schedule the charging of this profile during late night or early 

morning, when there is minimal load. In this case, we infer from the hour ahead predicted 

price curve that the cost of charging is minimum at 2:00AM.  The following graph Figure 

3.51 presents the case. 
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Figure 3.47 Proposed Regular commuter charging schedule 

3.3.5.3 Profile: Delivery person 

For this profile, the charging must be frequent, irrespective of the charging curve, 

as it represents power user base of the driving population. So, the charging must be 

scheduled as soon as the vehicle gets back home irrespective of the threshold and 

demand.  Figure 3.52. represents the idea. 

 

Figure 3.48 Proposed Delivery person charging schedule 
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Note: Even though the delivery person and the regular commuter profiles may charge at 

the same time the frequency of charging of the typical regular commuter is far less than 

that of the typical delivery person profile. 
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Chapter 4. Conclusions and Future Work 

4.1 Conclusions 

We envision smart charging technologies as a synchronizing mechanism to match 

the higher rate of EV penetration with a relatively slower expansion rate of the grid. It 

creates a win-win situation for all participants in Energy production and consumption. Our 

man aim through this thesis is to use this synchronization mechanism to 1. Create economic 

value for consumers 2. Improve user – convenience 3. Help utilities in load management. 

4. Create a profiling strategy for autonomous charging mechanism that blends into 

autonomous driving cars.  This section explains some of the conclusions we can draw from 

our experimentation: 

1. From Table 2.2 we infer that the cost of normal charging is 510.19 cents (5.10 

USD), which is greater by 152.59 cents (1.52 USD) when compared to charging 

with smart charging algorithm i.e. 357.60 cents (3.57 USD).  If we consider an 

EV with 30kWh battery and charges once every day to full battery capacity for 

365 days, the total savings is (1.52 * 365 = 554.8 USD) which is considerable 

savings for an individual or a transportation based service company. This proves 

that the smart charging strategy creates economic value for customers and 

customers in the transportation industry.  
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2. From Figure 2.5 we infer that even though the charging period was set between 

06:00pm to 05:00am, due to smart charging the EV does not begin charging until 

10:30pm, the time at which the cost of the energy is minimum. This provides an 

excellent opportunity for the utilities to use time of use (ToU) mechanism to 

spread the charging of the EVs. This helps in managing the load on the grid and 

reduces peaks and prevents blackout. 

3. From chapter 3 we have successfully demonstrated that machine learning 

algorithms like logistic regression and fuzzy logic can be used to create a profile 

the charging characteristics of EV users to prepare a more personalized charging 

plan (see section 3.2.5.) that caters to the specific driving needs of the customers. 

Further, it prevents the unnecessary charging of EV batteries and helps in 

extending their lifespan. More importantly, it revolutionizes our concept of 

driving and charging by removing human element, which is the weakest link in 

the process. 

4.2 Future Work 

4.2.1 Improving User/Driver Profiling 

 A combination of big data, deep learning cross different data sets including, e.g., 

text calendar/txt/social media, and context aware computing technologies can be used to 

leverage both structured and unstructured data generated by EV users to create richer and 

more accurate profiles to personalize driving/charging or other activities. The following 

cases better illustrate the above claim: 
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Case 1: In case of smart charging the Twitter/Facebook/calendar data of people can be 

analyzed to understand their transportation needs. For example, an EV owner has a dentist 

appointment tomorrow, where the dentist office is 30 miles away from his/her regular 

commute area, the car can retrieve this information from the owner’s calendar/social media 

post and prepare a charging plan, so that the total charge accommodates the added unusual 

travel schedule. 

Case 2: If a patient has a heart condition or suffering from a life-threatening disease, the 

car can analyze the medical history of this patient and charge itself to a higher percentage 

of SOC (State of Charge). By doing so it can ensure there is enough electric energy in the 

battery if care-giver/nurse of the patient must drive him/her to the medical center. Further, 

if we envision an autonomous future, the car itself can drive this person to the hospital with 

the extra electric energy. 

4.2.2 Dealing with Security Threats 

4.2.2.1 Malicious Cyberattacks 

 The two-way communication between the EV and the grid could result in 

increasing the potential for security threats like malicious cyber-attacks. There is a high 

probability of creating miscommunication between the charging station and the EV by 

manipulating either of them to create unnecessary peaks in the grid infrastructure. This 

could affect the charging habits of other EVs connected to the same distribution grid and 

result in a total failure leading to a national security threat. 
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4.2.2.2 Need for complex monitoring systems to detect or predict potential security 

threats 

 As the penetration of EVs increase, the amount of data flow between the EVs and 

the charging stations and servers of the utilities increase. Consequently, we will need a 

secure monitoring system that can understand the messages transmitted between the EV-

Charging Station-Utility communication system and detect/predict security threats in 

advance and neutralize them. 

4.2.3 Mitigate Structural Defects at Power Distribution Networks  

 Turning on a 240-volt AC level - 2 charger, as defined by the Society of Automotive 

Engineers is equivalent of adding three homes worth of electrical energy consumption to a 

neighborhood. The street-level transformers which supply electricity to these charging 

stations are designed to cool at night, as there is minimal usage. However, if the utilities 

charge a lower tariff to encourage EV owners to charge at night, this could lead to lesser 

cool-off times for the transformers. Thus, the copper windings of the transformer heat up, 

causing a short circuit and result in a black out. Additionally, coal, diesel and other 

greenhouse gas emitting fossil fuels are burnt to generate energy at night. This well-to-

wheel carbon emissions can offset the zero emissions of the electric vehicles, their 

strongest selling point, and nullify their benefits. To overcome these potential 

disadvantages, there is a strong need to integrate wind farms that can contribute most the 

energy needs at night[22]. 
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