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ABSTRACT
With the rapid increase in urban development, it is critical to uti-
lize dynamic sensor streams for tra�c understanding, especially
in larger cities where route planning or infrastructure planning
is more critical. �is creates a strong need to understand tra�c
pa�erns using ubiquitous sensors to allow city o�cials to be bet-
ter informed when planning urban construction and to provide
an understanding of the tra�c dynamics in the city. In this study,
we propose our framework ITSKG (Imagery-based Tra�c Sens-
ing Knowledge Graph) which utilizes the stationary tra�c camera
information as sensors to understand the tra�c pa�erns. �e pro-
posed system extracts image-based features from tra�c camera
images, adds a semantic layer to the sensor data for tra�c informa-
tion, and then labels tra�c imagery with semantic labels such as
congestion. We share a prototype example to highlight the novelty
of our system and provide an online demo to enable users to gain a
be�er understanding of our system. �is framework adds a new
dimension to existing tra�c modeling systems by incorporating dy-
namic image-based features as well as creating a knowledge graph
to add a layer of abstraction to understand and interpret concepts
like congestion to the tra�c event detection system.
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Tra�c image feature extraction, Knowledge graphs, Tra�c events
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1 INTRODUCTION
Cities have played a key role in the economy of countries for cen-
turies as a center for income and innovation[9], thus creating a
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huge in�ux of rural, foreign, and other migrants in search of job
opportunities. With the increasing population of people in larger
cities, the infrastructure of cities, such as the road networks, are
overwhelmed with growing amounts of congestion as well as ad-
verse events such as accidents. Understanding the relationship
between di�erent events within the city can enable city depart-
ments to realize the causes of tra�c congestion in certain regions
at certain times during the week and it can also provide critical
information on current tra�c conditions and public safety.

Systems such as 511 Tra�c1 provide real-time tra�c data from
39 states that can be utilized for extracting time sensitive, actionable
information such as information on amber alerts and route detours
with providing real-time sensor data from stationary cameras lo-
cated at intersections across di�erent parts of the cities. While
citizen-sensing has played an increasing role in providing real-time
tra�c information, there remains a need to extract meaningful
information from sensor data for be�er understanding of the tra�c
conditions in a certain area, especially near city centers, which are
more prone to tra�c congestion. In particular, there remains a need
to harness existing data sources such as tra�c camera images for
determining the current tra�c conditions, both for route planning
applications as well as for urban planning policies to decide dates
and times for road construction that best minimize tra�c delays.

In this work, we address the following research questions: 1)
How do we extract features that represent the dynamic tra�c con-
ditions from the camera imagery?; 2) How can we represent and
populate image features in a knowledge graph framework as a source
of sensor information?; 3) Can we demonstrate the use of the im-
agery features extracted in 1) and the knowledge graph developed
in 2) for actionable information to represent dynamic tra�c condi-
tions such as congestion? We present our preliminary investigation
of tra�c events in the greater New York area using tra�c camera
data from 511ny.org to check the feasibility of using the data to
analyze tra�c conditions. We also introduce Imagery-based Tra�c
Sensing Knowledge Graph (ITSKG), a knowledge graph framework
to represent and populate the information we gather from the traf-
�c cameras and then to query the knowledge graph to map the
relationship between imagery features and tra�c events as a means
to derive actionable information from raw sensor data.

1h�p://www.dmv.org/travel/511.php
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2 RELATEDWORK
�ere have been studies using image data for tra�c event detection,
speci�cally congestion detection. Nidhal et al. [12] used features
extracted from tra�c image data to detect backlight pairs as a
means of detecting the number of vehicles in the scene. However,
the performance of the system under di�erent lighting conditions
was not described, nor was the denoising process which is critical
in this application as it uses more �ne-grained image features.
Anantharam et al. [1] utilized speed link data from the San Francisco
bay area to build ”normalcy” models of each link in the city using
linear dynamical systems as a means to detect anomalies in the road
links. However, missing link data, as well as erroneous sensor data
were concerns as there was no means of collecting a gold standard
or ground truth data to ensure the validity of the sensor data.

With respect to the knowledge graph applications involving
sensor data for anomaly detection, Issa et al. [8] utilized an Android-
based GPS tracker on a bus to extract meaning from the GPS sensor
data. Speci�cally, the sensor a�ributes were described using the SSN
ontology2 to annotate accelerometer readings taken from the GPS
tracker which were used to detect vehicular speed as an indicator of
tra�c conditions. We adapt this idea of utilizing knowledge graphs
in corroboration with sensor readings to detect tra�c events in the
city through the use of imagery features.

�ere have been relatively fewer studies that have utilized an
ontology modeling that relies on multimodal data for event un-
derstanding. STAR-CITY [10] presents a system which uses het-
erogeneous data sources as journey travel times, bus dynamics,
social media feeds and event to support tra�c analysis. However,
STAR-CITY does not consider image-based features. In work using
image-based features, Zhang et al. [18] used a probabilistic ap-
proach to automatically extract semantic concepts using ImageNet
data which was then compared with the WordNet hierarchy. Both
image-based and word-based features were extracted to learn the
concept similarities in di�erent topics within the ImageNet data.
In another approach, Sun et al. [15] described a clustering-based
method to extract concepts from a parallel corpus of text and images
using ImageNet. In comparison with the ImageNet annotations, the
clustering approach outperformed the ImageNet annotation results.
In both these studies, the work focused on learning concepts auto-
matically, while we can reuse any such ontologies with appropriate
mappings.

In this study, we create an ontological system to maps sensor data
to tra�c events using a combination of a knowledge-driven and
data-driven approach, which can lead to two major advantages: 1) it
allows us to use a smaller amount of training data in a more con�ned
search space since we de�ne relationships between di�erent sensor
readings using a knowledge graph; 2) it allows for higher accuracy
as the learning has some prior knowledge incorporated in it that
reduces the errors in detecting unrelated concepts. We discuss the
methodology and our use case results in the next sections.

3 METHODOLOGY
Our proposed framework mainly consists of two tasks: (1) extract-
ing image features from dynamic tra�c conditions from the camera
imagery (section 3.1) and (2) annotating image features using a
2h�ps://www.w3.org/TR/vocab-ssn/

knowledge graph framework (Section 3.2). Figure 1 describes the
main components of our proposed framework.

3.1 Image feature extraction from dynamic
tra�c conditions

Figure 1: Architecture of our Imagery-based Tra�c Sensing
Knowledge Graph (ITSKG) framework.

3.1.1 Data Collection. We used the 511ny.org API3 to obtain and
access to around 1,100 camera URLs in and around New York city.
In particular, we used the tra�c images coming from cameras from
the New York State Department of Transportation (NYSDOT). We
selected 463 of these cameras based on be�er coverage, reliability
and focus on the tra�c. �ese cameras generate tra�c images
every 10 - 30 seconds. For this study, data was collected from
the selected cameras once every minute for a period of 2 months
between September and October in 2016.

3.1.2 Feature extraction. Even though many tra�c sensing de-
tectors such as loop detectors, infrared and radar sensors [16, 17]
can sense tra�c fairly well, these sensors are prone to device fail-
ure, obstruction due to rain and fog, and are tedious to install and
maintain. Due to this, image processing and video processing have
become increasingly popular because they can be controlled and
maintained in a distributed environment to perform both surveil-
lance and tra�c analysis in real-time. With this motive, many
studies [7, 14] have focused on tracking vehicles and detecting ob-
jects in tra�c, which makes use of background subtraction (also
known as foreground detection, where an image’s foreground is
extracted for processing). It is common to observe tra�c spikes
during rush hours, but it is crucial to detect tra�c when it devi-
ates from such normality. Background subtraction can be used
to get pixel-level di�erences between the images that can re�ect
the temporal changes in the tra�c. In this study, we make use of
hourly and quarterly references along with background subtraction
to observe relative tra�c that deviates from what is normal.

To accomplish this, the streaming data of tra�c camera images
were collected from the NYSDOT endpoint and stored in an Apache
Hadoop Distributed File System (HDFS) standalone cluster. We
implemented image median and subtraction calculation as services
in the Spark. Once the images were loaded, a Spark service was
called to compute median images. A median image is de�ned as the
pixel-wise median across the set of images. �is service calculates
an hourly median for the images collected within an hour and a
quarterly median for the images collected within 6 hours. �is
3h�ps://511ny.org/developers/help
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resulted in 24 hourly median images and 4 quarterly median im-
ages (00:00 - 6:00, 6:00 - 12:00, 12:00 - 18:00, 18:00 - 24:00) for every
day. �is Spark service also performs image subtraction (where
the magnitude of the di�erences in the intensity values of each
individual pixel is computed between two images) with the help of
python packages such as NumPy and SciPy, for each image with
their respective hourly and quarterly medians to get relative tra�c.
For example, Figure 2 shows a tra�c image (Figure 2a) at time 12:46
pm, which was then subtracted from its 2 medians:
(i) hourly median (Figure 2b) calculated based on the images be-
tween 12:00 pm and 1:00 pm,
(ii) quarterly median (Figure 2c) calculated based on the images
between the daily quarter that the current image belonged to i.e.
between 12:00 pm and 6:00 pm (since the image was in the second
quarter of the day).

Once the image subtraction had been computed (Figures 2d &
e), the result was quanti�ed by using Manha�an norm (the sum of
the absolute values between each pixel) per pixel to measure how
much the image had changed. In this case, the result for the hourly
and quarterly change were (i) 35.35 (from the hourly median) and
(ii) 36.36 (from the quarterly median) respectively. �is information
along with its image identi�er was then stored into HDFS.

Figure 2: Image Subtraction (median images) from real-time
tra�c image captured at 12:46pm on 2nd Avenue and 125 St,
Manhattan.

Features such as image dimensions and timestamp were ex-
tracted with the help of a feature extractor. �ese images were also
passed on to the Clarifai API4 which recognizes objects and tags
each image with the help of advanced machine learning techniques
as shown in Figure 3. All these features, along with the camera
coordinates, were combined to add a semantic layer and generate
the knowledge graph which is discussed in the next section.

3.2 Image feature annotation using knowledge
graph framework ITSKG

Semantic Web techniques have played a key role as a platform for
integrating, publishing, and sharing data in a number of domains
including government, medicine, education, etc. �e use of Seman-
tic Web techniques enable us to de�ne or describe a domain model
for a given domain and hence improves the understanding of the
domain. �ese domain models can then serve as the schema to
populate the raw data. �e generated data can be shared and later
4h�ps://developer.clarifai.com/

Figure 3: Tags generated by clarifai API for real-time tra�c
image captured at 12:30pm on 2nd Avenue and 125 St, Man-
hattan.

on can be integrated with other similar types of data. Furthermore,
this data can easily be used for analytical and intelligent applica-
tions. Motivated by these, we create a knowledge graph framework
using Semantic Web techniques to annotate and publish image data
collected by various means in the context of tra�c events. �e
knowledge graph framework allows us to (1) model tra�c-related
features extracted using images, and (2) annotate the raw image
features as semantic data using the model de�ned in task 1. We
describe each of these steps below.

3.2.1 Semantic Modelling - Imagery-based Tra�ic Sensing Knowl-
edge Graph (ITSKG). By adhering to the principle of reusing existing
ontologies, we adopt and extend the W3C Semantic Sensor Network
(SSN) ontology to describe tra�c imagery information. �e SSN on-
tology provides sensors, sensor observations, and the knowledge of
the environment. It is being quickly adopted by many applications
[2, 8, 13], including tra�c-related studies [3, 4] and is considered as
a standard ontology for Semantic Sensor Networks. We consider a
tra�c camera as a sensing device, a camera image as sensor output,
and tra�c as an observation. In particular, SSN serves as an upper
level schema to the knowledge graph for Sensing Tra�c Imagery.

Figure 4: SemanticModel for the Imagery-basedTra�c Sens-
ing Knowledge Graph (ITSKG).

As shown in Figure 4, Imagery-based Tra�c Sensing Semantic
Model in the knowledge graph contains information about tra�c
cameras and camera images. In order to describe a sensor device,
sensor output, and observations, we use existing concepts in SSN
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Figure 5: Example of raw imagery output converted to its equivalent RDF triples.

as given in Figure 4. �e Tra�cCamera, Tra�c, CameraImage
classes in ITSKG are subclasses of the SSN classes SensingDevice,
Observation, and SensorOutput respectively. Table 1 shows the
properties captured in Tra�cCamera and CameraImage classes.
We use the OWL [6] language to de�ne the semantic model using
Protege5[5]6.

Table 1: Properties used to describe Tra�cCamera and Cam-
eraImage.

Properties
Tra�c Camera Latitude, Longitude
Camera Image Time stamp, Hourly change, �arterly

change, Clarifai tags, URL, Image width,
Image height

3.2.2 Annotate raw image features using ITSKG. We use the
semantic model described above to populate raw data collected in
the data collection step. �e input data is stored in the form of
an XML �le and then we convert this input data into the facts in
our knowledge graph using the semantic model described above.
Converted data is then loaded into a RDF triple store. A sample of
the raw data and its equivalent RDF triple can be seen in Figure 5.
�e populated data is stored in a Virtuso graph database to make
it accessible to the interested parties7. End users can access this
information using SPARQL queries through the Virtuoso SPARQL
endpoint.
5h�p://protege.stanford.edu/
6�e schema can be found at h�ps://roopteja.bitbucket.io/tra�cCams/
7�e Virtuoso querying endpoint can be found at h�p://130.108.85.135:8891/sparql

4 EXAMPLE USE CASE
4.1 Data Source and Feature Extraction
Since this is a feasibility study, we focused our study on a few use
cases (and describing one use case in detail). We initially collected
the imagery data for the cameras which are located in and around
the most accident-prone areas in New York, such as the intersections
between Tillary St. and Flatbush Ave. Brooklyn, E. 138th St. and
Alexander Ave. Bronx, 2nd Ave. and E. 59th St. Manha�an. �ese
intersections are identi�ed as the most dangerous intersections
to drive in NYC8,9. However, this dataset also contained a large
volume of imagery data, collecting images for every minute from
about 50 cameras. It became a tedious task to wait for an incident
to happen and manually verify the incident. So, we restricted our
focus to the cameras near Yankee Stadium, which is home to many
sport events, where a high frequency of accidents take place. In
particular, we collected the imagery from the 10 cameras near
Yankee Stadium within the bounding box of longitude and latitude
of [-73.934877,40.800904] SW and [-73.919728,40.830720] NE.

In order to identify events of interest, we narrowed our search
to speci�c dates and times of incidents identi�ed by formal tra�c
event sources such as 511. Our use case in this study is focused on
one particular tra�c camera at 2nd Avenue and 125 St. Manhat-
tan, where an event occurred on October 27, 2016 as reported by
511 New York on their o�cial twi�er page as ”Update: Closure on
#WillisAvenueBridge fromManha�an Side to Bronx Side” at 12:45 pm.
Once the data was collected, we then performed image subtraction

8h�p://www.residentmar.io/2016/03/23/worst-places-to-drive.html
9h�p://gothamist.com/2016/04/01/most dangerous intersections nyc.php

https://roopteja.bitbucket.io/trafficCams/
http://130.108.85.135:8891/sparql
http://gothamist.com/2016/04/01/most_dangerous_intersections_nyc.php


A Knowledge Graph Framework for Detecting Tra�ic Events Using Stationary Cameras IndustrialKG’17, June 2017, Troy, NY USA

for each image with their respective hourly and quarterly medians.
However, our approach is generic enough and scalable enough to
deal with multiples cameras.

4.2 �ery Formulation
Since our aim in this study was to analyze tra�c pa�erns as a
means to detect abnormal conditions, we need to extract the set
of images which would deviate the most from their respective
median. For this, we used a threshold that �ltered out the images
whose magnitude of hourly or quarterly change was approximately
2 standard deviations from their respective hourly or quarterly
median.

4.2.1 Hourly Change. Hourly change is useful to sense the traf-
�c within an hour and can help us detect recent changes in the
tra�c conditions. �e query (as shown in Figure 6) was used to get
the list of images between 12:00 pm and 1:00 pm which deviate the
most within the hour. �is query gives the URL for the image and
the hourly change of that image with respect to the hourly median.
�eries were thresholded using a margin of one standard deviation
from the median value of the hourly or quarterly value. Figure 7
shows a couple of images given by the hourly query.

Figure 6: SPARQL query to get the tra�c images based on
hourly change.

Figure 7: Sample images returned fromhourly change query
(query provided above).

4.2.2 �arterly Change. Sometimes we cannot rely on hourly
change to sense the tra�c. For instance, if there was a tra�c jam
due to an incident for a considerable portion of the hour, using only
the hourly information may not be su�cient to sense the tra�c
movement or congestion. In such scenarios, quarterly change can
be useful to detect such anomalies since it considers a wide range
of time. �e query (as shown in Figure 8) was used to get the list
of images between 12:00 pm and 1:00 pm which deviate the most
within a quarter (6 hours). �is result also contains the set of images
from the hourly query along with another set of images as shown
in Figure 9.

Figure 8: SPARQL query to get the tra�c images based on
quarterly change.

Figure 9: Sample images returned from quarterly change
query (query provided above).

4.2.3 Use of the Clarifai API. �is system also makes use of
Clarifai API for tra�c sensing through the use of class labels using
object recognition. For example, the query (as shown in Figure 10)
gave a set of 43 images between 12:00 pm and 1:00 pm which are
labelled as ’tra�c jam’ by the Clarifai API10.

Figure 10: SPARQLquery to get the tra�c imagesmentioned
by Clarifai API.

We further explored the use of Clarifai API to test its reliability.
For example, Figure 11a was one of the results generated by the
query labelled as ’tra�c jam’ by Clarifai API with a probability of
0.78, whereas Figure 11b was not labelled as ’tra�c jam’ by the
same Clarifai API. Whereas, the ITSKG system gave Figure 11b in
the result with the mentioned threshold and not Figure 11a. �is
clearly shows that Clarifai API was not able to sense the tra�c while
the ITSKG system, though not entirely accurate, was good enough
to sense the tra�c in the city. �e Clarifai API gave inconsistent
results which fail to address the main purpose of this study.

4.3 Results and Discussion
�ree annotators independently labeled 60 images from noon to
1:00 pm as either high congestion or low congestion. �e inter-rater
agreement was measured using Fleiss Kappa [11], achieving a per-
formance of 0.71. From Table 2, we see that the performance using
the Clarifai tags alone, i.e. without any of the dynamic image-based
10�e query result is provided in h�ps://roopteja.bitbucket.io/tra�cCams/

https://roopteja.bitbucket.io/trafficCams/
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Figure 11: Clarifai API vs. ITSKG system.

features from the ITSKG system is not very promising (precision
<0.5). However, both the quarterly and hourly change metrics have
fairly high values of precision and recall. �is is not surprising since
tra�c conditions change vastly on an hour-to-hour basis. Moreover,
the labeling of the individual images as high or low without having
intermediate levels also adds subjectivity that a�ects the current
evaluation framework (Figure 12). However, despite the subjective
nature of the evaluation, the performance of our ITSKG system
looks promising. Based on the aggregation of the number of image
frames detected as having a high congestion, we were able to detect
high congestion for the event from October 2016.

Table 2: Results of the di�erent components in the ITSKG
system for Use Case Example.

�ery Precision Recall F1 Score
�arterly Change 0.69 0.77 0.73
Hourly Change 0.63 0.77 0.69
Clarifai 0.4 0.65 0.5

Figure 12 shows sample images from the query results for the
quarterly and hourly change indicating that the ITSKG system
labeled these images as depicting high congestion, although the
annotators did not.

Figure 12: Sample images detected as high congestion by our
ITSKG system, but marked as not high congestion by the
annotators.

5 CONCLUSION AND FUTUREWORK
With cities growing rapidly, tra�c management has become a high
priority for improving the tra�c �ow and minimize wasted time. It
is important to detect incidents such as accidents, closures etc., and
clear them to reduce the impact on tra�c. �e problems with exist-
ing detectors have led to the usage of tra�c cameras to represent
real-time tra�c. Our proposed ITSKG framework has the poten-
tial to identify dynamic tra�c conditions from camera imagery
as shown in our example use case. �is framework is well inte-
grated with the existing Semantic Sensor Network (SSN) and aids
in analysing heterogeneous streams of sensor data to extract mean-
ingful information. Such system can help transportation agencies
provide real-time tra�c analysis and help in managing tra�c. For

our future work, we will address the limitations of traf�c cameras
such as weather, lighting, maintenance, and proper placement with
respect to line-of-sight and incorporate advanced image processing
algorithms. Social media features can also be incorporated into the
current ITSKG framework, adding to the system by aggregating
information across heterogeneous sensors.
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