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THE HAUSDORFF DIMENSION OF THE VISIBLE SETS OF

CONNECTED COMPACT SETS

TOBY C O’NEIL

Abstract. For a compact set Γ ⊂ R2 and a point x, we define the visible part

of Γ from x to be the set

Γx = {u ∈ Γ : [x, u] ∩ Γ = {u}}.

(Here [x, u] denotes the closed line segment joining x to u.)

In this paper, we use energies to show that if Γ is a compact connected
set of Hausdorff dimension larger than one, then for (Lebesgue) almost every

point x ∈ R2, the Hausdorff dimension of Γx is strictly less than the Hausdorff
dimension of Γ. In fact, for almost every x,

dimH(Γx) ≤
1

2
+

√

dimH(Γ) −
3

4
.

We also give an estimate of the Hausdorff dimension of those points where

the visible set has dimension larger than σ + 1
2

+
√

dimH(Γ) − 3
4

for σ > 0.

1. Introduction

Given a subset E of the plane, Urysohn [11, 12] defined the notion of linear
accessibility for a point p ∈ E: p is linearly accessible if there is a non-degenerate line
segment L that only meets E at the point p. In a sequence of papers, Nikodym [7,
8, 9] investigated the relationship between the set theoretic complexity of E and
the set of linearly accessible points.

In this paper, we consider those points of a compact connected set Γ set that
are linearly accessible from a given fixed point x and investigate the relationship
between the (Hausdorff) dimensions of the compact set and its linearly accessible
part from x for Lebsgue almost all x ∈ R

2 \ Γ. Denoting Γx to be the points of
Γ that are linearly accessible from x, it is clear that dimH(Γx) ≤ dimH(Γ) for all
x ∈ R

2 \ Γ. What is perhaps surprising though is that for most points there is a
drop in dimension.

Proceeding more formally, if for a compact set in the plane, K, and x ∈ R
2 we

define the visible part of K from x by

Kx = {u ∈ K : [x, u] ∩ K = {u}},
where [x, u] denotes the closed line segment joining x to u, then our results may be
summarised as follows.
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Theorem 1.1. If Γ ⊂ R
2 is a compact connected set with dimH(Γ) > 1, then for

(Lebesgue) almost all x ∈ R
2,

dimH(Γx) ≤ 1

2
+

√

dimH(Γ) − 3

4
.

This follows directly from the theorem that we prove in this paper.

Theorem 1.2. Let Γ ⊂ R
2 be a compact connected set with dimH(Γ) > 1. Then

for 1
2 +

√

dimH(Γ) − 3
4 < s ≤ dimH(Γ),

dimH{x ∈ R
2 : dimH(Γx) > s} ≤ dimH(Γ) − s

s − 1
.

In an earlier paper [3], it was shown that for a particular class of compact
connected sets (namely quasicircles), whenever x lies outside the set, dimH(Γx) = 1.
Since quasicircles can have dimension arbitrarily close to 2, and for connected sets
of positive dimension, dimH(Γx) ≥ 1 whenever x 6∈ Γ, it follows that, unless the
optimal upper bound for dimH(Γx) is one, there is no general result concerning the
lower bound of dimH(Γx) beyond the trivial estimate.

There are many possible directions for future work. Despite the fact that the
upper bound given in Theorem 1.1 is the golden-ratio for dimH(Γ) = 2, there is no
good reason to believe that this bound is optimal, since the proof we give in this
paper uses at least one sub-optimal estimate. It would be interesting to know the
correct upper bound. Our method of proving Theorem 1.2 relies in an essential
way on the properties of connected sets in the plane, and it is unclear whether
a similar result could hold in higher dimensions. Whether a dimension drop will
occur for totally disconnected sets is also unclear: in [3], it is shown that, for the
cross-product of a Cantor set with itself in the plane, there is a dimension drop (to
1), provided that the original Cantor set has Hausdorff dimension sufficiently close
to 1.

I would like to thank Paul MacManus, Pertti Mattila and David Preiss for useful
discussions during the writing of this paper, and Marianna Csörnyei for her helpful
comments on a preliminary draft of the paper.

2. Background results and preliminary estimates

In this section we summarise the main definitions and results that we use.
Most of the time we shall be working in the plane, R

2, endowed with the usual
norm, | · | and inner product 〈· , ·〉. We let e1 and e2 denote the usual basis vectors
in R

2 and set x∧ = x/|x| for x 6= 0, and x⊥ = 〈x, e1〉e2 − 〈x, e2〉e1 for x ∈ R
2. For

x ∈ R
2 and A ⊆ R

2, define arc-diamx(A) to be the angle (in radians) subtended
by the smallest arc in the circle {u : |x−u| = 1} that contains the radial projection
of A onto this circle. (If x ∈ A, then arc-diamx(A) = 2π.)

For a subset A of the plane and r > 0, let

B(A, r) = {y ∈ R
2 : There is x ∈ A with |y − x| ≤ r}

and, in a slight abuse of notation, let B(x, r) = B({x}, r), the usual closed ball of
centre x and radius r.

Let X be a Polish space. (That is, X is a complete, separable, metrisable
topological space.) A sub-additive, non-negative set function µ on X is a Radon
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measure if it is a Borel measure (all Borel sets are µ-measurable) for which all
compact sets have finite measure and both

µ(U) = sup{µ(K) : K ⊂ U , K is compact}, for open sets U

and

µ(A) = inf{µ(U) : A ⊂ U , U is open}, for A ⊆ X.

We denote the set of Radon measures on X by M(X).
We let σ(A(X)) denote the σ-algebra generated by the analytic subsets of X,

we suppress mention of X when this is clear from the context. If µ is a Radon
measure on this space then all sets in σ(A) are µ-measurable. See [4, (21.10)].

For s ∈ R and A ⊆ X, we define

Ms(A)

= {ν ∈ M(X) : ν(A) > 0 and ν(B(x, r)) ≤ rs for x ∈ X, 0 < r ≤ 1}.
If µ is a Radon measure on the plane and s ∈ R, then Is(µ) denotes the s-energy
of µ given by

Is(µ) =

∫∫

|x − y|−s dµ(x) dµ(y).

The Hausdorff dimension of a set is defined in the usual way via Hausdorff
measures, see [1, 2, 6, 10]. The following theorem summarises some useful equivalent
ways of finding the Hausdorff dimension of a set.

Theorem 2.1. Let A be an analytic subset of a Euclidean space, R
n. Then

dimH(A) = sup{s ∈ R : Ms(A) 6= ∅}
= sup{s ∈ R : There is µ ∈ M(Rn) with ν(A) > 0 and Is(µ) < ∞}
= sup{dimH(K) : K ⊆ A and K is compact}.

Proof. See [1, Theorem 6.4] together with [2, 2.10.48] or [10, Theorem 57]. ¤

We record some simple geometric estimates for future use. For x ∈ R
2, d−, d+ ∈

R
+, let A(x, d−, d+) = B(x, d+) \ B(x, d−), a half-open annulus.

Lemma 2.1. Let 0 < d− ≤ d+ with d− ≤ 1 and let a ∈ R
2 \ {0} and E ⊆

A(0, d−, d+) be compact. Suppose that |a| ≤ 1
2d− and let α = min{|〈p, a⊥〉/〈p, a〉| :

p ∈ E}. If α ≤ 1, then for all p ∈ E

1

2
≤ 〈p − a, p + a〉

|p − a||p + a| ≤ 1 − 9

17d2
+

(|a|α)2.

Proof. For p ∈ E,

〈p − a, p + a〉 = |p|2 − |a|2

and

|p − a|2|p + a|2 = (|p|2 + |a|2)2 − 4〈p, a〉2.
If A = 〈p, a⊥〉/〈p, a〉, then 1 + A2 = |p|2|a|2

〈p, a〉2 , and so

|p − a|2|p + a|2 =
(|p|2 − |a|2)2

1 + A2

(

1 +

( |p|2 + |a|2
|p|2 − |a|2

)2

A2

)

.
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(If |A| = +∞, then read the formula as |p − a|2|p + a|2 = (|p|2 + |a|2)2.) Hence

(*)
〈p − a, p + a〉
|p − a||p + a| =

√

1 + A2

1 + (1 + µ)2A2
=

√

1 − µ(2 + µ)A2

1 + (1 + µ)2A2
,

where

2
|a|2
d2
+

≤ 2

( |a|
|p|

)2

≤ µ = 2
(|a|/|p|)2

1 − (|a|/|p|)2 ≤ 8

3

( |a|
|p|

)2

≤ 2

3
.

It is easy to see that for p ∈ E, (*) is maximised when A = |〈p, a⊥〉/〈p, a〉| = α.
However

(1 − x)
1
2 ≤ 1 − 1

2x, for 0 ≤ x ≤ 1,

and so, since µ(2+µ)α2

1+(1+µ)2α2 = 1 − 1+α2

1+(1+µ)2α2 ≤ 1, and since µ ≤ 2
3 ,

〈p − a, p + a〉
|p − a||p + a| ≤ 1 − 1

2

(
µ(2 + µ)α2

1 + (1 + µ)2α2

)

≤ 1 − 9
34µα2 ≤ 1 − 9

17

( |a|α
d+

)2

.

The lower bound follows from recognising that (*) is minimised when p = d−a⊥/|a|.
¤

For x ∈ R
2, u ∈ R

2 \ {0} and σ > 0, let

V (x, u, σ) = {y ∈ R
2 : |〈y − x, u⊥〉| < σ〈y − x, u〉},

the open cone with vertex x, direction u and opening σ. The next lemma gives a
lower bound on the distance of a point in a particular subregion of a cone from the
vertex.

Lemma 2.2. Let p ∈ R
2 \ {0} and σ, τ > 0. If

u ∈ V (0, p, σ) \ V (p,−p, τ),

then

〈u − p, p∧〉 ≥ − σ

σ + τ
|p|.

Proof. Suppose that u ∈ V (0, p, σ) \ V (p,−p, τ), then

〈u − p, p∧〉 ≥ 〈q − p, p∧〉
where

q = µ(p + σp⊥) = p + λ(−p + τp⊥),

for some µ, λ > 0. Calculating 〈q, p⊥〉 gives

µ = λ
τ

σ

and substituting for µ in 〈q, p〉 gives

λ =
σ

σ + τ
.

Hence

〈q − p, p∧〉 ≥ − σ

σ + τ
|p|,

as required. ¤
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2.1. Elementary measure estimates. We now prove some estimates concerning
the geometric distribution of mass for Radon measures in the plane.

We start by recording a simple mass estimate.

Lemma 2.3. Fix s > 0 and 0 < d− ≤ 1
2d+. Let ν be a Radon measure such that

for all u ∈ R
2 and r > 0, ν(B(u, r)) ≤ rs. Suppose that x ∈ R

2 and V ⊆ R
2, then

ν(V ∩ A(x, d−, d+)) ≤ c arc-diamx(V ∩ A(x, d−, d+))s−1,

for some fixed positive constant c depending only on d−, d+ and s.

Proof. We may suppose that x = 0. Let θ = arc-diam0(V ). If θ ≤ 1/2, then

θd+ ≤ d+ − d− and so V ∩A(0, d−, d+) may be covered by 1+ d+−d−

d+θ boxes of side

d+θ. Hence a simple estimate of mass gives

ν(V ∩ A(0, d−, d+)) ≤ 2
1
2 s(d+θ + d+ − d−)(d+θ)s−1 ≤ 3ds

+2
1
2 s−1θs−1,

and the lemma follows for θ ≤ 1/2. If θ ≥ 1/2, then we use the estimate that
ν(A(0, d−, d+)) ≤ ds

+. ¤

We now prove a lemma on the distribution of mass for an arbitrary measure in
semi-infinite tubes. To do this we define for x ∈ R

2 and r > 0,

T+(x, r) = {z ∈ R
2 : |p1(z) − p1(x)| < r and p2(z) > p2(x)}

and
T−(x, r) = {z ∈ R

2 : |p1(z) − p1(x)| < r and p2(z) < p2(x)},
where p1 and p2 denote orthogonal projection onto the x- and y-axis, respectively.
Thus T+(x, r) is an open vertical tube of width 2r extending upwards from x and
T−(x, r) is an open vertical tube of width 2r extending downwards from x.

Proposition 2.1. Suppose ν is a compactly supported Radon measure in the plane.
Then for ξ > 0 and ν-a.e. x

lim inf
r→0

ν(T+(x, r))

r1+ξ
= lim inf

r→0

ν(T−(x, r))

r1+ξ
= +∞.

Proof. We give the proof for T+; the proof for T− is similar. Without loss of
generality we assume that spt ν lies in the unit square [0, 1] × [0, 1] and let

E∞ =

{

x : lim inf
r→0

ν(T+(x, r))

r1+ξ
= +∞

}

.

Since ν(R2 \ spt ν) = 0, it is enough to show that ν(spt ν \ E∞) = 0.
For M and j ∈ N ∪ {0}, let

EM,j = {x ∈ spt ν : ν(T+(x, r)) < Mr1+ξ for some 0 < r ≤ 2−j}.
Then

spt ν = E∞ ∪
⋃

M∈N

⋂

j∈N∪{0}
EM,j ,

and
EM,j ⊂

⋃

k≥j

{x ∈ spt ν : ν(T+(x, 2−k)) < 21+ξM2−k(1+ξ)}
︸ ︷︷ ︸

EM,j,k, say

.

We now estimate the ν measure of EM,j,k for k ≥ j ∈ N. Choose F ⊆ EM,j,k

compact such that
ν(F ) ≥ ν(EM,j,k)/2.
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T�(u,r)+
x u

r 

T�(u,r)-

Figure 1. The radial tubes T−
x (u, r) and T+

x (u, r).

We consider the 2k+2 columns Ci = [i2−(k+2), (i+1)2−(k+2)]×R, i = 0, . . . , 2k+2−1.
For each i with Ci ∩F 6= ∅, we choose xi ∈ Ci ∩F to have minimum possible height
above the x-axis, ie

dist (Ci ∩ F, R × {0}) = dist (xi, R × {0}).
For such an i,

ν(F ∩ T+(xi, 2
−k) ≤ ν(T+(xi, 2

−k)) < 21+ξM2−k(1+ξ).

Clearly

F ⊆
⋃

i:F∩Ci 6=∅
F ∩ Ci ⊆

⋃

i:F∩Ci 6=∅
F ∩ T+(xi, 2

−k).

And so

ν(F ) ≤
∑

i:F∩Ci 6=∅
ν(F ∩ T+(xi, 2

−k))

< 2k+2 × 21+ξM2−k(1+ξ)

= 23+ξM2−kξ.

Hence
ν(EM,j,k) < 24+ξM2−kξ

and so

ν(EM,j) ≤
∞∑

k=j

ν(EM,j,k) <
24+ξM

1 − 2−ξ
2−jξ.

Thus,

ν




⋃

M∈N

⋂

j∈N

EM,j



 = 0

and the lemma follows. ¤

For x 6= u ∈ R
2 and r > 0, define radial tubes T+

x (u, r) and T−
x (u, r) by

T+
x (u, r) = V (x, u − x, r/d(x, u)) ∩ {z ∈ R

2 : d(x, z) > d(x, u)}
and

T−
x (u, r) = V (x, u − x, r/d(x, u)) ∩ {z ∈ R

2 : d(x, z) < d(x, u)},
see Figure 1.

It is easy to use a bi-Lipschitz transformation to transform our lemma about
parallel tubes to one about radial tubes.
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Lemma 2.4. Let ν be a compactly supported Radon measure in the plane and
x 6∈ spt ν. Then for ξ > 0 and for ν-a.e. u

lim inf
r→0

ν(T+
x (u, r))

r1+ξ
= lim inf

r→0

ν(T−
x (u, r))

r1+ξ
= +∞.

Proof. Since x 6∈ spt ν, there is ρ > 0 with B(x, ρ) ∩ spt ν = ∅. Since spt ν is com-
pact, we can find some R > ρ for which spt ν ⊂ B(x,R). Moreover, by restricting
and translating ν suitably, we may suppose that spt ν is a subset of a quadrant of
the plane with corner at x, Q(x), say, intersected with the annulus A(x, ρ/2, R).
It is now straightforward to find a transformation (namely, reiθ 7→ (r, θ)) which
transforms radial lines segments through x and intersecting this region to half-
lines parallel to the y-axis. This transformation is bi-Lipschitz when restricted to
Q(x) ∩ A(x, ρ/2, R). This gives us the situation described in Proposition 2.1 and
the claim follows. ¤

This lemma allows us to show that measures with dimension larger than one
have mass far from the origin of these radial tubes for typical points:

Lemma 2.5. Let s > 1, 0 < r1 ≤ r0 ≤ 1 and ξ,M, d−, c > 0, and x ∈ R
2. Suppose

that ν is a compactly supported Radon measure on the plane and F ⊆ E are compact
sets in the plane satisfying:

(1) for all u ∈ E, |u − x| ≥ d−;
(2) for all u ∈ E and 0 < r ≤ r0,

νB(u, r) ≤ crs;

(3) for all u ∈ F and 0 < r ≤ r1,

ν(E ∩ T±
x (u, r)) > Mr1+ξ.

Then there are constants r2 ∈ (0, r1/
√

2] and d0 > 0 such that for u ∈ F and

0 < r ≤ r2,

ν(E ∩ T±
x (u, r) ∩ (R2 \ A(x, |u − x| − d0r

2+ξ−s, |u − x| + d0r
2+ξ−s))) > 0.

Proof. Let

d0 = M
122−s/2 and r2 = min{r1/

√
2, 1

2

√
3d−, (d−/d0)

1
2+ξ−s , d

1
s−1−ξ

0 }.
We give the proof for T+

x (u, r); the proof for T−
x (u, r) is similar. By rotating

and translating, we may assume that x = 0 and the line segment [x, u] is on the
positive x-axis. Let ∆ = |u − x| ≥ d−.

Elementary geometry shows, since r ≤ 1
2

√
3d− ≤ 1

2

√
3∆ and so (1+(r/∆)2)−

1
2 ≥

1 − 1
2 (r/∆)2, that

T+
x (u, r) ∩ A(x,∆ − R,∆ + R) ⊆ T+

x (u, r) ∩ B(x,∆ + R)

⊆
(
[∆ − 1

2r2/∆,∆] × [−r, r]
)
∪ ([∆,∆ + R] × [−r(1 + R/∆), r(1 + R/∆)]) ,

for any R ≥ 0. We choose R = d0r
2+ξ−s.

We estimate that T+
x (u, r) ∩ (A,∆ − R,∆ + R) can be covered by

2 + (1 + 2R/r)(r(1 + R/∆) + 1)

closed squares of side r, since 1
2r2/∆ ≤ 1

2
r2

d−
r < r. We find that

2 + (1 + 2R/r)(r(1 + R/∆) + 1) ≤ 2R/r + (3R/r)(2r + 1) ≤ 11R/r,
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x u

R

�� �� ����
	


 �� � �
���� ���� � ����� �

Figure 2. Estimating the mass of T+
x (u, r).

since r ≤ R ≤ ∆ and r ≤ 1. Hence we require at most 11R/r balls of radius
√

2r
to cover E ∩ T+

x (u, r) ∩ (A,∆ − R,∆ + R).

So, since
√

2r ≤ r1 ≤ r0, we estimate that

ν(E ∩ T+
x (u, r) ∩ (A,∆ − R,∆ + R)) ≤ (11R/r) × 2s/2rs

= 11 · 2 s
2 d0r

1+ξ

< Mr1+ξ,

proving the lemma. ¤

2.2. A ‘two measures’ estimate. In this subsection, we investigate the inter-
action of two measures of large dimension when they are supported on different
visible sets of Γ. The result that we prove in this section is the crux of our method.
It shows that if two measures of large dimension are supported in different visible
sets, then they will be ‘disjoint’ in the sense that balls containing points from both
visible sets will have small mass for both measures. The remainder of the paper
consists mainly of trying to place ourselves in a position to use this observation.

In the following proposition, T (x, y, p) denotes the closed triangle with vertices
x, y and p, and H(x, y;u) denotes the closed upper-half plane that has the line
segment [x, y] in its boundary and u lying in its interior.

Proposition 2.2. Let Γ be a non-empty compact connected subset of R
2. Suppose

that s > 1, 0 < ξ < s − 1, 0 < r1 ≤ r0 ≤ 1, 0 < d− ≤ d+ with d− ≤ 1 and M > 0
are given. Let x, y ∈ R

2 \ Γ satisfy

0 < 2|x − y| < d− ≤ min{d(x,Γ), d(y,Γ)} ≤ max{d(x,Γ), d(y,Γ)} + |Γ| ≤ d+.

Let νx and νy be Radon measures supported in Γx and Γy respectively and let

Fx ⊆ Ex ⊆ Γx and Fy ⊆ Ey ⊆ Γy

be compact sets. Suppose that:

(1) for all u ∈ Ex, v ∈ Ey and 0 < r ≤ r0 both

νx(B(u, r) ≤ rs and νy(B(v, r)) ≤ rs;
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x

y

u w
e

f
g

e�

g�
f �

B(u,�)

Figure 3. The vectors e, f and g.

(2) for all u ∈ Fx, v ∈ Fy and 0 < r ≤ r1 both

νx(T±
x (u, r) ∩ Ex) ≥ Mr1+ξ and νy(T±

y (v, r) ∩ Ey) ≥ Mr1+ξ;

(3) there is ψ ∈ (0, 1/2) such that for u ∈ Fx ∪ Fy,

〈(u − x)∧, (u − y)∧〉 ∈ [ 12 , 1 − ψ].

Then there are constants α0, d1, c1 > 0 such that for u ∈ Fx, if 0 < ρ ≤ d1ψ
1
2

1
s−1−ξ ,

then

(2.1) νy(B(u, ρ) ∩ Fy) ≤ c1ψ
− 1

2 (
s−1

2+ξ−s )ρ
1+ξ

2+ξ−s .

Furthermore, if v ∈ Fy ∩ B(u, ρ), then there is

p ∈ [ 12 (x + y), u] ∩ B(u, α0ψ
−1/2ρ)

such that T (x, y, p) ∩ Γ = ∅ and

V (p, 1
2 (x + y) − u, 2

5ψ
1
2 ) ∩ Γ ∩ H(x, y;u) = ∅.

Notice that the symmetry of the hypotheses in this proposition imply that a
version of (2.1) holds for u ∈ Fy with νy replaced by νx and Fy replaced by Fx.

Here α0 = 60d+/d−, d1 = min{(r2/α1)
2+ξ−s, d−/α0} and c1 = 25+s/2αs−1

1 (d+/d−),

where α2+ξ−s
1 = (α0 + 1)/d0 and d0, and r2 are the constants determined in

Lemma 2.5.

Proof. Suppose the conditions of the proposition are satisfied. Fix

0 < ρ ≤ d1ψ
1
2

1
s−1−ξ ,

we must show that

νy(Fy ∩ B(u, ρ)) ≤ c1ψ
− 1

2 (
s−1

2+ξ−s )ρ
1+ξ

2+ξ−s .

If Fy ∩B(u, ρ) = ∅, then there is nothing to prove. So suppose w ∈ Fy ∩B(u, ρ)
and set

e = (u − x)∧, f = (w − y)∧ and g = (u − y)∧.

Notice that the third hypothesis of the proposition states

(2.2) 1
2 ≤ 〈e, g〉 ≤ 1 − ψ
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and since

〈e⊥, g〉2 = 1 − 〈e, g〉2 ≥ 1 − (1 − ψ)2 = ψ(2 − ψ) ≥ ψ,

it follows that

(2.3) |〈e⊥, g〉| ≥ ψ
1
2 .

In order to prove the theorem, we make a sequence of geometric observations. In
the first observation, we make some further estimates relating the angles between
various of the vectors e, e⊥, f, f⊥, g and g⊥.

Observation 1. If 0 < ρ < 1
4d−, then

|〈f, g⊥〉| ≤ ρ/d−(2.4)

〈f, g〉 ≥ 1 − 2ρ/d−(2.5)

〈e, f〉 > 1
4d−/d+.(2.6)

Proof. For inequality (2.4), we use g⊥ = 〈g, f〉f⊥ − 〈g, f⊥〉f and calculate

〈f, g⊥〉 = 0 − 〈g, f⊥〉 = − 1

|u − y| 〈u − y, f⊥〉 = −〈u − w, f⊥〉
|u − y| .

Hence |〈f, g⊥〉| ≤ ρ/d−.
For inequality (2.5), on noting

〈f, g〉|w − y||u − y| = 〈w − y, u − y〉 = 〈w − u, u − y〉 + |u − y|2,
we find

〈f, g〉 =
1

|w − y| 〈w − u, g〉 +
|u − y|
|w − y| ≥ − ρ

d−
+

(

1 − |u − w|
|w − y|

)

≥ 1 − 2ρ/d−.

To verify inequality (2.6), note that w = y + |w − y|f ∈ B(u, ρ), and so w =
y + (x− y) + |u− x|e + z for some |z| ≤ ρ. Hence |w − y|f = (x− y) + |u− x|e + z
and

|w − y|〈f, e〉 = 〈x − y, e〉 + |u − x| + 〈z, e〉.
Now

|〈x − y, e〉| ≤ 1
2d− ≤ 1

2 |u − x| and |〈z, e〉| ≤ ρ ≤ 1
4d− ≤ 1

4 |u − x|.
Thus

|w − y|〈e, f〉 ≥ 1
4 |u − x| ≥ 1

4d−

and so 〈e, f〉 ≥ 1
4d−/d+, as required. ¤

We now note that if z ∈ Ty(w, r), then it is also in Ty(u, r′) for r′ not too much
bigger than r.

Observation 2. If 0 < ρ ≤ 1
4d−, then

V
(

y, f, ρ
d−

)

⊆ V
(

y, g, 4 ρ
d−

)

.

Proof. If z ∈ V (y, f, ρ/d−), then

(2.7) |〈z − y, f⊥〉| <
ρ

d−
〈z − y, f〉.

Since

z − y = 〈z − y, f〉f + 〈z − y, f⊥〉f⊥,
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we find

〈z − y, g⊥〉 = 〈z − y, f〉〈f, g⊥〉 + 〈z − y, f⊥〉〈f⊥, g⊥〉.
Hence (2.4) implies

|〈z − y, g⊥〉| ≤ ρ

d−
|〈z − y, f〉| + |〈z − y, f⊥〉|.

Thus (2.7) gives

|〈z − y, g⊥〉| ≤ ρ

d−
|〈z − y, f〉| + ρ

d−
〈z − y, f〉

= 2(ρ/d−)〈z − y, f〉(2.8)

It only remains to estimate 〈z − y, f〉 in terms of 〈z − y, g〉. As f = 〈f, g〉g +
〈f, g⊥〉g⊥,

0 < 〈z − y, f〉 ≤ 〈z − y, g〉〈f, g〉 + 〈z − y, g⊥〉〈f, g⊥〉,
which, on using (2.8) and (2.4), gives

0 < 〈z − y, f〉 ≤ 〈z − y, g〉〈f, g〉 +
2ρ

d−
× ρ

d−
〈z − y, f〉.

Rearranging and using 0 < 〈f, g〉 ≤ 1, we find

〈z − y, f〉[1 − 2(ρ/d−)2] ≤ 〈z − y, g〉.
Substituting back into (2.8), then gives

|〈z − y, g⊥〉| ≤ 2(ρ/d−)[1 − 2(ρ/d−)2]−1〈z − y, g〉
which, as ρ ≤ d−/2, proves the claim. ¤

Observation 3. If 0 < ρ ≤ 1
20d−ψ1/2, then

V (x, e, ρ/d−) ∩ V (y, f, ρ/d−) ⊆ B(u, α0ψ
−1/2ρ),

where α0 = 60 d+

d−
.

Proof. Fix z ∈ V (y, f, ρ/d−) ∩ V (x, e, ρ/d−). Since 0 < ρ ≤ 1
20d−ψ1/2 ≤ d−/4,

observation 2 implies z ∈ V (y, g, 4ρ/d−). Hence there are λ, µ > 0 for which

z = y + λ(g − bg⊥) = x + µ(e + ae⊥)

where |b| ≤ 4ρ/d− and |a| ≤ ρ/d−. We wish to find an upper bound for |z − u|.
Now

〈z − x, e〉 = µ and 〈z − y, g〉 = λ.

Notice that

(2.9) |z − u|2 = 〈z − u, g〉2 + 〈z − u, g⊥〉2 = (λ − |y − u|)2 + b2λ2,

and so upper estimates for (λ− |y − u|)2 and λ2 give an upper estimate for |z − u|.
Now

〈z − u, e〉 = 〈y − u, e〉 + λ(〈g, e〉 − b〈g⊥, e〉) = 〈x − u, e〉 + µ

and so

µ = |x − u| − |u − y|〈g, e〉 + λ(〈g, e〉 − b〈g⊥, e〉).
Also

〈z − u, e⊥〉 = 〈y − u, e⊥〉 + λ(〈g, e⊥〉 − b〈g⊥, e⊥〉) = aµ
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and so

−|u − y|〈g, e⊥〉 + λ(〈g, e⊥〉 − b〈g⊥, e⊥〉)
= a|u − x| − a|u − y|〈g, e〉 + aλ(〈g, e〉 − b〈g⊥, e〉).

This rearranges to give

λγ = a|u − x| + |u − y|(〈g, e⊥〉 − a〈e, g〉),
where

γ = (1 − ab)〈g, e⊥〉 − (a + b)〈e, g〉.
Thus

λ − |u − y| = γ−1
[
a|u − x| + |u − y|(〈g, e⊥〉 − a〈e, g〉 − γ)

]

= γ−1
[
a|u − x| + |u − y|(ab〈g, e⊥〉 + b〈e, g〉)

]

= γ−1
[
a|u − x| + b|u − y|(a〈g, e⊥〉 + 〈e, g〉)

]
.

Since |a| ≤ ρ/d− and |b| ≤ 4ρ/d−, it follows that |ab| ≤ 1/2 and |a+ b| ≤ 5ρ/d−.
From equation (2.3) we know |〈e⊥, g〉| ≥ ψ1/2, and so

|γ| ≥ 1
2ψ1/2 − 5(ρ/d−) ≥ 1

4ψ1/2,

since ρ ≤ 1
20d−ψ1/2.

Hence, as |a| ≤ ρ/d− ≤ 1,

|λ| ≤ 4ψ−1/2
[
|a||u − x| + |u − y|(|〈g, e⊥〉| + |a||〈e, g〉|)

]
≤ 12d+ψ−1/2

and, as |b| ≤ 4ρ/d−,

|λ − |u − y||
≤ 4ψ−1/2

[
|a||u − x| + |b||u − y|(|a||〈g, e⊥〉| + |〈e, g〉|)

]

≤ 36(d+/d−)ψ−1/2ρ.

Thus estimating λ in (2.9) gives

|z − u|2 ≤ (36(d+/d−)ψ−1/2ρ)2 + (48(d+/d−)ψ−1/2ρ)2,

and so

|z − u| ≤ 60(d+/d−)ψ−1/2ρ,

as required. ¤

We now observe that there is a ‘large’ triangle that is disjoint from Γ and with
a vertex close to u (and hence w).

Observation 4. If

0 < ρ ≤ d1ψ
1
2 (

1
s−1−ξ ),

and r = α1(ψ
− 1

2 ρ)
1

2+ξ−s , then there is

z ∈ V (x, e, r/d−) ∩ V (y, f, r/d−)

with

T (x, y, z) ∩ Γ = ∅
and

z ∈ B(u, α0ψ
−1/2ρ).
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x

y

u'
w'

z
u w

B(u,���� �� �)
�

Figure 4. ∅ 6= [x, u′] ∩ [y, w′] ⊆ B(u, α0ψ
−1/2ρ).

Proof. We aim to find a point z which is visible from both x and y. Recall that

α2+ξ−s
1 = (α0 + 1)/d0 and d1 = min{(r2/α1)

2+ξ−s, d−/α0}.
(The constant α0 is given in observation 3, and r2 and d0 are given in Lemma 2.5.)

Since w ∈ Fy and

r = α1(ψ
− 1

2 ρ)
1

2+ξ−s ≤ α1d
1

2+ξ−s

1 ≤ r2,

we may use Lemma 2.5 applied to νy and w to find w′ ∈ Ey ∩ T+
y (w, r), and in

particular lying in V (y, w − y, r/d−), for which

|w − w′| > d0r
2+ξ−s = d0α

2+ξ−s
1 ψ− 1

2 ρ.

Hence, as |w − u| ≤ ρ,

|w′ − u| > d0α
2+ξ−s
1 ψ− 1

2 ρ − ρ = (d0α
2+ξ−s
1 ψ− 1

2 − 1)ρ ≥ α0ψ
−1/2ρ.

But
ρ ≤ d1ψ

1
2 (

1
s−1−ξ ) ≤ d−/α0 < d−/4

and

r = α1(ψ
− 1

2 ρ)
1

2+ξ−s ρ−1ρ = α1(ψ
− 1

2 ρs−1−ξ)
1

2+ξ−s ρ ≤ α1d
1

2+ξ−s

1 ρ ≤ ρ.

Hence, by observation 2, w′ ∈ V (y, g, 4ρ/d−).
Similarly, there is u′ ∈ Ex ∩ T+

x (u, r) for which

|u′ − u| ≥ α0ψ
−1/2ρ

and, clearly, u′ ∈ V (x, u − x, r/d−).
Now both |u − x| and |u − y| are no less than d− and

α0ψ
−1/2ρ ≤ α0d1ψ

1
2 (

2+ξ−s
s−1−ξ ) < α0d1 ≤ d−,

hence
min{|u − x|, |u − y|} > α0ψ

−1/2ρ.

Moreover
r ≤ ρ ≤ d1ψ

1
2 (

1
s−1−ξ ) ≤ d1ψ

1
2 < 1

20d−ψ1/2,

and so it follows from observation 3 that

∅ 6= [x, u′] ∩ [y, w′] ⊆ B(u, α0ψ
−1/2ρ).

Let z denote this intersection point. Then
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x

y

p
u

Figure 5. p ∈ [12 (x + y), u] ∩ (V (x, e, 4ρ/d−) ∪ V (y, g, 4ρ/d−)).

([x, z] ∪ [x, y] ∪ [y, z]) ∩ Γ = ∅,
since Γ is connected, u′ is visible from x and w′ is visible from y. The observation
follows. ¤

We now use this observation to find an empty cone with base point near to u.

Observation 5. If 0 < ρ ≤ d1ψ
1
2 (

1
s−1−ξ ), then there is p ∈ [ 12 (x + y), u] ∩

B(u, α0ψ
− 1

2 ρ) for which

T (x, y, p) ∩ Γ = ∅
and

V (p, 1
2 (x + y) − u, 2

5ψ1/2) ∩ H[x, y;u] ∩ Γ = ∅.
Proof. Let

p ∈ [ 12 (x + y), u] ∩ (V (x, e, 4ρ/d−) ∪ V (y, g, 4ρ/d−))

be chosen to be at the minimum possible distance from 1
2 (x + y), see Figure 5.

Then there is λ > 0 such that

p = u − λ
|u − x|e + |u − y|g
||u − x|e + |u − y|g|

Suppose (without loss of generality) that p ∈ V (y, g, 4ρ/d−), then there is µ > 0
and σ ∈ {+1,−1} such that

p = y + µ(g + 4ρd−1
− σg⊥).

Hence, if we set h = |u − x|e + |u − y|g, then

u − λh/|h| = y + µ(g + 4ρd−1
− σg⊥),

which, as u − y = |u − y|g, rearranges to give

(2.10) |u − y|g − λh/|h| = µ(g + 4ρd−1
− σg⊥).

So taking the inner product of (2.10) with g⊥ gives

(2.11) −λ
|u − x|
|h| 〈e, g⊥〉 = 4

ρ

d−
σµ

and taking the inner product of (2.10) with g and rearranging gives

|u − y| − λ
|u − x|〈e, g〉 + |u − y|

|h| = µ.
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Substituting for µ from (2.11) gives

|u − y| − λ
|u − x|〈e, g〉 + |u − y|

|h| = − d−
4ρσ

· |u − x|〈e, g⊥〉
|h| λ

and this rearranges to give

λ

[(
d−
4ρσ

〈e, g⊥〉 − 〈e, g〉
)

|u − x| − |u − y|
]

= −|u − y||h|

and so, substituting for h,

λ

[

(d−〈e, g⊥〉 − 4ρσ〈e, g〉) − 4ρσ
|u − y|
|u − x|

]

= −4ρσ|u − y|
∣
∣
∣
∣
e +

|u − y|
|u − x|g

∣
∣
∣
∣

As |x − y| ≤ d−/2, it easily follows that

2

3
≤ |u − x|

|u − y| ,
|u − y|
|u − x| ≤

3

2
,

and so

|λ| ≤ 4ρ

d−
×

(
1 + 3

2

) |u − y|
|σ〈e, g⊥〉 − 4ρd−1

− (〈e, g〉 + |u − y|/|u − x|)|.
Now |〈e, g〉 + |u − y|/|u − x|| ≤ 5/2 and by (2.3),

|〈e, g⊥〉| = |〈e⊥, g〉| ≥
√

ψ.

Thus

|σ〈e, g⊥〉 − 4ρd−1
− (〈e, g〉 + |u − y|/|u − x|)| ≥

√

ψ − 10ρ/d− ≥ 1
2

√

ψ,

since ρ ≤ d1ψ
1
2 (

1
s−1−ξ ) ≤ d1ψ

1
2 ≤ (d−/α0)ψ

1
2 < 1

20d−
√

ψ. Hence

|λ| ≤ 10ρd−1
− |u − y| × 2ψ−1/2 ≤ 20(d+/d−)ψ−1/2ρ ≤ α0ψ

− 1
2 ρ,

and p ∈ B(u, α0ψ
−1/2ρ), as claimed.

Since the hypotheses of observation 4 are satisfied, there is a point z satisfying
its conclusions, and we note that p ∈ T (x, y, z). Hence T (x, y, p) ∩ Γ = ∅.

To show that

V (p, 1
2 (x + y) − u, 2

5ψ1/2) ∩ H[x, y;u] ∩ Γ = ∅
we recall that h = |u − x|e + |u − y|g and so

h⊥ = e⊥|u − x| + g⊥|u − y|.
We shall estimate |〈x − u, h⊥〉|, |〈y − u, h⊥〉|, |〈x − u, h〉| and |〈y − u, h〉| for if q ∈
H(x, y;u) satisfies

|〈q − p, h⊥〉| ≤ m〈q − p, h〉
where m = min{|〈x − u, h⊥〉/〈x − u, h〉|, |〈y − u, h⊥〉/〈y − u, h〉|}, then q ∈ T (x, y, p).
Now

〈x − u, h⊥〉 = −|x − u||y − u|〈e, g⊥〉
〈x − u, h〉 = −|x − u|2 − |x − u||y − u|〈e, g〉

〈y − u, h⊥〉 = −|x − u||y − u|〈g, e⊥〉
〈y − u, h〉 = −|y − u|2 − |x − u||y − u|〈e, g〉,
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and so ∣
∣
∣
∣

〈x − u, h⊥〉
〈x − u, h〉

∣
∣
∣
∣
=

∣
∣
∣
∣

〈e, g⊥〉
〈e, g〉 + |x − u|/|y − u|

∣
∣
∣
∣

and ∣
∣
∣
∣

〈y − u, h⊥〉
〈y − u, h〉

∣
∣
∣
∣
=

∣
∣
∣
∣

〈e, g⊥〉
〈e, g〉 + |y − u|/|x − u|

∣
∣
∣
∣
.

Hence m ≥ 2
5ψ1/2 and the observation follows. ¤

We now reach the main part of the proof of the proposition. The existence of a
large empty cone near to u and w forces all other points of Fy ∩ B(u, ρ) to lie in a
narrow strip in direction w − y.

Observation 6. Let 0 < ρ ≤ d1ψ
1
2 (

1
s−1−ξ ) and r = α1(ψ

− 1
2 ρ)

1
2+ξ−s . If v, w ∈

Fy ∩ B(u, ρ), then v ∈ V (y, w − y, 3r/d−).

Proof. Suppose that 〈v − y, (w − y)⊥〉 > 0. (If not, then interchange v and w
— note that 〈v − y, (w − y)⊥〉 6= 0 since v and w are both visible from y.) By
observation 4, there is

z ∈ V (x, e, r/d−) ∩ V (y, f, r/d−) ∩ B(u, α0ψ
−1/2ρ)

for which Γ ∩ T (x, y, z) = ∅.
By lemma 2.5, we can find v′ ∈ Ey ∩ T−

y (v, r) for which

(2.12) |v′−u| ≥ |v′−v|−|u−v| > d0r
2+ξ−s−ρ = (d0α

2+ξ−s
1 ψ− 1

2 −1)ρ ≥ α0ψ
−1/2ρ.

We show that if

(2.13) 〈v − y, (w − y)⊥〉 ≥ 3(r/d−)〈v − y, w − y〉,
then v′ ∈ T (x, y, z), which is impossible. To do this, it is enough to show

(2.14) 〈v′ − x, e⊥〉 < −(r/d−)〈v′ − x, e〉
and

(2.15) 〈v′ − y, (w − y)⊥〉 > (r/d−)〈v′ − y, w − y〉,
since z ∈ V (x, e, r/d−) ∩ V (y, f, r/d−).

For (2.14): If

v′ ∈ V (y, v − y, r/d−) ∩ V (x, e, r/d−),

then observation 3 applied to v implies that |v′−u| < α0ψ
−1/2ρ contradicting (2.12).

Hence, as v′ ∈ V (y, v − y, r/d−), we deduce

|〈v′ − x, e⊥〉| > (r/d−)〈v′ − x, e〉
and it only remains to show that 〈v′ − x, e⊥〉 < 0. If 〈v′ − x, e⊥〉 ≥ 0, then
〈v′ − x, e⊥〉 > (r/d−)〈v′ − x, e〉. But, by observation 2 applied to v, |〈v′ − y, g⊥〉| ≤
4(ρ/d−)〈v′ − y, g〉 and so, as |v′ − y| < |v − y|, we find

|〈v′ − y, g⊥〉| < 4ρ/d−|v − y| ≤ 4ρ/d−(|u − y| + ρ)

≤ (5ρ/d−)|u − y|, as ρ ≤ d−/4

≤ 5(d+/d−)ρ

and 〈v′ − u, g⊥〉 = 〈v′ − y, g⊥〉. So

|〈v′ − u, g⊥〉| ≤ 5(d+/d−)ρ.
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Now
〈v′ − u, g〉 = 〈v′ − y, g〉 − |u − y| ≤ |v − y| − |u − y| ≤ ρ.

Let q be the point of intersection of [x, u] with [y, y+ |y−u|(g+4(ρ/d−)g⊥)]. Then
since v′ ∈ V (y, g, 4(ρ/d−)) and 〈v′ − x, e⊥〉 > (r/d−)〈v′ − x, e〉, it follows that
〈v′ − u, g〉 ≥ 〈q − u, g〉. Hence it is enough to find a lower bound for 〈q − u, g〉.
There is 0 < λ < |u − y| and 0 < µ < |x − u| such that

q = y + λ(g + 4(ρ/d−)g⊥) = x + µe,

and so
−|u − y|g + λ(g + 4(ρ/d−)g⊥) = (µ − |u − x|)e.

Taking inner products of this expression with g and g⊥, and solving for λ gives

λ = |u − y|
(

1 + 4

(
ρ

d−

) 〈e, g〉
〈e⊥, g〉

)−1

.

Hence

λ ≥ |u − y|(1 + 4(ρ/d−)ψ−1/2)−1 ≥ |u − y|(1 − 4(ρ/d−)ψ−1/2).

Thus
〈q − u, g〉 ≥ −4(ρ/d−)ψ−1/2|u − y|

and so
〈v′ − u, g〉 ≥ −4(ρ/d−)ψ−1/2|u − y| ≥ −4(d+/d−)ψ− 1

2 ρ.

Hence

|v′ − u| ≤ 5ρ d+

d−
+ 4ρψ−1/2 d+

d−
≤ 9(d+/d−)ψ−1/2ρ < α0ψ

−1/2ρ,

a contradiction.
For (2.15), notice that v′ − y = α(v − y) + β(v − y)⊥ for some 0 < α < 1 and

|β| < α(r/d−). Thus, using (2.13),

〈v′ − y, (w − y)⊥〉 = α〈v − y, (w − y)⊥〉 + β〈(v − y)⊥, (w − y)⊥〉
≥ 3α(r/d−)〈v − y, w − y〉 − |β||〈v − y, w − y〉|
≥ 2αr/d−〈v − y, w − y〉

and
〈v′ − y, w − y〉 = α〈v − y, w − y〉 + β〈(v − y)⊥, w − y〉.

But
〈(v − y)⊥, w − y〉 = 〈(v − y)⊥, w − v〉

and so |〈(v − y)⊥, w − y〉| ≤ 2ρ|v − y|, and

〈v − y, w − y〉 = 〈v − y, w − v〉 + |v − y|2

and so
|〈v − y, w − y〉| ≥ |v − y|(|v − y| − 2ρ) ≥ (d−/2)|v − y|,

since |v − y| ≥ d− and ρ ≤ d−/4. Thus

|〈(v − y)⊥, w − y〉| ≤ 2ρ|v − y| ≤ 4(ρ/d−)〈v − y, w − y〉.
So

〈v′ − y, w − y〉 ≤ (α + 4(ρ/d−)|β|)〈v − y, w − y〉
≤ (1 + 4(ρ/d−)(r/d−))α〈v − y, w − y〉
< (1 + 4(ρ/d−)(r/d−))(d−/(2r))〈v′ − y, (w − y)⊥〉
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and rearranging gives

〈v′ − y, (w − y)⊥〉 > (2r/d−)(1 + 4(ρ/d−)(r/d−))−1〈v′ − y, w − y〉

which, since 4(ρ/d−)(r/d−) ≤ r/d− ≤ r2/d− ≤ 1, implies (2.15). ¤

We can now finish the proof of the proposition.

Let 0 < ρ ≤ d1ψ
1
2 (

1
s−1−ξ ) and r = α1(ψ

− 1
2 ρ)

1
2+ξ−s . Suppose w ∈ B(u, ρ) ∩ Fy,

then

Fy ∩ B(u, ρ) ⊂ V (y, (w − y), 3r/d−).

Thus Fy∩B(u, ρ) is contained in a rectangle of height 2ρ and width 6rd+/d− which
can be covered by (2 + 2ρ/r)(2 + 6d+/d−) boxes of side r. Since

(2 + 2ρ/r)(2 + 6d+/d−) ≤ 32(ρ/r)d+/d−,

and
√

2r ≤
√

2α1

(

d1ψ
1
2 (

2+ξ−s
s−1−ξ )

) 1
2+ξ−s ≤

√
2α1d

1
2+ξ−s

1 ≤
√

2r2 ≤ r0, we estimate

that

νy(Fy ∩ B(u, ρ)) ≤ 25+s/2(d+/d−)ρrs−1 = 25+s/2αs−1
1 (d+/d−)ψ− 1

2 (
s−1

2+ξ−s )ρ
1+ξ

2+ξ−s ,

as required. The remainder of the proposition follows from observation 5. ¤

2.3. Mass estimate proposition. The main utility of Proposition 2.2 lies in its
use in proving the following proposition.

Proposition 2.3. Let Γ be a non-empty compact connected subset of R
2 and let A

and B be compact subsets of R
2. Suppose that s > 1, 0 < ξ < s−1, 0 < r1 ≤ r0 ≤ 1,

0 < d− ≤ d+ with d− ≤ 1 and M > 0 are given. Let x, y ∈ R
2 \ Γ satisfy

0 < 2|x − y| < d− ≤ min{d(x,Γ), d(y,Γ)} ≤ max{d(x,Γ), d(y,Γ)} + |Γ| ≤ d+.

Let νx and νy be Radon measures supported in Γx and Γy respectively and let

Fx ⊆ Ex ⊆ Γx and Fy ⊆ Ey ⊆ Γy

be compact sets. Suppose that:

(1) for all u ∈ Ex, v ∈ Ey and 0 < r ≤ r0 both

νx(B(u, r) ≤ rs and νy(B(v, r)) ≤ rs;

(2) for all u ∈ Fx, v ∈ Fy and 0 < r ≤ r1 both

νx(T±
x (u, r) ∩ Ex) ≥ Mr1+ξ and νy(T±

y (v, r) ∩ Ey) ≥ Mr1+ξ;

(3) there is ψ ∈ (0, 1/2) such that for u ∈ (Fx ∩ A) ∪ (Fy ∩ B),

〈(u − x)∧, (u − y)∧〉 ∈ [1/2, 1 − ψ].

Then there are constants c2, d2 > 0 such that if 0 < ρ ≤ d2ψ
1
2

1
s−1−ξ , then

(νx ⊗ νy) ((Fx × Fy) ∩ (A × B) ∩ {(u, v) : |u − v| ≤ ρ})
≤ c2 arc-diam 1

2 (x+y)(A ∩ Fx ∩ B(Fy ∩ B, ρ))(ψ− 1
2 ρ)

s+ξ
2+ξ−s .
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Proof. Let d2 = 5
23/2α0

d1 and observe that, as d2 ≤ d1, Proposition 2.2 implies

(νx ⊗ νy) ((Fx × Fy) ∩ (A × B) ∩ {(u, v) : |u − v| ≤ ρ})

=

∫

B(Fy∩B,ρ)

νy|Fy∩B ({v : |u − v| ≤ ρ}) dνx|Fx∩A(u)

=

∫

B(Fy∩B,ρ)

νy (Fy ∩ B ∩ B(u, ρ)) dνx|Fx∩A(u)

≤ c1ψ
− s−1

2(2+ξ−s) ρ
1+ξ

2+ξ−s νx (Fx ∩ A ∩ B(Fy ∩ B, ρ)) .

It remains to estimate

νx (Fx ∩ A ∩ B(Fy ∩ B, ρ)) .

We begin by noticing that for each

u ∈ Fx ∩ A ∩ B(Fy ∩ B, ρ),

Proposition 2.2 guarantees the existence of pu ∈ [12 (x+y), u]∩B(u, α0ψ
−1/2ρ) such

that T (x, y, pu) ∩ Γ = ∅ and

V (pu, 1
2 (x + y) − u, 2

5ψ
1
2 ) ∩ Γ ∩ H(x, y;u) = ∅.

Let σ = 2
5

α0

d+
ρ and fix v ∈ Fx ∩ A ∩ B(Fy ∩ B, ρ). Then Lemma 2.2 guarantees

that if

w ∈ V ( 1
2 (x + y), pv − 1

2 (x + y), σ) \ V (pv,−(pv − 1
2 (x + y)), 2

5ψ
1
2 ),

then

〈w − pv, (pv − 1
2 (x + y))∧〉 ≥ − σ

σ + 2
5ψ

1
2

|pv − 1
2 (x + y)|

≥ − 5
2d+

(
2

5

α0

d+

)

ψ− 1
2 ρ = −α0ψ

− 1
2 ρ.

So suppose u, v ∈ Fx ∩A with u ∈ V ( 1
2 (x + y), v, σ) and assume, without loss of

generality, that

|u − 1
2 (x + y)| ≤ |v − 1

2 (x + y)|.
We wish to estimate 〈u − v, (v − 1

2 (x + y))∧〉 from below. (An easy upper bound
is given by zero.) From the preceding we know that

〈u − pv, (v − 1
2 (x + y))∧〉 = 〈u − pv, (pv − 1

2 (x + y))∧〉 ≥ −α0ψ
− 1

2 ρ.

Hence

〈u − v, (v − 1
2 (x + y))∧〉 = 〈u − pv, (v − 1

2 (x + y))∧〉 + 〈pv − v, (v − 1
2 (x + y))∧〉

≥ −α0ψ
− 1

2 ρ − α0ψ
− 1

2 ρ

≥ −2α0ψ
− 1

2 ρ.

Thus

V ( 1
2 (x + y), v − 1

2 (x + y), σ)∩ (Fx ∩A∩B(Fy ∩B, ρ)∩B(1
2 (x + y), |v − 1

2 (x + y)|))
can be covered by

2α0ψ
−1/2ρ

2
5α0ρ

= 5ψ− 1
2
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boxes of side 4
5α0ρ. Hence, by using the mass estimate in Proposition 2.2 (for νx

rather than νy), since 2
√

2 2
5α0ρ ≤ d1ψ

1
2

1
s−1−ξ ,

νx

(
V ( 1

2 (x + y), v − 1
2 (x + y), σ) ∩ Fx ∩ A ∩ B(Fy ∩ B, ρ) ∩ B(1

2 (x + y), |v − 1
2 (x + y)|)

)

is at most

5ψ− 1
2 × c1ψ

− 1
2

s−1
2+ξ−s

(
4
√

2
5 α0ρ

) 1+ξ
2+ξ−s

= 5c1

(
4
√

2
5 α0

) 1+ξ
2+ξ−s

(ψ− 1
2 ρ)

1+ξ
2+ξ−s .

By choosing v to be as far from 1
2 (x + y) as possible and counting the number of

such cones needed to cover Fx ∩ A, we obtain

νx(Fx ∩ A ∩ B(Fy ∩ B, ρ))

≤ 2 arc-diam 1
2 (x+y)(Fx ∩ A ∩ B(Fy ∩ B, ρ))σ−1 × 5c1

(
4
√

2
5 α0

) 1+ξ
2+ξ−s

(ψ− 1
2 ρ)

1+ξ
2+ξ−s

= c2 arc-diam 1
2 (x+y)(Fx ∩ A ∩ B(Fy ∩ B, ρ))(ψ− 1

2 ρ)
1+ξ

2+ξ−s ρ−1

for c2 = 25c1d+(4
√

2/5)
1+ξ

2+ξ−s α
s−1

2+ξ−s

0 , and this implies the claim. ¤

3. Measurability results

In this section we prove the measurability of various maps that we use in the
proof of Theorem 1.2. In particular, we show that if B is a compact set that is
disjoint from Γ, then there is a universally-measurable map that assigns to each
point x ∈ B for which Γx has large dimension, a Radon measure of large dimension
that is ‘supported’ on Γx.

Let B be a compact subset of the plane disjoint from the non-empty compact
connected set Γ. Letting S1 denote the unit circle, we define K ⊆ B × S1 ×R

+ by

K = {(x, θ, t) ∈ B × S1 × R
+ : x + tθ̂ ∈ Γ}

where θ̂ = (cos θ, sin θ). Notice that K is compact and a lifting of Γ.
For x ∈ B and θ ∈ S1, define γ : B × S1 → R

+ ∪ {∞} by

γ(x, θ) =

{

inf{t > 0 : x + tθ̂ ∈ Γ} if (x + Rθ̂) ∩ Γ 6= ∅
∞ otherwise.

.

Observe that x+γ(x, θ)θ̂ ∈ Γ for any x ∈ B and θ ∈ S1 for which (x+Rθ̂)∩Γ 6= ∅.
Let

gr (γ) = {(x, θ, γ(x, θ)) : (x, θ) ∈ B × S1, γ(x, θ) < ∞},
then

gr (γ) ⊆ K ⊆ B × S1 × I,

where I = [0, diam (B ∪ Γ)].

Lemma 3.1. The function γ is lower semi-continuous. In particular, gr (γ) is a
Gδ-subset of K.

Proof. That γ is lower semi-continuous follows readily from the observation that
its graph is the lower envelope of the compact set K.

The fact that gr (γ) is Gδ is a standard result concerning functions of Baire class
1, see for example, [5, Ch II,§31 VII, Theorem 1]. ¤
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For C ⊆ K and x ∈ B, let Cx be given by

Cx = C ∩
(
{x} × S1 × I

)
,

the slice of C through x. For ease, we let gr x(γ) denote (gr (γ))x.
Recall that M(K) denotes the Radon measures supported in K. The set M(K)

can be given the topology of weak convergence by using as a base, sets of the form
{

µ ∈ M(K) :

∫

f dµ < a

}

,

where a ∈ R and f ∈ C(K), the set of real-valued continuous functions on K. It
turns out that M(K) with this topology is a Polish space, see [6, §14.15] and [4,
II.17].

Lemma 3.2. Let E be a Borel subset of K. Then the functions FE : M(K) → R

and GE : B ×M(K) → R given by

F (ν) = ν(E) and GE(x, ν) = ν(Ex)

are Borel.
In particular,

{(x, ν) ∈ B ×M(K) : ν(Ex) > 0}
is a Borel set.

Proof. Let E ⊆ K be a Borel set. We show that GE is Borel; the proof that FE is
Borel is similar.

Suppose first that E is a compact subset of K. Then for x ∈ B, Ex is also
compact, and for µ ∈ M(K),

GE(x, ν) = ν(Ex) < c if and only if

there is f ∈ C+(K) such that f > 1 on Ex and

∫

f dν < c.

(Here C+(K) denotes the set of non-negative real-valued continuous functions on
K.) For a given f ∈ C+(K), the sets

Bf = {x ∈ B : f > 1 on Cx}
and

Mf = {ν ∈ M(K) :

∫

f dν < c}

are open subsets of B and M(K), respectively. Hence

{(x, ν) : ν(Ex) < c} =
⋃

f∈C+(K)

Bf × Mf

is an open set, and so GE is upper semi-continuous, and in particular, Borel.
If E1 ⊆ E2 ⊆ E3 ⊆ · · · is an increasing sequence of compact sets, and G1, G2, G3, . . .,

the associated sequence of maps, then

G∪i∈NEi
= lim

i→∞
Gi

is a Borel map. Similarly, if E1 ⊇ E2 ⊇ E3 ⊇ · · · is a decreasing sequence of
compact sets, and G1, G2, G3, . . ., the associated sequence of maps, then

G∩i∈NEi
= lim

i→∞
Gi
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is also a Borel map. It follows that for a general Borel set E, the map GE is Borel,
as required. ¤

Lemma 3.3. Let E be a Borel subset of K. The set

{(x, ν) ∈ B ×M(K) : ν(K \ (gr x(γ) ∩ E)) = 0}

is Borel in B ×M(K).

Proof. Observe that

{(x, ν) ∈ B ×M(K) : ν(K \ (gr x(γ) ∩ E)) = 0}
= {(x, ν) : ν((gr x(γ) ∩ E)) = ν(K)}
= {(x, ν) : ν((gr (γ) ∩ E)x) − ν(K) = 0}
= {(x, ν) : Ggr (γ)∩E(x, ν) − FK(ν) = 0}.

Hence, since lemma 3.2 implies FK and Ggr (γ)∩E are Borel functions, this set is
Borel. ¤

Define Π: B × S1 × I → R
2 by

Π(x, θ, t) = x + tθ̂

and observe that Π is continuous.

Lemma 3.4. For x ∈ B, if A ⊆ ({x} × S1 × I) ∩ K, then

dimH(Π(A)) = dimH(A).

Proof. This follows from the fact that Π is bi-Lipschitz when restricted to {x} ×
S1 × I. ¤

In particular, since

Γx = Π(({x} × S2 × I) ∩ gr (γ)) = Π(gr x(γ)),

it follows that

dimH(Γx) = dimH(gr x(γ)),

for each x ∈ B. Recall that for A ⊆ K and s ∈ R,

Ms(A)

= {ν ∈ M(K) : ν(A) > 0 and ν(B(ζ, r)) ≤ rs, for ζ ∈ K, r ∈ (0, 1]}.

It is an easy calculation, which we omit, to check that Ms(K) is a Borel set. Since
gr x(γ) is a Borel set,

dimH(gr x(γ)) = sup{σ : Mσ(gr x(γ)) 6= ∅}.

Proposition 3.1. Let C be a Borel subset of the plane. Then for t ≥ 0,

{x ∈ B : dimH(Γx ∩ C) > t}

is an analytic set.
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Proof. Let E ⊆ K be given by E = Π−1(C) ∩ K, and observe that gr (γ) ∩ E is a
Borel subset of K. For t ≥ 0

{x : dimH(Γx ∩ C) > t} = {x : dimH((gr (γ) ∩ E)x) > t}
= {x : Mτ ((gr (γ) ∩ E)x) 6= ∅ for some τ > t}
=

⋃

p∈Q+

{x : Mt+p((gr (γ) ∩ E)x) 6= ∅}.

However, if πB : B ×M(K) → B denotes coordinate projection onto B, then

{x : Mt+p((gr (γ) ∩ E)x) 6= ∅}
= πB({(x, ν) : x ∈ B, ν ∈ Mt+p((gr (γ) ∩ E)x)})
= πB

(
{(x, ν) ∈ B ×Mt+p(K) : ν((gr (γ) ∩ E)x) > 0})

)
.

Hence lemmas 3.1 and 3.2 together imply that {x : Mt+p((gr (γ)∩E)x) 6= ∅} is the
coordinate-wise projection of a Borel set from a product of Polish spaces, and so it
is analytic, see [4, Chapter III]. Hence {x : dimH(Γx ∩C) > t} is also analytic. ¤

Our last result in this section is a selection theorem and allows us to choose,
in a measurable way, an element of Mt(gr x(γ)) whenever x ∈ B is such that
dimH(Γx) > t.

Proposition 3.2. Let t ≥ 0 and C be a Borel subset of the plane. There is a map

ω : {x ∈ B : dimH(Γx ∩ C) > t} → M(K)

x 7→ ωx

such that:

(1) ω is σ(A)-measurable,
(2) ωx ∈ Mt(gr x(γ) ∩ Π−1(C)) for each x, and
(3) ωx(K \ (gr x(γ) ∪ Π−1(C))) = 0 for each x.

(Here σ(A) denotes the σ-algebra generated by the analytic sets in B.)
In particular, ω is µ-measurable for every Radon measure µ on B.

Proof. Let E = Π−1(C) ∩ K, a Borel set. Since

(B × σ(K)) ∩ {(x, ν) : ν((gr (γ) ∩ E)x) > 0} ∩ {(x, ν) : ν(K \ (gr (γ) ∩ E)x) = 0}
is Borel in B ×M(K), claims 1,2, and 3 follow readily from the Jankov-von Neu-
mann Uniformisation Theorem. (See [4, Theorem 18.1] for a statement of this
theorem.)

See [4, Theorem 21.10] for a proof of Lusin’s Theorem that analytic sets are
universally measurable, from which it follows that sets in the σ-algebra generated
by analytic sets are also universally measurable. ¤

4. Proof of Theorem 1.2

We now draw our preparatory work together and prove Theorem 1.2.
Let Γ be a compact connected subset of the plane for which 1 < dimH(Γ) ≤ 2.

If dimH(Γ) = 2, then let d = 2, otherwise choose dimH(Γ) < d < 2. Notice that in
both cases this implies that whenever ν is a non-zero Radon measure supported in
Γ, then

Id(ν) = +∞.

(If d = 2, then, since H2(Γ) < ∞, Theorem 8.7 of [6] implies I2(ν) = +∞.)
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4.1. Measure theoretic decomposition. Fix d > s > 1 and let ∅ 6= B(0) ⊆ R
2\Γ

be a compact set for which diam (B(0)) ≤ 1
100 dist (B(0),Γ). It is enough for us to

show that

dimH({x ∈ B(0) : dimH(Γx) > s}) < 1
2 +

√

d − 3
4 .

Since Γ is compact, we can find finitely many open sets U1, U2,. . . , UN that

intersect Γ such that Γ ⊆ ⋃N
i=1 Ui and diam (Ui) ≤ 1

100 dist (B(0),Γ) for each i.
It follows that

E =

N⋃

i=1

{x ∈ B(0) : dimH(Γx ∩ Ui) > s} =

N⋃

i=1

Ei, say.

Clearly each Ei satisfies

diam (Ei) ≤ 1
100 dist (Ei,Γ) ≤ 1

100 dist (B(0),Γ).

From Proposition 3.1, we see that each Ei is an analytic set.
Moreover, for t > 0, if

dimH

(

{x ∈ B(0) : dimH(Γx) > s}
)

> t,

then we can find an i such that

(4.1) dimH(Ei) > t.

So suppose t > 0 and i are such that dimH(Ei) > t. Our objective is to find an
upper bound for the size of t in terms of d and s.

By Theorem 2.1, there is a nonzero Radon measure µ with compact support
B(1) ⊆ Ai ⊆ B(0) such that whenever x ∈ R

2 and r > 0, then

(4.2) µ(B(x, r)) ≤ rt.

Proposition 3.2 enables us to find a σ(A)-measurable function

ω : B(1) → Ms(K)

x 7→ ωx,

(where K = {(x, θ, t) ∈ B(1) × S1 × R
+ : x + tθ̂ ∈ Γ}) such that

• ωx(gr x(γ) ∩ Π−1(Ui)) > 0,
• ωx(K \ (gr x(γ) ∩ Π−1(Ui))) = 0, for each x ∈ B(1).

Moreover, there is a constant C such that ωx(K) ≤ C for all x. By Lusin’s Theo-
rem [2, 2.3.5], there is a compact set B(2) ⊆ B(1) such that

• µ(B(2)) > 0, and
• ω|B(2) is a continuous map.

Let µ(2) = µ|B(2) and for Borel E ⊆ K define

m∗(E) =

∫

ωx(E) dµ(2)(x),

and extend m∗ to arbitrary A ⊆ K by setting m∗(A) = inf{m∗(E) : A ⊆ E and E is Borel}.
We omit the routine verification that m∗ is a Radon measure on K.

For x ∈ B(2) define a Radon measure νx on Γ by

νx(A) = ωx(Π−1(A)) = ωx(Π−1(A) ∩ ({x} × S1 × I)), for A ⊆ R
2,

and observe that the continuity of the map ω implies that x 7→ νx is a Borel
measurable function. Also notice:
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• for x ∈ B(2), νx(R2 \ Γx) = 0 and 0 < νx(R2) ≤ C,
• for x ∈ B(2), u ∈ R

2 and 0 < r ≤ 1, νx(B(u, r)) ≤ rs.

We now analyse the geometry of the measures νx.
Fix 0 < ξ < s − 1. Then for all x ∈ B(2), Lemma 2.4 implies that for νx-a.e.

u ∈ Γx,

(4.3) min

{

lim inf
r↘0

νx(T+
x (u, r))

r1+ξ
, lim inf

r↘0

νx(T−
x (u, r))

r1+ξ

}

= +∞.

That is, for all x ∈ B(2) and ωx-a.e. ζ ∈ K,

lim inf
r↘0

ωx(Π−1(T+
x (Π(ζ), r)))

r1+ξ
= lim inf

r↘0

ωx(Π−1(T−
x (Π(ζ), r)))

r1+ξ
= +∞.

It is easy to verify if K(2) = K ∩ (B(2) × S1 × I), then f : K(2) → R∪ {+∞} given
by

f(x, θ, t) = min

{

lim inf
r↘0

νx(T+
x (x + tθ̂, r))

r1+ξ
, lim inf

r↘0

νx(T−
x (x + tθ̂, r))

r1+ξ

}

is a Borel function and so

K(2)
∞ = {ζ ∈ K(2) : f(ζ) = +∞}

is a Borel set with ωx(K(2)\K
(2)
∞ ) = 0 for all x ∈ B(2). Hence, m∗(K(2)\K

(2)
∞ ) = 0.

Now

K(2)
∞ =

⋂

m∈N

⋃

n∈N

K(2)
m,n

where

K(2)
m,n =

{

(x, θ, t) ∈ K(2) : if r ∈ (0, 1
n ], then

min
{

νx(T+(x + tθ̂, r)), νx(T−(x + tθ̂, r))
}

> mr1+ξ
}

.

Thus we can find m,n ∈ N such that m∗(K(2)
m,n) > 0 and so we can choose a compact

set K(3) ⊆ K
(2)
m,n with m∗(K(3)) > 0. It follows that we can find a compact set

B(3) ⊆ πB(K(3)) ⊆ B(2) and p > 0 such that µ(2)(B(3)) > 0 and for all x ∈ B(3),
we have ωx(K(3)) > p. For x ∈ B(3), let

Fx = Π(K(3) ∩ ({x} × S1 × I)) ⊆ Γx ∩ Π−1(Ui)

and notice Fx is a compact set with νx(Fx) = ωx(K(3)) > p. Thus, summarising,
we have

• x 7→ νx is a Borel measurable function on B(3),
• B(3) ⊆ πB(K(3)) is compact with µ(2)(B(4)) > 0,
• for x ∈ B(4), νx(Fx) > p,
• for x ∈ B(4), 0 < r ≤ 1/n and u ∈ Fx ⊆ Γx,

min
{
νx(T+(u, r)), νx(T−(u, r))

}
> mr1+ξ.

Thus we have found a compact set B(3) ⊆ Ei ⊆ B(0), a compact set Ūi ∩ Γ ⊆ Γ,
a non-zero Radon measure µ and a constant c > 0 such that:

(1) for x ∈ B(3) and u ∈ Ūi ∩ Γ, |u − x| ≥ 99
100d(B,Γ) ≥ 99 diam (B);

(2) µ(2)(B(3)) > 0;
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(3) for x ∈ B(3) and 0 < r ≤ 1,

µB(x, r) ≤ rt;

(4) for x ∈ B(3), there is a Radon measure νx and a compact set Fx ⊆ Ui ∩
Γx ∩ Bi such that
(a) νx(Fx) > p;
(b) for 0 < r ≤ 1 and u ∈ Γ,

νxB(u, r) ≤ rs;

(c) for 0 < r ≤ n−1 and u ∈ Fx,

min{νx(T+
x (u, r)), νx(T−

x (u, r))} > mr1+ξ.

If x, y ∈ B(3), then |x−y| ≤ 1
100 dist (B,Γ). So let d− = (1/50) dist (B(0),Γ) and

d+ = diam B(0) + diam Γ+ dist (B(0),Γ). By rescaling if necessary, we can assume
that d+ ≤ 1.

Let A,B ⊆ R
2 be compact and suppose that ψ ∈ (0, 1/2) is such that for

u ∈ (A ∩ Fx) ∪ (B ∩ Fy),

|〈(u − x)∧, (u − y)∧〉| ∈ [1/2, 1 − ψ].

Then all the hypotheses of Propositions 2.2 and 2.3 are satisfied (after suitable

relabelling) and so, for u ∈ A ∩ Fx, v ∈ B ∩ Fy and 0 < ρ ≤ d1ψ
1
2

1
s−1−ξ , we find

that

νy(A ∩ Fy ∩ B(u, ρ)) ≤ c1ψ
− 1

2
s−1

2+ξ−s ρ
1+ξ

2+ξ−s

and for 0 < ρ ≤ d2ψ
1
2

1
s−1−ξ

(νx ⊗ νy) ((Fx × Fy) ∩ (A × B) ∩ {(u, v) : |u − v| ≤ ρ})
(4.4)

≤ c2 arc-diam 1
2 (x+y)(A ∩ Fx ∩ B(Fy ∩ B, ρ))(ψ− 1

2 ρ)
s+ξ

2+ξ−s .

4.2. Energy estimate. We now pull all our estimates together and explicitly cal-
culate the d-energy of the measure ν given by

ν(E) =

∫

νx|Fx
(E) dµ|B(3)(x) for Borel E ⊆ R

2

and
ν(A) = inf{ν(E) : A ⊆ E and E is Borel}, for non-Borel A.

On noting that for Borel sets E,

ν(E) =

∫

ωx(Π−1(E) ∩ K(3)) dµ|B(3)(x),

it is straightforward to verify that ν is a Radon measure. Note that for τ > 0
∫

|u−v|−τd(ν×ν)(u, v) =

∫

B(3)×B(3)

∫

Fx×Fy

|u−v|−τd(νx×νy)(u, v)d(µ×µ)(x, y).

Hence, as our choice of d guarantees that Id =
∫
|u − v|−dd(ν × ν)(u, v) = +∞,

(4.5)

∫

B(3)×B(3)

∫

Fx×Fy

|u − v|−d d(νx ⊗ νy)(u, v)d(µ ⊗ µ)(x, y) = +∞.

Fix x 6= y ∈ B(3). In order to reduce writing, we translate so that 1
2 (x + y) = 0

and let a = y, so |x − y| = 2|a|.
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Using Fubini’s theorem, we find
∫

Fx×Fy

|u − v|−d d(νx ⊗ νy)(u, v)

=

∫ ∞

0

(νx ⊗ νy)
(
{(u, v) ∈ Fx × Fy : |u − v|−d ≥ r}

)
dr

= d

∫ ∞

0

ρ−d−1(νx ⊗ νy) ({(u, v) ∈ Fx × Fy : |u − v| ≤ ρ}) dρ

= d

∫

Fx

∫ ∞

0

ρ−d−1νy(Fy ∩ B(u, ρ)) dρ dνx(u).

Let

A+
0 = {w ∈ A(0, d−, d+) : 〈w, a⊥〉 ≥ |〈w, a〉|},

A−
0 = {w ∈ A(0, d−, d+) : 〈w, a⊥〉 ≤ −|〈w, a〉|},

and for m,n ∈ {0, 1} and i ∈ N, set

Amn
i ={w ∈ A(0, d−, d+) : |〈w, a⊥〉/〈w, a〉| ∈ [2−i, 21−i],

(−1)n〈w, a⊥〉 > 0 and (−1)m〈w, a〉 > 0},

noting that

arc-diam0(A
mn
i ) ¹ 2−i.

Observe that if w is in Amn
i , then, by lemma 2.1,

1

2
≤ 〈w − a, w + a〉

|w − a||w + a| ≤ 1 − 9

17d2
+

(|a|2−i)2,

and if w ∈ A+
0 ∪ A−

0 , then

1

2
≤ 〈w − a, w + a〉

|w − a||w + a| ≤ 1 − 9

17d2
+

|a|2.

For i ∈ N ∪ {0}, set ψi =
(

2
5

d−

d2
|a|2−i

)2

and let ρi = d2ψ
1
2

1
s−1−ξ

i . Observe

that, since ρi ≤ 2
5d−2−i, if u ∈ Amn

i and |u − v| ≤ ρi with v ∈ A(0, d−, d+), then

v ∈ Amn
i−1 ∪ Amn

i ∪ Amn
i+1. Similarly, if u ∈ A+

0 ∪ A−
0 , and v ∈ A(0, d−, d+) with

|u − v| ≤ ρ0, then v ∈ Amn
1 for some choice of m and n.

Writing f(ρ) = ρ−d−1νy(Fy ∩ B(u, ρ)), we let I±0 =
∫

Fx∩A±
0

∫ ∞
0

f(ρ) dρdνx(u)

and Imn
i =

∫

Fx∩Amn
i

∫ ∞
0

f(ρ)dρ dνx(u).

We must estimate
∫

Fx

∫ ∞

0

ρ−d−1νy(Fy ∩ B(u, ρ)) dρ dνx(u)

=

(
∫

Fx∩A+
0

+

∫

Fx∩A−
0

+
1∑

m,n=0

∞∑

i=1

∫

Fx∩Amn
i

)
∫ ∞

0

f(ρ) dρ dνx(u)

= I+
0 + I−0 +

1∑

m,n=0

∞∑

i=1

Imn
i .
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Figure 6. Amn
i .

We can write

Imn
i =

∫

Fx∩Amn
i

(∫ ρi

0

+

∫ ∞

ρi

)

f(ρ) dρ dνx(u)

=

∫

Fx∩Amn
i ∩B(Fy∩B(Amn

i ,ρi),ρi)

∫ ρi

0

f(ρ) dρ dνx(u) +

∫

Fx∩Amn
i

∫ ∞

ρi

f(ρ) dρ dνx(u)

= Imn
i,1 + Imn

i,2 , say.

Lemma 4.1. Suppose that V ⊆ A(0, d−, d+) and 0 < r < 1. Then
∫

Fx∩V

∫ ∞

r

f(ρ) dρ ≤ crs−d arc-diam0(Fx ∩ V )s−1,

where c is a positive constant that depends only on d−, d+, s and d.

In the proof of the lemma, and subsequently, we let ¹ denote inequality up to a
finite constant independent of x and y.

Proof. Using the crude estimate that for u ∈ Fx∩V , νy(Fy∩B(u, ρ)) ≤ min{1, 2sρs}
together with Lemma 2.3, we find

∫

Fx∩V

∫ ∞

r

f(ρ) dρ

≤ 2s

(
1

d − s
rs−d +

1

d

)

νx(Fx ∩ V )

¹ rs−d arc-diam0(Fx ∩ V )s−1.

¤
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In particular, Lemma 4.1 implies that

Imn
i,2 ¹ ρs−d

i arc-diam0(Fx ∩ Amn
i )s−1 ¹ |a| s−d

s−1−ξ 2−( s−d
s−1−ξ +s−1)i.

In order to estimate Imn
i,1 , we use equation (4.4) (of section 4.1), Fubini’s theorem

and the fact that if u ∈ Fx∩Amn
i and v ∈ B(u, ρi)∩Fy, then v ∈ Amn

i−1∪Amn
i ∪Amn

i+1,

to calculate that, provided s+ξ
2+ξ−s − d > 0,

Imn
i,1

=

∫ ρi

0

ρ−d−1(νx ⊗ νy){(u, v) ∈ (Fx ∩ Amn
i ) × (Fy ∩ B(Amn

i , ρ)) : |u − v| ≤ ρ} dρ

≤ c2 arc-diam0(A
mn
i ∩ Fx)

∫ ρi

0

ρ−d−1(ψ
− 1

2
i+1ρ)

s+ξ
2+ξ−s dρ

¹ arc-diam0(A
mn
i ∩ Fx)ψ

− 1
2

s+ξ
2+ξ−s

i+1 ρ
s+ξ

2+ξ−s−d

i

¹ arc-diam0(A
mn
i ∩ Fx)ψ

1
2 (

s+ξ−d
s−1−ξ )

i

¹ |a| s+ξ−d
s−1−ξ 2−i( 2s−1−d

s−1−ξ ).

Combining these estimates for Imn
i,1 and Imn

i,2 , we deduce that, provided s+ξ
2+ξ−s −

d > 0,

Imn
i ¹ |a| s+ξ−d

s−1−ξ 2−i( 2s−1−d
s−1−ξ ) + |a| s−d

s−1−ξ (2−i)
s−d

s−1−ξ +s−1

= |a| s−d
s−1−ξ

(

(2−i)
2s−1−d
s−1−ξ + (2−i)

s−d
s−1−ξ +s−1

)

.

Hence
1∑

m,n=0

∞∑

i=1

Imn
i ¹ |a| s−d

s−1−ξ ,

provided that min
{

s+ξ
2+ξ−s − d, 2s−1−d

s−1−ξ , s−d
s−1−ξ + s − 1

}

> 0. Estimating I+
0 and

I−0 in a similar way, we find

I+
0 + I−0 +

1∑

m,n=0

∞∑

i=1

Imn
i ¹ |a| s−d

s−1−ξ ,

provided that min
{

s+ξ
2+ξ−s − d, 2s−1−d

s−1−ξ , s−d
s−1−ξ + s − 1

}

> 0. Hence, provided that

min
{

s+ξ
2+ξ−s − d, 2s−1−d

s−1−ξ , s−d
s−1−ξ + s − 1

}

> 0,

∫

Fx×Fy

|u − v|−d d(νx ⊗ νy)(u, v) ¹ |x − y|− d−s
s−1−ξ .

Thus, if min
{

s+ξ
2+ξ−s − d, 2s−1−d

s−1−ξ , s−d
s−1−ξ + s − 1

}

> 0, then

+∞ = Id(ν) ¹ I d−s
s−1−ξ

(µ)

and this gives a contradiction if d−s
s−1−ξ < t, the dimension of µ. Since 0 < ξ < s− 1

is arbitrary, it follows that if s > max
{

1
2 (d + 1), 2d

d+1 , 1
2 +

√

d − 3
4

}

= 1
2 +

√

d − 3
4 ,

then t ≤ d−s
s−1 and Theorem 1.2 (and hence Theorem 1.1) follows.
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