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Abstract: Baseflow is often regarded as the streamflow component derived predominantly from 
groundwater discharge. The estimation of baseflow is important for water supply, water allocation, 
investigation of contamination impacts, low flow hydrology and flood hydrology. Baseflow is 
commonly estimated using graphical methods, recursive digital filters (RDFs), tracer based methods, 
and conceptual models. Of all of these methods, RDFs are the most commonly used, due to their 
relatively easy and efficient implementation. This paper presents a generic framework for assessing 
and improving the performance of RDFs for baseflow estimation for catchments with different 
characteristics and subject to different hydrological conditions. As part of the framework, a fully 
integrated surface water/groundwater (SW/GW) model is used to obtain estimates of streamflow and 
baseflow for catchments with different properties, such as soil types and rainfall patterns. A RDF is 
then applied to the simulated streamflow to assess how well the baseflow obtained using the filter 
matches the baseflow obtained using the fully integrated SW/GW model. In order to improve the 
performance of the filter, the user-defined parameter(s) controlling filter operation can be adjusted in 
order to obtain the best match between the baseflow obtained using the filter and that obtained using 
the fully integrated SW/GW model (i.e. through calibration). The proposed framework is tested by 
applying it to a common SW/GW benchmarking problem, the tilted V-catchment, for a range of soil 
properties. HydroGeoSphere (HGS) is used to develop the fully integrated SW/GW model and the Lyne 
and Hollick (LH) filter is used as the RDF. The performance of the LH filter is assessed using the 
commonly used value of the filter parameter of 0.925, as well as calibrated filter parameter values. The 
results obtained show that the performance of the LH filter is affected significantly by the saturated 
hydraulic conductivity (Ks) of the soil and that calibrated LH filter parameter can result in significant 
improvements in filter performance. 
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Manuscript Reference code: ENVSOFT-D-12-00402 

 

Title: Framework for Assessing and Improving the Performance of Recursive Digital Filters for 

Baseflow Estimation with Application to the Lyne and Hollick Filter 
 

Corresponding Author: Li Li (The University of Adelaide)  

 

Contributing Authors: Maier H.R., Lambert M.F., Simmons C.T., Partington D. 

 

Line numbers refer to line numbers generated in word document—Manuscript with line 

numbers, NOT the numbers in the PDF file. A copy of this word document can be found in 

Supplementary Material. 

 

Reviewer #1 comments: 

 

1.1 I have reviewed a previous version and the manuscript has improved considerably. 

Neverless, I think the authors should give it a very carefully re-read as there is still significant 

potential to improve the paper. See below for details. Some aspects of the paper remain unclear, 

e.g. Figures 8 and 12 are incomprehensible and the way the linear uncertainties are obtained is 

not clear as the parameters in the equations are not explained. The role of the uncertainty 

analysis as such is also unclear and there is no mention of it in the conclusions.  

 

Response: Figures 8 and 12, as well as the uncertainty analysis, were added in response to the 

comments by another reviewer, who is now happy with the revisions (reviewer 2 below). 

Consequently, the authors do not think they should be changed or removed. The authors believe 

that Figures 8 and 12 provide valuable insight/explanation and are not considered 

incomprehensible, as they are standard flow duration curves, which have been used extensively 

in surface hydrology since about 1880 (Vogel and Fennessey, 1994). However, in order to 

provide a brief explanation of what flow duration curves are and why they were used, the 

material related to Figure 8 has been moved to a separate paragraph as follows (starting at line 

411): 

 

“This difference in the streamflow behavior for the two different soil types can also be 

seen clearly by examining the corresponding flow duration curves, which are an estimate 

of the percentage of time a particular streamflow was equaled or exceeded, and therefore 

provide a graphical representation of the variability associated with streamflow (Vogel 

and Fennessey, 1994).  As can be seen from Fig. 8, the flow duration curve for the 

catchment with a sandy soil is very flat, indicating that streamflow is almost constant 

over time, which is representative of a stream that is fed primarily by baseflow.  In 

contrast, the flow duration curve for the catchment consisting of silt loam indicates that 

flows are highly variable, with higher peak flows, but extended periods with little or no 

flow, which is indicative of a catchment that is dominated by surface flow.” 

 

Response to Reviewers



In relation to the use of “uncertainty analysis”, the purpose of obtaining bounds on the parameter 

estimates was to determine whether the optimal filter parameter values are well defined or not, 

which provides an indication of the degree of confidence that can be placed in the results, such as 

the relationship between Ks and optimal filter parameter values.  This has been clarified in the 

revised version of the manuscript as shown below (starting at lines 378 and 432).  This is not an 

uncertainty analysis of the results, but considered good practice in model calibration.  As such, 

this information is not included in the conclusions. 

 

“As can be seen, the uncertainty estimates are very small, indicating that the optimal 

values of the filter parameters are well defined and that the results obtained can be treated 

with confidence.” 

 

“The results obtained for all of the simulations conducted are shown in Fig. 10, including 

the linear estimates of uncertainty, which are very small, indicating that the results 

obtained can be treated with confidence.” 

 

Vogel, R.M., Fennessey, N.M., 1994. Flow-duration curves. I: New interpretation and 

confidence intervals. Journal of Water Resources Planning and Management 120(4) 485-504. 

 

1.2 Reformulation of some paragraphs as well as removing repetitions would make the paper 

easier to read.  

 

Response: A thorough editorial review of the paper has been conducted of the paper and 

changes have been made to the paper to address this issue where deemed appropriate, as shown 

in the “track changes” version of the revised manuscript.  In the absence of more specific 

guidance by the reviewer, that is all that could be done. 

 

1.3 I also suggest reducing the number of figures, e.g. are figures 8 and 12 really required? 

 

Response: As per the response to Comment 1.1, the figures were added in response to comments 

of another reviewer and do provide valuable insight. 

 

1.4 The paper is very long to make the points listed in the conclusions (basically the second 

paragraph) 

 

Response: The authors do not believe that the paper is very long. Part of the paper introduces the 

generic framework, which is also a contribution of the paper, not just the results of the analysis.  

 

Detailed comments: 

 

1.5 Page 5 Last sentence: remove that recommendations are given in the conclusion section 

(or add some recommendation to the conclusions). 

 

Response: This sentence has been edited and now reads (starting from line 123): 

 



 “The results obtained for the case study are presented and discussed in Section 4 and a 

summary and conclusions are given in Section 5.” 

 

1.6 Page 8 line 58: delete “so as”. 

 

Response: The authors have assumed that the “so as” being referred to in this comment is 

actually in line 34/35 of page 8, and we have amended it to read (starting from line 173): 

 

 “Based on the assumption that the simulated baseflow obtained using the fully integrated 

SW/GW model ( sim

bq ) is representative of the „real‟ baseflow, the filter parameter(s) () 

can be adjusted to minimize an error measure between the „real‟ baseflow ( sim

bq ) and the 

baseflow computed using the RDF ( filter

bq ).” 

 

1.7 Page 6, paragraph following the title “performance assessment”: This can be shortened. 

The aspects related to St. Venant and Richards equations do not help to make the point made in 

line 38-42. 

 

Response: This paragraph has been edited and now reads (starting from line 140): 

 “The proposed framework for assessing the performance of RDFs under a range of 

physical catchment conditions is shown in Fig. 1.  As mentioned above, the underlying 

premise of the proposed approach is that a fully integrated SW/GW model provides the 

best possible approximation to the physical processes of water flow within catchments 

and can therefore be used as an approximation to such processes subject to a variety of 

physical characteristics and forcings. This is because rainfall is allowed to partition into 

overland flow, streamflow, evaporation, infiltration and recharge in a physically based 

fashion (Therrien et al., 2009), without prior definition of flow generation processes or 

storage discharge relationships. All of the governing flow equations implemented by the 

fully integrated SW/GW model are solved simultaneously to obtain the simulated 

streamflow ( q ) and baseflow ( sim

bq ) as a function of user-defined catchment 

characteristics (e.g. soil types, catchment size, catchment shapes) and hydrological inputs 

(e.g. rainfall patterns, antecedent moisture, evaporation) (Fig. 1).” 

 

1.8 Table 1: It is the authors call, but some of the values listed (especially porosity for clay) 

are out of range, no matter what is mentioned in the cited Puhlman paper. The numbers in the 

paper by Puhlman are (as the title suggests) model results from forest soils, not measured 

values. Also note that, contrary to the statement in the reviewers response, Carsel and Parrish 

do provide a mean and a standard variation and base their values on a large number of 

measurements, not on fitted models. The paper can proceed without repeating the simulations, 

but for further considerations I suggest to read the Carsel and Parrish paper.  

 

Response: The reviewer is correct in stating the values of the soil parameters given in Puhlmann 

are model results from forest soils, and porosity for clay is especially out of range, compared 

with the measured values in Carsel and Parrish. However, as mentioned in the previous response 

to reviewers, almost all of the soil parameters used in the Carsel and Parrish paper are included 



in the ranges of the values given by Puhlman. Furthermore, clay was not considered in this 

paper.  

 

1.9 Page 12, paragraph on HGS: Carefully re-read, the logic breaks down from the second 

and third sentence. 

 

Response: The reviewer is correct that the second sentence breaks down the logic between the 

first and the third sentence. Therefore, the second sentence was removed from this paragraph and 

now reads (starting from line 252): 

 “All of the equations above are solved simultaneously at each time step utilising either a 

finite difference, control volume finite difference or finite element approach (Therrien et 

al., 2009).  For this study, the control volume finite difference method is used, due to its 

quick implementation on regular model grids and superior mass conservation 

(Partington et al., 2009).” 

 

1.10 The description of the model is a bit repetitive (e.g. page 14, line 23-25 was said in the 

first paragraph and somewhere in the introduction). 

 

Response: The information provided is brief and of a general nature, whereas the information 

provided on page 14 is more comprehensive and specific to the LH filter.  Consequently, the 

authors believe that the repetition of information contained in ~1.5 lines is warranted and adds to 

ease of understanding of the material in the paper.  

 

1.11 In the text (P14), it is mentioned that the vertical resolution is 0.5m, in the response 

0.05. The figure suggests that 0.05 was used. This would be an appropriate resolution.  

 

Response: The reviewer was correct in pointing out that the vertical resolution depicted in the 

text (0.5m) is different from the response to reviewers (0.05m), which was described incorrectly 

and has been corrected in the current version, that the vertical discretization used for the model 

simulation should be 0.5m. The improved vertical discretization of 0.5m used is based on 

previous studies using the V-catchment as a basis (e.g. Partington et al., 2011; Partington et al., 

2012). 

 

Partington, D., Brunner, P., Simmons, C.T., Therrien, R., Werner, A.D., Dandy, G.C., Maier, 

H.R., 2011. A hydraulic mixing-cell method to quantify the groundwater component of 

streamflow within spatially distributed fully integrated surface water-groundwater flow models. 

Environmental Modelling & Software 26(7) 886-898. 

 

Partington, D., Brunner, P., Simmons, C.T., Werner, A.D., Therrien, R., Maier, H.R., Dandy, 

G.C., 2012. Evaluation of outputs from automated baseflow separation methods against 

simulated baseflow from a physically based, surface water-groundwater flow model. Journal of 

Hydrology 458-459 28-39. 

 

1.12 Uncertainty associated with LH filter parameters: This is in the chapter on error 

measure and optimization procedure, but the optimization procedure is not really described 

here. How was the objective function minimized?  



 

Response: The objective function used for optimisation procedure is the Nash-Sutcliffe 

coefficient of efficiency (Ef), and the Golden Section Search Method was the optimisation 

method used to determine the optimal filter parameter (i.e. the filter parameter that results in the 

maximum Ef value), as discussed in Section 3.4. In order to clarify this, a reference to the Golden 

Section Search Method has been added and the sentence explaining how the parameter 

optimisation procedure was conducted has been clarified as follows (starting at line 373):  

 

“The optimisation method used in order to obtain the optimal values of the filter 

parameters was the golden section search method (Press et al. 1992), as there was only 

one model parameter.” 

 

The procedure for calibrating the filter parameters was described as part of the generic model 

improvement framework in Section 2.2 (see excerpt below, starting from line 172) and was not 

re-stated in Section 3.4 in order to avoid repetition. 

 

“In order to determine the best possible values of the filter parameters for a given 

catchment, the assessment framework introduced in the previous section can be extended, 

as shown in Fig. 2.  Based on the assumption that the simulated baseflow obtained using 

the fully integrated SW/GW model (
sim

bq
) is representative of the „real‟ baseflow, the 

filter parameter(s) () can be adjusted to minimize an error measure between the „real‟ 

baseflow (
sim

bq
) and the baseflow computed using the RDF (

filter

bq
).Any of the 

performance measures mentioned in Section 2.1 can be used for this purpose. 

Alternatively, a multi-objective approach can be adopted (e.g. Gibbs et al., 2012). This 

calibration process can be automated using various optimization methods, such as 

gradient based methods or evolutionary algorithms, depending on the complexity of the 

calibration problem (e.g. the number of parameters to be estimated).” 

 

1.13 Also, I just could not follow the equations. What is qbsilter?  

 

Response: The expression qbsilter was incorrect in the previous version of the manuscript, and 

has been corrected in the revised version and shown below: 





n

i

sim

ib

filter

ib qkqkS
1

2

)()( ])([)(                                                                                                                              (11) 

 

1.14 Shouldn’t the index be k, not n?  

Response: The index in the equations (10) and (11) should be k. As per response to Comment 

1.13, Equation (11) has been modified to show a clearer expression of S(k), which is the sum of 

squared error between the baseflow obtained using the LH filter and that simulated using the 

HGS model at each time step i. Also, it can be seen from equation (11) that S(k) is a function of 

the filter parameter k, not n.  

 

1.15 The values on lower bound and upper bound are basically identical (table 2), I am not 

sure if this adds a lot to the paper. 

 



Response: The reviewer is correct that the values on the lower and upper bound are basically 

identical. However, the uncertainty analysis was added in response to the comment of another 

reviewer. Also, the authors respectfully disagree that this does not add anything, as it shows that 

there is very little uncertainty associated with the estimates, which provides additional 

confidence in the findings.  This has now been made clearer in the paper (starting at lines 378 

and 432). 

 

“As can be seen, the uncertainty estimates are very small, indicating that the optimal 

values of the filter parameters are well defined and that the results obtained can be treated 

with confidence.” 

 

“The results obtained for all of the simulations conducted are shown in Fig. 10, including 

the linear estimates of uncertainty, which are very small, indicating that the results 

obtained can be treated with confidence.” 

 

1.16 In any case the description of the equations has to be fixed. 

 

Response: Given that equations (10) and (11) are standard, well known equations and that an 

appropriate reference is provided, the authors believe that fixing the terminology/ symbols is all 

that is required. 

 

1.17 All figure captions are still in ML, contrary to the response to the reviewers. 

and 

1.18 Some labels of figure axes are cut off. I still think the labelling of the figures can be 

improved.  

 

Response to Comments 1.17 & 1.18: All of the figures with ML units, cut off axes and unclear 

labelling have been redrawn and are shown below: 

 
Fig. 4 10 year daily rainfall data for Adelaide, South Australia, gauge number 23000 

 



 
Fig. 5 Catchment model for case study (modified version of the V-catchment in Pandy 

and Huyakorn (2004)) 



 
Fig. 6 Values of the optimal LH filter parameter with the error bars obtained from the 

linear estimates of uncertainty for sand (a), sandy loam (b), loam (c), loamy sand (d) and 

silt loam (e) with different soil properties 

Porosity

Ks



 
Fig. 7 Simulated streamflow and baseflow for catchments with sand (a) and silt loam (b) 

with their mean values of Ks and porosity 

 
Fig. 8 Flow duration curves for catchments with sand and silt loam with their mean 

values of Ks and porosity 



 
Fig. 9 Impact of different values of LH filter parameter on baseflow for catchment with 

sand with minimum porosity 

 

 
Fig. 10 Relationship between the optimal LH filter parameter and Ks with the error bars 

obtained from the linear estimates of uncertainty for different soil properties 



 
Fig. 11 Comparison of baseflow calculated from the HGS model simulation and the LH 

filter with two different values of the filter parameter for sand with maximum Ks (a) and 

silt loam with minimum Ks (b) 
 

 
Fig. 12 Flow duration curves for catchments with sand with maximum Ks and silt loam 

with minimum Ks 

 



1.19 Page 26, figure 10: I still find it remarkable that most points fall onto a line. The 

response to the previous point 1.3 of reviewer 1 does not bring along any explanations. 

  

Response: The reason for this relationship is discussed in Section 4.1 of the paper, which has 

now been made clearer.  In particular, the following paragraphs have been modified significantly 

to provide this explanation more explicitly (starting on lines 422 and 429): 

 

“As discussed above, larger values of Ks result in larger baseflow and vice versa, and as 

discussed in Section 3.3 and shown in Fig. 9, for a catchment with sandy soil, smaller 

values of the LH filter parameter result in larger baseflow contributions and vice versa.  

Consequently, there exists an inverse relationship between Ks and the optimal LH filter 

parameter values, as shown in Fig. 6.” 

 

“To further confirm the inverse relationship between Ks and the optimal value of the LH 

filter parameter, five additional simulations (i.e. generation of simulated streamflow and 

baseflow using HGS, optimization of the LH filter parameter and the determination of 

filtered baseflow) were conducted with Ks values between the mean and upper quartile 

values of Ks for sand. The results obtained for all of the simulations conducted are shown 

in Fig. 10, including the linear estimates of uncertainty, which are very small, indicating 

that the results obtained can be treated with confidence.  As can be seen, the additional 

results confirm the strong inverse relationship between the optimal value of the LH filter 

parameters and Ks, regardless of soil type, which is as expected, based on the discussion 

of the impact of Ks on baseflow and the way different filter parameter values affect the 

output from the LH filter given above. However, as can be seen from Fig. 10, the optimal 

values of the LH filter parameter are almost constant very close to their maximum value 

of 1.0 for soils with small values of Ks, suggesting that for small values of Ks, baseflow 

estimates obtained using the LH filter might be inaccurate, as baseflow decreases with 

decreasing values of Ks, while the baseflow hydrographs obtained using the LH filter 

remain constant (also see Section 4.2).” 

 

1.20 Page 25, line 53: what is small, the parameters or uncertainties?  

 

Response: It is assumed that the reviewer was referring to line 28/29 of page 18 of the PDF 

version. This sentence has been amended to make the explanation clearer and now reads (starting 

from line 432): 

 

 “The results obtained for all of the simulations conducted are shown in Fig. 10, including 

the linear estimates of uncertainty, which are very small, indicating that the results 

obtained can be treated with confidence.” 

 

1.21 Are the figure axis of 7 and 11 correct? I was wondering why for example there is 10 

times more flow in the sand in figure7, or nearly 100 times more in figure 11. In the end, the 

amount of rainfall is the same in both cases. 

 

Response: The axes in figures 7 and 11 are correct in the manuscript. Although the reviewer is 

correct to point out that the shape of these two streamflow hydrographs, either in Figure 7 or in 



Figure 11, look very different with the same amount of rainfall input, the total amount of the 

streamflow for these two cases is similar to each other, with similar integrated areas over the 

streamflow hydrographs. The reason why the streamflow hydrograph shapes look so different is 

because under the same rainfall, the catchment with sandy soil has a larger value of Ks, and most 

of the rainfall infiltrates into the ground and becomes groundwater, leading to a large baseflow 

contribution in the absence of rainfall. Therefore, the streamflow hydrograph for this soil has a 

lower proportion of surface runoff and a higher proportion of baseflow. For the catchment with 

silt loam, which has a smaller Ks, rainfall cannot infiltrate easily, but is converted to surface 

runoff, rapidly feeding the stream, and thus this catchment has streamflow with a higher peak, 

with almost no baseflow contribution.  

 

1.22 Why is the x- axis in fig. 11 different for the two plots? 

 

Response: Figure 11 has been redrawn with the same x- axis and can be seen in response to 

comments 1.17&1.18. 

 

1.23 Summary and conclusions: delete “research studies to be conducted in order to” from 

the second sentence.  

 

Response: The authors think “research studies to be conducted” should be kept in this sentence, 

because it was included to make it clear that it is not intended to use the framework each time a 

filter is used to obtain baseflow estimates, which was in response to this reviewer‟s comment in 

the first round of reviews. 

 

1.24 Finally, I am not sure if I would end the paper with a long discussion (exceeding the 

length of the conclusions listed in the second paragraph) on why the results must be treated with 

care. 

 

Response: This was in response to another reviewer and is important in order to point out the 

limitations of the study. 

 

Reviewer #2 comments: 

 

2.1 Overall, I am satisfied with the revision of the manuscript. The only item of concern is the 

authors justification for use of coefficient of efficiency (page 60). That is, I don’t think it is 

sufficient to justify an adoption of a measure of model performance simple because many others 

have used it. Moving on from this minor issue, what I was trying to communicate in my review 

was that the coefficient of efficiency should be considered as an aggregation of multiple 

objective functions. When considered as such many interesting aspects of the model may become 

detectable. I urge the authors to re-read Gupta et al. (2011) and also to read Gupta et al. (2009). 

Gupta, H.V., Kling, H., 2011. On typical range, sensitivity, and normalization of mean squared 

error and Nash-Sutliffe efficiency type metrics. Water resources research 47(10) W1061 

Gupta, H.V., Kling, H., Yilmaz, K., and Martinez, G. (2009), Decomposition of the mean squared 

error and NSE performance criteria: Implications for improving hydrological modelling, J. 

Hydrol., 377(1-2), 80-91. 

 



Response: The reviewer is correct in suggesting that by regarding the coefficient of efficiency 

(Ef) as an aggregation of multiple objective functions, many aspects of the model may be 

detectable, as discussed in Gupta and Kling (2011) and Gupta et al. (2009). However, the authors 

believe that the original Ef (Nash and Sutcliffe, 1970) is sufficient to be used as an error measure 

for this study. This is because the variability in the baseflow hydrograph derived from the LH 

filter is quite constrained and only affected by the value of a single model parameter.  As the 

impact of the value of the parameter on the baseflow hydrograph is well understood, as discussed 

in the paper (i.e. low values of the LH filter parameter increase the peak in the baseflow 

hydrograph and vice versa), the reasons for poor filter performance can be diagnosed easily, as 

was done in the discussion of the results.  This has now been made clear in the manuscript 

(starting line 342): 

 

“The dimensionless coefficient of efficiency (Ef) was used as the error measure for 

evaluating the performance of filters with different parameters and applied to catchments 

with different soil conditions. This is because it is one of the most commonly used error 

measures in hydrology and provides a trade-off between objectives that emphasize 

different aspects of hydrographs (Gupta and Kling, 2011; Gupta et al., 2009).  However, 

it should be noted that because of the nature of the LH filter, constraints are placed on the 

variability of the resulting baseflow hydrograph.  For example, as discussed previously, 

the timing of the peak of the baseflow hydrograph always coincides with the timing of the 

peak of the total streamflow hydrograph and whenever baseflow is larger than the total 

streamflow, baseflow is forced to be equal to the total streamflow, thereby capturing the 

recession limb of the baseflow hydrograph. As a result, the only variability is in the 

magnitude of the baseflow hydrograph, which is controlled by the LH filter parameter, as 

discussed above (i.e. smaller values of the filter parameter result in larger peaks and vice 

versa).” 

 

It should be noted that the impact of using the decomposed version of Ef under typical 

(optimized) situation (Gupta and Kling, 2011) for calibration was tested and found to have an 

insignificant impact on the optimal filter parameters for the reasons described above.  In 

addition, it provided no additional insight into the causes of poor filter performance, as filter 

behaviour is solely affected by model structure and the value of a single parameter and is 

therefore predictable.  The filter performed poorly at extreme values of the possible range of 

filter parameter values, suggesting that the filter is not suitable (i.e. there are structural 

inadequacies in the model) in these cases, as discussed in the paper.  However, the 

decomposition will most likely be useful in future work, which is focused on the comparison of 

the performance of different filters.  As a result, the description of Ef as the performance measure 

has been removed from the description of the general methodology (Section 2.1) and replaced 

with a more generic discussion about possible error measures, as follows (starting from line 

157): 

 

“This comparison can be carried out using a number of different evaluation measures, 

such as the mean square error (MSE), Nash-Sutcliffe coefficient of efficiency (Ef) (Nash 

and Sutcliffe, 1970), percent bias (PBIAS) (Guttal and Jayaprakash, 2009) or the 

decompositions of MSE and Ef (Gupta and Kling, 2011; Gupta et al., 2009), among 

others.  The choice of which measures are most appropriate is case study dependent (e.g. 



whether accurate estimation of the peak, timing or volume of the baseflow hydrograph is 

most important).” 

 

The corresponding information in Section 2.2 has also been changed as follows (starting from 

line 176): 

 

“Any of the performance measures mentioned in Section 2.1 can be used for this purpose.  

Alternatively, a multi-objective approach can be adopted (e.g. Gibbs et al., 2012).” 

 

The details of using Ef as the error measure have now been moved into the case study section 

(Section 3.4, starting from line 342): 

 

“The dimensionless coefficient of efficiency (Ef) was used as the error measure for 

evaluating the performance of filters with different parameters and applied to catchments 

with different soil conditions. This is because it is one of the most commonly used error 

measures in hydrology and provides a trade-off between objectives that emphasize 

different aspects of hydrographs (Gupta and Kling, 2011; Gupta et al., 2009).  However, 

as discussed previously, it should be noted that because of the nature of the LH filter, 

constraints are placed on the variability of the resulting baseflow hydrograph.  For 

example, the timing of the peak of the baseflow hydrograph always coincides with the 

timing of the peak of the total streamflow hydrograph and whenever baseflow is larger 

than the total streamflow, baseflow is forced to be equal to the total streamflow, thereby 

capturing the recession limb of the baseflow hydrograph. As a result, the only variability 

is in the magnitude of the baseflow hydrograph, which is controlled by the LH filter 

parameter, as discussed above (i.e. smaller values of the filter parameter result in larger 

peaks and vice versa). 

 

The equation of Ef was given by Nash and Sutcliffe (1970) as: 
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where 
obs

iY
 is the i th observation of the flow rate being evaluated [LT

-1
], 

sim

iY
 is the i th 

simulated value of the flow rate being evaluated [LT
-1

], 
meanY  is the mean of the observed 

data for the flow rate being evaluated [LT
-1

], i  is the time step [T], and n  is the total 

number of observations.  

 

When using Ef to evaluate the performance of RDFs, the observed data in equation (9) are 

given by the simulated baseflow results obtained from the fully integrated SW/GW model 

(
sim

bq
), while the baseflow results derived from the RDFs (

filter

bq
) correspond to the 

simulated values. Based on benchmark values available from other studies (Herron and 

Croke, 2009; Moriasi et al., 2007; Nejadhashemi et al., 2007), RDF performance can be 

judged as „perfect‟ when Ef=1.0, while Ef values between 0.5 and 1.0 correspond to 

„good‟ filter performance; Ef values between 0.0 and 0.5 show „acceptable‟ filter 



performance and „unacceptable‟ filter performance is represented by negative values of 

Ef. 

 

In order to estimate the uncertainty associated with estimates of the optimal LH filter 

parameters, the following linear estimate of uncertainty was used (Vugrin et al., 2005): 
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where k̂  is the optimal LH filter parameter, obtained by minimizing the sum of squared 

errors between the baseflow obtained from the LH filter and that simulated using the 

HGS model (Eq. 11); p  is the number of parameters to be estimated, which is 1 in this 

case; n  is the number of data points, which is 3650 days in this case; and 


pnpF ,  is the 

upper α percent point of the F-distribution, which was set to 0.05.  

 

The optimization method used in order to obtain the optimal values of the filter 

parameters was the golden section search method (Press et al., 1992), as there was only 

one model parameter.” 
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 Generic frameworks for using fully integrated surface water/ground water (SW/GW) 

models for assessing and improving the performance of recursive digital filters (RDFs) 

used for baseflow estimation are introduced.  

 RDF performance can be improved by calibrating the filter parameter(s) by taking 

catchment characteristics and hydrological inputs into account. 

 The frameworks were applied to a hypothetical case study, using HydroGeoSphere (HGS) 

for assessing and improving the Lyne and Hollick (LH) filter for a range of soil properties, 

and the results obtained compared with those obtained using the commonly used value of 

the filter parameter of 0.925. 

 Case study results suggest that LH filter performance and the optimal value of the filter 

parameter is affected significantly by the saturated hydraulic conductivity (Ks) and use of 

the calibrated LH filter parameter can result in significant improvements in filter 

performance. 
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Abstract 

Baseflow is often regarded as the streamflow component derived predominantly from groundwater discharge. The 

estimation of baseflow is important for water supply, water allocation, investigation of contamination impacts, low 

flow hydrology and flood hydrology. Baseflow is commonly estimated using graphical methods, recursive digital 

filters (RDFs), tracer based methods, and conceptual models. Of all of these methods, RDFs are the most commonly 

used, due to their relatively easy and efficient implementation. This paper presents a generic framework for 

assessing and improving the performance of RDFs for baseflow estimation for catchments with different 

characteristics and subject to different hydrological conditions. As part of the framework, a fully integrated surface 

water/groundwater (SW/GW) model is used to obtain estimates of streamflow and baseflow for catchments with 

different properties, such as soil types and rainfall patterns. A RDF is then applied to the simulated streamflow to 

assess how well the baseflow obtained using the filter matches the baseflow obtained using the fully integrated 

SW/GW model. In order to improve the performance of the filter, the user-defined parameter(s) controlling filter 
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operation can be adjusted in order to obtain the best match between the baseflow obtained using the filter and that 

obtained using the fully integrated SW/GW model (i.e. through calibration). The proposed framework is tested by 

applying it to a common SW/GW benchmarking problem, the tilted V-catchment, for a range of soil properties. 

HydroGeoSphere (HGS) is used to develop the fully integrated SW/GW model and the Lyne and Hollick (LH) filter 

is used as the RDF. The performance of the LH filter is assessed using the commonly used value of the filter 

parameter of 0.925, as well as calibrated filter parameter values. The results obtained show that the performance of 

the LH filter is affected significantly by the saturated hydraulic conductivity (Ks) of the soil and that calibrated LH 

filter parameter can result in significant improvements in filter performance. 

1. Introduction  

Baseflow is often defined as the groundwater contribution to streamflow, however it is also referred to as slow flow, 

and sustained flow (Hall, 1968). Herein, the former definition of baseflow is adopted, i.e. the groundwater 

contribution to a stream. The estimation of baseflow can play a significant role in terms of understanding the 

interaction between surface water and groundwater (Evans and Neal, 2005; Gilfedder et al., 2009). In addition, 

baseflow estimation is important for a wide range of water and environmental management issues, such as water 

supply, water allocation, investigation of contamination impacts, low flow hydrology and flood hydrology (Linsley 

et al., 1988). One important application is the estimation of the baseflow index (BFI), which is the long term ratio of 

the volume of baseflow to total streamflow volume. This index was developed by the Institute of Hydrology (now 
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CEH Wallingford), and was used in the UK Hydrometric Register, a comprehensive reference source to help assess 

the low flow characteristics of rivers and the catchment geology of the UK (Marsh and Hannaford, 2008). 

There is no easy way to continuously and accurately measure baseflow in the field (Dukic, 2006; McCallum et al., 

2010). In the early twentieth century, the focus of baseflow estimation methods was primarily on graphical 

separation methods, including the constant discharge, constant slope and concave methods (Linsley et al., 1988). 

Although these methods are able to capture the perceived understanding of the underlying physical processes (Bako 

and Hunt, 1988; Sloto and Crouse, 1996), their application is subjective in terms of the choice of appropriate starting 

and inflexion points. Since the 1980s, researchers have developed alternative baseflow separation algorithms by 

using automated techniques, such as recursive digital filters (RDFs) (Arnold et al., 1995; Nathan and McMahon, 

1990). These methods regard total streamflow as being composed of both quickflow and baseflow and apply signal 

processing techniques to a streamflow time series in order to remove the high-frequency quickflow signal to obtain 

the low-frequency baseflow signal. These RDFs are computationally efficient, easily automated, and can be applied 

to long continuous streamflow records. However, RDFs do not take into consideration the physical processes 

responsible for baseflow generation as their inputs, but are simply based on streamflow records and user-defined 

filter parameters. In addition, filters are often constrained by the condition that baseflow must not exceed total 

streamflow or become negative (Furey and Gupta, 2001).  Environmental isotopes and chemical tracers have also 

been utilised for streamflow separation by using end member mixing analysis (Chapman and Maxwell, 1996; 
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McCallum et al., 2010; Murphy et al., 2009).  These isotope and tracer approaches can be used to infer the various 

sources of streamflow, such as groundwater, interflow and direct rainfall. However, any uncertainty in the end 

member concentrations of these flow sources directly relates to the uncertainty of quantifying the groundwater 

component of streamflow (Jones et al., 2006; McCallum et al., 2010).   

Recently, greater attention has been given to physically based approaches for analysing baseflow, including fully 

integrated surface water/ground water (SW/GW) flow models, such as InHM (VanderKwaak and Loague, 2001), 

MODHMS (HydroGeoLogic, 2000), HydroGeoSphere (HGS) (Therrien et al., 2009) and ParFlow (Kollet and 

Maxwell, 2006).  With precipitation, evapotranspiration (ET) and parameters representing catchment characteristics 

as inputs, these complex, spatially distributed models can simulate both surface flow and baseflow and give a more 

detailed physical representation of the processes of SW/GW interaction (Khan et al., 2009; Partington et al., 2011; 

Ravazzani et al., 2011). In order to enable the baseflow component of streamflow to be extracted accurately from 

such models, Partington et al. (2011) developed a hydraulic mixing-cell (HMC) method, which accounts for stream 

losses and time lags within the catchment. Consequently, use of the HMC method in conjunction with fully 

integrated SW/GW models is likely to provide the most accurate means of estimating baseflow.  However, the 

complexity of these models (e.g. the number of parameters that need to be obtained through calibration) requires 

increased data and computational resources, which make them exceedingly difficult to calibrate and apply to real 

catchments.  
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RDFs are currently the most widely used method for estimating baseflow around the world, due to their minimal 

input requirements and simple and efficient implementation.  Such filters include the Lyne and Hollick (LH) filter 

(Lyne and Hollick, 1979; Nathan and McMahon, 1990), Chapman one-parameter algorithm (Chapman and Maxwell, 

1996), Boughton two-parameter algorithm (Chapman, 1999), Eckhardt two-parameter algorithm (Eckhardt, 2005) 

and IHACRES three-parameter algorithm (Chapman, 1999). However, while there have been many studies 

comparing the performance of RDFs (Chapman, 1999; Eckhardt, 2005, 2008; Murphy et al., 2009; Nejadhashemi et 

al., 2003; Nejadhashemi et al., 2009; Partington et al., 2012), the relative performance of different RDFs cannot be 

assessed in absolute terms, as baseflow cannot be measured easily (Dukic, 2006; McCallum et al., 2010).  This also 

makes it difficult to know which filters to select for particular applications. 

This problem is compounded by the fact that RDFs operate solely on the total streamflow hydrograph, without 

considering potential impacts of physical catchment characteristics.  However, by considering the hydrological 

processes driving baseflow, one might expect that physical catchment characteristics have a significant impact on 

baseflow.  For example, if the rainfall rate over a dry catchment with sandy soils is smaller than the rate of 

infiltration, direct runoff from the surface will be very small, and the baseflow contribution to streamflow significant. 

On the other hand, if soils are clayey and the antecedent moisture content is high, most of the streamflow will 

consist of overland flow, with little contribution from baseflow. Consequently, it is likely that the performance of 

RDFs will vary, depending on physical catchment characteristics.  However, at present, it is difficult to assess this. 
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The performance of RDFs is also affected by one or more user-defined parameters, which are used to change the 

amount of attenuation in the low/high-frequency domain of the flow spectrum, and therefore have an impact on the 

baseflow hydrograph obtained.  However, determining appropriate values of these parameters is not straightforward 

and a range of values has been suggested in the literature.  For example, in relation to the LH filter, Lyne and 

Hollick (1979) suggested that a filter parameter between 0.75 and 0.9 should be used. Arnold et.al. (1995) and 

Nathan and McMahon (1990) recommended using a filter parameter of 0.925. Mau and Winter (1997) found a value 

of 0.85 to be most appropriate and Tan et al. (2009a) suggested using the recession constant as the filter parameter 

value, which varies from catchment to catchment.  Common to all of these studies was the goal of choosing „suitable‟ 

filter parameters in order to obtain a better match between the baseflow obtained using the LH filter and that 

obtained using traditional methods of baseflow separation, such as manual graphical baseflow separation methods. 

However, as there is no objective way of assessing how well RDFs predict actual baseflow, it is difficult to know 

which of the suggested values should be used. In addition, even though many authors have attempted to find an 

optimal value of the LH filter parameter that can be applied to all catchments, adjusting filter parameter values for 

different types of catchments is particularly important, as even a modest change in the LH filter parameter can result 

in an almost 100% change in baseflow for more ephemeral streams, for example. While the need to adjust filter 

parameters for catchments with different physical properties has been recognized for some RDFs, such as the 

Boughton two-parameter algorithm (Chapman, 1999) and the Eckhardt filter method (Eckhardt, 2005), there is still a 
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need to develop a generic approach for determining appropriate values of these filter parameters and to assess the 

impact these values have on filter performance for various catchments with different physical properties. 

In order to address the shortcomings in filter based baseflow estimation outlined above, a generic framework for 

assessing and improving the performance of RDFs is introduced in this paper.  The proposed framework enables the 

performance of different RDFs to be assessed systematically and the optimal values of filter parameters to be 

determined for a range of physical catchment characteristics.  In order to demonstrate the usefulness of the proposed 

framework, it is applied to a hypothetical case study. The remainder of this paper is organised as follows.  The 

proposed framework is introduced in Section 2, followed by a description of the case study in Section 3.  The results 

obtained for the case study are presented and discussed in Section 4 and a summary and conclusions are given in 

Section 5. 

2. Generic Framework for Assessing and Improving the Performance of RDFs for Baseflow Estimation 

The underlying premise of the proposed framework for assessing and improving the performance of RDFs for 

baseflow estimation is that fully integrated SW/GW models can be used to obtain reasonably accurate estimates of 

actual baseflow, thereby providing a benchmark against which the performance of RDFs can be assessed.  This is a 

reasonable assumption, as fully integrated SW/GW models provide a rigorous representation of the underlying 

physical processes of hydrologic systems (Brookfield et al., 2009; Furman, 2008; Partington et al., 2012; Sulis et al., 

2010; Therrien and Sudicky, 1996).  While it is acknowledged that fully integrated SW/GW models are in 
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themselves an approximation of the actual processes in real catchments, they provide the best means of quantifying 

the absolute volume of baseflow currently available (Ferket et al., 2010).  In addition, they can be used to obtain 

estimates of baseflow for catchments with different characteristics. Therefore they are able to provide the first step 

towards being able to assess the absolute performance of RDFs under a range of physical conditions.  The generic 

frameworks for using fully integrated SW/GW models for assessing and improving the performance of RDFs used 

for baseflow estimation are given in Sections 2.1 and 2.2, respectively. 

2.1. Performance Assessment 

The proposed framework for assessing the performance of RDFs under a range of physical catchment conditions is 

shown in Fig. 1.  As mentioned above, the underlying premise of the proposed approach is that a fully integrated 

SW/GW model provides the best possible approximation to the physical processes of water flow within catchments 

and can therefore be used as an approximation to such processes subject to a variety of physical characteristics and 

forcings. This is because rainfall is allowed to partition into overland flow, streamflow, evaporation, infiltration and 

recharge in a physically based fashion (Therrien et al., 2009), without prior definition of flow generation processes 

or storage discharge relationships.  All of the governing flow equations implemented by the fully integrated SW/GW 

model are solved simultaneously to obtain the simulated streamflow ( q ) and baseflow (
sim

bq ) as a function of user-

defined catchment characteristics (e.g. soil types, catchment size, catchment shapes) and hydrological inputs (e.g. 

rainfall patterns, antecedent moisture, evaporation) (Fig. 1). 
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Fig. 1. Schematic description of the framework for assessing the performance of RDFs for baseflow 

estimation 

The simulated streamflow obtained from the fully integrated SW/GW model (q) is then used as the input to the RDF 

in order to compute the filtered baseflow hydrograph (
filter

bq ) (Fig. 1).  The proposed framework can be used to 

assess the performance of any RDF. In order to assess RDF performance, the baseflow obtained with the aid of the 

RDF (
filter

bq ) can be compared with the ‟real‟ baseflow estimated using the fully integrated SW/GW model (
sim

bq ) 

(Fig. 1). This comparison can be carried out using a number of different evaluation measures, such as the mean 

square error (MSE), Nash-Sutcliffe coefficient of efficiency (Ef) (Nash and Sutcliffe, 1970), percent bias (PBIAS) 

(Guttal and Jayaprakash, 2009) or the decompositions of MSE and Ef (Gupta and Kling, 2011; Gupta et al., 2009), 

among others. The choice of which measures are most appropriate is case study dependent (e.g. whether accurate 

estimation of the peak, timing or volume of the baseflow hydrograph is most important). The performance 
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assessment of a particular filter can be repeated for different physical catchment conditions and hydrological inputs 

(Fig. 1), providing insight into how filter performance is affected by these factors and determining the range of 

conditions under which filter performance is acceptable.  

2.2. Performance Improvement 

As mentioned previously, the performance of RDFs is generally a function of the values of one or more user-defined 

parameters. Some filter parameters are simply used to alter the magnitude and shape of the resulting baseflow 

hydrograph, such as the parameter of the LH filter (Lyne and Hollick, 1979; Nathan and McMahon, 1990) and one 

of the parameters ( C ) of the Boughton two-parameter algorithm (Chapman, 1999), while others have some physical 

meaning through a relationship with the recession constant or being defined relative to some of the underlying 

physical processes.  

In order to determine the best possible values of the filter parameters for a given catchment, the assessment 

framework introduced in the previous section can be extended, as shown in Fig. 2.  Based on the assumption that the 

simulated baseflow obtained using the fully integrated SW/GW model (
sim

bq ) is representative of the ‟real‟ baseflow, 

the filter parameter(s) () can be adjusted to minimize an error measure between the ‟real‟ baseflow (
sim

bq ) and the 

baseflow computed using the RDF (
filter

bq ). Any of the performance measures mentioned in Section 2.1 can be used 

for this purpose. Alternatively, a multi-objective approach can be adopted (e.g. Gibbs et al., 2012).  This calibration 
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process can be automated using various optimization methods, such as gradient based methods or evolutionary 

algorithms, depending on the complexity of the calibration problem (e.g. the number of parameters to be estimated). 

By calibrating the RDFs, it is possible to determine whether filter performance can be improved by using optimal 

parameter values, rather than those commonly used in the literature.  In addition, optimal filter parameters can be 

obtained for catchments with different physical characteristics, which will assist with providing an insight into the 

range of catchment properties for which different RDFs are applicable (i.e. perform adequately), provided the 

optimal filter parameters are used (referred to as the ‟range of applicability‟ of different RDFs) and the sensitivity of 

optimal values of filter parameters to various catchment properties. 

 

Fig. 2. Schematic description of the framework for improving the performance of RDFs for baseflow 

estimation 
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3. Case Study 

In this section, a case study is used to illustrate the benefits of the proposed frameworks. The various components of 

the frameworks (Fig. 1 and Fig. 2) in relation to the case study are discussed in detail below. 

3.1. Catchment Characteristics and Hydrological Properties 

The hypothetical catchment used in this study (shown in Fig. 3) is loosely based on a common SW/GW 

benchmarking problem, the tilted V-catchment of Panday and Huyakorn (2004), which is based on DiGiammarco et 

al. (1996). Due to symmetry, the geometry of only half of the catchment is described here. The catchment is 

modified from the catchment given in Panday and Huyakorn (2004) in the following ways: The large slopes 

perpendicular and parallel to the channel have been reduced from 0.05m/m and 0.02m/m to 0.02m/m and 0.01m/m, 

respectively, in order to create a greater spatial distribution of the surface-subsurface exchanges throughout the 

catchment. The areal extent of the catchment has been increased from 810,000m
2
 to 6,030,000m

2
, by enlarging the 

original length (y direction) and width (x direction) of the catchment from 1000m and 810m to 3000m and 2010m, 

respectively. In order to obtain continuous baseflow contributions to the stream, the stream width was retained at 

10m as in the original catchment, which can reduce the boundary effects and increase aquifer storage capacity. 
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Fig. 3. Schematic Representation of Tilted V-Catchment Flow Problem (Refer to Panday and Huyakorn 

(2004)) 

The underlying aquifer extends to a depth of 20m below the stream outlet location, and is homogenous and isotropic. 

Five different homogeneous soil types are considered, which are characterized by different values of saturated 

hydraulic conductivity (Ks), porosity, residual water content (θr), and van Genuchten parameters α and N(β).  The 

ranges and mean values of the soil parameters used are shown in Table 1, which were taken from Puhlmann et al. 

(2009).  A typical ten year period of daily rainfall data from Adelaide, South Australia was used as hydrological 
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input for illustration purposes, which is shown in Fig. 4. In view of the small size of the catchment studied, rainfall 

intensities have been assumed to be spatially uniform. It should be noted that only the geometry of the catchment is 

based on the original test case presented in Panday and Huyakorn (2004), and that the other parameters, such as soil 

types and rainfall patterns, are described as above. 

Table 1 Soil types and ranges and means (shown in brackets) of soil properties considered for model 

simulations (taken from Puhlmann et al. (2009)) 

Soil Type Porosity θr Ks (m/s) α (m
-1

) N(β) 

Sand 0.261-0.4578 

(0.359) 

0-0.0072 

(0.004) 

1.27E-6-9.66E-4 

(1.6E-4) 

0.572-16.412 

(8.492) 

1.32-8.52 

(4.92) 

Sandy loam 0.28-0.544 

(0.412) 

0-0.22 

(0.108) 

5.01E-7-1.26E-4 

(2.44E-5) 

0.47-11.75 

(6.11) 

1.2-5.16 

(3.18) 

Loam 0.29-0.818 

(0.554) 

0-0.456 

(0.228) 

6.31E-7-1.58E-4 

(3.07E-5) 

0.68-14.56 

(7.418) 

1.0822-2.252 

(1.682) 

Loamy sand 0.341-0.569 

(0.455) 

0-0.1584 

(0.079) 

1.42E-6-1.84E-4 

(3.99E-5) 

0.544-17.344 

(8.944) 

1.2821-2.2661 

(1.774) 

Silt loam 0.35-0.65 

(0.5) 

0-0.3 

(0.15) 

1.51E-7-1.38E-5 

(3.01E-6) 

0.18-10.98 

(5.58) 

1.15-3.55 

(2.35) 

 

Fig. 4 Ten year daily rainfall data for Adelaide, South Australia, gauge number 23000 
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3.2. Fully integrated SW/GW Model 

HydroGeoSphere (HGS) was used as the fully integrated SW/GW model.  HGS was considered suitable for this 

application, as it represents the physical catchment processes explicitly.  This is because HGS can solve the 

equations for both surface and variably-saturated subsurface flow regimes at each time step simultaneously, which 

results in realistic, physically-based simulation of the movement of water on and within catchments (Therrien et al., 

2009). HGS has been applied successfully to losing/gaining stream analysis (Partington et al., 2011), SW/GW 

disconnection problems (Banks et al., 2011; Brunner et al., 2009), the dynamics of river bank storage processes 

(Doble et al., 2012) and dual permeability systems (Schwartz et al., 2010).  

HGS uses the diffusion wave approximation to the 2D St. Venant equations to simulate surface flow (Therrien et al., 

2009): 
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                                                                        (1) 

where 0  is the surface flow domain porosity; 0d  is the depth of water above the surface [L]; 0  is the volumetric 

fluid exchange rate with the subsurface [LT
-1

]; 0h  is the water surface elevation related to the datum [L] 

( 000 zdh  , where 0z  is the bed/land surface elevation [L]); 0Q  is a volumetric flow rate per unit area 

representing external sources and sinks [LT
-1

]. All of the above symbols represent state variables, except for oxK  
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and 
oyK , which are parameters representing surface conductance in the x- and y- directions [LT

-1
] and can be 

calculated by Manning‟s equation or the Chezy equation. 

The following modified Richard‟s equation is applied for subsurface flow (Therrien et al., 2009): 

)())((  S
t

QzkK sexr



                                                                                           (2) 

where K  is the hydraulic conductivity tensor [LT
-1

]; rk is the relative permeability;   is the pressure head [L]; z  

is the elevation head [L]; ex  is the volumetric subsurface fluid exchange rate with the surface domain [L
3
L

-3
T

-1
]; 

Q  is a volumetric fluid flux per unit volume representing a subsurface source or sink [L
3
L

-3
T

-1
]; s  is the saturated 

water content and S  is the degree of water saturation. 

The degree of saturation can be determined by the Van Genuchten equations (Van Genuchten, 1980): 

v

rr SSS  ]1)[1(


     for     <0                                                                                                    (3) 

S =1                                                 for     >0                                                                                                       (4) 



1
1v                                          for     >1                                                                                                        (5) 

where rS is the residual water saturation, and  ,   and v  are the van Genuchten parameters.  

The surface and subsurface are coupled using either continuity of head or a conductance concept, with exchanges 

between the two domains. The latter concept was used in this study and is shown below (Therrien et al., 2009):  
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e                                                                                                                                              (6) 

where eq  is the exchange flux between the surface and subsurface domain [LT
-1

]; zzK  is the vertical saturated 

hydraulic conductivity [LT
-1

]; and el  is the coupling length [L]. 

All of the equations above are solved simultaneously at each time step utilising either a finite difference, control 

volume finite difference or finite element approach (Therrien et al., 2009).  For this study, the control volume finite 

difference method is used, due to its quick implementation on regular model grids and superior mass conservation 

(Partington et al., 2009). 

A 3-D HGS model of the tilted V-catchment (Section 3.1) was developed in order to obtain the required simulated 

streamflow and baseflow. As shown in Fig. 3, the catchment is symmetrical.  As a result, all simulations were 

conducted for only half of the catchment, as shown in Fig. 5. The simulated stream channel, which extends in the y 

direction, is 10m wide. In the x direction, perpendicular to the stream channel, the grid spacing is 50m from x=0-

2000m and 10m from 2000-2010m. The grid spacing along the y axis is 50m. Therefore, the domain has 42 cells in 

the x direction and 61 cells in the y direction. In the z direction, there are 21 layers, with a discretisation of 0.5m for 

the first 10m below the surface and a single layer below this, with its thickness varying between 10 and 80m. 

Therefore, the maximum saturated thickness of the whole catchment is 90m. A critical depth boundary condition 

was utilized at the downstream end of the channel (nodes (2000,0,0) and (2010,0,0)) to allocate the surface head at 
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these nodes to be at critical depth ( 0d ). The discharge 0Q  per unit width at the critical depth boundary is then 

given by: 

3

00 gdQ                                                                                                                                                               (7) 

A no flow boundary condition was used for the bottom and lateral subsurface domain, meaning that water can only 

leave the catchment from the stream outlet (i.e. critical depth boundary). The surface friction was described using 

Manning‟s roughness coefficients of 0.015 and 0.15 for the slope and channel, respectively, as was the case in 

Panday and Huyakorn (2004). The rill storage and obstruction storage heights for this model implementation were 

also set to quite small values of 0.001m and 0.0m, respectively, to reduce their effects on baseflow generation. The 

coupling length used was 1x10
-6

m, providing near continuity of pressure at the surface/subsurface interface. 

 

Fig. 5 Catchment model for case study (modified version of the V-catchment in Pandy and Huyakorn (2004)) 
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The HGS model was used to simulate streamflow for catchments with different soil properties and the baseflow was 

calculated using the HMC method, details of which can be found in Partington et al. (2011).  The two soil 

parameters that were varied include Ks and porosity (Table 1). For each soil type, each of the two parameters was 

varied over five values, the minimum, lower quartile, mean, upper quartile and maximum values of the ranges given 

in Table 1, while keeping the other soil parameter constant at its mean value.  This resulted in 45 simulations in total; 

9 for each of the five soil types in Table 1. 

The simulations with different soil characteristics were conducted in three steps. Firstly, to determine steady initial 

conditions, a spatially and temporally uniform rainfall with a relatively high intensity (i.e. 10.8mm/hour) was 

applied to the catchment, with an initial water table parallel to the bottom of the channel across the whole catchment. 

This simulation was run for approximately one year until the total streamflow did not change with time, and was 

then allowed to drain under gravity in the next phase when the actual rainfall was applied. 

Secondly, with the above initial conditions, the actual Adelaide rainfall record (see Section 3.1) was applied to the 

whole catchment and the model was run until a second equilibrium state based on the actual rainfall was reached, 

which required simulation periods between 2 and 35 years, depending on soil type. These simulations provided 

steady-state initial conditions for step three. It should be noted that, alternatively, initial conditions for different soil 

types can be obtained by directly applying the actual Adelaide rainfall to the catchment with a fully-saturated 

subsurface domain, and running the model until the catchment achieves a steady state. However, this method of 
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deriving the initial condition takes much longer for some of the soil types considered, resulting in significantly 

diminished transient behavior caused by the inconsistent boundary or initial conditions. Finally, based on these 

equilibrium states for the actual rainfall record, the simulation was run for a further ten years in order to obtain the 

data used for assessing and improving the performance of the RDF. For all of the simulations, adaptive time 

stepping with a maximum time step of 1000s was used to ensure that the maximum time step is significantly less 

than hourly. 

3.3. Digital Filter 

In this study, the LH filter was used as the RDF. Although the LH filter has some limitations compared with other 

RDFs, such as the Chapman one-parameter algorithm (Chapman and Maxwell, 1996) and the Boughton two-

parameter algorithm (Chapman, 1999) (e.g. it is unable to estimate baseflow when there is no direct runoff, as 

discussed by Chapman and Maxwell (1996)), it is used extensively in practice and has already been incorporated 

into a number of software tools, including BaseJumper (Murphy et al., 2009) and ABScan (Parker, 2006).  The LH 

filter is a high-pass filter, which filters low frequency signals (i.e. baseflow) and transmits high-frequency input 

signals (i.e. quickflow).  Consequently, baseflow has to be obtained by subtracting the filtered quickflow from the 

original streamflow.  The corresponding equations are given by Nathan and McMahon (1990) as: 
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                                                                                   (8) 
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where i  is the time step, in days [T]; 
)(iq is the original total streamflow at time step i , [LT

-1
]; 

)(ifq  and 
)(ibq  are 

the filtered quickflow and corresponding baseflow at time step i , [LT
-1

]; and k  is the filter parameter, 

dimensionless, which is normally set in the range of 0.0-1.0.  

Referring to equation (8), the initial condition is set as the total streamflow being equal to baseflow (i.e. 

)1()1( qqb  ). In order to better understand the impact of the values of the filter parameter on filter performance, it 

is useful to examine the outputs obtained from the LH filter for the extreme values of the filter parameter. If the LH 

filter parameter is set to its maximum value of 1.0, when )1()( qq i  , the baseflow obtained using the LH filter at 

each time step is always equal to the first value of total streamflow ( )1()( qq ib  ), even if there is a peak in the 

streamflow hydrograph. If )1()( qq i  , the filtered baseflow is equal to the total streamflow ( )()( iib qq  ), due to 

the constrained condition that baseflow cannot exceed total streamflow or become negative. On the other hand, if the 

LH filter parameter is set to its minimum value of 0.0, for the rising limb of the total streamflow hydrograph, the 

baseflow obtained from the LH filter is attenuated by halving the sum of the values of the total streamflow at the 

current and previous time step (
2

)()1(

)(

ii

ib

qq
q





).  As for the descending limb, the filtered baseflow is equal to 

the streamflow at the current time step ( )()( iib qq  ). Therefore, when the filter parameter is 0.0, the filtered 

baseflow hydrograph always has a peak right under the peak of the streamflow hydrograph. Baseflow hydrographs 

obtained from the LH filter with values of the filter parameter between 0.0 and 1.0 lie between the baseflow 

hydrographs derived using filter parameters of 0.0 and 1.0. 
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The filter can be passed forward and backward over a data set several times and the number of passes results in data 

smoothing and nullification of any phase distortion (Spongberg, 2000). Although some researchers have used a 

relatively large number of passes, such as Murphy et al. (2009), who implemented the LH filter with 9 passes across 

hourly data for eight case study catchments, most of the studies have used three passes (e.g. (Evans and Neal, 2005; 

Li et al., 2011; Spongberg, 2000; Tan et al., 2009b)), as suggested by Nathan and McMahon (1990). In this study, 

the filter was passed over the data three times in all of the analyses: forward, backward and then forward again. The 

time step ( 1i ) is replaced by ( 1i ) when conducting the “backward” pass, and after the first pass, )(iq  is 

substituted by the computed baseflow calculated from the previous pass. During the calculation, if )(ifq  is smaller 

than zero, the baseflow is equal to the current )(iq . 

The 45 simulated streamflow hydrographs obtained from the HGS model for the different combinations of soil 

properties were used as inputs to the LH filter in order to obtain the corresponding filtered baseflow.  Two sets of 45 

filtered baseflow hydrographs were obtained, one using optimal (calibrated) filter parameter values (see Section 3.4 

for details) and one using a fixed filter parameter of 0.925, which is commonly used in the literature (Arnold and 

Allen, 1999; Murphy et al., 2009; Nathan and McMahon, 1990), in order to assess the potential benefits of obtaining 

calibrated filter parameter values. 
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3.4. Error Measure and Optimization Procedure 

The dimensionless coefficient of efficiency (Ef) was used as the error measure for evaluating the performance of 

filters with different parameters and applied to catchments with different soil conditions. This is because it is one of 

the most commonly used error measures in hydrology and provides a trade-off between objectives that emphasize 

different aspects of hydrographs (Gupta and Kling, 2011; Gupta et al., 2009). However, it should be noted that 

because of the nature of the LH filter, constrains are placed on the variability of the resulting baseflow hydrograph. 

For example, as discussed previously, the timing of the peak of the baseflow hydrograph always coincides with the 

timing of the peak of the total streamflow hydrograph and whenever baseflow is larger than the total streamflow, 

baseflow is forced to be equal to the total streamflow, thereby capturing the recession limb of the baseflow 

hydrograph. As a result, the only variability is in the magnitude of the baseflow hydrograph, which is controlled by 

the LH filter parameter, as discussed above (i.e. smaller values of the filter parameter result in larger peaks and vice 

versa).  

The equation of Ef was given by Nash and Sutcliffe (1970) as: 
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where 
obs

iY  is the i th observation of the flow rate being evaluated [LT
-1

], 
sim

iY  is the i th simulated value of the 

flow rate being evaluated [LT
-1

], 
meanY  is the mean of the observed data for the flow rate being evaluated [LT

-1
], i  

is the time step [T], and n  is the total number of observations.  

When using Ef to evaluate the performance of RDFs, the observed data in equation (9) are given by the simulated 

baseflow results obtained from the fully integrated SW/GW model (
sim

bq ), while the baseflow results derived from 

the RDFs (
filter

bq ) correspond to the simulated values. Based on benchmark values available from other studies 

(Herron and Croke, 2009; Moriasi et al., 2007; Nejadhashemi et al., 2007), RDF performance can be judged as 

„perfect‟ when Ef=1.0, while Ef values between 0.5 and 1.0 correspond to „good‟ filter performance; Ef values 

between 0.0 and 0.5 show „acceptable‟ filter performance and „unacceptable‟ filter performance is represented by 

negative values of Ef. 

In order to estimate the uncertainty associated with estimates of the optimal LH filter parameters, the following 

linear estimate of uncertainty was used (Vugrin et al., 2005): 
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where k̂  is the optimal LH filter parameter, obtained by minimizing the sum of squared errors between the baseflow 

obtained from the LH filter and that simulated using the HGS model (equation (11)); p  is the number of parameters 

to be estimated, which is 1 in this case; n  is the number of data points, which is 3650 days in this case; and 


pnpF ,  

is the upper α percent point of the F-distribution, which was set to 0.05.  

The optimization method used in order to obtain the optimal values of the filter parameters was the golden section 

search method (Press et al., 1992), as there was only one model parameter. 

4. Results and Discussion 

4.1. Relationship between Optimal Filter Parameters and Soil Properties 

The optimal LH filter parameter values obtained for the different soil properties, as well as their linear estimates of 

uncertainty, are given in Table 2  and Fig. 6.  As can be seen, the uncertainty estimates are very small, indicating 

that the optimal values of the filter parameters are well defined and that the results obtained can be treated with 

confidence.  In addition, it can be seen that there is a distinct inverse relationship between Ks and optimal values of 

the LH filter parameter, which vary between 0.0025 and 0.997, while the optimal values of the LH filter parameter 

do not vary significantly for soils with different values of porosity. This can be explained by examining the 

relationship between soil properties and the resulting baseflow, as well as the relationship between the values of the 

LH filter parameter and filter performance (see below).  
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Relationship between soil properties and resulting baseflow 

Soils with different values of porosity were found to have similar baseflow components. Although soils with larger 

porosity can store more subsurface water before they become saturated and also allow more groundwater to 

discharge into the stream, for a given value of Ks, their rate of change in storage was similar to that of soils with 

smaller porosity, resulting in similar baseflow components.  

In contrast, for soils with a given porosity, soils with larger values of Ks resulted in larger baseflow components.  

This is because there is a positive relationship between Ks and the ease with which water can infiltrate into the soil, 

which means that larger Ks values enable water to infiltrate into the soil more easily, resulting in increased soil 

saturation and groundwater exfiltration.  This can be seen from the simulated streamflow and baseflow obtained 

from the HGS models (Fig. 7). For catchments with sandy soil and mean values of Ks and porosity, most of the rain 

infiltrates into the ground, either percolating into the soil and staying in the catchment as groundwater or recharging 

the stream as baseflow.  Consequently, compared with other soil types, the peak streamflow for sandy soils was 

smaller, with a high proportion of baseflow and a low proportion of quickflow (surface runoff). In contrast, for 

catchments with soil consisting of silt loam, rain cannot infiltrate easily, but is converted to direct runoff, rapidly 

feeding streamflow. Therefore, such catchments had streamflow with a higher peak, with almost no baseflow 

contribution.  
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Table 2 Optimal LH filter parameters and the linear estimates of uncertainty for sand, sandy loam, loam, 

loamy sand and silt loam with different soil properties 

Soil 

Type 
Min~Max 

Ks & related optimal LH filter parameter Porosity & related optimal LH filter parameter 

Ks(m/s) 
Filter 

Parameter 

Lower 

Bound 

Upper 

Bound 
Porosity 

Filter 

Parameter 

Lower 

Bound 

Upper 

Bound 

Sand 

Min 1.27E-06 0.997 0.9969  0.9976  0.261 0.415 0.4077 0.4241 

Lower Quartile 8.26E-05 0.787 0.7821  0.7937  0.31 0.465 0.458 0.4733 

Mean 1.60E-04 0.503 0.4956 0.5104 0.359 0.503 0.4956 0.5104 

Upper Quartile 5.65E-04 0.105 0.098  0.1142  0.409 0.537 0.5293 0.5474 

Max 9.66E-04 0.0025 0.0  0.01  0.4578 0.571 0.5635 0.5777 

Sandy 

Loam 

Min 5.01E-07 0.997 0.9969 0.9975 0.28 0.990 0.989 0.9907 

Lower Quartile 1.25E-05 0.997 0.9967 0.9982 0.346 0.991 0.9898 0.9916 

Mean 2.44E-05 0.992 0.9914 0.9938 0.412 0.992 0.9914 0.9938 

Upper Quartile 7.51E-05 0.837 0.833 0.8427 0.478 0.992 0.9913 0.9934 

Max 1.26E-04 0.612 0.605 0.6186 0.544 0.994 0.9929 0.995 

Loam 

Min 8.17E-06 0.997 0.9967 0.9978 0.29 0.983 0.9815 0.9836 

Lower Quartile 1.57E-05 0.997 0.9963 0.9979 0.422 0.986 0.9846 0.9864 

Mean 3.07E-05 0.987 0.9864 0.988 0.554 0.987 0.9864 0.988 

Upper Quartile 9.46E-05 0.719 0.7133 0.7257 0.686 0.988 0.9873 0.9891 

Max 1.58E-04 0.458 0.4501 0.4679 0.818 0.990 0.9885 0.9906 

Loamy 

Sand 

Min 1.10E-05 0.997 0.9966 0.9978 0.341 0.970 0.969 0.9713 

Lower Quartile 2.55E-05 0.996 0.9948 0.9967 0.398 0.973 0.9715 0.9738 

Mean 3.99E-05 0.974 0.9732 0.9753 0.455 0.974 0.9732 0.9753 

Upper Quartile 1.12E-04 0.665 0.6582 0.6713 0.512 0.976 0.975 0.9769 

Max 1.84E-04 0.438 0.4304 0.4477 0.569 0.978 0.9772 0.9794 

Silt 

Loam 

Min 1.51E-07 0.997 0.9968 0.9974 0.35 0.997 0.9968 0.9977 

Lower Quartile 1.58E-06 0.997 0.9969 0.9976 0.425 0.997 0.9968 0.9977 

Mean 3.01E-06 0.997 0.9968 0.9977 0.5 0.997 0.9968 0.9977 

Upper Quartile 8.41E-06 0.997 0.9967 0.9979 0.575 0.997 0.9968 0.9977 

Max 1.38E-05 0.997 0.9967 0.9982 0.65 0.997 0.997 0.9973 
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Fig. 6. Values of the optimal LH filter parameter with the error bars obtained from the linear estimates of 

uncertainty for sand (a), sandy loam (b), loam (c), loamy sand (d) and silt loam (e) with different soil 

properties 

 

Fig. 7. Simulated streamflow and baseflow for catchments with sand (a) and silt loam (b) with their mean 

values of Ks and porosity 

This difference in the streamflow behaviour for the two different soil types can also be seen clearly by examining 

the corresponding flow duration curves, which are an estimate of the percentage of time a particular streamflow was 
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equaled or exceeded, and therefore provide a graphical representation of the variability associated with streamflow 

(Vogel and Fennessey, 1994). As can be seen from Fig. 8, the flow duration curve for the catchment with a sandy 

soil is very flat, indicating that streamflow is almost constant over time, which is representative of a stream that is 

fed primarily by baseflow. In contrast, the flow duration curve for the catchment consisting of silt loam indicates 

that flows are highly variable, with higher peak flows, but extended periods with little or no flow, which is 

indicative of a catchment that is dominated by surface flow. 

 

Fig. 8. Flow duration curves for catchments with sand and silt loam with their mean values of Ks and porosity 

Relationship between the values of the LH filter parameter and filter performance 

As discussed above, larger values of Ks result in larger baseflow and vice versa, and as discussed in Section 3.3 and 

shown in Fig. 9, for a catchment with sandy soil, smaller values of the LH filter parameter result in larger baseflow 
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contributions and vice versa. Consequently, there exists an inverse relationship between Ks and the optimal LH filter 

parameter values, as shown in Fig. 6. 

 

Fig. 9. Impact of different values of LH filter parameter on baseflow for catchment with sand with minimum 

porosity 

To further confirm the inverse relationship between Ks and the optimal value of the LH filter parameter, five 

additional simulations (i.e. generation of simulated streamflow and baseflow using HGS, optimization of the LH 

filter parameter and the determination of filtered baseflow) were conducted with Ks values between the mean and 

upper quartile values of Ks for sand. The results obtained for all of the simulations conducted are shown in Fig. 10, 

including the linear estimates of uncertainty, which are very small, indicating that the results obtained can be treated 

with confidence.  As can be seen, the additional results confirm the strong inverse relationship between the optimal 

value of the LH filter parameters and Ks, regardless of soil type, which is as expected, based on the discussion of the 

impact of Ks on baseflow and the way different filter parameter values affect the output from the LH filter given 
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above. However, as can be seen from Fig. 10, the optimal values of the LH filter parameter are almost constant very 

close to their maximum value of 1.0 for soils with small values of Ks, suggesting that for small values of Ks, 

baseflow estimates obtained using the LH filter might be inaccurate, as baseflow decreases with decreasing values of 

Ks, while the baseflow hydrographs obtained using the LH filter remain constant (also see Section 4.2). In addition, 

it can be seen that the optimal values of the filter parameter can be significantly different from the value of 0.925 

most commonly used in the literature (Murphy et al., 2009; Nathan and McMahon, 1990). 

 

Fig. 10. Relationship between the optimal LH filter parameter and Ks with the error bars obtained from the 

linear estimates of uncertainty for different soil properties 

4.2. Relationship between Filter Performance and Soil Properties 

Since Ks has the most significant impact on baseflow among the different soil parameters investigated, only 

baseflow results obtained for soils with different values of Ks are discussed in this section. The Ef values between 
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the baseflow obtained using the LH filter with optimal filter parameters and the simulated baseflow from HGS are 

summarized in Table 3. As can be seen, in most cases, the filtered baseflow is similar to that obtained from the HGS 

model, especially for soils with larger values of Ks.  For example, for sand with the maximum Ks value, the filtered 

baseflow obtained with the optimal filter parameter of 0.0025 is almost identical to the simulated baseflow obtained 

using HGS (Fig. 11), with an Ef of 0.9998 (Table 3).  In this case, the high Ks value results in most of the rain 

infiltrating into the ground and becoming groundwater, leading to increased exfiltration to the stream. As a result, 

surface runoff from the catchment is quite low, but the baseflow component of the streamflow is quite high. The 

same results can be observed from the flow duration curve for sand with maximum Ks (Fig. 12). The flat slope of 

this curve throughout denotes the characteristics of a perennial stream, with continuous and significant baseflow 

discharge. Consequently, a very low value of the LH filter parameter is optimal, as discussed previously.  Similar 

results were obtained for soils with Ks values greater than 2.44E-05m/s, provided the optimal LH filter parameter 

was used.  Based on the results obtained, it is suggested that the baseflow obtained using the LH filter can provide a 

good approximation to the actual baseflow for perennial streams, in catchments with soils with relatively large 

values of Ks, as long as an appropriate value of the filter parameter is used. 

Table 3 Comparison of LH filter performance for the case where the optimal filter parameter was used and a 

filter parameter of 0.925 was used for sand, sandy loam, loam, loamy sand and silt loam with different Ks 

Soil 

type Ks (m/s) 

Ef between simulated baseflow and that 

obtained using LH filter with the optimal 

filter parameter 

Ef between simulated baseflow and 

that obtained using LH filter with a 

filter parameter of 0.925 

Sand Min 1.27E-06 -2.266 -19.613 
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Lower quartile  8.26E-05 0.960 0.900 

Mean 1.60E-04 0.989 0.903 

Upper quartile 5.65E-04 0.999 0.969 

Max 9.66E-04 0.9998 0.976 

Sandy 

loam 

Min 5.01E-07 -10.29 -73.56 

Lower quartile  1.25E-05 -0.044 -1.945 

Mean 2.44E-05 0.290 -0.679 

Upper quartile 7.51E-05 0.965 0.946 

Max 1.26E-04 0.981 0.900 

Loam Min 8.17E-06 -0.135 -2.704 

Lower quartile  1.57E-05 0.010 -1.613 

Mean 3.07E-05 0.517 -0.078 

Upper quartile 9.46E-05 0.958 0.888 

Max 1.58E-04 0.986 0.884 

Loamy 

sand 

Min 1.10E-05 -0.083 -2.136 

Lower quartile  2.55E-05 0.137 -1.125 

Mean  3.99E-05 0.825 0.698 

Upper quartile 1.12E-04 0.981 0.924 

Max 1.84E-04 0.991 0.906 

Silt 

loam 

Min 1.51E-07 -76.85 -489.41 

Lower quartile  1.58E-06 -1.603 -14.84 

Mean  3.01E-06 -0.589 -6.966 

Upper quartile 8.41E-06 -0.130 -2.651 

Max 1.38E-05 -0.029 -1.813 

The performance of the LH filter is not as good for soils with small values of Ks, with small and even negative 

values of Ef (Table 3).  For example, for silt loam with the minimum Ks value, the baseflow obtained using the filter 

with the optimal value of the filter parameter is much larger than the simulated baseflow obtained using HGS at 

almost all time steps (Fig. 11), resulting in an Ef of -76.85.  The reason for this is that Ks determines how much 

water infiltrates into the ground and how easily water moves through the subsurface of the catchment. Therefore, for 

a catchment with low Ks and high intensity rainfall, infiltration is low, which results in the generation of more 

surface runoff and the formation of sharp peaks in observed streamflow (Fig. 11). Consequently, the simulated 

baseflow is quite small, with small fluctuations around the mean value at all time steps. This can be seen from the 

flow duration curve for silt loam with minimum Ks (Fig. 12). This curve has a reasonably steep slope throughout, 

which intercepts the x-axis at around 53% of time, indicating that all of the discharges are less than or equal to the 

discharge that occurs 53% of the time. This flow duration curve is indicative of a highly variable ephemeral stream, 
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the flow of which is largely from direct runoff with very small contributions from baseflow. Streams like this may 

cease to flow for relatively long periods without rainfall events. However, as discussed previously, the baseflow 

obtained using the LH filter is based solely on streamflow and the value of the filter parameter, so that the variations 

in filtered baseflow follow the sharp variations in streamflow, resulting in an over-prediction of baseflow whenever 

the filter parameter is between 0.0 and 1.0. Therefore, the LH filter does not appear to be suitable for catchments 

with Ks values smaller than 1.38E-05m/s that result in variable ephemeral streams with low baseflow contribution, 

even when the optimal filter parameter is used. This is an agreement with the discussion of Fig. 10 in Section 4.1. It 

should be noted that, in practice, if the catchment has very little baseflow, there is generally no need to estimate it.  

However, the simulations for low baseflow contribution catchments (e.g. silt loam with minimum Ks) are shown 

here in order to illustrate the sorts of features, such as soil properties, that cause the catchment to have little baseflow 

contribution. 
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Fig. 11. Comparison of baseflow calculated from the HGS model simulation and the LH filter with two 

different values of the filter parameter for sand with maximum Ks (a) and silt loam with minimum Ks (b) 
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Fig. 12. Flow duration curves for catchments with sand with maximum Ks, and silt loam with minimum Ks 

The performance of the LH filter with the most commonly used filter parameter of 0.925 is also shown in Table 3 

and Fig. 11.  As can be seen, by obtaining optimal values of the LH filter parameter for different soil properties, the 

performance of the LH filter can be improved significantly in certain situations.  This is to be expected, given that 

the optimal values of the filter parameter for soils with different properties span such a large range, as discussed 

above.  The results obtained indicate that the performance of the LH filter with a filter parameter of 0.925 is not 

adequate for most of the catchments with small values of Ks, but acceptable for catchments with Ks values greater 

than 3.99E-05m/s, with Ef values greater than 0.698.  However, the range of soil types over which the LH filter 

performs well can be extended by using the filter parameter that is most appropriate for the soil conditions.  

The results presented in this paper have utilized the simulations from the fully integrated SW/GW model as though 

they are the „true‟ values. The results derived using this framework for this hypothetical case study illustrate the 

impacts of catchment soil properties on RDF parameters, and provide a clearer understanding that among catchment 

soil properties, Ks is likely to play a key role in determining the appropriate values of optimal filter parameters for 

catchments with different physical properties. Physical processes in real catchments are more complicated than those 

represented in the hypothetical case study, due to catchment heterogeneity, macropores, and vegetation; however, 

the dominant physical processes are captured by the fully integrated SW/GW model, which clearly identifies the 
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need for a variable filter parameter, and to carefully consider the application of digital filtering approaches to 

determining baseflow.  

5. Summary and Conclusions  

In this study, a generic framework for assessing and improving currently used RDFs for quantifying baseflow has 

been developed. This framework provides a procedure that enables research studies to be conducted in order to test 

the accuracy and improve the performance of various baseflow filter methods. The framework makes use of fully 

integrated surface water and groundwater (SW/GW) models to obtain estimates of streamflow and baseflow for 

catchments with different properties (e.g. soil types and rainfall patterns). A recursive digital filter (RDF) is then 

applied to the simulated streamflow to estimate baseflow, which can be compared with the simulated baseflow 

obtained from the fully integrated SW/GW model in order to assess filter performance. Filter performance can be 

improved by adjusting the filter parameter(s) until the best match between the filtered baseflow hydrograph and the 

simulated baseflow hydrograph from the fully integrated SW/GW model is obtained. If a sufficient number of 

studies of this nature are conducted (i.e. using different RDFs, different fully integrated SW/GW models, different 

catchment hydrogeological properties, etc.), general guidelines for the applicability and improvement of RDFs can 

be developed. 

In order to demonstrate the usefulness of the proposed framework, it was applied to a commonly used hypothetical 

case study. A fully integrated SW/GW model of a hypothetical catchment was developed using HGS, which was 
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used to generate streamflow and baseflow hydrographs for 45 different soil properties. The generated streamflow 

hydrographs were used as inputs to the LH filter, which was applied using two sets of filter parameters; a constant 

value of 0.925, which is the value most commonly used in the literature, and values that were calibrated in order to 

minimize the difference between the baseflow hydrograph obtained using the LH filter and that obtained using the 

HGS model for each of the soil types. The results obtained show that the optimal value of the LH filter parameter is 

sensitive to the saturated hydraulic conductivity (Ks), and should therefore be adjusted accordingly, thus better 

reflecting the actual physical processes producing the baseflow. The results obtained also show that the baseflow 

obtained using the LH filter can represent the baseflow simulated using the HGS model reasonably well for 

catchments with relatively large Ks. However, for catchments with small values of Ks, the LH filter does not appear 

to be suitable. Furthermore, when a fixed filter parameter of 0.925 is used, the range of soil properties over which 

the LH filter is applicable is reduced significantly.  

It should be noted that the generalisability of the results is restricted by the range of factors considered in the 

analysis. For example, consideration of the impact of vegetation and thus transpiration is likely to affect seasonal 

and longer term trends in baseflow as a result of vegetation growth, which could result in significantly more 

complex interactions (D'Odorico et al., 2005; Guttal and Jayaprakash, 2007, 2009). One must also be aware of the 

fact that no calibration-evaluation was undertaken to independently assess the calibrated LH filter parameters. Also, 

it should be noted that repetition of the analysis conducted in this paper with different climate records would 
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possibly lead to other optimal LH filter parameters for the same soil type. Consequently, this should be the focus of 

future studies. Furthermore, it should be noted that the optimal values of the LH filter parameter are likely to be 

influenced by a number of other factors, such as catchment size, slope and aspect ratio, streamflow routing, soil 

heterogeneity, maximum saturated thickness and depth to water table. The impact of these factors on the optimal LH 

filter parameter should be investigated in future studies. 
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Figure 1 

 
Schematic description of the framework for assessing the performance of RDFs for baseflow estimation 
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Figure 2 

 

Schematic description of the framework for improving the performance of RDFs for baseflow estimation 
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Figure 3 

 
Schematic Representation of Tilted V-Catchment Flow Problem (Refer to Panday and Huyakorn (2004)) 
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Figure 4 

 
10 year daily rainfall data for Adelaide, South Australia, gauge number 23000 
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Figure 5 

 
Catchment model for case study (modified version of the V-catchment in Pandy and Huyakorn (2004))  
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Figure 6 

 
Values of the optimal LH filter parameter with the error bars obtained from the linear estimates of 

uncertainty for sand (a), sandy loam (b), loam(c), loamy sand (d) and silt loam (e) with different soil 

properties 
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Figure 7  

 

 
Simulated streamflow and baseflow for catchments with sand (a) and silt loam (b) with their mean values of 

Ks and porosity 
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Figure 8  

 

Flow duration curves for catchments with sand and silt loam with their mean values of Ks and porosity 
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Figure 9  

 

 
 
Impact of different values of LH filter parameter on baseflow for catchment with sand with minimum 

porosity 
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Figure 10 

 

 
 
Relationship between the optimal LH filter parameter and Ks with the error bars obtained from the linear 

estimates of uncertainty for different soil properties 

 

Figure(s)



Figure 11 

 

 
 
Comparison of baseflow calculated from the HGS model simulation and the LH filter with two different 

values of the filter parameter for sand with maximum Ks (a) and silt loam with minimum Ks (b) 
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Figure 12 

 

 

Flow duration curves for catchments with sand with maximum Ks and silt loam with minimum Ks 

Figure(s)



Table 1 Soil types and ranges and means (shown in brackets) of soil properties considered for model 

simulations (adopted from Puhlmann et al. (2009)) 

Soil Type Porosity θr Ks (m/s) α (m-1) N(β) 

Sand 0.261-0.4578 
(0.359) 

0-0.0072 
(0.004) 

1.27E-6-9.66E-4 
(1.6E-4) 

0.572-16.412 
(8.492) 

1.32-8.52 
(4.92) 

Sandy loam 0.28-0.544 

(0.412) 

0-0.22 

(0.108) 

5.01E-7-1.26E-4 

(2.44E-5) 

0.47-11.75 

(6.11) 

1.2-5.16 

(3.18) 
Loam 0.29-0.818 

(0.554) 

0-0.456 

(0.228) 

6.31E-7-1.58E-4 

(3.07E-5) 

0.68-14.56 

(7.418) 

1.0822-2.252 

(1.682) 

Loamy sand 0.341-0.569 
(0.455) 

0-0.1584 
(0.079) 

1.42E-6-1.84E-4 
(3.99E-5) 

0.544-17.344 
(8.944) 

1.2821-2.2661 
(1.774) 

Silt loam 0.35-0.65 

(0.5) 

0-0.3 

(0.15) 

1.51E-7-1.38E-5 

(3.01E-6) 

0.18-10.98 

(5.58) 

1.15-3.55 

(2.35) 

 

Table(s)



Table2. Optimal LH filter parameters and the linear estimates of uncertainty for sand, sandy loam, loam, 

loamy sand and silt loam with different soil properties 

Soil 

Type 
Min~Max 

Ks & related optimal LH filter parameter Porosity & related optimal LH filter parameter 

Ks (m/s) 
Filter 

Parameter 

Lower 

Bound 

Upper 

Bound 
Porosity 

Filter 

Parameter 

Lower 

Bound 

Upper 

Bound 

Sand 

Min 1.27E-06 0.997 0.9969  0.9976  0.261 0.415 0.4077 0.4241 

Lower Quartile 8.26E-05 0.787 0.7821  0.7937  0.31 0.465 0.458 0.4733 

Mean 1.60E-04 0.503 0.4956 0.5104 0.359 0.503 0.4956 0.5104 

Upper Quartile 5.65E-04 0.105 0.098  0.1142  0.409 0.537 0.5293 0.5474 

Max 9.66E-04 0.0021 0.0  0.01  0.4578 0.571 0.5635 0.5777 

Sandy 

Loam 

Min 5.01E-07 0.997 0.9969 0.9975 0.28 0.990 0.989 0.9907 

Lower Quartile 1.25E-05 0.997 0.9967 0.9982 0.346 0.991 0.9898 0.9916 

Mean 2.44E-05 0.992 0.9914 0.9938 0.412 0.992 0.9914 0.9938 

Upper Quartile 7.51E-05 0.837 0.833 0.8427 0.478 0.992 0.9913 0.9934 

Max 1.26E-04 0.612 0.605 0.6186 0.544 0.994 0.9929 0.995 

Loam 

Min 8.17E-06 0.997 0.9967 0.9978 0.29 0.983 0.9815 0.9836 

Lower Quartile 1.57E-05 0.997 0.9963 0.9979 0.422 0.986 0.9846 0.9864 

Mean 3.07E-05 0.987 0.9864 0.988 0.554 0.987 0.9864 0.988 

Upper Quartile 9.46E-05 0.719 0.7133 0.7257 0.686 0.988 0.9873 0.9891 

Max 1.58E-04 0.458 0.4501 0.4679 0.818 0.990 0.9885 0.9906 

Loamy 

Sand 

Min 1.10E-05 0.997 0.9966 0.9978 0.341 0.970 0.969 0.9713 

Lower Quartile 2.55E-05 0.996 0.9948 0.9967 0.398 0.973 0.9715 0.9738 

Mean 3.99E-05 0.974 0.9732 0.9753 0.455 0.974 0.9732 0.9753 

Upper Quartile 1.12E-04 0.665 0.6582 0.6713 0.512 0.976 0.975 0.9769 

Max 1.84E-04 0.438 0.4304 0.4477 0.569 0.978 0.9772 0.9794 

Silt 

Loam 

Min 1.51E-07 0.997 0.9968 0.9974 0.35 0.997 0.9968 0.9977 

Lower Quartile 1.58E-06 0.997 0.9969 0.9976 0.425 0.997 0.9968 0.9977 

Mean 3.01E-06 0.997 0.9968 0.9977 0.5 0.997 0.9968 0.9977 

Upper Quartile 8.41E-06 0.997 0.9967 0.9979 0.575 0.997 0.9968 0.9977 

Max 1.38E-05 0.997 0.9967 0.9982 0.65 0.997 0.997 0.9973 

 

Table(s)



Table3. Comparison of LH filter performance for the case where the optimal filter parameter was used and a 

filter parameter of 0.925 was used for sand, sandy loam, loam, loamy sand and silt loam with different Ks 

Soil 

type Ks (m/s) 

Ef between simulated baseflow and that 

obtained using LH filter with the optimal 

filter parameter 

Ef between simulated baseflow and 

that obtained using LH filter with a 

filter parameter of 0.925 

Sand Min 1.27E-06 -2.266 -19.613 

Lower quartile  8.26E-05 0.960 0.900 

Mean 1.60E-04 0.989 0.903 

Upper quartile 5.65E-04 0.999 0.969 

Max 9.66E-04 0.9998 0.976 

Sandy 

loam 

Min 5.01E-07 -10.29 -73.56 

Lower quartile  1.25E-05 -0.044 -1.945 

Mean 2.44E-05 0.290 -0.679 

Upper quartile 7.51E-05 0.965 0.946 

Max 1.26E-04 0.981 0.900 

Loam Min 8.17E-06 -0.135 -2.704 

Lower quartile  1.57E-05 0.010 -1.613 

Mean 3.07E-05 0.517 -0.078 

Upper quartile 9.46E-05 0.958 0.888 

Max 1.58E-04 0.986 0.884 

Loamy 

sand 

Min 1.10E-05 -0.083 -2.136 

Lower quartile  2.55E-05 0.137 -1.125 

Mean  3.99E-05 0.825 0.698 

Upper quartile 1.12E-04 0.981 0.924 

Max 1.84E-04 0.991 0.906 

Silt 

loam 

Min 1.51E-07 -76.85 -489.41 

Lower quartile  1.58E-06 -1.603 -14.84 

Mean  3.01E-06 -0.589 -6.966 

Upper quartile 8.41E-06 -0.130 -2.651 

Max 1.38E-05 -0.029 -1.813 

 

Table(s)
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