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We study the octet to decuplet baryon electromagnetic transitions using the covariant spectator quark

model and predict the transition magnetic dipole form factors for those involving the strange baryons.

Utilizing SUð3Þ symmetry, the valence quark contributions are supplemented by the pion cloud dressing

based on the one estimated in the ��N ! � reaction. Although the valence quark contributions are

dominant in general, the pion cloud effects turn out to be very important to describe the experimental data.

We also show that other mesons besides the pion, in particular the kaon, may be relevant for some

reactions such as ���þ ! ��þ, based on our analysis for the radiative decay widths of the strange

decuplet baryons.

DOI: 10.1103/PhysRevD.87.093011 PACS numbers: 13.40.Gp, 12.39.Ki, 13.40.Hq, 14.20.Jn

I. INTRODUCTION

Low-lying baryons are classified into the spin 1=2 octet
and spin 3=2 decuplet by quark models and quantum
chromodynamincs (QCD). The electromagnetic structure
of the octet (B) and decuplet (B0) baryons, or the ��B ! B0
transition, can be characterized by their electromagnetic
form factors. These form factors encode the microscopic
quark and gluon QCD substructure of the baryons, but can
also be represented in terms of the effective degrees of
freedom, such as the baryon cores dressed by meson
clouds.

Although there is abundant experimental information on
the nucleon electromagnetic structure and the ��N ! �
transition form factors [1–3], in particular, the studies of
the other possible octet to decuplet electromagnetic tran-
sition form factors involving the strange baryons (baryons
with one or more strange quarks) are nearly nonexistent.
(The data can be found in Refs. [4–8].) In the past, several
theoretical studies of the octet to decuplet electromagnetic
transitions were performed in nonrelativistic and relativis-
tic quark models [9–19], Skyrme and soliton models
[20–22], QCD sum rules [23], chiral perturbation theory
[24–26], large Nc limit [27], algebraic models of hadron
structure [28], and lattice QCD [29]. In particular, lattice
QCD studies for the ��N ! � reaction can be found in
Refs. [30,31].

The study of the ��B ! B0 transition is very important
to understand the role of the meson cloud. For the ��N !
� reaction, the meson cloud contributions are shown to be
crucial [1,2,16,32,33]. Then, it is natural to investigate the
role of the meson cloud also for the other octet to decuplet
electromagnetic transitions. In order to understand the role
of the meson cloud quantitatively, where the pion cloud is
expected to be dominant, the prerequisite is to understand
the valence quark contributions quantitatively.

For this purpose, we rely on the covariant spectator
quark model [32–38], since it was successful in the studies

of the electromagnetic structure of nucleon [39–41], octet
and decuplet baryons [34–37,42–45], transition form fac-
tors of the reactions ��N ! �ð1232Þ, ��N ! N�ð1440Þ,
��N ! N�ð1535Þ [32,33,46–48], and others [49,50]. We
follow the formalism developed in Refs. [34,35] for the
octet baryons and that in Ref. [37] for the decuplet baryons.
In these works, the covariant spectator quark model was
extended from the SUð2Þ to the SUð3Þ scheme for the
lattice QCD regime and then extrapolated back to the
physical regime. We also follow closely the study made
for the ��N ! � transition based on an S-state approach to
describe the nucleon and � systems [32], utilizing the
SUð3Þ meson-baryon coupling scheme. However, as is
well known, the contributions solely from the valence
quarks are insufficient to describe the observed cross sec-
tions and the extracted form factors for the ��N ! �
reaction (especially the magnetic dipole form factor G�

M).
Therefore, explicit pion cloud effects for the other
��B ! B0 reactions involving the strange baryons should
also be considered by extending the ��N ! � treatment
based on an SUð3Þ symmetry scheme, and this is done in
the present study.
Since we adopt an S-state approximation for the octet

and decuplet systems, the contributions for the electric and
Coulomb quadrupole form factors will vanish, and only the
contributions for the magnetic dipole form factor G�

M will

survive. Although this is an approximation, it is justified,
since the electric and Coulomb form factors are known
to be small compared to G�

M in the ��N ! � reaction

[1–3,33]. Then, in this article we will focus on the mag-
netic dipole form factor.
This article is organized as follows: In Sec. II we present

the covariant spectator quark model, including the parame-
trizations for the octet and decuplet baryon wave functions
and the quark electromagnetic current. Results of the form
factors, both for the valence quark and pion cloud contri-
butions, are presented in Sec. III. Section IV is devoted to
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the final results and discussions. Summary and conclusions
are given in Sec. V.

II. COVARIANT SPECTATOR QUARK MODEL

The covariant spectator quark model was derived from
the covariant spectator theory [51]. In the model a baryon
is described as a three-constituent quark system, where one
quark is free to interact with the electromagnetic fields and
a pair of noninteracting quarks is treated as a single on-
mass-shell spectator particle (diquark) with an effective
mass mD [37,39,40]. The quark current is parametrized
based on a vector meson dominance mechanism as ex-
plained in detail in Refs. [34,35,37,39].

The baryon wave function depends on the baryon mo-
mentum P, the diquark momentum k, the flavor indices,
and the spin projections, as will be shown later. The wave
function is constructed conveniently by the symmetrized
states of the diquark pair (12), and the off-mass-shell quark
3. The transition current can be calculated in terms of the
quark-3 states. To obtain the final, total contribution, we
may multiply by a factor of 3 the current associated with
the quark 3.

The covariant spectator quark model was also general-
ized to the lattice QCD regime with heavy pions, where the
meson cloud effects are expected to be very small
[37,46,47]. The fact that the same parametrization of the
model holds for both the physical and the lattice QCD
regimes gives us some confidence that the valence quark
contributions calculated in themodel arewell under control.

Next, we will present the wave functions of the octet and
decuplet baryons in the covariant spectator quark model.
We will use MB and MB0 for the octet and decuplet baryon
masses, respectively, and MN for the nucleon mass.

A. Octet baryon wave functions

In general the octet baryon wave function (spin 1=2) in
an S state for the quark-diquark system can be written as
[35,36]

�BðP; kÞ ¼ 1ffiffiffi
2

p f�0
SjMAi þ�1

SjMSigc BðP; kÞ; (2.1)

where jMAi and jMSi are, respectively, the flavor antisym-
metric and symmetric wave functions, �X

S (X ¼ 0, 1) are
the spin (0 and 1) wave functions, and c B is the octet
baryon B radial wave function to be defined shortly. Spin
projection indices are suppressed for simplicity. The ex-
plicit expressions for the all-octet baryon members are
presented in Table I. The spin wave functions are given by

�0
S

�
þ 1

2

�
¼ 1ffiffiffi

2
p ð"# � #"Þ "; (2.2)

�1
S

�
þ 1

2

�
¼ � 1ffiffiffi

6
p ½ð"# þ #"Þ " �2 ""#�; (2.3)

and

�0
S

�
� 1

2

�
¼ 1ffiffiffi

2
p ð"# � #"Þ #; (2.4)

�1
S

�
� 1

2

�
¼ 1ffiffiffi

6
p ½ð"# þ #"Þ # �2 ##"�: (2.5)

This nonrelativistic structure is generalized to a relativistic
form in the covariant spectator quark model [32,39],

�0
S ¼ uðPÞ; �1

S ¼ �"��� ðPÞU�ðPÞ; (2.6)

where

U�ðPÞ ¼ 1ffiffiffi
3

p �5

�
�� � P�

MB

�
uðPÞ: (2.7)

In the above, uðPÞ represents the Dirac spinor of the octet
baryon B with momentum P and spin projection s, and
"�ðPÞ (� ¼ 0, �1) the diquark polarization vector in the
fixed-axis representation [39,41]. The spin projection is
suppressed in the Dirac spinors and U� for simplicity.
The radial wave function c B is defined in terms of the

dimensionless variable �B,

�B ¼ ðMB �mDÞ2 � ðP� kÞ2
MBmD

; (2.8)

where mD is the diquark mass. Using the formalism of
Refs. [34,35] we write c B for B ¼ N, �, �, �,

TABLE I. Flavor wave functions of the octet baryons [35,36].

B jMSi jMAi
p 1ffiffi

6
p ½ðudþ duÞu� 2uud� 1ffiffi

2
p ðud� duÞu

n � 1ffiffi
6

p ½ðudþ duÞd� 2ddu� 1ffiffi
2

p ðud� duÞd
�0 1

2 ½ðdsþ sdÞu� ðusþ suÞd� 1ffiffiffiffi
12

p ½ðsd� dsÞu� ðsu� usÞdþ 2ðdu� duÞs�
�þ 1ffiffi

6
p ½ðusþ suÞu� 2uus� 1ffiffi

2
p ðus� suÞu

�0 1ffiffiffiffi
12

p ½ðsdþ dsÞuþ ðsuþ usÞd� 2ðudþ duÞs� 1
2 ½ðds� sdÞu� ðus� suÞd�

�� 1ffiffi
6

p ½ðsdþ dsÞd� 2dds� 1ffiffi
2

p ðds� sdÞd
�0 � 1ffiffi

6
p ½ðusþ suÞs� 2ssu� 1ffiffi

2
p ðus� suÞs

�� � 1ffiffi
6

p ½ðdsþ sdÞs� 2ssd� 1ffiffi
2

p ðds� sdÞs
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c NðP; kÞ ¼ NN

mDð�1 þ �NÞð�2 þ �NÞ ; (2.9)

c �ðP; kÞ ¼ N�

mDð�1 þ ��Þð�3 þ ��Þ ; (2.10)

c �ðP; kÞ ¼ N�

mDð�1 þ ��Þð�3 þ ��Þ ; (2.11)

c�ðP; kÞ ¼ N�

mDð�1 þ ��Þð�4 þ ��Þ ; (2.12)

where NB are the normalization constants and �i (i ¼ 1, 2,
3, 4) are the momentum range parameters in units of mD.
We use the parameters determined in Ref. [34], namely,
�1 ¼ 0:0532, �2 ¼ 0:809, �3 ¼ 0:603, and �4 ¼ 0:381,
in which we obtain natural order for the size of the baryon
cores [34].

The octet baryon masses can be described considering
the pion-baryon SUð3Þ couplings. We use the following
experimental baryon mass values: MN ¼ 0:939 GeV,
M� ¼ 1:116 GeV, M� ¼ 1:192 GeV, and M� ¼
1:318 GeV. The mass of the baryon B in the octet can be
represented asMB ¼ M0B þ�0ðMBÞ, whereM0B is a con-
stant and �0ðMBÞ the self-energy at the pole position,
which differs for the octet isomultiplet (N, �, � and �)
[36]. The self-energy is evaluated neglecting the diagrams
with heavy mesons in the first approximation and can be
expressed as �0 ¼ G0BB0, where G0B is a factor depend-
ing on the coupling of pion with the baryonB, andB0 is the
value of the Feynman integral (with the coupling constants
removed) with the mass MB. The octet baryon masses can
be reproduced with an accuracy better than 7% for the
SUð6Þ value � � D=ðFþDÞ ¼ 0:6 with M0 ¼
1:342 GeV and B0 ¼ �0:127 GeV [34]. The details of
the SUð3Þ couplings and coefficients G0B are presented
in Ref. [36].

B. Decuplet baryon wave functions

We write down the decuplet baryon wave functions
in the S-state approximation for the quark-diquark
system [37],

�B0 ðP; kÞ ¼ �c B0 ðP; kÞ"��� ðPÞu�ðPÞjB0i; (2.13)

where jB0i is the flavor state, u� is the Rarita-Schwinger
vector-spinor, and "�ðPÞ is the diquark polarization vector
in the decuplet baryon B0 [41]. The explicit expressions are
presented in Table II. The decuplet baryon radial wave
functions c B0 , for B0 ¼ �, ��, ��, �, are given by [37]

c �ðP; kÞ ¼ N�

mDð�1 þ ��Þ3
; (2.14)

c �� ðP; kÞ ¼ N��

mDð�1 þ ��� Þ2ð�2 þ ��� Þ ; (2.15)

c�� ðP; kÞ ¼ N��

mDð�1 þ ��� Þð�2 þ ��� Þ2 ; (2.16)

c�ðP; kÞ ¼ N�

mDð�2 þ ��Þ3
; (2.17)

where NB0 are the normalization constants and �B0 is given
by Eq. (2.8) with MB replaced by MB0 . The wave function
�� is also given for completeness. We use the parameters
in Ref. [37], �1 ¼ 0:3366 and �2 ¼ 0:1630. A remark
about the determination of these parameters is in order.
The parameter �1 was determined in Refs. [33,46], using a
model with the dominant S-state contribution and very
small D-state corrections, utilizing physical and lattice
QCD data for the ��N ! � reaction. The same value of
�1 was used in Ref. [37]. In that work the lattice data for
the decuplet electromagnetic form factors [52] were used
to calibrate the value of �2, neglecting the effects of the D
states. This is justified by the smallness of the D-state
contributions, observed previously in the ��N ! � tran-
sition (smaller than 1% in the � wave function) [46].
As for the decuplet baryon masses, they can also be

described taking into account the self-energy corrections
and the SUð3Þ pion-baryon couplings. In this case we write
MB0 ¼M0B0 þ��

0ðMB0 Þ with ��
0¼G1B0B1þG2B0B2, where

the terms in G1B0 and G2B0 are, respectively, associated with
the intermediate states of the octet and decuplet baryons and
depend on the baryon flavors. B1 and B2 are the Feynman
integrals, respectively, for an intermediate baryon of the octet
and decuplet multiplet. See Appendix A for details. We can
reproduce the decuplet masses, M�¼1:232GeV, M�� ¼
1:385GeV, M�� ¼1:533GeV, andM� ¼ 1:672 GeV, with
a precision better than 0.1%, using M0B0 ¼ 1:672 GeV,
B1 ¼ �0:544 GeV, andB2 ¼ �0:266 GeV.

C. Transition current

The electromagnetic transition current J�, associated
with the transition ��B ! B0, can be written in the
relativistic impulse approximation [32,39,40],

TABLE II. Quark flavor wave functions jB0i for the decuplet
baryons [37].

B0 jB0i
�þþ uuu
�þ 1ffiffi

3
p ½uudþ uduþ duu�

�0 1ffiffi
3

p ½dduþ dudþ udd�
�� ddd

��þ 1ffiffi
3

p ½uusþ usuþ suu�
��0 1ffiffi

6
p ½udsþ dusþ usdþ sudþ dsuþ sdu�

��� 1ffiffi
3

p ½ddsþ dsdþ sdd�
��0 1ffiffi

3
p ½ussþ susþ ssu�

��� 1ffiffi
3

p ½dssþ sdsþ ssd�
�� sss
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J� ¼ 3
X
�

Z
k

��B0 ðPþ; kÞj�q ðqÞ�BðP�; kÞ; (2.18)

where Pþ (P�) is the final (initial) baryon momentum, k
the momentum of the on-shell diquark, and j

�
q ðqÞ is the

quark current, depending on the transferred momentum
q ¼ Pþ � P� and on the quark flavor index (u, d or s).
We represent the electromagnetic current in units of the
proton charge e. Note the sum in the diquark polarization
states (� ¼ 0, �1). As mentioned already, the factor 3
takes into account the sum in the quarks based on the
wave function symmetry. The integral symbol represents

Z
k
¼

Z d3k

2EDð2�Þ3
; (2.19)

with ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

.

D. Quark current

The quark current j�q effectively parametrizes the con-
stituent quark electromagnetic structure and thus includes
the effects due to the gluon and meson dressing.

The operator j
�
q has the generic structure [34,37,39,53],

j�q ðqÞ ¼ j1

�
�� � 6qq�

q2

�
þ j2

i	�
q

2MN

; (2.20)

where MN is the nucleon mass and ji (i ¼ 1, 2) are flavor
operators acting on the third quark in the jMAi or jMSi
wave functions. For the quark current we use,

ji¼1

6
fiþ�0þ1

2
fi��3þ1

6
fi0�s; ði¼1;2Þ; (2.21)

where

�0 ¼
1 0 0

0 1 0

0 0 0

0
BB@

1
CCA; �3 ¼

1 0 0

0 �1 0

0 0 0

0
BB@

1
CCA; (2.22)

�s �
0 0 0

0 0 0

0 0 �2

0
BB@

1
CCA (2.23)

are the flavor matrices. These operators act on the quark
wave function in flavor space qT ¼ ðudsÞ. The functions
fi�ðQ2Þ with Q2 ¼ �q2 are the quark form factors (see
Ref. [34] for details) and are normalized as f1�ð0Þ ¼ 1,
f2þð0Þ ¼ �þ, f2þð0Þ ¼ ��, and f20ð0Þ ¼ �0. We can
represent the isoscalar (�þ), isovector (��), and �0 in
terms of the quark q ¼ u, d, s anomalous magnetic
moments, defining �q by eq�q � j2ð0Þ, where eq is the

quark charge. One obtains then �þ ¼ 2�u � �d, �� ¼
1
3 ð2�u þ �dÞ, and �0 ¼ �s. The values of the quark anoma-

lous magnetic moments were fixed in the previous works as
�u ¼ 1:711, �d ¼ 1:987, and �s ¼ 1:462 [34,37].

Note that the values for the quark anomalous magnetic
moments �q, defined according to Eq. (2.20), are expressed

in units of nuclear magneton. In a naive conversion one can
use the constituent quark mass mq � MN=3, which gives a

factor of 1=3. In the covariant spectator quark model, the
anomalous magnetic moment takes into account the inter-
nal structure of the constituent quark. A simple estimate of
the lowest-order effect of the gluon to the electromagnetic
vertex gives �q ’ 1:5 [39]. Therefore, deviations from the

value 1.5 can be interpreted as a consequence of the
internal electromagnetic structure. To compare our results
with those of the quark anomalous magnetic moment
usually found in the literature, �0

q, where the quark charge

eq is included in the definition, we use �0
q ¼ 1

3 eq�q. We

obtain then �0
u ¼ 0:380, �0

d ¼ �0:221, and �0
s ¼ �0:162

[assuming ms ¼ mu, md, according to SUð3Þ].
Our values for �0

u and �0
d are close to the results of

others such as the naive quark model [54], and calculations
based on Dyson-Schwinger formalism [55,56], but are
larger in absolute values than the other models such as,
for instance, light-front constituent quark models [57]
and the direct estimates of meson-cloud corrections [58]
(�0

u ’ 0:1; �0
d ¼ �0:15, �0:1).

The inclusion of the term�6qq�=q2 in the quark current
(2.20) is equivalent to using the Landau prescription
[59,60] to the final electromagnetic current (2.18). The
term restores current conservation but does not affect the
results of the observables [59]. In the present study
the correction term gives no contribution to the transition
current (2.18), since the octet and decuplet states are
orthogonal.

III. ELECTROMAGNETIC FORM FACTORS

The ��B ! B0 transition current, for the case of the
initial B spinor u with momentum P� and the final
B0 vector-spinor u� with momentum Pþ, can be expressed
as [32]

J� ¼ �u�ðPþÞ½G1q
��� þG2q

�P�

þG3q
�q� �G4g

����5uðP�Þ; (3.1)

where P ¼ 1
2 ðPþ þ P�Þ. For simplicity the B and B0 spin

projections are suppressed. In the above, Gi (i ¼ 1, 2, 3, 4)
are the octet to decuplet baryon transition form factors.
Only three of them are independent. The current conser-
vation leads to the condition [32]

G4 ¼ ðMB0 þMBÞG1 þ 1

2
ðM2

B0 �M2
BÞG2 �Q2G3: (3.2)

One can convert the form factorsGi (i ¼ 1, 2, 3) into the
multipole form factors defined by Jones and Scadron [61],

G�
M ¼ K

�
½ð3MB0 þMBÞðMB0 þMBÞ þQ2� G1

MB0

þ ðM2
B0 �M2

BÞG2 � 2Q2G3

�
; (3.3)
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G�
E ¼ K

�
ðM2

B0 �M2
B �Q2Þ G1

MB0

þ ðM2
B0 �M2

BÞG2 � 2Q2G3

�
; (3.4)

G�
C ¼ Kf4MB0G1 þ ð3M2

B0 þMB þQ2ÞG2

þ 2ðM2
B0 �M2

B �Q2ÞG3g; (3.5)

with

K ¼ MB

3ðMB0 þMBÞ : (3.6)

Hereafter, we use G�
X with X ¼ M, E, C to represent,

respectively, the magnetic dipole, electric quadrupole,
and Coulomb quadrupole form factors.

Next, we consider a decomposition, G�
X ¼ Gb

X þG�
X ,

where Gb
X is the contribution from the quark core (valence

quark contribution) and G�
X the pion cloud contribution.

A. Valence quark contributions

Inserting the octet baryon B and decuplet baryon B0 wave
functions, respectively, given by Eqs. (2.1) and (2.13) into
the transition current (2.18), we calculate the valence quark
contributions for the current and form factors.

To perform the sum in the flavors associated with the
octet and decuplet baryons, we follow the procedure given
in Refs. [36,37] with jBi and jB0i shown in Tables I and II,
and define

jAi � 3hB0jjijMAi; ði ¼ 1; 2Þ; (3.7)

jSi � 3hB0jjijMSi; ði ¼ 1; 2Þ: (3.8)

The explicit results for jSi are presented in Table III. As for
jAi , one has jAi � 0, which reflects the orthogonality be-
tween the spin-0 component of the octet baryon and the
spin-1 component of the decuplet baryon wave functions,
since the spin 3=2 states can have only spin-1 diquarks.

Once the coefficients jSi are determined, we can calcu-
late a factor fv and use the result of the current for the
S-state approximation given by Ref. [32]. One can write

J� ¼ 1ffiffiffi
3

p fvI � �u�ðPþÞ½2AMB0q��� � 2Aq�P�

� Aq�q� � g����5uðP�Þ; (3.9)

with A ¼ 2
ðMB0þMBÞ2þQ2 and

IðQ2Þ ¼
Z
k
c B0 ðPþ; kÞc BðP�; kÞ; (3.10)

fvðQ2Þ ¼ 1ffiffiffi
2

p
�
jS1ðQ2Þ þMB0 þMB

2MN

jS2ðQ2Þ
�
; (3.11)

where Eqs. (3.10) and (3.11) are, respectively, the overlap
of the radial wave functions and the symmetric flavor
coefficient (corresponding to the isovector coefficient in
the ��N ! � reaction).
From the relations above, one can derive

G1 ¼ AMB0G4; (3.12)

G2 ¼ �AG4; (3.13)

G3 ¼ � 1

2
AG4; (3.14)

with

G4 ¼ 2ffiffiffi
3

p fvI : (3.15)

The valence quark contributions are then given by

Gb
M ¼ 8

3
ffiffiffi
3

p MB

MB0 þMB

fvI ; (3.16)

Gb
E � 0; (3.17)

Gb
C � 0: (3.18)

The result for Gb
M depends on the details of the baryon

structure, namely the radial wave functions c B and c B0 ,
through the integral I . For Q2 ¼ 0 one can prove that
Ið0Þ � 1, establishing the upper limit of Gb

Mð0Þ as

Gb
Mð0Þ ¼ 8

3
ffiffi
3

p MB

MB0þMB
fvð0Þ. The results are given in

Table IV. Note, however, that Gb
Mð0Þ provides only an

upper limit. As shown in Appendix B, when MB <MB0

one has always Ið0Þ< 1, therefore Gb
Mð0Þ<Gb

Mð0Þ.
The expressions (3.16), (3.17), and (3.18) show, as men-

tioned already, that when we use the S-state approximation
for the octet and decuplet wave functions, one has only
nonvanishing contributions for the magnetic dipole form
factor G�

M.

In Table IV we also compare our results for Gb
Mð0Þ with

an estimate of a valence quark model (QM) [11,29] and the
results from quenched lattice QCD [29] (small meson
cloud effects). Our purpose is to show that the valence
quark contribution forG�

Mð0Þ is bounded and insufficient to

TABLE III. Coefficients jSi (i ¼ 1, 2) necessary to calculate
the valence quark contributions for the form factors.

jSi

��p ! �þ ffiffiffi
2

p
fi�

��n ! �0
ffiffiffi
2

p
fi�

��� ! ��0
ffiffi
3
2

q
fi�

���þ ! ��þ ffiffi
2

p
6 ðfiþ þ 3fi� þ 2fi0Þ

���0 ! ��0 ffiffi
2

p
6 ðfiþ þ 2fi0Þ

���� ! ��� ffiffi
2

p
6 ðfiþ � 3fi� þ 2fi0Þ

���0 ! ��0 ffiffi
2

p
6 ðfiþ þ 3fi� þ 2fi0Þ

���� ! ��� ffiffi
2

p
6 ðfiþ � 3fi� þ 2fi0Þ
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explain the experimental results. Taking the ��N ! � case
as an example, our estimate, the QM result, and the lattice
QCD results giveG�

Mð0Þ � 2, while the experimental result
is 3:02� 0:03 [4]. Therefore, the valence quark contribu-
tion explains only about 70% of the experimental result.

For the ��N ! � reaction, one has also the results of the
quenched lattice simulation from Alexandrou et al. [31],
where the extrapolated quenched results gave G�

Mð0Þ ’ 2:1
for m� ¼ 563 MeV; G�

Mð0Þ ’ 1:9 for m� ¼ 490 MeV,
and G�

Mð0Þ ’ 1:8 for m� ¼ 411 MeV. These results are
consistent with the estimates of the covariant spectator
quark model with a regime where the meson and baryon
masses used are those corresponding to the lattice QCD
simulations [46,47].

Recall that the results described in this section include
only the valence quark contributions. In this case we can
conclude from Table III that the transitions ���þ ! ��þ
and ���0 ! ��0 would give the same results in the limit
that the octet (MB) and decuplet (MB0) baryon masses are,
respectively, the same for the octet and decuplet members,
or M� ¼ M� and M�� ¼ M�� . The same argument holds
also for the transitions ���� ! ��� and ���� ! ���.

The above relations can also be derived from the U-spin
symmetry [9]. The U-spin symmetry implies that the sys-
tems are invariant in the exchange of a d and an s quark
[6,9], or equivalently the symmetry in the same charge
multiplet.

Another interesting limit is the exact SUð3Þ symmetry
limit, when fi�ðQ2Þ ¼ fi0ðQ2Þ � fiðQ2Þ (fi are indepen-
dent of the flavors), and all the octet baryons have a unique
mass MB, and all the decuplet baryons have a unique
mass MB0 . In this limit we expect no contributions for the
reactions ���� ! ��� and ���� ! ���, because of

jSi � 0, and the same for all the other reactions, jSi ¼ffiffiffi
2

p
fi, except for �

��0 ! ��0 with jSi ¼
ffiffi
2

p
2 fi and ��� !

��0 with jSi ¼
ffiffi
3
2

q
fi. The suppression of the contributions

for the ���� ! ��� and ���� ! ��� reactions com-
pared to the others is also obtained with the U-spin sym-
metry [6,9]. Since in practice we break the SUð3Þ

symmetry using the physical masses, our estimates of the

quark core contributions Gb
Mð0Þ in Table IV can have

variations of about up to 20%, similar to the amount of
deviations in the masses.
The final result for the bare contributions given by (3.16)

should also be corrected by a factor
ffiffiffiffiffiffi
ZB

p
coming from the

normalization of the octet baryon wave function due to the
pion cloud effect. This normalization is necessary to de-
scribe the charge of the dressed baryon B. As explained in
Refs. [34–36], the quark core contribution to the electric
form factor is proportional to the factor ZB < 1. Taking the
proton as an example, the pion cloud contribution for the
charge is 0:15ZN (contribution from the core of ZN) in
the model from Ref. [34], leading to

ffiffiffiffiffiffiffi
ZN

p ¼ 0:93, in order
to reproduce the total proton charge. As for the decuplet
wave functions, there are no corrections since the model
used assumes that the pion cloud contributions are negli-
gible [37]. We note that the effect of the octet wave
function normalization is small since

ffiffiffiffiffiffi
ZB

p ’ 1; therefore,
it does not affect the results appreciably. Thus, we use the
simplest model, by setting

ffiffiffiffiffiffi
ZB

p ¼ 1. We will discuss the
impact of this approximation later.

B. Pion cloud form factors

We discuss now the pion cloud contributions for the
form factors. As before, we focus on the magnetic form
factors.
Although the pion cloud dressing is included at the

quark level effectively in the parametrization of the quark
electromagnetic form factors, there are processes involving
the pion cloud that are not taken into account. The pro-
cesses in which a pion is exchanged between the different
quarks cannot be represented by the quark dressing due to
the pion cloud. Instead, the processes in which the pion is
exchanged between different quarks are regarded as the
pion is emitted and absorbed by the overall baryon in our
model [35], which is represented by the diagram in Fig. 1.
We assume that the dominant contribution for the tran-

sitions comes from the direct coupling of the photon to the
pion as depicted in Fig. 1, suggested by chiral perturbation
theory [26]. As a consequence the pion cloud contributions
for the ��B ! B0 transitions differ only by the quark flavor

TABLE IV. Upper limit of the magnetic dipole transition

form factors for Q2 ¼ 0, Gb
Mð0Þ, which are independent of

the baryon wave function parametrizations, compared with the
results of quark models [11,29] and lattice QCD with m� ¼
662 MeV [29].

Gb
Mð0Þ QM Lattice

��p ! �þ 2.05 1.88 1.97(12)

��n ! �0 2.05 1.88 1.97(12)

��� ! ��0 2.02

���þ ! ��þ 2.30 2.34 2.03(14)

���0 ! ��0 1.07 0.99 0.92(5)

���� ! ��� �0:17 �0:36 �0:20ð4Þ
���0 ! ��0 2.47 2.72 2.10(8)

���� ! ��� �0:19 �0:42 �0:202ð28Þ

FIG. 1. Electromagnetic interaction with the pion (pion cloud
contribution). Note that between the initial octet (B) and the final
decuplet (B0) baryon states, there can be several intermediate
�B1 states.
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structure of the baryons and the kinematic effects due to
the baryon masses. In the exact SUð3Þ limit when all the
octet baryon members have the same massMB and also all
the decuplet baryon members have the mass MB0 , the pion
cloud contribution will depend only on the flavor symme-
try. Namely, the flavor effect can be determined using the
SUð3Þ meson-baryon couplings with the SUð6Þ symmetry
mixing parameter ratio, � � D=ðFþDÞ ¼ 0:6. Thus, as-
suming that the loop integrals arising from the diagram in
Fig. 1 are only weakly dependent on the octet and decuplet
baryon masses, the pion cloud contributions for all the
octet to decuplet transitions can be estimated using the
results obtained from the ��N ! � transition.

In summary, to estimate the pion cloud contributions for
the ��B ! B0 transitions, we proceed as follows:

(i) Take a parametrization established for the pion cloud
contributions for the ��N ! � transition.

(ii) Calculate the flavor corrections for the ��B ! B0
assuming that MB ¼ MN and MB0 ¼ M�.

In the ��N ! � transition the pion cloud contributions
can be represented by the phenomenological form [32]

G�
MðQ2Þ ¼ ��

�
�2

�

�2
� þQ2

�
2ð3GDÞ; (3.19)

where GD ¼ ð1þ Q2

0:71Þ�2, with Q2 in GeV2, is the nucleon

dipole form factor, �� is a coefficient associated with the
strength of the pion cloud effect, and�� a cutoff mass. The
cutoff mass �� controls the falloff of the pion cloud
effects. Note that �� gives the relative contribution of the
pion cloud to the total magnetic form factor for small Q2,

since for small Q2, G�
MðQ2Þ � 3GD, and �� � G�

MðQ2Þ
G�

MðQ2Þ .
To estimate the pion cloud dressing for the other octet to

decuplet transitions, it is enough to calculate the flavor
factor fBB0 associated with the transition ��B ! B0 nor-
malized by the transitions ��N ! � (or ��p ! �þ) as
shown next. The details are presented in Appendix C.
Recalling that the strength of the pion cloud contribution
for the ��N ! � reaction is given by the value �� at
Q2 ¼ 0, the corresponding strength for the ��B ! B0
reaction can be obtained with the replacement

�� ! fBB0��: (3.20)

Thus, the pion cloud contribution for the magnetic form
factor in the reaction ��B ! B0 is

G�
MðQ2Þ ¼ fBB0��

�
�2

�

�2
� þQ2

�
2ð3GDÞ: (3.21)

The factors fBB0 are given in Table V. Note that with the
above parametrization, we have the same Q2 dependence
for all ��B ! B0 reactions, which is a consequence of
assuming the SUð3Þ symmetry for the octet and decuplet
baryon masses.

In the calculation we use the parametrization from
Refs. [33,46]. Explicit values are �� ¼ 0:441 and

�2
� ¼ 1:53 GeV2. Although in Refs. [33,46] there are

also higher angular momentum state contributions
(D-states) aside from the S-state for the � baryon, the
effects of those states are small. Therefore, the pion cloud
parametrization given by Eq. (3.19) should be a very good
approximation even when the D-states are neglected.
In summary, we calculate the magnetic transition form

factors for the present model by

G�
MðQ2Þ ¼ Gb

MðQ2Þ þG�
MðQ2Þ; (3.22)

where Gb
M and G�

M are defined respectively by Eqs. (3.16)
and (3.21).
Note that G�

Mð0Þ gives the transition magnetic moment
in natural units. To convert G�

Mð0Þ into the transition
magnetic dipole moment �BB0 in nuclear magneton
( e
2MN

), we use [29]

�BB0 ¼ MN

MB

ffiffiffiffiffiffiffiffiffi
MB0

MB

s
G�

Mð0Þ
e

2MN

: (3.23)

IV. RESULTS

We divide our presentation of the results and analysis
into four subsections. We start with the discussion of the
numerical results for the transition form factors. Next, we
focus on the symmetry relations among the different octet
to decuplet transitions. Third, we compare the results with
the available experimental information, in particular for
the reactions aside from the ��N ! � reaction. Finally, we
discuss the overall results.

A. Octet to decuplet electromagnetic transition
form factors

The results of the transition form factors for the reac-
tions ��N ! �, ��� ! ��0, ��� ! ��, and ��� ! ��
are presented, respectively, in Figs. 2–5. The results for
��N ! � represent those two reactions, ��p ! �þ and
�� ! �0, which are equal in our model. The data are
available only for the ��p ! �þ reaction. The calcula-
tions are based on the formulation exposed in the previous
section, summarized by Eq. (3.22).
In Fig. 2 we present the result for the ��N ! � reaction,

including the total, and the contributions from the bare core
(valence quark), and the pion cloud, as well as the data for
��p ! �þ from DESY [62], SLAC [63], CLAS/Jefferson

TABLE V. Coefficients fBB0 associated with the ��B ! B0
transitions. The matrices J3 and �3 are, respectively, the third
component of the isospin-1 and isospin-1=2 operators.

fBB0

��N ! � 1

��� ! ��0 2
ffiffi
3

p
5

��� ! �� 1
5 J3

��� ! �� 1
5 �3
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Lab [64], and MAID analysis [65,66] for Q2 < 2:5 GeV2.
Note that in the region Q2 < 2:5 GeV2, the agreement
between the model result (solid line) and the data is ex-
cellent. This is because the � wave function in the model
was calibrated previously to reproduce the data [33,46]. It
should be mentioned, however, that the nucleon wave
function used here is different from the one used in
Refs. [33,46], but it was obtained from the study of the
octet baryon electromagnetic form factors [34]. Although
the pion cloud effects are included in the treatment of
the baryon systems in Ref. [34] and not included in
Refs. [33,46], both the nucleon wave functions yield very
similar results.

Figure 2 also shows the insufficiency of the valence
quark degrees of freedom only, to reproduce the magnetic
form factor. Successful description of the reaction data was
obtained using coupled channel reaction models (or dy-
namical models), where the meson-baryon interactions are
taken into account, and the effect of the meson cloud
dressing is included. Examples are the Sato-Lee model

[67,68] and the Dubna-Mainz-Tapai model [69]. Also in
these cases the pion cloud is about 30%–45% of the total.
See Refs. [1,2] for a review.
Included also in Fig. 2 is the estimate of the quark core

contributions from the EBAC group based on the Sato-Lee
model [68]. The results are obtained using the Sato-Lee
model, when the pion cloud contributions are removed.
The good agreement between our bare result (dashed line)
and the EBAC result, apart from the small deviation in the
region Q2 < 0:2 GeV2, is an indication that our parame-
trization (3.19) gives a good representation of the pion
cloud effects.
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FIG. 3 (color online). Results for the ��� ! ��0 transition.
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FIG. 2 (color online). Results for the ��N ! � transition.
Data shown are for the ��p ! �þ reaction, from DESY [62],
SLAC [63], CLAS/JLab [64], and MAID analysis [65,66]. Data
for the large Q2 region from CLAS/JLab are not included [77].
EBAC results are from Ref. [68].
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FIG. 4 (color online). Results for the ����;0 ! ���;0 reac-
tions. For the �0 case, the pion cloud contribution vanishes, and
the bare and the total contributions are equal.
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The results for G�
M, together with the bare and the pion

cloud contributions for Q2 ¼ 0, are presented in Table VI.
The comparison of the bare, Gb

Mð0Þ, with the upper limit,

Gb
Mð0Þ, in Table IV allows us to conclude that the valence

quark contribution in the model gives only about 80%–
90% of the maximum value.

In Fig. 3 one can see the dominance of the valence quark
(bare) contribution in the ��� ! ��0 reaction. This fea-
ture is expected based on the estimate of the pion cloud
contribution: about 0.92 atQ2 ¼ 0, smaller than the one for
the ��N ! � transition of 1.32 as shown in Table IV.

As for the ����;0 ! ���;0 reactions, one can observe in
Fig. 4 different trends by the � charges. For the reaction
with the �þ, the result is comparable to that of the ��N !
�, while one has a smaller magnitude of about 50% for the
reaction with the�0, and an even smaller magnitude for the
reaction with the ��. In these reactions the magnitude of
the pion cloud contributions is small—0.26 at Q2 ¼ 0
(about 20% of the ��N ! � reaction) for the reactions
with the ��—and vanishes for the reaction with the �0.
The results for the ���0;� ! ��0;� reactions are pre-

sented in Fig. 5. They are similar to the results described
for the ���þ ! ��þ and ���� ! ���, respectively, for
the reactions with the �0 and �� in the initial states.
In Figs. 2–5, we can observe the fast falloff of the pion

cloud contributions and the dominance of the valence
quark contributions with increasing Q2. For a very large
Q2, one has G�

M / 1=Q4 according to Eq. (3.16), in agree-
ment with pQCD estimates [32,70]. The pion cloud con-
tributions given by Eq. (3.21) vary as G�

M / 1=Q8.
We now comment on the effects due to the baryon wave

function normalization. As mentioned already, only the
octet baryon wave functions are subject to be modified in
the present treatment, by the factor

ffiffiffiffiffiffi
ZB

p
in the valence

quark contributions. The effect of the normalization is in
general small, since

ffiffiffiffiffiffi
ZB

p ’ 1 (
ffiffiffiffiffiffiffi
Z�

p ¼ 0:965,
ffiffiffiffiffiffiffi
Z�

p ¼
0:958 and

ffiffiffiffiffiffiffi
Z�

p ¼ 0:997), except for the core contribution
for the ��N ! � transition with a 7% correction (

ffiffiffiffiffiffiffi
ZN

p ¼
0:931). In this case, however, the effect in the total magni-
tude of the form factor is about 3%, because the correction
affects only the bare contribution and the pion cloud con-
tribution is significant (44%). Thus, we conclude that the
corrections due to the normalization of the baryon wave
functions are small (order of a few percent) and can be
neglected in a first approximation.

B. Symmetry between different transitions

Roughly, we can classify the results for the ��B ! B0
transition form factors according to the magnitudes of
magnetic dipole form factor G�

M,

large : ��N ! �; ��� ! ��0;

���þ ! ��þ; ���0 ! ��0;

moderate: ���0 ! ��0;

small: ���� ! ���; ���� ! ���:

This classification has an implication for the magnitude of
the decay widths, as we will see in the next section.
The observed magnitudes for G�

M mainly reflect the
dominant valence quark structure, although modified by
the effect of the pion cloud. As mentioned in Sec. III A
based on Table III, except for the deviations due to the
mass differences, we can expect similar results for the
���þ ! ��þ and ���0 ! ��0 transitions. The same
holds for the reactions ���� ! ��� and ���� ! ���.
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FIG. 5 (color online). Results for the ���0;�!��0;�
reactions.

TABLE VI. Results for G�
Mð0Þ. Values for jG�

Mð0Þjexp are esti-
mated by Eq. (4.1), using the experimental values of �B0!�B.

Gb
Mð0Þ G�

Mð0Þ G�
Mð0Þ jG�

Mð0Þjexp
��p ! �þ 1.63 1.32 2.95 3:04� 0:11 [4]

��n ! �0 1.63 1.32 2.95 3:04� 0:11 [4]

��� ! ��0 1.68 0.92 2.60 3:35� 0:57 [4]

���þ ! ��þ 2.09 0.26 2.35 4:10� 0:57 [5]

���0 ! ��0 0.97 0.00 0.97

���� ! ��� �0:15 �0:26 �0:42 <0:8 [8]

���0 ! ��0 2.19 0.26 2.46

���� ! ��� �0:17 �0:26 �0:43
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We compare the results for these reactions directly in
Fig. 6.

Note in Fig. 6 the closeness between the results for the
two reactions, both for the bare (dashed lines) and the total
(solid lines). These results are the consequences of the
following two effects: similarity in the valence quark
structure and identical contribution from the pion cloud
contributions (see Table V). Concerning the valence quark
contributions, the similarity in the results of the two reac-
tions is a combination of the identical transition current
coefficients (jSi ) and the kinematics. In fact, although the

mass configurations are different for the ��� ! �� and
��� ! �� reactions, the transition three-momentum jqj
atQ2 ¼ 0 in the baryon B0 rest frame, are almost the same,
0.18 and 0.20 GeV, respectively.

The difference in magnitude between the two
sets, (���þ ! ��þ, ���0 ! ��0) and (���� ! ���,
���� ! ���), in our model is a consequence of the
approximate SUð3Þ symmetry. Furthermore, as com-
mented in Sec. III A, a model with the exact SUð3Þ sym-
metry limit would give no contribution for the last two
reactions. In contrast, the small violation of the symmetry,
in particular in the SUð2Þ sector, due to the asymmetry
between the isoscalar and isovector quark form factors
f�ðQ2Þ, is the reason why the present model is successful

in the description of the neutron electric form factor
[34,35,39]. In other approaches the small magnitudes of
the G�

M results for the ���� ! ��� and ���� ! ���
reactions can be a consequence of U-spin symmetry [9].
We can also study the relation between the transitions

��N ! � and ��� ! ��0 based on the similarity sug-
gested by the valence quark structure given in Table III.
From Table III, we may conclude that the transition form
factors between the ��� ! ��0 and ��N ! � reactions

differ by a factor of
ffiffi
3
4

q
, if only the valence quark contri-

butions are considered. We examine this in Fig. 7 by
comparing the form factor of ��N ! � with that of

��� ! ��0 multiplied by
ffiffi
4
3

q
. However, the results must

be interpreted with care. Focusing on the final results (total,
solid lines), the similarity between the results for the two
reactions is an accidental combination of a large pion cloud
effect and a smaller core contribution for the ��N ! �
reaction and the opposite, a smaller pion cloud effect and a
larger core contribution for the ��� ! ��0 reaction. The
symmetry properties should be better observed in the bare
contributions (dashed lines). In fact, the two dashed lines
have a similar shape but differ in magnitude by about 20%
near Q2 ¼ 0. This is a consequence of the differences in
the masses and radial wave functions.
Then, we conclude that the closeness between the total

results for the ��N ! � and ��� ! ��0 reactions, also
predicted by the U-spin symmetry, is accidental, since the
pion cloud contributions should break the symmetry ap-
preciably. In fact, for the ��N ! � reaction, the pion cloud
contribution is 80% of the quark core contribution, while in
the ��� ! ��0 reaction, the pion contribution is 55%.
Note that the U-spin symmetry takes into account only
the valence quark contributions of the baryons. If it is
applied also for the meson cloud contributions, one must
assume the same proportionality between the meson cloud
and valence quark contributions.
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FIG. 6 (color online). Comparison between the ���þ ! ��þ
and ���0 ! ��0 reactions (top) and between the ���� ! ���
and ���0 ! ��0 reactions (bottom).
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C. Decay widths

We now discuss the results for the B0 ! �B decay
widths, which is closely connected with jG�

Mð0Þj, as we
show next. Therefore, the discussion about the decay
widths is nearly equivalent to the discussion of the magni-
tudes, jG�

Mð0Þj. Note, however, that only the decay widths
for the reactions, ��N ! �, ��� ! �0, and ���þ ! �þ
are experimentally determined.

Assuming the G�
M dominance (G�

E, G
�
C ’ 0), we can

calculate the decay width �B0!�B by [29,71,72]

�B0!�B ¼ �

16

ðM2
B0 �M2

BÞ3
M3

B0M2
B

jG�
Mð0Þj2; (4.1)

where � ¼ e2

4� ’ 1
137 is the electromagnetic fine structure

constant.
The assumption of the G�

M dominance for Q2 ¼ 0 is
justified when jG�

Eð0Þj is small enough, e.g., it is an order of
a few percent of jG�

Mð0Þj. Then, since the correction to the
term jG�

Mð0Þj2 in Eq. (4.1) enters as jG�
Mð0Þj2 þ 3jG�

Eð0Þj2,
we may neglect the G�

Eð0Þ with an accuracy of about 1%.
This is indeed supported by the different estimates for
G�

Eð0Þ [15,21,22,25,29].
Estimates of G�

Mð0Þ based on Eq. (4.1) are presented in
Table VI, together with our predictions for G�

Mð0Þ. Notice,
in particular, the result for the ��N ! � reaction,
G�

Mð0Þ ¼ 3:04� 0:11, is very close to the experimental
value of G�

Mð0Þ ¼ 3:02� 0:03 [65]. In Table VI we can
see that our results for ��� ! ��0 and ���þ ! ��þ
underestimate the values of jG�

Mð0Þj, determined from the
data. In fact our results give only 78% and 57%, respec-
tively, compared with the corresponding experimental cen-
tral values (underestimates of 1.3 and 3.1 standard
deviations, respectively). We will discuss the impact of
these results in more detail later.

In the S-state approximation with G�
E ¼ 0, we can

also calculate the helicity amplitudes A3=2 and A1=2 in

terms of G�
M using the relations A3=2 ¼ � ffiffiffi

3
p

FG�
M and

A1=2 ¼ �FG�
M, where the factor F is a given function

of Q2 [49,73]. For Q2 ¼ 0, the factor F is given by

F ¼ e
4MB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B0�M2
B

2MB

r
. In Table VII we present the results for

the helicity amplitudes A3=2 and A1=2 for Q2 ¼ 0, calcu-
lated in the approximation G�

E ¼ 0. Finally, we also
present our predictions for the decay widths calculated
by Eq. (4.1). The results are compared with the available
experimental results for �B0!�B (�exp).

Our results for the decay widths in Table VII are com-
parable with most of the predictions presented in the
literature [11–15,17,20–24,27,65]. The exception is the
result for the � ! �N reaction, where most of the models
underestimate the experimental data by more than 200 keV
[11,14,15,17,21,22,28], except for the heavy baryon chiral
perturbation theory (HB�PT) [24], large Nc limit [27], and
QCD sum rules [23].

Estimates for the ��0 ! �� decay width are in the
range 150–300 keV for a large variety of quark models,
algebraic models of hadron structure, Skyrme, and soliton
models [11–15,17,20–22]. Only HB�PT has a window
252–540 keV [24], while the large Nc limit predicts 336�
81 keV [27] and may overestimate the result of 300 keV, as
well as the QCD sum rules with 409 keV [23]. Our result,
284 keV, underestimates the experimental value from
Ref. [4] by 1.2 standard deviations, and also that from
Refs. [5,6] by 1.6 standard deviations.
As for the ��þ ! ��þ decay width, most of the pre-

dictions are in the range 50–110 keV, with the following
exceptions: QCD sum rules (150 keV) [23], an algebraic
model of hadron structure (141 keV) [28], HB�PT
(70–220 keV) [24], and large Nc limit (140� 36 keV)
[27]. Overall, these estimates are considerably smaller
than the experimental result of 250� 70 keV [5], except
for HB�PT [24]. Our estimate, 82 keV, underestimates the
data more than 2.4 standard deviations.
As for the remaining reactions, no experimental data are

available, and the decay widths we have obtained, are
comparable with those calculated by the several theoretical
models. In particular, the��0 ! ��0 decay width is close
to the ��þ ! ��þ result (82 keV versus 101 keV, in our
case); the ��0 ! ��0 decay width (14 keV) is about an
order of magnitude smaller than that for ��þ ! ��þ; and
the results for ��� ! ��� and ��� ! ��� are reduced
to a few keV (2.6 and 3.6 keV, in our case).
Concerning the ��� ! ��0 and ���þ ! ��þ decay

widths, they can also be compared with the estimates
made based on the U-spin symmetry. The U-spin symme-
try relates the ��� ! ��0 and ���þ ! ��þ reactions
with the ��N ! � reaction. One can then make predic-
tions for the ��� ! ��0 and ���þ ! ��þ reactions using
the experimental results for ��N ! �. Assuming that the
U-spin symmetry holds for the jG�

Mð0Þj, we obtain using
Eq. (4.1), 292�27 keV for ��� ! ��0 and 138� 13 keV
for ���þ ! ��þ. Note the closeness of the result for
��� ! ��0 with our result. The difference is 0.8 standard
deviations. As for the ���þ!��þ reaction, our predic-
tion, 82 keV, underestimates theU-spin symmetry estimate

TABLE VII. Results for G�
Mð0Þ, helicity amplitudes A3=2ð0Þ

and A1=2ð0Þ in 10�3 GeV�1=2 and decay widths �B0!�B in keV.

G�
Mð0Þ A3=2ð0Þ A1=2ð0Þ �B0!�B �exp

��p ! �þ 2.95 �240 �139 620 660� 47 [4]

��n ! �0 2.95 �240 �139 620 660� 47 [4]

��� ! ��0 2.60 �168 �97 284 470� 160 [4]

445� 102 [5,6]

���þ ! ��þ 2.35 �118 �68 82 250� 70 [5]

���0 ! ��0 0.97 �48 �28 14

���� ! ��� �0:42 21 12 2.6 <9:5 [8]

���0 ! ��0 2.46 �118 �68 101

���� ! ����0:43 21 12 3.1
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by 4.3 standard deviations as a consequence of the small
errorbar, although the result deviates only about 41% from
the central value.

A comment on the U-spin symmetry estimates made for
the same reactions in Ref. [6] is in order. Those estimated
values are in close agreement with the experimental
results. We note, however, that the estimates in Ref. [6]
were based on the U-spin symmetry between the helicity
amplitudes and not between the form factors G�

Mð0Þ as
discussed previously in our case. The difference in both
estimates are the mass factors included in the coefficient,

F ¼ e
4MB

ffiffiffiffiffiffiffiffiffiffiffi
MB0 jqj
MB

q
, which transforms form factors into helic-

ity amplitudes.

D. Discussion

The interpretation of the gap between our results for the
decay widths and the experimental ones can be more easily
made usingG�

Mð0Þ, assuming thatG�
M is the dominant form

factor. As discussed already, theG�
M dominance is indeed a

good approximation.
Based on the upper limits for the bare results Gb

Mð0Þ
given in Table IV represented as Gb

Mð0Þ, we can conclude
that the core contribution is at most 2.0 for ��� ! ��0 and
2.3 for ���þ ! ��þ. These limits are the consequence of
the normalization of the baryon wave functions and cannot
be exceeded if only the valence quark degrees of freedom
are considered. In the following, we assume that the ex-
perimental sign ofG�

Mð0Þ is the same asGb
Mð0Þ. In Table VI

comparing our results with the experimental estimates of
3.35 and 4.10, respectively, for ��� ! ��0 and ���þ !
��þ, one can conclude that about 1:35� 0:57 for the
former, and 1:80� 0:57 for the latter, should be a conse-
quence of other effects than the valence quarks, such as the
pion (or meson) cloud effects. However, our present esti-
mate of the pion cloud effects is very small for the
���þ ! ��þ reaction (only 0.26), leading to a noticeable
underestimate of the experimental value of 4:1� 0:6. The
necessary amount of the pion cloud would be then 1:8�
0:6, where the lower limit 1.2 is roughly the same amount
of the pion cloud in the ��N ! � reaction. This minimum
amount necessary is much larger than the 0.26 of our
present estimate. Furthermore, notice that the above esti-
mate is made using the upper limit value for Gb

Mð0Þ, which
is independent of the radial wave functions. If we use the
values for Gb

Mð0Þ given in Table VI, the amount of the
missing meson cloud contribution should be even larger
(2:0� 0:6 for the ���þ ! ��þ case).

Then, we conclude that even larger pion or other meson
cloud contributions are necessary to explain the ���þ !
��þ data, in particular the decay width. We emphasize that
this conclusion is not only restricted to our model, but can
also be inferred from a large variety of theoretical models.
As mentioned already, typical predictions for the ��þ !
��þ decay width are in the 50–110 keV range, where the

more optimistic estimates differ from the experimental
value by 2 standard deviations. Similarly, the U-spin sym-
metry estimate differs by 1.6 standard deviations.
Therefore, the study of the ��B ! B0 reactions requires

more elaborated investigations. A possible effect to rescue
the shortage of the present result for ��þ ! ��þ decay
width, and not yet included in our model, is the kaon cloud
contributions. Although the contributions may be negli-
gible for the ��N ! � reaction, the kaon cloud effects are
expected to be larger in the ���0;� ! ��0;� reactions and
can also be important for the ���0;� ! ��0;� reactions,
because of the strangeness.
A simple estimate based on the exact SUð3Þ symmetry

predicts that the kaon cloud cloud contribution is 1=6 of the
pion cloud contribution for the ��N ! � reaction. The
same estimate for the ���þ ! ��þ reaction gives a kaon
cloud contribution five times larger than that of the pion
cloud in this limit, which increases the total meson cloud
contributions (pion plus kaon) to the same amount of the
��N ! � transition. This enhancement of the meson cloud
contributions would increase our estimate for the ��þ !
��þ decay width for a value compatible with the experi-
mental result. Note, however, the SUð3Þ symmetry is bro-
ken in nature; namely, the kaon is heavier than the pion,
and the kaon cloud contribution should be smaller than the
estimate based on the SUð3Þ symmetry. Nevertheless, it is
worth noting that the kaon cloud contribution should in-
crease our result and lead to a better agreement with the
data. The kaon cloud correction affects also the ���0;� !
��0;� reactions, and in a smaller amount the ��N ! �
reaction.
A more realistic estimate of the kaon cloud contributions

for the electromagnetic transition form factors, including
explicitly the dependence on the masses of the kaon, the
octet, and decuplet baryons, is a very promising topic of
investigation for the future. Such a study may help to
explain the decuplet decay widths, but it is beyond the
scope of the present work. In this exploratory study, we
have focused on the valence quark and the pion cloud
contributions.
In summary, the present study suggests that the meson

cloud effects, besides the pion cloud, are important in the
��B ! B0 reactions, in particular for those involving the
�� in the final states. As pointed out already in Refs. [5,6],
meson cloud effects may be indispensable to explain the
data. In fact, lattice QCD simulations, quark models, and
others generally underestimate the magnitude of the form
factors extracted from the data. Even the models with the
pion cloud effects [17,20–22] fail to reproduce the magni-
tude for the ��� ! ��0 and ���þ ! ��þ form factors.
The estimates from HB�PT, where the kaon cloud was
taken into account, support also the relevance of the kaon
cloud effects [24]. The quantitative estimates for the decay
widths from HB�PT (252–540 keV for ��� ! ��0 and
70–220 keV for ���þ ! ��þ) are, however, too broad to
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draw more definite conclusions. More accurate estimates
of the kaon cloud effects may help to explain the gap
existing between the predictions and the data.

In order to clarify and improve the present situation, new
experimental determinations of the decuplet to octet radia-
tive decay widths would be very useful. Of critical impor-
tance is to confirm (or deny) the result for the ��þ ! ��þ
decay width. The determination of the other decuplet
baryon radiative decay widths can also be important. For
instance, the determination of the ��0 ! ��0 decay width
would be an excellent test for theoretical models, in par-
ticular to clarify the role of the meson cloud, since the
valence quark contribution is expected to be very small.
Another interesting case would be the determination of the
��0 ! ��0 decay width, because it is expected to be close
to that of ��þ ! ��þ in our model, and also according to
the U-spin symmetry.

V. SUMMARYAND CONCLUSIONS

In this work we have studied the octet to decuplet baryon
electromagnetic transitions using the covariant spectator
quark model, and predicted the magnetic dipole form
factors for the reactions with strange baryons. In the
present study we have adopted well established parametri-
zations for the octet and decuplet baryon wave functions
developed in the previous works. Our estimates of the
valence quark contributions for the transition form factors
are based on the assumption that the quark-diquark S-state
is the dominant configuration in the baryon systems. Our
results are consistent with lattice QCD simulations and
those of other quark models. Based on the SUð3Þ symmetry
for the meson-baryon couplings, we have extended the
calculation of the pion cloud contributions for the ��N !
� reaction to the remaining ��B ! B0 reactions with
strange baryons.

It would also be very interesting to go beyond the
S-state approximation and estimate the quadrupole form
factors. However, except for the � case, one has no
reliable parametrization at the moment for the small
D-state components in the decuplet baryon wave func-
tions, which yield the contributions for those form factors
[33,37,46]. Nevertheless, the contributions from such
small components are expected to be only of the order
of a few percent compared to the magnetic dipole form
factor.

It is shown that the covariant spectator quark model is
very useful to estimate the valence quark contributions for
the ��B ! B0 transition form factors, since, in particular, it
provides an upper limit of the valence quark contributions
independent of the details of the baryon radial wave func-
tions, that can be used to infer the magnitude of other
contributions besides the valence quark contributions. In
particular, the estimate of the valence quark contribution
for the ��N ! � reaction is very important to understand
why the pion cloud, or meson cloud in general, is of

fundamental importance to obtain a consistent description
of the experimental data.
When compared with the available experimental data

(including the ��� ! ��0 and ���þ ! ��þ reactions),
we have found that the valence quark plus pion cloud
contributions are insufficient to explain the data. This
shortcoming is particularly evident for the ���þ ! ��þ
reaction. Namely, our result underestimates the experimen-
tal radiative decay width by 2.4 standard deviations. Since
the effect of the valence quark core is bounded by an upper
limit, we interpret the underestimates of the present study
as a consequence of the smallness of the meson cloud
contributions in the model, where we have included ex-
plicitly only the effect of the lightest meson, the pion in this
exploratory study where it is generally believed to be
dominant.
Our results strongly suggest the potential importance of

including clouds of mesons heavier than the pion in the
��B ! B0 transitions with strange baryons, especially the
kaon cloud. A simple estimate based on the SUð3Þ sym-
metry, using the same mass and couplings for the kaon and
pion, indicates that the meson cloud contributions, pion
plus kaon clouds, are expected to increase the magnitude
for the ��þ ! ��þ form factors and improve the present
result towards the experimental one. As the SUð3Þ sym-
metry is broken in practice, we conclude that a more
elaborate and consistent study for the meson cloud dressing
is necessary in order to understand better the ��B ! B0
data.
Finally, we emphasize again that more experimental

data for the octet to decuplet baryon transitions, ��B !
B0, are desired to clarify the present situation and shed light
on the reaction mechanisms.
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APPENDIX A: DECUPLET SELF ENERGY

In this Appendix we describe the formalism on the
decuplet self-energy and its relation to the decuplet baryon
masses.
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The decuplet baryon B0 mass can be decomposed
as MB0 ¼ M0B0 þ ��

0ðMB0 Þ, where ��
0 is the baryon

self-energy at the pole position. Considering only the
pion cloud excitations, we can represent the self-energy
as��

0 ¼ G1B0B1 þG2B0B2, whereB1 andB2 are the value

of the Feynman integrals, respectively, with an intermedi-
ate octet and decuplet baryons, where the factors G1B and
G2B are the coupling factors for the corresponding pion
loops. Using the couplings in Table VIII, we obtain the
factors listed in Table IX. As there are no pion cloud
contributions for the �� baryon, M� ¼ M0B0 .

APPENDIX B: OVERLAP INTEGRAL

In this Appendix we discuss the properties of the integral
IðQ2Þ given by Eq. (3.10), also called body integral [32],
for Q2 ¼ 0. The value of Ið0Þ measures the degree of
superposition of the radial wave functions c B0 and c B,
when Q2 ¼ 0.

In this Appendix we show that

Ið0Þ � 1; (B1)

where the equality holds only for the case MB0 ¼ MB.

Even in the equal mass case it is not assured that
Ið0Þ ¼ 1, unless c B0 � c B. We can expect, however, in
the equal mass case, Ið0Þ ’ 1, if the two radial functions
are very similar.
Next, we explicitly demonstrate the relation (B1). In

Sec. B 1 (Part 1) we explain the basic steps of the demon-
stration, while in Sec. B 2 (Part 2), we present the more
technical details.

1. Part 1

The integral Ið0Þ is covariant, therefore the result is
independent of the frame. For simplicity, we use the B0
rest frame.
In the B0 rest frame, one can write the initial (P�) and

final (Pþ) momenta, choosing z as the photon direction
(momentum q) as

Pþ ¼ ðMB0 ; 0; 0; 0Þ; P� ¼ ðEB; 0; 0;�jqjÞ;
q ¼ ð!; 0; 0; jqjÞ; (B2)

where EB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B þ jqj2
q

and ! are the energies of the

baryon B and the photon, respectively.
For Q2 ¼ 0, one has

! ¼ jqj ¼ M2
B0 �M2

B

2MB0
: (B3)

Consider now the integral,

Ið0Þ ¼
Z
k
c B0 ðPþ; kÞc BðP�; kÞ: (B4)

As explained in Sec. III A, the radial wave functions are
represented in terms of the variables �B0 and�B, defined by
Eq. (2.8). We can rewrite �B� in terms of a new variable

B� defined by


B� � PB� 	 k
MB�mD

; (B5)

where B� holds for B or B0. Then we can write

�B� ¼ 2ð
B� � 1Þ: (B6)

Redefining the diquark momentum k as � � k
mD

, and the

diquark energy as E� � ED

mD
, we can write


B0 ¼ E� ¼ 
0; (B7)

TABLE VIII. Pion-baryon couplings in SUð3Þ symmetry with
� � D=ðFþDÞ ¼ 0:6. Here �� and �� are the isospin-1 po-
larization vectors of the � and �, � are the isospin-1=2 matrices,
T are the isospin 1=2 to 3=2 transition operator matrices, J are
the isospin-1 matrices, and t are the isospin 3=2matrices. For the
diagonal operators, the isospin wave functions of the initial and
final baryons are suppressed.

�BB0 O�BB0 g�BB0

�NN g�NNð��
� 	 �Þ g

��� g���ð��
� 	 ��Þ 2

ffiffi
3

p
5 g

��� g���ð�� 	 JÞ 4
5g

��� g���ð��
� 	 �Þ � 1

5g

�N� g�N�ð��
� 	 TÞ 2

ffiffi
2

p
5 g

���� g���� ð��
� 	 ��� Þ 2

5g

���� g���� ð��
� 	 JÞ 2

ffiffi
6

p
15 g

���� g���� ð��
� 	 �Þ 2

5g

��� g���ð��
� 	 tÞ g

����� g����� ð��
� 	 JÞ 2

ffiffi
2

pffiffiffiffi
15

p g

����� g����� ð��
� 	 �Þ 1ffiffi

5
p g

TABLE IX. One pion-loop contributions to the decuplet baryon self-energies with � ¼ 0:6.

B g2G1B g2G2B

� g2�N�

P
�ð��� 	 TyÞð��

�� 	 TÞ ¼ 8
25 g

2 g2���
P

�ð��� 	 �Þð��
�� 	 �Þ ¼ g2

�� g2����
P

�ð��� 	 JÞð��
�� 	 JÞ þ g2����

P
�ð��� 	 ����Þð��

�� 	 ��
���Þ ¼ 4

15 g
2 g2�����

P
�ð��� 	 JÞð��

�� 	 JÞ ¼ 8
15g

2

�� g2
���

P
�ð��� 	 TyÞð��

�� 	 TÞ ¼ 4
25 g

2 g2
����

P
�ð��� 	 �Þð��

�� 	 �Þ ¼ 1
5g

2
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B ¼ ~EBE� þ qB�z; (B8)

where ~EB ¼ EB

MB
, qB ¼ jqj

MB
and 
0 � E�.

With the above notations, we can write (B4) as

Ið0Þ ¼
Z
�
c B0 ð
B0 Þc Bð
BÞ: (B9)

The normalization conditions in the same notations areZ
�
½c Bð
0Þ�2 ¼ 1; (B10)

Z
�
½c B0 ð
0Þ�2 ¼ 1: (B11)

Note that, the both conditions are represented in terms of
the same argument 
0, since in the rest frame of each
particle, all particles have the same value for 
B� .

As shown in Appendix B 2, we can prove that

Ið0Þ ¼
Z
�
c B0 ð
0Þc Bð
BÞ;

�
Z
�
c B0 ð
0Þc Bð
0Þ; (B12)

where the equality holds only for the case MB0 ¼ MB.
Then, using the Cauchy-Schwarz-Hölder inequality for
non-negative functions,�Z

�
c B0 ð
0Þc Bð
0Þ

�
2 �

�Z
�
½c B0 ð
0Þ�2

��Z
�
½c Bð
0Þ�2

�
;

(B13)

we conclude from Eqs. (B10) and (B11) that��������
Z
�
c B0 ð
0Þc Bð
0Þ

��������� 1: (B14)

Combining the result (B14) with (B12) for the case
where both radial wave functions are positive, one has

Ið0Þ � 1; (B15)

where the equality holds only for the case MB0 ¼ MB

[when 
B0 � 
B ¼ 
0].
The details of the demonstration of Eq. (B12) are in the

next section.

2. Part 2

Here we demonstrate the result given by Eq. (B12).
Consider the integral

Ið0Þ ¼
Z
�
c B0 ð
0Þc Bð
BÞ; (B16)

where


B ¼ ~EBE� þ qB�z: (B17)

Note that, in the case MB0 ¼ MB one has qB ¼ 0, thus

B ¼ 
0, and

Ið0Þ ¼
Z
�
c B0 ð
0Þc Bð
0Þ: (B18)

Consider now the case qB > 0 (whenMB0 >MB). In this
case, according to Eq. (B8),
B has an angular dependence.

Changing the integration variables to � ¼ jkj
mD

and z ¼
cos�, where � is the angle with q (z direction), using �z ¼
�z, one can represent Eq. (B16) as

Ið0Þ ¼ m2
D

Z þ1

0

�2d�

ð2�Þ22E�

c B0 ð
0Þ
�Z 1

�1
dzc Bð
BÞ

�
:

(B19)

Taking in consideration the definition of c B given by
Eqs. (2.9), (2.10), (2.11), and (2.12), we can write c B as

c Bð
BÞ ¼ NB

4mD

1

�i þ 
B

1

�j þ 
B

; (B20)

where i, j ¼ 1, 2, 3, 4, but i � j, represent the possible
indices, and �i ¼ 1

2 ð�i � 2Þ with �i >�1 (because

�i > 0). Using the form (B20), we can now write

Ið0Þ ¼ mDNB

4

Z þ1

0

�2d�

ð2�Þ22E�

c B0 ð
0ÞIzðqBÞ; (B21)

where

IzðqBÞ ¼
Z 1

�1
dz

1

�i þ 
B

1

�j þ 
B

: (B22)

The last function includes all the qB dependence of the
integral Ið0Þ. The � dependence on IzðqBÞ is omitted for
simplicity.
For the present case we can assume that �j > �i without

loss of generality. Then, the integration in z in (B22) can be
performed with the decomposition,

IzðqBÞ ¼ 1

�j � �i

�Z 1

�1
dz

1

�i þ 
B

�
Z 1

�1
dz

1

�j þ 
B

�
:

(B23)

Defining

Gð�i; qBÞ �
Z 1

�1
dz

1

�i þ 
B

;

¼ 1

qB�
log

�i þ ~EBE� þ qB�

�i þ ~EBE� � qB�
; (B24)

we can write

IzðqBÞ ¼ 1

�j � �i

½Gð�i; qBÞ �Gð�j; qBÞ�: (B25)

The next step is to prove that IzðqBÞ decreases when qB
increases. Performing the derivation in qB, one has
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dIz
dqB

¼ 1

�j � �i

�
� 1

qB
½Gð�i; qBÞ �Gð�j; qBÞ�

þ ½Hð�i; qBÞ �Hð�j; qBÞ�
�
; (B26)

where

Hð�i; qBÞ ¼ 1

qB�

�
1

�i þ ~EBE� þ qB�

� 1

�i þ ~EBE� � qB�

�
: (B27)

Let us consider first the term

T1 ¼ Gð�i; qBÞ �Gð�j; qBÞ: (B28)

Using the explicit form given by Eq. (B24), we can write

T1 ¼ 1

qB�
log

�i�jþ tþð�iþ�jÞ ~EBE�þð�j��iÞqB�
�i�jþ tþð�iþ�jÞ ~EBE��ð�j��iÞqB�

;

(B29)

where t ¼ 1þ �2 þ q2B. When �j > �i, the argument

of the log function, u, is larger than 1. Therefore
log u > 0 and

T1 > 0; (B30)

when �j > �i.

Consider now

T2 ¼ Hð�i; qLÞ �Hð�j; qLÞ: (B31)

Working with the expression (B27), we obtain,

Hð�i; qLÞ ¼ � 1

ð�i þ ~EBE�Þ2 � q2B�
2
: (B32)

Therefore,

T2 ¼ 1

ð�j þ ~EBE�Þ2 � q2B�
2
� 1

ð�i þ ~EBE�Þ2 � q2B�
2
:

(B33)

If �j > �i, one has

T2 < 0: (B34)

Combining the results (B30) and (B34), we conclude
that

dIz
dqB

ðqBÞ< 0; (B35)

when �j > �i. As a consequence IzðqBÞ decreases with

increasing qB for qB > 0, and

IzðqBÞ � Izð0Þ; (B36)

where the equality holds only when qB ¼ 0.
As IzðqBÞ includes only the qB dependence in Ið0Þ,

we conclude also that Ið0Þ is a decreasing function of
qB. Furthermore, since Ið0Þ is a continuous function of
qB, the maximum value for Ið0Þ is obtained for the mini-
mum value of qB, the case qB ¼ 0, when 
B ¼ 
0.
Therefore,

Ið0Þ<
Z
�
c B0 ð
0Þc Bð
0Þ; (B37)

if qB > 0, and

Ið0Þ ¼
Z
�
c B0 ð
0Þc Bð
0Þ; (B38)

if qB ¼ 0.

APPENDIX C: PION CLOUD DRESSING

In this Appendix we present the expressions for the pion
cloud contributions. We assume that the leading contribu-
tion for the pion cloud dressing is given by the diagram
with a direct coupling of a photon to pion. We assume also
that in the first approximation, the pion baryon vertex can
be represented by the results of the cloudy bag model
(CBM) [74–76], with the couplings determined by SUð6Þ
symmetry. A similar approximation was also used in
Ref. [49].
In this description the pion cloud contributions for the

magnetic transition form factors are determined by a func-
tion FBB0 , where B (B0) stands for the initial (final) state
baryon.
Note that the function FBB0 can be a sum of different

amplitudes associated with the several intermediate baryon

TABLE X. Pion cloud contributions for G�
M, expressed in terms of the function FBB0

(combination of the integrals HBB0 ðB1Þ).
FBB0

��N ! � FN� ¼ 4
15

ffiffi
3

p ½HN�ðNÞ þ 5HN�ð�Þ�
��� ! �� F��� ¼ 8

75 ½H��� ð�Þ þ 5H��� ð��Þ�
��� ! �� F��� ¼ 4

75
ffiffi
3

p ½3H��� ð�Þ � 2H��� ð�Þ þ 5H��� ð��Þ�J3
��� ! �� F��� ¼ 4

75
ffiffi
3

p ½H��� ð�Þ þ 5H��� ð��Þ��3
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B1 states (octet or decuplet baryons) as shown in Fig. 1.
Taking into account the possible spin and flavor states, we
can reduce the function FBB0 ðB1Þ to a combination of scalar
integral HBB0 ðB1Þ.

The results of the pion cloud contributions are presented
in Table X. We note that the analysis can be extended to the
kaon and 
-meson clouds; however, these meson contri-
butions are known to be smaller than those of the pion [76],
and thus we consider only the processes with the pion loops
in this study.
Finally, under an SUð3Þ symmetry, where all the octet

members have a unique mass MB and all the decuplet
members have a unique mass MB0 , we can replace
HBB0 ðB1Þ by one single function H for all the cases of the
��B ! B0 reactions. The results for this symmetry limit
are presented in Table XI. In this case, all the functions
FBB0 can be expressed in terms of the result for the ��N !
� case (FN�), as shown in the last column of Table XI.
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