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The Spt-Ada-Gcn5 Acetyltransferase (SAGA) Complex in
Aspergillus nidulans
Paraskevi Georgakopoulos, Robin A. Lockington¤, Joan M. Kelly*

School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia

Abstract

A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate,
but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a
component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, the SAGA complex may have a role in acetate
repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA
complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a
complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to
glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination
(DUB) module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing
homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p
and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-
purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus,
deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.
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Introduction

The SAGA complex has been extensively studied in Saccharo-

myces cerevisiae, and is highly conserved from yeast to humans [1].

In S. cerevisiae, the SAGA complex is a 1.8 MDa multiprotein

complex involved in the regulation of genes that are expressed in

response to stresses including metabolic starvation, DNA damage

and heat, that account for approximately 10% of yeast genes [2].

Certain components of the SAGA complex bind directly to the

TATA-box binding protein (TBP), and these interactions are

important for the recruitment of TBP to the promoter [3]. The

SAGA complex in S. cerevisiae consists of approximately 20

polypeptide subunits, which form modules within the complex

[4]. One module, required for histone acetyltransferase (HAT)

activity, comprises Gcn5p, Ada2p, Ada3p and Sgf29p. A second

module, required for TBP binding, contains both Spt3p and

Spt8p. Mutations in genes encoding proteins in the third module,

Spt20p, Spt7p and Ada1p, have severe phenotypes due to

complete disruption of the SAGA complex, whilst mutations of

Spt3p and Spt8p have milder phenotypes [5], [6]. The fourth

module includes Ubp8p, a histone deubiquitinase, Sgf11p and

Sus1p, which are co-dependent for the deubiquitinating activity

and their interaction with the SAGA complex, and Sgf73p, which

is required to maintain proper histone ubiquitination levels by

anchoring the deubiquitination module to the SAGA complex [7–

9]. SAGA also contains transcription association factors (TAFIIs),

Tra1, which interacts with activators, Chd1p, which is a

chromatin remodeling protein that has been shown to specifically

interact with methylated lysine 4 on Histone H3 that is associated

with transcriptional activity, and Sgf29p, which binds to methyl-

ated histone H3K4, this in turn facilitates histone H3 acetylation

by the SAGA complex [10–15].

Less is known about the SAGA complex in A. nidulans. Reyes-

Dominguez et al. (2008) analysed strains containing deletions in

gcnE (GCN5) and adaB (ADA2), and found that nucleosome

positioning and histone H3 acetylation are independent processes

at the prnD-prnB bi-directional promoter [16]. In inducing-

repression conditions, gcnE and adaB deletion strains showed

partial derepression of the prnD-prnB transcripts, indication the

possible requirement of GcnE and AdaB for repression via CreA,

which was surprising as Gcn5p and Ada2p are required for

transcription of Gcn5p dependent promoters in S. cerevisiae.

Neither deletion affected the fully induced levels of the prnD-prnB

transcripts, suggesting that induction is independent of GcnE and

AdaB [16]. When A. nidulans and Streptomyces rapamycinicus interact,

both exhibit a stress response. Nuetzmann and colleagues used

strains containing deletions in gcnE and adaB to investigate the

response to bacterial stress in these A. nidulans strains, and showed

that the bacterium induces a histone modification via the SAGA

complex, and the activation of a cluster of genes required for the

biosynthesis of secondary metabolites derived from orsellinic acid

[17].
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Carbon catabolite repression is a mechanism in microorgan-

isms, which has evolved to regulate gene expression in response to

their environment. In the presence of a favorable carbon source

(e.g. glucose) the transcription of genes encoding enzymes required

for the utilization of alternative carbon sources is repressed [18],

[19].

In Aspergillus nidulans, glucose repression has been extensively

studied, and repression of a large number of genes subject to

carbon catabolite repression requires the transcriptional repressor

CreA [20]. In A. nidulans, acetate is a repressing carbon source that

leads to similar levels of CreA mediated repression as glucose [21].

The acdX gene was identified in a mutation screen in A. nidulans to

identify mutations affecting acetate repression, but not glucose

repression. The conservation of the amino acid sequence of AcdX

of A. nidulans and the SAGA component Spt8 of S. cerevisiae initially

suggested that the SAGA complex may play a role in acetate

repression in A. nidulans [21].

Although some experiments on GcnE and AdaB null strains

have been reported, no studies have previously been undertaken to

show whether all the components of the SAGA complex are

present in the A. nidulans genome, and whether the proteins form a

complex in A. nidulans. We report results of bioinformatic analyses

to indicate whether genes encoding the SAGA complex proteins

are present in the A. nidulans genome. We followed this up using a

biochemical approach, involving TAP-tag purification and west-

ern blot, to confirm which proteins are present as a physical

complex in A. nidulans. Since initial studies indicated that acdX

mutations affect acetate but not glucose repression [21], we also

used protein purification to determine whether there are

differences in protein composition of the SAGA complex in cells

grown in glucose compared with acetate repressing conditions.

Materials and Methods

Bioinformatics Tools
The Saccharomyces genome database (http://www.yeastgenome.

org/) and the Aspergillus genome database (http://www.aspgd.org/),

which provide integrated biological information for the organisms,

as well as tools for analysis and comparison of sequences, were used

in this analysis. The Pairwise Sequence Alignment tool, EMBOSS

Needle (http://www.ebi.ac.uk/Tools/psa/), which creates an

optimal global alignment of two sequences using the Needle-

Wunsch algorithm, was used to align sequences.

Strains and Media
The genotypes of A. nidulans strains are shown in Table 1.

Aspergillus complete and minimal media are based on those

described by Cove [22]. Carbon and nitrogen sources were added

aseptically to the media to the final concentrations shown for each

test. Transformation of A. nidulans was based on the procedure of

Tilburn et al. [23].

Construction of N2TAPSptC Strain
To obtain a strain expressing SptC N-terminally epitope tagged

with the tap tag (N2TAPSptC), a construct was made that

contained N2TAPsptC. To achieve this, primers were designed to

amplify N-TAP from pME2968 kindly provided by Professor

Gerhard H. Braus [24]. These primers were designed to

incorporate sites for the restriction enzymes NcoI and ApaI, to

enable the desired vector to be obtained via a digestion/ligation

approach (Table 2). Primers were also designed to amplify the

vector containing sptC (pSPTC), such that the restriction sites for

NcoI and ApaI were incorporated immediately after the start

codon, such that upon ligation with the purified N-TAP PCR

product, N-TAP would be incorporated immediately after the start

codon and in frame (Table 2). The pN2TAPSPTC construct was

linearized and transformed into a strain containing a deletion of

sptC (sptCD; MYCacdX;nkuAD) [21]. Transformants were obtained

by homologous integration as the strains used were in a nkuAD
background [25], and detected by morphological observation.

Protein Purification and Tandem Affinity Purification
(TAP) for A. nidulans

Tandem affinity purification was performed as described in

[24]. The purified proteins were separated by polyacrylamide gel

electrophoresis, and bands were excised from the silver-stained gel

manually, then washed, destained, reduced, alkylated, digested,

and extracted. Vacuum concentrated samples were resuspended

with 0.1% FA in 2% ACN to a total volume of 8 ml. LC-eSI-IT

MS/MS was performed using an online 1100 series HPLC system

(Aligent Technologies) and HCT Ultra 3D-Ion-Trap mass

spectrometer (Bruker Daltonics). The LC system was interfaced

to the MS using an Agilent Technologies Chip Cube operating

with a ProtlD-Chip-150 (II), which integrates the enriched column

(Zorbax 300 SB-C18, 150 nm675 nm), and nanospray emitter.

Ionizable species were trapped and the two most intense ions were

eluting at the time were fragmented by collision-induced

dissociation. MS and MS/MS spectra were subjected to peak

detection and de-convolution using DataAnalysis (Version 3.4,

Burker Daltonics). Compound lists were exported into BioTools

Table 1. Genotypes of strains used in this study.

Pseudonym Genotype Derivation

acdXD;nkuAD yA1;[acdX::A.f. riboB]; pyroA4 [nkuA::argB]; riboB2 [21]

MYCacdX;nkuAD yA1;[A.f. riboB::MYCacdX];pyroA4 [nkuA::argB]; riboB2 [21]

sptCD; MYCacdX;nkuAD yA1;[MYCacdX];pyroA4[nkuA::argB];[sptC::A.f. riboB] riboB2 [21]

N2TAPsptC;MYCacdX;nkuAD yA1;[MYCacdX];pyroA4[nkuA::argB];[N2TAPsptC] This work

doi:10.1371/journal.pone.0065221.t001

Table 2. Oligonucleotide primers used in this study.

Primer name Primer sequence 59–39

SptCfApaI GAA GGG CCC TCG TCT GAT CGT ACT CCT

SptCrNcoI GCT CCA TGG CAT ATT GCG ATT GCG AAT CTG GGA

N-TAPfNcoI GCG CCA TGG GCC GTG GAC AAC AAA TTC

N-TAPrApaI AGC GGG CCC ATC AAG TGC CCC GGA GGA

doi:10.1371/journal.pone.0065221.t002

The SAGA Comples in Aspergillus nidulans
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(Version 3.1, Burker Daltonics) then submitted to Mascot (Version

2.2).

Results and Discussion

Presence of Homologues of SAGA Complex Proteins in
A. nidulans

Bioinformatic analysis was initially undertaken to indicate

whether the SAGA complex components were present in the A.

nidulans genome. The SAGA complex components required for

structural integrity, HAT activity, TBP-binding, activator inter-

action, chromatin remodeling, and the TAFIIs, were all present in

the A. nidulans genome (Table 3). Although potential homologues

of Ubp8p and Sgf73p, which in S. cerevisiae are part of the

deubiquitinating module, were identified in the A. nidulans genome,

there were no convincing Sus1p and Sgf11p homologues.

Accession number AN7253 and AN8685 were most similar to

Sus1p and Sgf11p respectively, and using EMBOSS needle

alignment, Sus1p and AN7253 were 10.4% identical, and Sgf11p

and AN8685 were 8.3% identical (Table 3). The Expect (E) values

of Sus1p and Sgf1p are of the order E2.02, whereas other proteins

are very much lower E2.08, and it is unlikely that these are

homologues of the S. cerevisiae proteins.

Functional Expression of SptC Epitope Tagged with the
Tandem Affinity Purification (TAP) Tag

To determine that the SAGA proteins exist as a complex in

A. nidulans, SptC, the homologue of Spt3p known to be a

component of the SAGA complex in S. cerevisiae, was epitope

tagged with the TAP tag, to allow tandem affinity purification of

the complex. The N2TAPsptC fusion was integrated into the A.

nidulans genome as a single copy at its native locus, in a strain

containing a deletion of sptC. Since sptC mutant strains conidiate

poorly giving them a white appearance [21], (Figure 1a), this

allows direct identification of complementing transformants, as if
N2TAPSptC is functional, all transformants should have strong,

yellow conidiation. The desired transformants were obtained by

homologous integration in an nkuAD background (Figure 1b), [25],

and the presence of the N-TAP tag was confirmed (Figure S1).

Initially, the SAGA complex was purified from strains grown in

medium containing 1% glucose as the sole carbon source and

10 mM ammonium tartrate as the nitrogen source. Figure 2a

Table 3. The SAGA complex components present in the A. nidulans genome.

Functional modulea S. cerevisiaeb A. nidulans Acc #c Similarity/Identity E-value

Structural integrity Spt20p AN0976 (RfeE) 22.1/13.4 1.0E208

‘‘ Spt7p AN4894 39.7/25.0 1.0E289

‘‘ Ada1p AN10953 35.1/22/7 2.0E217

Hat activity Gcn5p AN3621 (GcnE) 69.5/53.0 2.0E2135

‘‘ Ada2p AN10763 (AdaB) 57.7/41.7 1.0E2106

‘‘ Ada3p AN0440 39.1/24.2 1.0E243

TBP binding Spt8p AN4670 (AcdX) 44.9/29.2 4.0E246

‘‘ Spt3p AN0719 (SptC) 65.4/47.1 2.0E275

TAFIIs Taf5p AN0292 42.0/28.2 8.0E2115

‘‘ Taf6p AN8232 57.2/37.6 1.0E290

‘‘ Taf9p AN0794 35.1/24.3 3.0E230

‘‘ Taf10p AN0154 36.9/27.2 4.0E214

‘‘ Taf12p AN2769 37.3/24.1 1.0E228

Deubiquitination Sgf73p AN11747 24.4/16.1 1.0E217

‘‘ Ubp8p AN3711 44.9/30.7 1.0E256

‘‘ Sus1p AN7253 21.3/10.4 3.8E202

‘‘ Sgf11p AN8685 13.8/08.3 9.2E202

Interact H3K4m Chd1p AN1255 51.3/37.6 0.00

‘‘ Sgf29p AN0668 27.4/19.3 1.0E223

Interact activators Tra1p AN8000 22.1/13.4 0.00

aFunctions of the S. cerevisiae SAGA complex subunits.
bS. cerevisiae homologues identified in A. nidulans.
cA. nidulans accession number.
References: RfeE [38], AdaB and GcnE [16], AcdX and SptC [21].
doi:10.1371/journal.pone.0065221.t003

Figure 1. Complementation of the sptCDMYCacdXnkuAD by
pN2TAPSPTC. sptCDMYCacdXnkuAD protoplasts plated on osmotically
stabilised minimum medium, after 3 days growth at 37uC. A) No DNA
control. B) Transformed with pN2TAPSPTC; arrow indicates comple-
mented transformant.
doi:10.1371/journal.pone.0065221.g001

The SAGA Comples in Aspergillus nidulans
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shows the results of a silver-stained polyacrylamide gel, which

contains the purified eluates of the experimental strain containing
N2TAPSptC, and the control strain containing wildtype SptC

(Figure 2a). Gel slices containing proteins from the silver-stained

gel were digested using trypsin, and peptides were analyzed by LC

MS analysis. The control lane, containing the MYCacdX; nkuAD
eluate, showed typical weak background bands from TAP

purification, but no SAGA subunits were detected. The experi-

mental lane, containing the N-TAPSptC eluate, shows multiple

bands, and LC MS analysis indicated that they were SAGA

complex subunits. Figure 2a shows the SAGA complex subunits

identified. Full details showing the complex components, A.

nidulans accession numbers, predicted molecular weights, sequence

coverage and the peptides identified are available in Table S1.

SAGA Complex Protein Composition of A. nidulans in
Carbon Repressing and Non-repressing Conditions

The purification was repeated using A. nidulans strains grown in

medium containing 1% glucose, and was also performed in

A. nidulans strains grown in media with either acetate or arabinose

as the sole carbon source, to determine whether there were

compositional differences of the SAGA complex between these

growth conditions. LC MS analysis was performed for all growth

conditions tested. Acetate was used as it has previously been shown

to be a repressing carbon source in A. nidulans, and initial studies

had indicated that components of the SAGA complex might have

a role in acetate repression [21], and arabinose was used as the

non-repressing carbon source. Figure 2b shows that there were no

compositional differences for SAGA between the different carbon

sources used. This result is consistent with findings that acdX

mutations do not lead directly to transcriptional derepression in

mycelia grown in acetate medium [21].

Similarities and Differences of the SAGA Complex in
A. nidulans and S. cerevisiae

In the growth conditions tested, A. nidulans was shown to contain

the majority of the SAGA complex components seen in S. cerevisiae;

however, the Ubp8p, and Chd1p homologues were not detected.

Published microarray evidence indicates that AN3711 (UBP8), and

AN1255 (CHD1) are expressed in glucose medium and the

expression does not change in ethanol medium or in response to

hypoxic conditions [26], [27]. S. cerevisiae Ubp8p is a histone H2B

deubiquitinating enzyme that specifically removes monoubiquitin

from lysine 123 of the H2B C-terminal tail [7], [28], and has been

shown to form a distinct module within the SAGA complex with

Sgf11p and Sus1p, which, like Ubp8p, are not required for the

structural integrity of the SAGA complex. Sgf11p is required for

the Ubp8p association with the SAGA complex and therefore

H2B deubiquitination [29]. Furthermore, association of Sus1p

with SAGA requires Ubp8p and Sgf11p. Loss of Sus1p causes an

increase in H2B ubiquitinaton and H3 methylation, to similar

levels as in strains lacking Ubp8p and Sgf11p. These results

indicate that all three proteins are co-dependent for their

interaction with SAGA, and therefore form a distinct module

within the SAGA complex [8]. In the bioinformatic analysis clear

A. nidulans homologues of the Sus1p and Sgf11p proteins were not

identified with any confidence. AN7253 and AN8685, the most

similar proteins to Sus1p and Sgf11p respectively, were not

detected in the purified complex, providing further evidence that

they are not functional homologues. Since Ubp8, Sus1p and

Sgf11p are co-dependent for their interaction with the SAGA

complex, through Sgf73 [9], the distinct deubiquiting module

containing Ubp8p present in the SAGA complex in S. cerevisiae is

most probably absent in the A. nidulans complex. Supporting this

conclusion, the procedures used, Tap-tag purification followed by

western blot, have routinely been used in Yeast in experiments

where Ubp8 and Sus1 proteins were detected as part of the SAGA

complex. For example, Henry and colleagues identified Ubp8

among Ada2-Tap-tag purified proteins, showing that Ubp8 is a

stable component of the transcriptionally relevant SAGA and

SALSA/SLIK complexes [28]. Rodriguez-Navarro and colleagues

showed that Tap-tagged Sus1 enriched all members of the SAGA

complex, and vice versa Tap-tagged SAGA subunits co precipi-

tated Sus1 [30]. Pray-Grant and others identified Ubp8 among the

proteins in a highly purified yeast SLIK complex [12]. And Kohler

and colleagues used recriprocal Ada2-Tap tag and Sus1Tap-tag

purifications, to show Sus1, Sgf11, and Ubp8 association with

SAGA [8]. Thus if deubiquiting module components were present

Figure 2. SAGA complex purification. a) Tandem affinity purification of a strain containing SptC tagged with the TAP tag (Lane 1) and a strain
with wildtype SptC (Lane 2). The gel regions that were purified are numbered, and the S. cerevisiae homologues of the SAGA complex components
identified in A. nidulans by LC MS are shown on the right. b) Tandem affinity purification of the N-TAPsptC;MYCacdX;nkuAD strain grown in media
containing either 1% glucose (Lane 1), 50 mM arabinose (Lane 2) or 50 mM sodium acetate pH 6.0 (Lane 3). LC-MS was performed for all three
conditions in this experiment. c) Figure 2c shows one of a further two repeat experiments, designed specifically to determine whether the differences
in staining intensity around 50KDa in lane 3 of Figure 2b were robustly repeatable, showing that the apparent differences in part b are an artifact.
doi:10.1371/journal.pone.0065221.g002

The SAGA Comples in Aspergillus nidulans
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in the SAGA complex in A. nidulans, these methods should detect

them.

AN3711 (Linkage Group II) encodes the most similar protein in

the A. nidulans genome to the S. cerevisiae SAGA complex

component Ubp8p. A deletion was made in a nkuAD strain of A.

nidulans [25], and was phenotypically similar to wildtype [21]. This

is consistent with the situation in yeast, where a UBP8 deletion

strain does not have a marked phenotype [28], due most probably

to other proteins that can deubiquitinate histones [21].

Although there was a clear Chd1p homologue in the genome of

A. nidulans, in the growth conditions tested, it was not detected in

the SAGA complex in these analyses. In S. cerevisiae, Chd1p

functions in chromatin remodeling, gene expression and tran-

scriptional elongation [31–33]. In strains lacking Chd1p, there is a

defect in the histone acetyltransferase activity (HAT) of SAGA on

nucleosomal histones [12]. Chd1p contains two chromodomains,

and of these chromodomain 2 facilitates SAGA HAT activity by

interacting with methylated H3-Lys9 [12]. Transcriptionally

inactive euchromatin is methylated on histone H3 at Lys 4, Lys9

and Lys 27 [34]. In S. cerevisiae, methylation of H3K4 at the GAL10

locus, is tightly regulated by the ubiquitination status of H2BK123

[35]. The SAGA complex component Ubp8p is a H2B

deubiquitinating enzyme, that specifically removes monoubiquitin

from H2BK123 [7]. This in turn modulates the level of

methylation of H3K4, and hence alters the expression of

Ubp8p-dependent genes, such as GAL10 [4,7,34]. It has been

proposed that this methyl mark may further stabilize SAGA

recruitment through Chd1p interaction [12]. The observation that

the Chd1p homologue is not detected as a component of the

SAGA complex in the growth conditions tested in A. nidulans could

be explained by the absence of the Ubp8p homologue from the

SAGA complex. It is evident that Chd1p function in S. cerevisiae is

dependent upon the Upb8p function. Therefore, since the

homologue of Ubp8p is not detected as a component of the

SAGA complex in A. nidulans under the growth conditions tested, it

is possible that the homologue of Chd1p lost its functional

requirement for the SAGA complex.

Conclusions
Most components of the yeast SAGA complex were identified in

the A. nidulans genome, and using a TAP-tagged version of SptC

we were able to confirm that these components are in a complex in

A. nidulans. In the conditions tested in this study, the homologues of

Ubp8p and Chd1p were not detected as part of the SAGA

complex in A. nidulans, which is a key difference between the

SAGA complexes of A. nidulans and S. cerevisiae. The deubiquitinat-

ing module is present in the human SAGA complex [36]. The

absence of Ubp8 and Chd1 in the complex is consistent with the

absence of clear homologues of Sus1p and Sgf11p in the A. nidulans

genome. In S. cerevisiae, Gcn5p HAT activity in SAGA is

independent of its deubiquitinating activity [9].

Further, in was evident that there were no apparent composi-

tional differences between acetate or glucose repressing growth

conditions and non-repressing growth conditions, indicating that

dynamic changes in SAGA complex composition are not

important in acetate or glucose repression.

Further experimentation will confirm and determine the

significance of these differences within the SAGA complex

between the two organisms, and whether the proteins not

identified as components of the SAGA complex in A. nidulans are

present in other complexes that provide these functions. Our

results clearly show that there are important differences between

the deubiquitination networks of S. cerevisiae and A. nidulans.

Interestingly, S. cerevisiae also lacks a clear homologue of the

conserved deubiquitinating enzyme encoded by the creB gene in A.

nidulans, despite clear homologues being present in insects and

vertebrates [37].

Supporting Information

Figure S1 Confirmation of N2TAPsptC. A) Ampilfication of

the sptC locus from the A. nidulans using primers S3KO1 and

S3KO4 [21]. B) Amplified sptC restriction products: C:ApaI;

U:undigested. As expected, a 2.4 kb band was amplified for the

wild type strain and a 2.9 kb band for the transformant, as the N-

TAP tag is 0.5 kb. The restriction enzyme ApaI was used to digest

the amplified products. The ApaI recognition site is incorporated

within the N-TAP tag; thus, only the amplified product from the

transformed strain will be digested by the ApaI restriction enzyme,

producing bands of 1954 bp and 946 bp. The amplified product

from the wild type strain contains no ApaI site. DNA sequencing

confirmed that the tag was in frame and the gene mutation free.

(DOCX)

Table S1 Proteins identified in the A. nidulans SAGA
complex.

(DOCX)
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