Molecular characterization of metastatic ovarian cancer

by MALDI imaging mass spectrometry

A thesis submitted for the degree of

Doctor of Philosophy

as a combination of research narrative and portfolio of scientific publications by

Ove Johan Ragnar Gustafsson

Adelaide Proteomics Centre

Discipline of Biochemistry

School of Molecular and Biomedical Science

The University of Adelaide, Australia

December 2011

Table of contents

Abstrac	t	9
Declara	tion	10
Acknow	/ledgement of help	11
Acknow	/ledgements	12
Publica	tions	13
Abbrev	iations	14
Chapte	r 1 Manuscript Context	17
Chapte	r 1 MALDI Imaging Mass Spectrometry (MALDI-IMS) — Application of Spatial Proteomics for	
Ovarian	a Cancer Classification and Diagnosis	19
Statem	ent of authorship for chapter 1	20
1.1	Abstract	23
1.2	Epidemiology of Ovarian Cancer	23
1.3	Early Detection of Ovarian Cancer	24
1.4	Molecular Classification of Ovarian Carcinomas	25
1.5	Application of Proteomics to Ovarian Cancer	27
1.6	Tissue Analysis by Mass Spectrometry	28
1.7	Methods for in Situ MALDI-TOF Analysis of Ovarian Cancer Tissue	32
1.8	Profiling Cancer Tissues Using MALDI-TOF MS	35
1.9	Profiling vs. Imaging	37
1.10	Software for Data Analysis	38

1.11	Automated Sample Preparation for Imaging Cancer Tissues	39
1.12	Peptide Imaging Provides Data Complementary to Protein Imaging	
1.13	Using Histology to Guide Imaging Mass Spectrometry	
1.14	Ovarian Cancer Biomarker Discovery Using Imaging Mass Spectrometry	
1.15	Application of Tryptic Digestion to Formalin-Fixed Paraffin Embedded Ovarian Tissues	
1.16	Conclusions and Future Prospects	46
Thesis syn	opsis and aims	47
Chapter 2	Materials and methods	49
2.1 N	laterials and reagents	
2.1.2	Solvents, chemicals and matrixes	49
2.1.2	2 Consumable materials	50
2.1.3	8 Proteolytic enzymes	51
2.1.4	Peptide and protein calibration standards	51
2.1.5	5 Instruments/equipment	52
2.2 C	hapter three methods	53
2.2.2	Experimental Tissues and Solvents	53
2.2.2	2 Sample Preparation	53
2.2.3	B Matrix Deposition – CHIP-1000	54
2.2.4	Matrix Deposition – ImagePrep	54
2.2.5	MALDI-TOF Imaging Mass Spectrometry and Data Analysis	55
2.3 C	hapter four methods	55
2.3.2	Chemicals and reagents	55
2.3.2	2 Tissue source	55
2.3.3	B Tissue sectioning	56
2.3.4	Tryptic digestion and matrix deposition methods (ChIP-1000)	56
2.3.5	Matrix deposition (ImagePrep station)	56

	2.3.6	MALDI-TOF/TOF imaging mass spectrometry	57
	2.3.7	7 Data processing	
	2.3.8	Haematoxylin and eosin staining	58
2.4	1 Chap	oter five methods	58
	2.4.1	Chemicals and Reagents.	58
	2.4.2	Tissue Samples.	59
	2.4.3	Section Preparation and Antigen Retrieval.	59
	2.4.4	Trypsin Deposition. ChIP-1000 Printing.	60
	2.4.5	ImagePrep Nebulization	60
	2.4.6	Matrix Deposition. ChIP-1000 Printing.	61
	2.4.7	ImagePrep Nebulization	61
	2.4.8	Imaging MALDI-TOF-MS.	61
	2.4.9	Imaging Tandem MS.	62
	2.4.10	Haematoxylin and Eosin Staining.	62
	2.4.11	In Situ Digestion and Extraction.	63
	2.4.12	HPLC and Fraction Collection.	63
	2.4.13	MALDI-TOF MS for HPLC Fractions	64
	2.4.14	Tandem MS for HPLC Fractions.	64
	2.4.15	HPLC-ESI-Ion Trap MS and MS/MS	65
	2.4.16	HPLC-ESI-LTQ-Orbitrap MS and MS/MS.	65
2.5	5 Chap	ter six and seven methods	66
	2.5.1	Chemicals and Reagents	66
	2.5.2	Tissue Samples	66
	2.5.3	Section Preparation and Antigen Retrieval	67
	2.5.4	In situ tryptic digestion	67
	2.5.5	Deposition of internal calibrants	67
	2.5.6	Matrix deposition	68
	2.5.7	MALDI-TOF-MS imaging data acquisition	68

	2.5.8	Data processing	69
	2.5.9	Haematoxylin and Eosin Staining	70
	2.5.10	K-means clustering	70
	2.5.11	Laser micro-dissection, tryptic digestion and purification	70
	2.5.12	HPLC-ESI-LTQ-Orbitrap MS and MS/MS	71
Chap	ter 3 Ma	anuscript Context	73
Chap	ter 3	Imaging Mass Spectrometry and Its Methodological Application to Murine Tissue	75
State	ment of	authorship for chapter 3	76
3.1	1 Abst	ract	78
3.2	2 Intro	duction	78
3.3	3 Resi	Its and Discussion	80
	3.3.1	Stability of Imaging Mass Spectrometry Instrumentation Allows Successful Application	80
	3.3.2	Imaging the Murine Brain at the Protein Level with the CHIP-1000 and ImagePrep	84
3.4	4 Cond	lusion	85
3.5	5 Ackr	nowledgement	85
The n	eed for	further MALDI-IMS method development	87
Chap	ter 4	Development and application of automated sample preparation methods for MALDI in	naging
mass	spectro	metry	89
4.:	1 Intro	oduction	89
4.2	2 Opti	mizing tissue section fixation to minimize analyte delocalization	90
4.3	3 Аррі	ication of automated sample preparation instruments	
	4.3.1	Application of the ImagePrep station for protein MALDI-IMS	96
4.4	4 Appl	ication of the Chemical Inkjet Printer for protein imaging	102
4.5	5 Appi	ication of methods for tryptic peptide imaging	106

4	.5.1	Tryptic peptide MALDI imaging mass spectrometry	106
4	.5.2	Tryptic peptide imaging using a ChIP-1000	107
4.6	Appli	cation of tryptic peptide imaging to ovarian cancer	
4.7	Conc	luding remarks	
4.8	Supp	lementary Information	
Chapte	r 5 Ma	nuscript Context	119
Chapte	r 5	Citric Acid Antigen Retrieval (CAAR) for Tryptic Peptide Imaging Directly on Archived Fe	ormalin-
Fixed P	araffin	-Embedded Tissue	121
Statem	ent of	authorship for chapter 5	122
5.1	Absti	ract	
5.2	Intro	duction	
5.3	Resu	lts and Discussion	
5	.3.1	Citric Acid Antigen Retrieval Provides Access to the Proteome of Archived Ovarian Cance	er Tissue.
		127	
5	.3.2	Citric Acid Antigen Retrieval Utilized Alongside Automated Nebulization.	132
5	.3.3	Tandem MS Acquisition from Tissue Sections.	141
5.4	Conc	luding Remarks	
5.5	Ackn	owledgment	
5.6	Supp	orting information	
Chapte	r 6	Evaluation of internal calibrants for tryptic peptide MALDI-IMS data	173
6.1	Intro	duction	
6.2	Resu	Its and Discussion	
6	.2.1	Automated generation of ion maps, mass deviation maps and grouped peak lists	175
6	.2.2	Characterizing m/z deviation across tissues using internal calibrants	

6.2.3	Use of internal calibrant peptides to reduce in situ m/z deviation	182
6.3 Cond	cluding Remarks	192
Chapter 7 – C	characterization of peritoneal ovarian cancer metastasis by tryptic peptide imaging mass	
spectrometry	/	193
7.1 Intro	duction	193
7.2 Doc	ulter and Discussion	100
7.2 Resu		196
7.2.1	Tryptic peptide MALDI-IMS analysis of ovarian cancer metastases	196
7.2.2	Linking peak groups to histology using IonMapper generated signal to noise maps	197
7.2.3	Peptide identification and the application of k-means clustering	203
7.2.4	Matching clusters to histology	208
7.2.5	Cancer peak group features – Hamming distance clustering results	210
7.2.6	Cancer features – Cosine distance clustering results	216
7.2.7	Combining peak group features from Hamming and cosine distance results	220
7.2.8	Peritoneal stroma features	220
7.2.9	Identification of cancer and stroma-specific peak groups by LC-coupled mass spectrometry	226
7.2.10	Improved workflow for characterization of ovarian peritoneal metastasis	235
7.3 Supp	plementary Information	241
Chapter 8	Concluding remarks	253
91 Aim	070	252
0.1 Aiiii		235
8.2 Aim	two	254
8.3 Aim	three	254
8.4 Aim	four	255
8.5 Cond	clusions and future prospects	256
References		259

Abstract

Imaging mass spectrometry (IMS) is a novel technology which measures the spatial distribution of drugs, lipids, peptides and proteins across tissue sections by application of mass spectrometry (MS) directly to the section surface. Several hundred analytes can be measured across a tissue in a single IMS experiment, without the need for antibodies and without prior knowledge of tissue composition or structure. In the context of human cancers, the molecular information collected by IMS approaches has been used to grade cancers and predict patient survival. IMS is thus a potentially technology capable of providing valuable complementary information to classical histology and immuno-histochemistry.

Ovarian cancers have the highest mortality of any gynaecological cancer. The high mortality results from late diagnosis due to the asymptomatic nature of ovarian malignancies. Advanced stage ovarian tumours will shed cancer cells into the abdominal cavity, where they subsequently implant into the peritoneum and form metastatic tumour nodules. Despite invasive surgery and adjuvant chemotherapy, there is a large increase in patient morbidity following peritoneal metastasis. Compounding this issue further is the absence of reliable grading systems for ovarian cancer and a subsequent lack of individualized treatments for specific cancer sub-types. As a result of the potential ability to grade tumours and provide patient prognoses based on IMS data, the molecular composition of ovarian metastatic tumours was investigated by IMS.

The novelty of IMS required set up of a robust and reproducible workflow. Methods were thus optimized for IMS analysis of both frozen and formalin-fixed paraffin-embedded (FFPE) ovarian tumour tissue. Subsequently it was shown that optimization of available antigen retrieval and tryptic digest methods for accessing FFPE tissues could achieve higher tryptic peptide signal to noise at a better spatial resolution than methods available in the literature. As such, a complete tryptic peptide IMS workflow was developed alongside liquid chromatography (LC) and MS/MS based peptide identification. In conjunction with this workflow, methods for improving the matching of IMS peptides to LC-MS/MS identified peptides using internal calibrants and development of an in-house software tool were described.

As a result of the work presented in this thesis, a complete tryptic peptide IMS workflow which could be applied to virtually any cancer tissue was developed. The application of this workflow, and exploratory k-means clustering, to ovarian peritoneal metastases showed that key tryptic peptides could be found which distinguish cancer tissue from the surrounding peritoneal stroma. This represented the first step in characterizing these metastatic tumours at the molecular level. The results in this thesis are a precursor to future work which will validate these peptide markers and develop a classification system for metastatic ovarian cancers based on patient survival and response to chemotherapy.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Ove Johan Ragnar Gustafsson and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed in the publications list below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Ove Johan Ragnar Gustafsson

.....

Acknowledgement of help

I would like to acknowledge the following people for their help during my thesis research:

All co-authors for the scientific research articles included in this thesis, in particular for their roles in evaluating manuscripts, which can be an arduous task. I would like to extend a special thanks to my supervisors Dr. Peter Hoffmann and Professor Shaun McColl, who were co-authors on and evaluated all manuscripts and thesis chapters.

A/Prof. Martin Oehler for his constant support of MALDI-IMS as a collaborator, contributor to project design and implementation as well as providing human ovarian tissue samples for the research presented in this thesis.

A/Prof. Inge Koch and Prof. Steve Marron for their optimization and implementation of k-means clustering, the results of which are presented in chapter seven.

James Eddes for his assistance in writing the software required to process and present the data in chapters six and seven.

Carmela Ricciardelli, Miranda Ween and Noor Lokman for their assistance with technical questions and tissue processing after surgeries.

Dr. Fergus Whitehead for his assistance annotating the metastatic tumour sections in chapter seven.

Prof. Mark Baker for arranging the loan of the ChIP-1000 instrument to the Adelaide Proteomics Centre.

Acknowledgements

Most acknowledgements finish with a profound statement, something along the lines of....wise men can't jump......ok so that's not profound at all but you know what I mean. I've never followed trends so I'm going to start mine with a joke. I don't know the reference but obviously the joke is not mine.

A cation runs into a bar screaming "I've lost my electron, I've lost my electron!". The bartender calms the ion down and asks "Are you sure?" The ion replies, "I'm positive."

Now that the giggles have subsided......When I started my Honors year in 2007, one of my supervisors asked me why I chose science. The answer now, as I write the final parts of my doctoral thesis, is thankfully the same as it was then, which I take to mean that I probably made the right choice. The answer I gave was that I will never be happy as part of the status quo. I want to be a force for change in the world, no matter how small my contribution. I have many people to thank for their support, friendship and help over the past three years. It would take many pages to properly thank everyone who has contributed to my life so I will have to settle for those which have had the greatest impact.

The Adelaide Proteomics Centre has been my home away from home for four years. Most important to my PhD experience at the centre have been my supervisors, Peter Hoffmann and Shaun McColl, who have always been supportive, patient and willing to discuss new methods and experiments.

I am forever grateful to the crew of the proteomics centre, including Mark Condina, Megan "Retallicka" Penno, James Eddes, Sandra Hack, Florian "Florider" Weiland, Karina "Kaz" Martin, Tomas "Charlie Brown" Koudelka, Yin Ying Ho and Chris "Vinnie" Cursaro. Without you all this thesis would not be possible and the past three years would have been a lot less fun. I also want to thank my close circle of friends. You know who you are (at least you should) and you also know how much friends mean in my life.

The support of parents is often unseen and even more often taken for granted. Thank you to my parents. I love you both and am forever in your debt for providing everything I ever needed to reach my goals. Finally I want to thank my beautiful fiancé Tanja. She has been the most important person in my life over the past seven years and her unwavering support during my PhD has been a blessing. Convincing such an amazing woman that I'm worth her time remains my greatest achievement.

Ove Johan Ragnar Gustafsson

.....

Publications

Directly related to thesis:

<u>Gustafsson, J. O. R</u>., M. K. Oehler *et al.* (2011). MALDI Imaging Mass Spectrometry (MALDI IMS) -Application of Spatial Proteomics for Ovarian Cancer Classification and Diagnosis. International Journal of Molecular Sciences *12*(1), 773-794 published online 21 January 2011.

<u>Gustafsson, J. O. R</u>., S. R. McColl, *et al.* (2008). "Imaging mass spectrometry and its methodological application to Murine tissue." Journal of Proteomics and Bioinformatics 1(9): 458-463.

<u>Gustafsson, J. O. R</u>., M. K. Oehler, et al. (2010). "Citric Acid Antigen Retrieval (CAAR) for Tryptic Peptide Imaging Directly on Archived Formalin-Fixed Paraffin-Embedded Tissue." J Proteome Res 9(9): 4315-4328.

Arising from thesis:

Condina, M. R., <u>Gustafsson, J. O. R</u>., *et al.* (2010). EZYprep LC-coupled MALDI-TOF/TOF MS: An improved matrix spray application for phosphopeptide characterisation. Proteomics, 10, 2516-2530.

Abbreviations

ACN	Acetonitrile
ANI	Aniline
3-AP	3-acetyl-pyridine
AR	Antigen retrieval
AWM	Abundance weighted mean
CAAR	Citric acid antigen retrieval
CCTV	Close circuit television
CHCA	α-cyano-4-hydroxycinnamic acid
ChIP-1000	Chemical inkjet printer 1000
CID	Collision induced dissociation
Da	Dalton
kDa	Kilo dalton
2-DE	Two dimensional electrophoresis
2,5-DHB	2,5-dihydroxybenzoic acid
EDTA	Ethylene diamine tetra acetic acid
ELISA	Enzyme linked immuno-sorbent assay
EOC	Epithelial ovarian carcinoma
ESI	Electro-spray ionization
EtOH	Ethanol
FA	Formic acid
FFPE	Formalin-fixed paraffin-embedded
FIGO	International federation of gynecology and obstetrics
FWHM	Full width half maximum
H&E	Haematoxylin and eosin
GAPDH	Glyeraldehyde-3-phosphate dehydrogenase
HFIP	1,1,1,3,3,3-Hexafluoro-2-propanol

hnRNP	Heterogeneous nuclear ribonucleoprotein
HPLC	High performance liquid chromatography
IHC	Immuno-histochemistry
IMS	Imaging mass spectrometry
IPA	Isopropanol
IT	lon trap
ITO	Indium tin oxide
LC	Liquid chromatography
LCM	Laser capture micro-dissection
LC-MS	Liquid chromatography – mass spectrometry
LTQ	Linear trap with quadrupole
MALDI	Matrix assisted laser desorption/ionization
MALDI-IMS	Matrix assisted laser desorption/ionization imaging mass spectrometry
МеОН	Methanol
mL	Milli litre
MS	Mass spectrometry
m/z	Mass to charge ratio
nL	Nano litre
NSCLC	Non small cell lung cancer
OCT	Optimal cutting temperature polymer
PCA	Principal component analysis
PEG	Polyethylene glycol
PIC	Percentage intensity contribution
pmol	Pico mole
png	Portable network graphic
POS	Percentage of spectra (within a cluster)
ppm	Parts per million
PTM	Post translational modification

SA	Sinapinic acid
SIMS	Secondary ion mass spectrometry
SLSC	Standard light scatter curve
SNAP	Sophisticated numerical annotation procedure
STS	Soft tissue sarcoma
TOF	Time-of-flight
TFA	Trifluoroacetic acid
TFE	2,2,2-trifluoroethanol