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Abstract: Reflectarrays composed of resonant microstrip gold patches on
adielectric substrate are demonstrated for operation at terahertz frequencies.
Based on the relation between the patch size and the reflection phase, a
progressive phase distribution is implemented on the patch array to create
a reflector able to deflect an incident beam towards a predefined angle off
the specular direction. In order to confirm the validity of the design, a set
of reflectarrays each with periodically distributed 360 x 360 patch elements
are fabricated and measured. The experimental results obtained through ter-
ahertz time-domain spectroscopy (THz-TDS) show that up to nearly 80% of
the incident amplitude is deflected into the desired direction at an operation
frequency close to 1 THz. The radiation patterns of the reflectarray in TM
and TE polarizations are also obtained at different frequencies. This work
presents an attractive concept for devel oping components able to efficiently
manipulate terahertz radiation for emerging terahertz communications.

© 2013 Optical Society of America

OCI S codes: (300.6495) Spectroscopy, terahertz; (110.5100) Phased-array imaging systems;
(240.6645) Surface differential reflectance.
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1.

Introduction

The concept of reflectarrays can be dated back to the early 1960s[1]. Combining the principles
of phased arrays and geometrical optics, areflectarray can produce predesigned radiation char-
acteristics without requiring a complicated feeding network. This operation can be achieved by
using an array of passive elements, whose individual reflection phase is dependent on a critical
dimension of a resonant structure [2]. To some extent, the performance of the reflectarray is
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mainly based on the maximum range of the phase change that can be achieved through opti-
mization of the single elements. Normally, the expectation for constructing areflectarray isthat
the possible phase change for the single element can cover one 360° cycle. This is sufficient
for narrowband operation, as the phase can be wrapped to attain larger phase variations. Owing
to the operation simplicity, various reflectarrays have drawn intensive interest in the last few
decades [3-8].

A large variety of resonant elements have been employed to achieve the desired reflection
phase change with a dependency on one of their characteristic dimensions. For instance, the
reflection phase from a stub-loaded metal patch element is varied by changing the length of
the attached stub [9]. Further to that, the phase response of a microstrip element can be tuned
by varying the size of the metal patch [10]. Some more sophisticated structures include the
“phoenix cell” with rebirth capability that provides nearly 360° phase change [11], and multi-
layered structures that provide an aternative for increasing the bandwidth of operation, how-
ever, at an expense of the simplicity [12,13].

Asfor the operation frequency, various reflectarray structures have been intensively realized
in the microwave region. Since metals perform like nearly ideal conductors in the microwave
band, metal patches with variable dimensions are common for building up reflectarrays, and
can reflect the incident waves with high efficiency [14]. As an example of successful applica-
tions, a 1.2-meter reflectarray antenna made of three stacked layers containing varying-sized
patches has been demonstrated to satisfy the demanding requirements of satellite communi-
cation [10]. The structure works in two separate frequency bands of 11.7 — 12.2 GHz and
13.75— 14.25 GHz. Hu et al. [15] proposed a millimeter wave reflectarray with phase agile
elements consisting of identical microstrip patches and a liquid crystal layer over the ground
plane. By applying two extremal bias voltagesto the liquid crystal, the wide range of the phase
change can be obtained with reasonable loss at both 102 GHz and 130 GHz. Beyond the mil-
limeter wave range, the concept of reflectarrays have been extended to the infrared band, where
a binary phase reflectarray has been realized using subwavelength metallic patches on a di-
electric substrate to act as a reflective Fresnel zone plate [7]. In addition, nano-sized spherical
particles with a core-shell structure have been investigated as concept for an optical reflectar-
ray [16,17]. By independently configuring the material properties or radii of the core and shell
structures, the reflected phase change can be controlled. Due to its complexity, the core-shell
reflectarray remains atheoretical concept. Recently areflectarray of dielectric resonators oper-
ating in the visible frequency range has been proposed and experimentally validated [18].

For the terahertz spectrum, driven by emerging solid-state sources and detectors, high-gain
antennas are required for the construction of wireless networking or imaging systems. Low-
loss terahertz reflectarray antennas thus promise attractive advantages in manipulating the ter-
ahertz radiation. Up to now, however, no reflectarray has been realized for terahertz radia
tion at around 1 THz and above. But it is certainly worth mentioning some implementations
of terahertz phased arrays such as the photoconducting antenna array with 64 electrodes by
Froberg et al. [19] and the 4 x 4 patch antenna array for indoor terahertz communication by
Islam et al. [20]. The former is sensitive to the electric noise, and the complexity of realization
could be a potential limitation of this approach. The latter can become very complicated and is
prone to high losses when the number of array elementsis large. In addition, Maki et al. [21]
demonstrated a terahertz electro-optic source based on the principle of phased array. It was
shown that the terahertz beam radiated from the crystal can be steered by controlling the in-
cident angle of the pumped beams without using actual phase shifters. Recently, a similar ap-
proach for terahertz beam steering has been implemented in a photoconductive antenna with
interference of two pump beams [22]. As components for terahertz communications, tunable
terahertz phased arrays have been proposed by Monnai et al. [23,24]. The arrays are composed
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of elements that can be reconfigured to scatter and focus surface waves dynamically. Scherger
et al. [25] demonstrated an alternative approach for terahertz beam scanning. A wedge-shaped
structure filled with liquid crystals is demonstrated to alter the transmission beam path by ap-
plying adc bias.

Towards improving the flexibility of controlling the direction of terahertz radiation, we pro-
pose in this paper the realization of reflectarrays operating at the terahertz band. The structures
employ square metal patches as resonant phase-controlling elements. Particul ar attentionis paid
to the choice of suitable materials at terahertz frequencies, while the tolerances of manufactur-
ing techniques are also taken into account. The single element is optimized by simulations
employing a Drude model expression for the metal surface impedance, and the relation be-
tween the phase response and the patch size is obtained. Based on thisrelation, areflectarray is
designed to deflect an incident wave on to a predesigned angle off the specular direction. The
wave deflection capability isessential for terahertz communicationsto aleviate the line-of-sight
limitation[26]. In order to verify the design, the terahertz reflectarrays have been fabricated and
the performance of the reflectarrays has been experimentally evaluated by using THz-TDS.

2. Principleof reflectarray for angular deflection

The diagram shown in Fig. 1 illustrates the operation principle of a reflectarray for angular
deflection. It shows an array of microstrip patch elements with progressive phase changes, de-
signed to steer the reflected beam away from the specular direction. According to the principle
of equality of optical paths, it can be computed for this geometry with square resonant patches
that the wave incident normal to the surface will be deflected towards an angle of 6, regardless
of the polarization of the incident wave. For the n'(n = 0,1, ...) element introducing the phase
change ¢, the following condition must be satisfied

¢0 + nkOAS = ¢n7 (1)

where kp is the propagation constant of the wave in free space, and As is the optical path
difference between the n and (n+ 1)™ elements after reflection. The optical path difference
As can be expressed in the present casein terms of the deflection angle 6 and unit cell dimension
a, i.e. As=a-sinf. If we define the progressive phase change as A¢ = ¢n+1 — ¢n, EQ. (1) can
be rewritten as

Aq):koAs:%asinG, 2

z
_ _ _ Incident wavefront _ _ _
y

Metalic patch

Dielectric substrate—s Ds | 4 |

Metallic ground plane

Fig. 1. Operation principle of the designed reflectarray. The phase distribution results in
deflection of anormally incident plane wave towards predesigned angle 6. Here, aindicates
the spacing between the center points of two adjacent elements, and ¢; (i = 0,1,2,3,4,5)
indicates the phase change introduced by the corresponding element.
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Fig. 2. A unit cell for the reflectarrays with a = 140 um and h = 15 um. The patch dimen-
sion | is varied within the range from 10 um to 136 um to cover a nearly full cycle of the
phase response.
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Equations (2) and (3) describe the inter-dependence between the value of the deflection angle
6 and the progressive phase change A¢. If the deflection angle is specified, the progressive
phase change can be calculated with the relation shown in Eq. (2). For the simplicity of design
and fabrication, we adopt here a strategy with periodically arranged identical linear sub-arrays.
Therefore, the progressive phase change becomes an integer fraction of 360°, e.g. a 6-element
sub-array will require a progressive phase change of 60° to satisfy the periodicity condition.
With this strategy, it is possible to determine a specified deflection angle 6 by using Eq. (3).

sinf =

3. Specific design of terahertz reflectarrays
3.1. Patch elements and characteristics

The design of the terahertz reflectarray requires special attention on the choice of materials to
satisfy micro-fabrication techniques. As shown in Fig. 2, a resonant unit element for the ter-
ahertz reflectarray proposed here is made of three layers, from top to bottom: a gold patch, a
polydimethylsiloxane (PDMS) substrate, and a platinum ground plane. Gold and platinum are
good conductors, and are not subject to oxidization in air, whereas PDMS exhibits relatively
low loss in the terahertz range. Different metals are chosen for the top and ground layer metal-
lizations because of their selectivity for patterning as they react to different etching agents. If
the same metal is used, permeation of the etchant through the PDM Swill deteriorate the ground
layer when patterning the top metallization.

In the simulation, the material parameters of the metals are obtained from a Drude model to
determine the surface impedance Zsg [27], i.e.

jouoy . 00
=/ — with = - 4
= \/ OoR+ jweg’ OR 1+ jot’ “)

where oR isthe bulk complex conductivity of the metal at the considered frequency, op the DC-
conductivity, T = 1/, the relaxation time, y, the damping frequency, 1o the permeability of
free space, p; the relative permeability, & the permittivity of free space, w = 2rf the angular
frequency, and f the frequency of the incident wave. For gold and platinum, the corresponding
parameters are op ay = 4.10 x 107 S/m, o pr = 9.43 x 10° /M, yp au = 6.48 x 10'2 Hz, and
Yp,pt = 16.73 x 10% Hz. At the operation frequency f = 1 THz, the surface impedance of gold
and platinum can be calculated as Zeg oy = 0.287 4 j 0.335 Q and Zz pt = 0.628 + | 0.667 L,
respectively. Therelative permittivity and losstangent of PDM S are 2.35 and 0.03, respectively,
as determined from measurement [28].
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Fig. 3. Simulated reflection coefficients for 2D uniform infinite patch arrays. Reflection
phase response in degree (a) and reflection magnitude in dB (b) at 1 THz as a function
of the patch size. The six points on the phase curve of the 15 um thick substrate indicate
the selected patch sizes to define a sub-array that completes one full cycle phase change.
The roughness in the magnitude and phase curves is due to the limitation in the numerical
accuracy.

For the wave deflected from the surface of the gold patch, the local phase shift can be con-
trolled by changing one or several parameters of the unit element, such asthe size of the square
gold patch | or the thickness of the substrate h. By taking the design and fabrication feasibility
into account, the side length | of the gold patch is chosen as a variable, while the unit cell size
and thickness of the PDM S substrate are selected at fixed values a = 140 um and h = 15 um,
respectively. The unit element is optimized at 1 THz by simulations using Ansys HFSS com-
mercia software with master-slave boundary conditions. When the length of the gold patch | is
varied within the range from 10 um to 136 um, the magnitude and phase of the simulated reflec-
tion coefficient for auniform 2D infinite patch array change as shown in Fig. 3. The simulation
results show that for the considered geometry and materials, the maximum range of the phase
shift covers approximately 330°, which is close to a full cycle and sufficient for the intended
operation of areflectarray. In addition, low-loss reflection is observed for al of the investigated
patch sizes with the highest loss of only about -1.2 dB on resonance.

One point to emphasize here is that the total range of the possible phase change shown in
Fig. 3(a) depends on the thickness of the substrate [2]. Generally, atotal phase range of 360° is
required for apractical design of reflectarrays, and this demand can be nearly satisfied by using
athin substrate, in practice typically thinner than one tenth of the operational wavelength. This
can be physically understood by considering the x-axis limitsin Fig. 3(a): The case of a zero-
size patch or | = O um corresponds to a reflection phase from the lower metal plane covered
with adielectric layer (substrate), whereas the full-size patch corresponds to a reflection phase
from afull metallic plane on the top of the substrate. However, as Fig. 3(a) infers, the drawback
associated with the use of a thinner substrate is that it results in a steeper phase slope versus
a variation of the metal patch size I, particularly around the resonant length. A consequence
of a rapid variation in the phase curve is a high sensitivity of the local reflection phase on
the patch size. Therefore, the performance of the design employing thinner substrates is more
affected by dight inaccuracies of the patch size. In addition, as shown in Fig. 3(b), given the
same material, the loss of the reflectarray is also mainly influenced by the thickness of the
substrate. A thinner substrate corresponds to a higher loss because of a stronger resonance.
These trade-offs underpin the choice of thickness h = 15 um for the PDM S substrate.
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Fig. 4. Instantaneous scattered field from the reflectarray in TM and TE polarization at
1 THz. (a) Field distribution for the TM polarization. (b) Field distribution with the same
structure and incident direction as in (a) but for the TE polarization. The incident wave is
off normal with 6 = 21°. For the TM polarization, the E field is in the yz plane, and for
the TE polarization, the E field isin parallel with the x axis. (c) Structure of one sub-array
made of 6 patch elements depicted at the same scale as those in (&) and (b).

3.2. Design and simulations of the reflectarray

Based on the relation between the phase change and the patch size shown in Fig. 3, a reflec-
tarray with an off-specular reflection in one plane is designed. The progressive phase change
A¢ is fixed at 60°. Therefore the number of elements for one linear sub-array amounts to 6
so that it covers one cycle of 360°. The unwrapped phase between the first and last elements
of the sub-array also amounts to 60°, so that a periodic arrangement of the sub-array fulfills
the desired deflection function. According to Eqg. (3), the deflection angle 6 is calculated to be
around 21°. As shown in Fig. 3(a), the chosen 6 elements in the linear sub-array exhibit the
phases decreasing from 142° to -158° in 60° increments. This corresponds to increasing gold
patch side lengths of 17 um, 79 um, 85um, 89 um, 94 um, and 112 um. By the principle of
reversibility of light, if the wave isincident with an angle of 21° away from the normal, the di-
rection of the deflected wave will be perpendicular to the surface of the reflectarray. Therefore,
for convenience of observation, the incident wave is set with an angle of 21° in the simulation
with HFSS.

The numerically resolved instantaneous field distributions of the deflected wave for the TM
and TE polarizationsare shown in Figs. 4(a) and 4(b), respectively. It isclear that the plane wave
is deflected toward the normal direction, in close accordance with the theory. The field distribu-
tions for both the TM and TE polarizations are similar. A slight difference can be observed
in the immediate proximity to the surface. This difference can be explained by the orthogonal
mode field distributions under the patch elements for the two polarizations. Away from the sur-
face, the slight deviation from aperfect plane wave is explained by the following effects. Firstly,
inter-element coupling is different in uniform and nonuniform arrays. In the optimization of a
single element, an infinite array with identical elementsis considered, and therelation shownin
Fig. 3isobtained based on this assumption. In contrast, in the configuration of the sub-array, the
dimensions of the neighboring elements vary in one direction, resulting in a different coupling
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behavior. Generally, smaller variations in the reflection phase of successive elementsresultin a
flatter wave front, and therefore a better reflectarray performance. Secondly, the stronger atten-
uation of the patches near resonance, as illustrated by the magnitude curve in Fig. 3(b), affects
the uniformity of the deflected wave. Thirdly, the resolution of the patch size in the ssimulation
is limited to 1 um to reflect the tolerance inherent to the fabrication process. This resolution
limitation is relatively coarse and can cause significant error for the required phase response
particularly around the resonance. This is clearly observed in Fig. 3(a), where the phase re-
sponse close to resonance is very sensitive to minor inaccuracies of the patch size. A less steep
curve of the phase versus the patch size can decrease the sensitivity to the tolerances, however
at the cost of areduced range of available phases.

4. Fabrication and measurement

In order to validate the design, the reflectarray configuration shown in Fig. 4(c) has been fabri-
cated and measured. The details of the fabrication process and measurement system are given
in this section.

4.1. Fabrication

The terahertz reflectarray antennas are fabricated using microfabrication and polymer process-
ing techniques on 3" silicon substrates. The silicon (100) oriented substrates are cleaned in
solvents (acetone and isopropy! acohol) and dried using high purity compressed nitrogen. A
20nm layer of titanium serves as an adhesion promoter and a 200nm thick layer of platinum
for the ground plane are deposited from 99.99% pure discs by electron beam evaporation at
room temperature following pumpdown to a base pressure of 1 x 10~7 Torr. PDMS, asilicone
polymer prepared as a two-part mixture in a 1:10 ratio of hardener and pre-polymer, is spun
on to the surface of the platinum coated wafers. This PDMS layer defines the dielectric in the
reflectarray antenna. As the PDM S thickness is a critical parameter, the thickness dependence
as a function of the spin speed at a fixed acceleration of 1,000rpm/s? and duration of 30s is
experimentally determined. Thisis defined as an equation that presents a spin speed (r, in rpm)
for adesired PDMS thickness (h, in um) as:

r = 0.0001h* — 0.0328h° + 3.9880h? — 238.460h 4 7926.4 . (5)

For thiswork, to attain a 15 um thick PDM S layer, a spin speed of 5,000 rpm is used. The spun
on PDMSlayer iscured at 72°C for 1 hour. A 200 nm gold layer, with a20 nm chromium adhe-
sion layer, is then deposited by electron beam evaporation. These metal layers are patterned to
define the antenna patches by photolithography and wet etching. The samples are then cleaned
with solvents to strip residual photoresist in preparation for terahertz measurements.

4.2. Measurement system

The sample shown in Fig. 5(a) is made of 360 x 360 patch elements with periodic sub-array
arrangement. The microscopy image shown in Fig. 5(b) reveals the details of asmall area of the
sample. The THz-TDs measurement system, Tera K15 developed by Menlo Systems GmbH,
is shown in Fig. 6(a) with a corresponding schematic representation in Fig. 6(b). The emitter
and detector antenna models are Teral5-SL 25-FC and Teral5-DP25-FC, respectively. The two
identical lenses with a diameter of 50 mm are made of a polymer and have an effective focal
length of 54 mm and a working distance of 46 mm. A femtosecond optical pulse is guided
by afiber from a near-infrared laser source to the terahertz emitter. The generated broadband
terahertz radiation is then guided from the emitter to the reflectarray viaLens 1 that collimates
the divergent terahertz beam from the emitter. The parallel beam is either reflected or deflected,
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depending on the frequency, when it is incident on the surface of the reflectarray sample. The
detection part of the system, comprising of Lens 2 and the detector, is mounted on a rotatable
arm for scanning the radiation in awide angular range. On thisarm, L ens 2 focuses the scattered
radiation into the detector. An incidence angle of 45° is adopted in the measurement, owing to
the limitation introduced by the clearance of the two lenses associated with the emitter and
the detector. All the reflectarray measurements are normalized by the free-space reference to
remove any system dependency. For the reference, a gold-coated mirror substitutes the reflec-
tarray, and the incident and reflection angles are set to 45°. All measurements are performed
under ambient temperature in dry atmospheric conditions.

5. Resultsand discussion
5.1. Measured reflection and deflection spectra

For the TM polarization, the reference pulse and its spectrum are presented in Figs. 7(a) and
7(d) (black dashed line), respectively. From 0.5 to 1.5 THz, the reference spectrum curve de-
creases smoothly without distinct absorption. The mirror is then replaced by the reflectarray
sample to register the reflection in the specular direction. A strong reflection is detected, as
shown by the pulse and corresponding spectrum in Figs. 7(b) and 7(d), respectively. The reflec-
tion spectrumin Fig. 7(d) (red solid line) reveals an obvious notch around 0.93 THz. This shows
that considerable energy around this frequency is deflected off the direction of the specular re-
flection. The rotating arm is then moved to the expected angle of the deflection, and dlightly
adjusted for the maximal amplitude. The time-resolved deflection signal is shown in Fig. 7(c)
and exhibits an oscillation caused by the spectrally selective deflection of the reflectarray. This
is confirmed in the deflection spectrum in Fig. 7(d) (blue solid line), where a strong deflection
peak appears at the frequency corresponding to the strongest notch in the reflection spectrum.
Hence the measurement proves that the fabricated terahertz reflectarray hasthe ability to deflect
the incident wave towards the predesigned direction. In order to estimate the performance of
the reflectarray, the normalized reflection and deflection are calculated and shown in Fig. 7(€),
demonstrating that up to nearly 80% of the incident amplitude is deflected around the oper-
ational frequency. It is worth noting that the sum of the reflection and deflection energy is
less than unity at a wide frequency range. This missing energy is likely to be absorbed by the
PDMS substrate or scattered into other directions. For the TE polarization, the results are given
in Figs. 8(a)-8(e). The measurement results for both polarizations are similar. In both cases, the

(@) (b)

Fig. 5. Reflectarray prototype. (a) Photograph of the sample. (b) Microscopy image for a
small part of the reflectarray. The dashed rectangle encloses one of the sub-arrays.
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Detector

Emitter

Fig. 6. Measurement system. (@) Photograph of the measurement system. (b) Correspond-
ing schematic. The beam from the emitter is collimated by Lens 1, and incident on the
surface of the sample. Lens 2 concentrates the scattered beam on to the detector. Lens 2
and the detector are fixed on an arm mounted on a rotating platform, allowing a wide an-
gular range to be scanned.

strong deflection is observed at around 0.93 THz.

The angular radiation patterns of the reflectarray have been measured to characterize the
spectral behavior of the reflected/deflected beams and side lobes. The radiation patterns are
measured with an angular resolution of 2° and are represented at different frequencies for both
polarizationsin Fig. 9. At around 0.93 THz, as shown in Fig. 9(c), the deflection is strongest,
while on the other hand at 0.6 THz, the specular reflection isthe strongest. At other frequencies,
the patterns show a combination of lobes caused by the Floquet modes arising from the sub-
array periodicity. Generaly, the performance of thereflectarray for the TM and TE polarizations
aresimilar.

5.2. Discussion

Despite a qualitatively satisfying demonstration of the reflectarray operation, there are some
discrepancies between the simulated and measured results. The frequency for the maximum
deflection is shifted from the designed frequency of 1 THz to the measured 0.93 THz. Mean-
while, the deflection angle also shifts from the expected 21° to the measured 25°. Possible
causes have been investigated and are described in the following.

Fabrication tolerance is the main factor that gives rise to the frequency shift. In order to
eval uate the effect from the tolerance, two samples with different substrate thicknesses (15 um,
17 um) have been measured. The resulting deflection spectra are shown in Fig. 10. It is evident
that a variation in the substrate thickness leads to a shift in the frequency for the maximum
deflection. For the reflectarray with a substrate thickness of 15 um investigated in Section 5.1,
the measured frequency at 0.93 THz decreases from the designed frequency of 1 THz. Con-
sequently, the deflection angle is increased according to the Floquet spatial mode (also called
grating lobes) associated with the periodicity of sub-array structures. These Floguet modes can-
not be neglected in arrays for which the inter-spacing of sub-arrays are larger than a half of the
wavelength. In the present case, the inter-spacing between adjacent sub-array is 840 um, or 2.8
times the wavelength at the frequency of operation.

In addition, the experiments are performed at an incident angle of 45° rather than the normal
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Fig. 7. Measured pulses and spectrain the TM polarization. (a) Thereference pulse. (b) The
specular reflection of the reflectarray sample. (c) The deflection of the reflectarray sample.
(d) The spectra of the reference (black dashed line), the reflection (red solid line), and the
deflection (blue solid line). (e) The normalized reflection (red dotted line) and deflection
(blue solid ling) amplitude.
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Fig. 8. Measured pulses and spectrain the TE polarization. (a) The reference pulse. (b) The
specular reflection of the reflectarray sample. (c) The deflection of the reflectarray sample.
(d) The spectra of the reference (black dashed line), the reflection (red solid line), and the
deflection (blue solid line). (e) The normalized reflection (red dotted line) and deflection
(blue solid ling) amplitude.
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Fig. 9. Measured radiation pattern at different frequenciesin TM polarization (blue solid
line) and TE polarization (red dotted line) inlogarithmic scale. Thereflection and deflection
always exist as Floquet modes although the intensity varieswith frequencies. The closer the
frequency isto 0.93 THz, the stronger the deflection and the weaker the reflection become,
and vice versa.

incident angle used in the design step. This difference is another reason that causes the deflec-
tion angle to shift from the designed 21° to the experimentally determined 25°. The dependence
of the phase response curve on the incident angle has been investigated by Targonski et al. [29].
It is suggested that adopting the phase response of the normally incident wave for the oblique
incident wave brings a new tolerance. Particularly, the difference between the practical perfor-
mance and its theoretical expectation will become significant when the incident angle is larger
than 40°. In order to verify thisaspect, the reflection coefficients of the uniform infinite patch ar-
raysat 1 THz are smulated for a45° incidencein both TM and TE polarizations. The obtained
phase curves of the reflection coefficients for these cases are shown in Fig. 11 and compared to
the normal incidence case. As described by Targonski et al. [29], it is observed that the phase
responses for the normal and oblique angles of incidence are sightly different. The phase re-
sponse of the TM-polarized wave is less affected by the off-normal incidence angle compared
to the TE-polarized wave, which is consistent with the findings of Tsai et al. [30]. Physicaly,
this phenomenon is caused by an imbalance response of each patch in the TE polarization, aris-
ing from small phase shifts between two opposite edges of the patch when the incident wave

#178968 - $15.00 USD Received 31 Oct 2012; revised 10 Jan 2013; accepted 11 Jan 2013; published 30 Jan 2013
(C) 2013 OSA 11 February 2013 / Vol. 21, No. 3/ OPTICS EXPRESS 2887



107 ¢

£ ---Mirror Reference
—15 uym
==17 um

10'2 I I I I "
0 0.5 1 1.5 2 25
Frequency (THz)

Fig. 10. Measured deflection spectra for two samples with different substrate thicknesses
for the TM polarization. For the sample with the thickness of 15um, the angle for max-
imum deflection is 25°, while for the 17 um thick sample, the corresponding deflection
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Fig. 11. Simulated reflection phase responses for 2D uniform infinite patch arrays with
the normal and oblique incidences for the TM and TE polarizations at 1 THz. All the
dimensions, including the substrate thickness and the unit cell size, are the same with the

case of h=15umgiveninFig. 3.
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is oblique to the surface of the reflectarray. Thistheoretical inference is qualitatively consistent
with the measurement of normalized deflection amplitude shown in Figs. 7(c) and 8(c).

6. Conclusion

In this paper, terahertz reflectarrays with metallic patch elements have been proposed. The the-
oretical design taking into account fabrication tolerances has been verified through simulations
and experiments. Prototypes have been fabricated and the measurements have been carried out
by using a THz-TDS system. The measurement in both TE and TM polarizations shows that a
nonuniform reflectarray can efficiently deflect the terahertz waves towards a predesigned angle
at a predefined frequency of operation. The possible factors for a small shift in the operation
frequency and in the deflection angle have been investigated. It is suggested that the fabrica
tion tolerance and the dependence on the incident angle should be taken into consideration in
optimizing reflectarrays.

The proposed terahertz reflectarrays gain their properties from the configuration of the peri-
odically arranged patch elements. Hence, the appearance and functionality are close to metama-
terials [31]. However, the reflectarrays cannot be considered as terahertz metamaterials since
the patch dimensions are in the order of half of the operating wavelength. Thus, the whole
arrangement of the reflectarrays cannot be described by effective electromagnetic parameters.
In terms of its potential applications, the designed reflectarrays can become useful in various
aspects owing to their capability of manipulating terahertz beams with high efficiency yet low
design and fabrication complexity. Their function is not limited to beam deflection, and can
be extended to beam steering or shaping in various forms. In addition, active patch-element
structures can be used to dynamically configure versatile arrays for advanced beamforming, for
example using graphene as reconfigurable elements [32]. In particular, the extension to active
reflectarray systems promise the application in the area of short-range terahertz communica-
tions.
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