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Epidemic models have become a routinely used
tool to inform policy on infectious disease. A
particular interest at the moment is the use of
computationally intensive inference to parametrize
these models. In this context, numerical efficiency
is critically important. We consider methods for
evaluating the probability mass function of the total
number of infections over the course of a stochastic
epidemic, with a focus on homogeneous finite
populations, but also considering heterogeneous and
large populations. Relevant methods are reviewed
critically, with existing and novel extensions also
presented. We provide code in MATLAB and a
systematic comparison of numerical efficiency.

1. Introduction

(a) Motivation
Epidemic models are now widely used to inform policy
on a range of issues, from childhood diseases [1]
to bioterrorist smallpox [2], SARS [3], foot-and-mouth
disease [4] and pandemic influenza [5]. These models
have typically involved either numerical integration of
ordinary differential equations that do not explicitly
account for the underlying chance events in transmission,
or Monte Carlo simulation of models that aspire to a high
level of realism [1,6].

c© 2012 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and
source are credited.
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There has been growing interest, however, in consideration of the parsimonious stochastic
epidemic models that were described during the earliest phase of mathematical epidemiology [7].
This is partly because of the impressive array of formal results that have accumulated
over the years in this field [8], but also because of the role that these models can play
in modern, computationally intensive inference of epidemiological parameters [9–11] and
optimization problems.

The final size of an epidemic can be defined informally as the total number of people
experiencing infection during the outbreak. This quantity is typically called the attack rate by
applied epidemiologists, and expressed as a percentage of the population in question. The
probability distribution of final sizes is of particular interest to statistical epidemiologists, owing
to its use inter alia in the analysis of household data [12,13].

It turns out that there is a particularly large number of approaches to calculation of the
probability mass function (PMF) for the final size of an epidemic (often called the final-size
distribution). This paper aims to summarize these approaches, paying particular attention to:
(i) numerical implementation, including a novel application for iterative methods; (ii) critical
comparison of different methods; and (iii) consideration of how these methods can be applied
to calculation of other epidemiological quantities of interest.

(b) Model definition
While we consider various generalizations, our starting point is the susceptible-infectious-

recovered (SIR) epidemic model in a closed finite population. We consider a population of
integer size N, and the state of the system is given by non-negative integer-valued stochastic
variables S(t) and I(t), obeying S + I ≤ N, which represent the number of individuals who are
susceptible or infectious at time t, respectively. The number of recovered individuals R is given by
R = N − S − I due to our assumption that the population is closed (i.e. there are no births, deaths
or migrations).

We assume that any pair of individuals makes contact at the points of a homogeneous
Poisson process of rate β and that contacts between different pairs of individuals are mutually
independent. Contact between an infectious and a susceptible individual results in the immediate
infection of the susceptible individual, who experiences a random duration of infectiousness
drawn from the infectious period distribution (also often called the recovery time distribution)
and then recovers. Note that in these conventions, the overall rate of infection is βSI, so when
comparing results across different values of N, it is often most instructive to hold the quantity
β/(N − 1) constant.

The epidemic process starts in state (S0, I0) and must end when there are no more infectious
individuals. Writing the final state in the form (N − Z, 0) allows us to define the integer-valued
stochastic variable Z as the final size of the epidemic. We are particularly interested in the PMF of
this quantity; since this function has finite integer support, it is often conveniently represented as
a vector of probabilities

p = (pk), for pk = Pr(Z = k). (1.1)

In the rest of this paper, we will be interested in either the calculation of the components of the
final-size distribution (often in vector representation) at machine precision or sampling from this
distribution using Monte Carlo methods.

2. Material and methods
We now consider different ways to calculate the final-size distribution, starting with Monte Carlo
methods that are simply described in §2a, before moving on to methods that run at machine
precision in §2b,c. We have tried to use notation that is consistent within this manuscript, but in
doing so, we may deviate from the conventions originally used for each technique.

http://rspa.royalsocietypublishing.org/
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(a) Monte Carlo methods
(i) Direct continuous-time simulation

In the event that the infectious period distribution is exponential with rate parameter γ (i.e. mean
γ −1) the system dynamics take the form of a continuous-time Markov chain. The events and their
rates of occurrence for this Markov chain are

(S, I) → (S − 1, I + 1) at rate βSI

and (S, I) → (S, I − 1) at rate γ I.

}
(2.1)

This system can then be simulated directly using Monte Carlo methods, once initial conditions are
specified. Stigler’s Law [14] states that scientific discoveries are not named after their originators
(and was, of course, discovered earlier by Robert K. Merton). It is therefore as would be expected
that while the most common method for Monte Carlo simulation of a continuous-time Markov
chain is typically called Gillespie’s algorithm [15], this method was actually developed by
probabilists some decades earlier [16–18].

The results of simulating the Markov chain defined by (2.1) are shown in figure 1a,b, for
a relatively large and small outbreak, respectively. We provide the function gil_mc.m in the
electronic supplementary material, (S1.1), as an implementation of this, based on the code from
Keeling & Rohani [6]. Obviously, if one is interested in temporal dynamics of the epidemic, all
of the information created by this method is useful. But for the purposes of sampling from the
final-size distribution, there is a lot of unnecessary computational effort expended by this method.

Extension: waning immunity. Some of the methods presented in this paper rely on long-
lasting immunity following recovery from natural infection—the SIR paradigm. Many diseases,
for example respiratory synctial virus (RSV) [19] and rotavirus [20], exhibit significant waning
immunity, which is readily incorporated in approaches based on direct simulation by adding the
transition

(S, I) → (S + 1, I) at rate μ(N − S − I), (2.2)

to (2.1), giving SIRS epidemic dynamics. The system as defined always ends in state (N, 0) and
so what to calculate depends on the epidemiological problem in hand. In the context of SIRS
epidemics with household structure, the total number of infection events is of interest due to its
role in the calculation of epidemic thresholds [21,22], and this can be readily extracted from a
realization of the full SIRS epidemic.

Extension: phase-type infectious periods. An assumption behind (2.1) is that the infectious period
durations are exponentially distributed—this is justifiable for some diseases, but certainly not for
others. Suppose we now introduce an integer index a between 1 and k for infectious individuals,
and modify (2.1) to

(S, . . . , Ia, . . .) → (S − 1, . . . , Ia + 1 . . .) at rate βaS
∑

b

Ib,

(S, . . . , Ia, . . . , Ib, . . .) → (S, . . . , Ia − 1, . . . , Ib + 1, . . .) at rate qa,bIa

and (S, . . . , Ia, . . .) → (S, . . . , Ia − 1, . . .) at rate γaIa,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3)

so that the distribution of infectious periods is a phase-type distribution. Since phase-type
distributions are dense in positive-valued distributions [23], any reasonable infectious period
distribution can be approximated by a model of similar form to (2.3); however, this comes
at potentially large computational cost. The most commonly used phase-type distribution is
the hypo-exponential, where individuals pass from I0 → I1 → · · · → Ik → R linearly, which has

http://rspa.royalsocietypublishing.org/
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Figure 1. Realizations of different simulation schemes. Parameters are N = 100, β = 3/(N − 1), I0 = 1, S0 = N − I0,
exponential infectious period distribution with unit mean. (a) Gillespie, large outbreak, (b) Gillespie, small outbreak, (c) Sellke,
large outbreak, (d) Sellke, small outbreak, (e) Ludwig, large outbreak and (f ) Ludwig, small outbreak. (c,d) Open circles, sorted
thresholds; cross symbols, cumulative infectivity; dashed line, final size. (e,f ) Lines with diamonds, susceptibles; lines with
crosses, new cases.

the effect of reducing variability compared with an exponential distribution, and leads to a
k-Erlang infectious period distribution when the transition rates are all equal. Another frequent
use of phase-type distributions is the hyper-exponential distribution, where all qa,b in (2.3) are
zero meaning that each infective passes through a unique Ia state, which is often interpreted
as individuals experiencing different disease severities, and which has the effect of increasing
variability compared to an exponential distribution.

http://rspa.royalsocietypublishing.org/
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(ii) Sellke’s method

Sellke’s method provides a way to simulate final sizes of a stochastic epidemic with arbitrary
infectious period distribution [24]. We suppose that each individual i has a stochastic variable
Ti for its infectious period, picked from the infectious period distribution, and that susceptible
individuals have a random threshold Qi picked from an exponential distribution of mean 1 (in this
work, we take the initial infectives to have zero threshold parameter). We arrange the labelling of
individuals, without loss of generality, so that Qi ≤ Qj when i < j. Then

Z = min

⎧⎨
⎩i

∣∣∣Qi+1 > β
∑
j≤i

Tj

⎫⎬
⎭ . (2.4)

The intuition behind this equation is that Qi is essentially how ‘resistant’ individual i is to
infection, and βTi is the force of infection that individual i will contribute if ultimately infected.
In this non-rigorous picture, the epidemic ‘stops’ when the total infectious pressure drops below
the resistance/threshold of all remaining susceptibles.

To see more mathematically why this construction is equivalent to the model defined, we
consider the argument of Andersson & Britton [8, §2.2]. If we let I(t) be the number of infective
individuals at time t, then the rate at which a given susceptible becomes infective is βI(t) in the
original model. We define the cumulative force of infection as

Λ(t) := β

∫ t

0
I(u) du ⇒ lim

t→∞
Λ(t) = β

Z∑
i=1

Ti. (2.5)

Then considering a small unit of time δt, and a unit-mean exponentially distributed threshold Q
we have that

Pr(Q > Λ(t + δt)|Q > Λ(t)) =
∫Λ(t+δt)

0 exp(−q) dq∫Λ(t)
0 exp(−q) dq

= 1 − βI(t)δt + o(δt). (2.6)

Therefore, the rate at which Λ exceeds Q is βI(t). Putting this together with (2.5) gives (2.4),
showing that Sellke’s method gives the same final size as direct simulation.

Realizations of Sellke’s method for a relatively large and small outbreak are shown in
figure 1c,d. Numerically, this is much more efficient and general than Gillespie’s algorithm
for sampling from the final-size distribution, but the function sel_mc.m given in electronic
supplementary material, S1.2.1, does not provide the temporal dynamics of the relevant epidemic
process, although such dynamics can be readily calculated. The fundamental approach of the
Sellke construction is to keep track of total infection pressure and thresholds separately, which is
quite generally applicable.

Extension: temporal dynamics. Once a realization of the Sellke construction has been made as
described above, it is possible to construct the temporal dynamics of that realization without
any further picking of (pseudo-)random numbers. This follows from (2.6) and is practically
implemented by maintaining a list of recovery times for currently infectious individuals, infecting
each individual in the order specified by the Q thresholds and interspersing recoveries at the
appropriate times. We provide an implementation of this method in electronic supplementary
material, S1.2.2, which has the major advantage that an arbitrary distribution of infectious period
can be simulated efficiently without any approximation.

(iii) Ludwig’s method

Another possibility for simulation comes from the construction of Ludwig [25]. This procedure
does not provide any temporal information, and involves a set of discrete stages called ‘ranks’.
Ludwig’s method starts with S0 susceptibles, and places the I0 initial infectives in rank 0. At a
given rank g, we label the Ig infectives with a set of integers Ig = {i|1 ≤ i ≤ Ig}. Next, each infective

http://rspa.royalsocietypublishing.org/
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is cycled through in turn, picking an infectious period Ti from the relevant distribution, which
then leads to an independent probability

πi = 1 − e−βTi , (2.7)

of infecting each of the remaining susceptibles. The number of susceptibles S is therefore reduced
due to infective i by an integer

�Si ∼ Bin(S, πi). (2.8)

Once each of the susceptibles in the current rank has been considered, all infectives in the current
rank are removed, and the number of infectives in the new rank g + 1 is

∑
i∈Ig

�Si. This process
is continued until an empty rank is generated. Figure 1e,f shows a realization of this process for
large and small outbreaks, respectively. We provide code lud_mc.m in electronic supplementary
material, S1.3 to implement this algorithm.

Pellis et al. [26] have argued that while Ludwig’s argument is intuitive, it is not always obvious
for which generalizations of simple epidemic models it will still hold, leading these authors
to provide additional detail about the approach. Indeed, the insights built up from Ludwig’s
argument can be applied to very complex populations incorporating several layers of structure—
including households and networks—and for intrinsic varying severity, while the inclusion of
infector-dependent varying severity invalidates it [27–29].

Perhaps the clearest way to confirm the validity of Ludwig’s method is to make use of
network theory. Using standard modern terminology [30], consider a random directed network
where a link starting on individual i and ending on individual j is present with probability πi,j
corresponding to the probability of infectious contact being made from i to j if i becomes infective,
before i recovers. The key property required for use of Ludwig’s method is that the probabilities
of infectious contacts emanating from an individual must depend only on quantities that can
be determined in advance, but cannot depend on (for example) the temporal behaviour of the
epidemic before that individual is infected. Equation (2.7) is a simple example, but all that is
needed is the calculability of probabilities of infectious contact in advance of the epidemic. A
node j will be infected eventually if there is a path through the network from an individual i in
the set of initially infective individuals I0 to j. Letting D = (Di,j) be the adjacency matrix for the
random directed network (i.e. Di,j is 1 if i makes contact with j and is 0 otherwise) we can see that

j is eventually infected ⇔ ∃n < ∞, i ∈ I0, such that (Dn)i,j > 0. (2.9)

Ludwig’s method therefore involves finding the smallest n satisfying the right-hand condition
of (2.9), which becomes j’s rank. The assumption of independence of the links means that this can
be simulated iteratively as described.

(b) Machine-precision, Markov chain methods
A continuous-time Markov chain such as that defined by the events and rates given in (2.1) can
have its dynamics fully specified by a solution p(t) to the Kolmogorov forward equations

d
dt

p(t) = p(t)Q, (2.10)

for appropriate initial probability vector p(0) and rate matrix Q = (Qi,j). One way to define this
matrix explicitly is by defining σ(i) and ι(i) as the number of susceptibles and infectives associated
with state i, respectively. Then

Qi,j�=i = βσ(i)ι(i)δσ(j),σ(i)−1δι(j),ι(i)+1 + γ ι(i)δι(j),ι(i)−1, Qi,i = −
∑
j�=i

Qi,j, (2.11)

where δi,j is the Kronecker delta. We write the jump matrix for this Markov chain

P = (Pi,j), for Pi,j = Qi,j(1 − δi,j)∑
j�=i Qi,j

. (2.12)

http://rspa.royalsocietypublishing.org/
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We use pS,I(t) to stand for the element of p(t) corresponding to the probability of S susceptibles
and I infectives at time t. We also use the notation S for the state space of the Markov chain,
which is composed of a set of absorbing states A and an irreducible transient class C, and which
has dimension |S |.

(i) ‘Brute force’ methods

In this framework, there are two ‘brute force’ methods for matrix-based calculation. Firstly, for a
Markov chain with finite state space, equation (2.10) has a matrix exponential solution

p(t) = p(0)eQt, (2.13)

which could be evaluated using, e.g. EXPOKIT [31] at a sufficiently large t. Alternatively, the
probability vector after n events is, by definition of the jump matrix, p(0)Pn. For SIR dynamics, a
maximum of I0 + 2S0 events can take place, and so the relation

p(∞) = p(0)PI0+2S0 (2.14)

can be used to calculate the final-size distribution. Code for both of these methods is provided in
electronic supplementary material, S2.1.

(ii) Bailey’s method, with Neuts & Li’s implementation

Bailey [7] notes that an integral representation is available for any final size probability:

d
dt

pS,0(t) = γ pS,1(t) ⇒ pS,0(t) = γ

∫ t

0
pS,1(τ ) dτ . (2.15)

Then by evaluating the Laplace transform of (2.10) at non-negative s, we see that

sq(s) − p(0) = q(s)Q, for q(s) :=
∫∞

0
e−stp(t) dt. (2.16)

It is possible to solve for q(s) algebraically, and thus obtain

Pr(Z = k) = γ lim
s↓0

qN−k,1(s), (2.17)

as a closed form solution. While Bailey’s original text suggests many different forms for the
algebraic solution of (2.16), Neuts & Li [32] considered the form most suitable for numerical
implementation. We provide bailey_fs.m in electronic supplementary material, S2.2.1, as an
implementation of their algorithm.

Extension: generalized transmission rates. The method as outlined is efficient due to the sparse,
triangular structure of Q and does not depend sensitively on the actual transition rates. Neuts &
Li [32] in fact considered models that had rates that have general functional dependence on S and
I (but not, for example, time)

(S, I) → (S − 1, I + 1) at rate λS,I

and (S, I) → (S, I − 1) at rate ηI,

}
(2.18)

which could be useful in several contexts, and does not significantly alter the algorithmic
procedure or the computational time.

Extension: maximum size. Neuts & Li’s paper also considered calculation of the distribution
for the maximum size of a stochastic epidemic, defined as the maximum value of I(t) over the
course of the epidemic and denoted I∗. This quantity would typically be called peak prevalence by
epidemiologists. Neuts & Li consider implementation of the method of Daniels [33] and provide
an iterative procedure for calculation of Pr(I∗ ≥ y). We implement this scheme as NL_Imax.m

of electronic supplementary material, S2.2.2, which can be readily compared with the output of
Gillespie or transient Sellke results.

http://rspa.royalsocietypublishing.org/
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(iii) Path integral/summethod

This approach has recently been used to evaluate the PMF of the number of secondary infections
caused by an initially infected individual [34]. The method works by appending to the state of
the Markov chain an indicator variable that takes the value one when the most recent transition
corresponds to an infection event, and takes the value zero otherwise. In the SIR case, calling the
indicator variable J gives the augmented Markov chain

(S, I, J) → (S − 1, I + 1, 1) at rate βSI

and (S, I, J) → (S, I − 1, 0) at rate γ I.

}
(2.19)

We then consider the jump chain of this modified Markov chain, a discrete-time Markov chain
specifying the probabilities of jumping between states at the time of a jump; we label the transition
probability matrix of the jump chain P. The total number of infections over the course of an
epidemic, Z, is then equal to the number of jumps which result in being in a state where J = 1
up until there are no infectives remaining in the population.

We can evaluate the distribution of Z using the following result [34]. Let (X(n), n ∈ Z
+) be a

discrete-time Markov chain taking values in S with transition probability matrix P = (Pi,j). Define

Ω =
∑

n
cX(n), (2.20)

where c : S → [0, ∞) is called the cost per visit, obeying cj = 0, j /∈ C and C ⊆ S is an irreducible
transient class. Let φi(z) = E[zΩ |X(0) = i]. Then φ(z) is the (maximal) solution to

φi(z) = zci
∑
k∈S

Pi,kφk(z), (i ∈ C, z ∈ [0, 1]), (2.21)

with φk(z) = 1 for k /∈ C. This result is directly derived by conditioning on the state first jumped to.
The result above allows us to evaluate the probability generating function (PGF) φ(z) of the

distribution of Z. To evaluate the PMF, we can numerically invert the PGF considered as a general
Laplace transform [35]. However, a more efficient procedure can be obtained by differentiating
the equation (2.21) k times with respect to z and evaluating at z = 0, resulting in a system of linear
equations for {φ(k)

i (0), i ∈ C}. Solving this system and using the relation

Pr(Z = k) = pk = 1
k!

dkφ

dzk

∣∣∣∣∣
z=0

, (2.22)

allows computation of the kth element of p. This method was employed in Ross [34], where code
was also made available.

In addition to being applicable to the SIR model with exponential infectious period
distribution, this method can be applied to any Markovian model, including SIRS models and
with any phase-type infectious period distribution; of course, more complicated infectious period
distributions and model structures will result in an increase in the size of the matrix P required,
and hence the methodology will eventually become computationally unfeasible.

Extension: hitting times. For a discrete random variable such as the final size, the path sum is
most appropriate. For continuous random variables, the path integral method can be used [36].
Using notation as above, we consider the Laplace transform of the total cost (rather than the PGF):

Φi(s) = E

[
exp

(
−s

∫∞

0
cX(t) dt

)∣∣∣∣ X(0) = i
]

. (2.23)

This is the maximal solution to the equations∑
j∈S

Qi,jΦi(s) = sciΦi(s), (i ∈ C), (2.24)

where Φk(s) = 1 for k /∈ C. For the hitting times of a stochastic epidemic (i.e. the first time at which
there are zero infective individuals), the costs are simply ci = 1 for i ∈ C.
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While moments of the hitting-time distribution can be simply obtained by differentiation
of (2.24), calculation of the probability density at a given point in time requires numerical Laplace
transform inversion, which is inherently numerically unstable. We recommend the Euler method
of Abate & Whitt [35], with the roundoff error control proposed by Sakurai [37]. Our code for
calculation of the Laplace transform is given in electronic supplementary material, S2.3.2.

(iv) Null space method

The null space method is based upon the spectral theory of matrices, in particular as appropriate
for finite-state Markov chains and was used by Keeling & Ross [38]. We start with the Kolmogorov
forward equations (2.10). Being a square matrix, Q is always diagonalizable in the sense of Jordan
canonical form. The SIR model has N + 1 absorbing states, and hence N + 1 repeated eigenvalues
of 0. We may write

Q = T−1JT, (2.25)

for some T, where J is block diagonal with each Jordan block Ji of size ni equal to the algebraic
multiplicity (i.e. number of repetitions) of its eigenvalue λ(i). As the geometric multiplicity
(i.e. the dimension of the null space) is equal to the algebraic multiplicity, each Jordan block Ji
is simply diagonal with λ(i) on the diagonal. Perron–Frobenius theory applied to the stochastic
(uniformized) matrix M = (Q/qm) + I|S|, where qm = maxi{−Qi,i}, ensures that the eigenvalues
lie within a disc in the negative half plane. Throughout this paper, we let In be the identity
matrix of dimension n. For the SIR model, λ1 = λ2 = · · · = λN+1 = 0 > λN+2 ≥ Re(λN+3) ≥ · · · ≥
Re(λ|S|). Now,

p(t) = p(0)eQt = p(0)T−1eJtT, (2.26)

since for the ith Jordan block, we have the form

eJit = eλ(i)tIni . (2.27)

Hence as t → ∞, we have that each Jordan block tends to a zero matrix with the exception of
eJ1 = IN+1. Hence, we have

lim
t→∞

p(t) = p(0)U1IN+1T1, (2.28)

where T = [T1; T2; . . . ; Td] and T−1 = [U1, U2, . . . , Ud] with d equal to the number of distinct
eigenvalues. We use the semi-colon (;) for vertical concatenation and comma (,) for
horizontal concatenation of matrices, following the conventions of MATLAB. Let us write T1 =
[v1; v2; . . . ; vN+1], of dimensions (N + 1) × |S|, with rows the left eigenvectors of Q (associated
with the eigenvalue zero); and also write U1 = [u1, u2, . . . , uN+1], of dimensions |S| × (N + 1),
with columns the right eigenvectors of Q associated with the eigenvalue zero. Now, considering
the left eigenvectors of Q (associated with the eigenvalue zero), we may set vi = ei, the vector
with a one in the ith position and zeros elsewhere. Hence, we have

lim
t→∞

p(t) = p(0)[U1, 0|S|×(|S|−(N+1))] = [p(0)U1, 01×(|S|−(N+1))], (2.29)

where 0d1×d2 is the matrix of size d1 × d2 consisting entirely of zeros. Now, by noting that if we
start in an absorbing state (with probability one) then we must remain in that state, the columns
of the matrix U1 span the null space of Q so that viuj = δij. This is essentially a computationally
efficient version of the jump-matrix-based equation (2.14), provided we know the null space. We
use the spspaces.m code of Kowal [39] to compute the null space of Q, and provide code in
electronic supplementary material, S2.4, for application of this code to the SIR model.
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Extension: maximum size. Markov chain-based methods, such as the null space and path integral
can also be used to calculate maximum epidemic sizes by augmentation of the state space:

(S, I, I∗) → (S − 1, I + 1, I∗) at rate βSI if I + 1 ≤ I∗,

(S, I, I∗) → (S − 1, I + 1, I∗ + 1) at rate βSI if I + 1 > I∗

and (S, I, I∗) → (S, I − 1, I∗) at rate γ I.

⎫⎪⎪⎬
⎪⎪⎭ (2.30)

We do not provide code for this, since the Neuts & Li algorithm is certainly much more
efficient, but note that Markov chain-based methods are extremely versatile, at the cost of state
space expansion.

(c) Machine-precision, arbitrary infectious period methods
Analytic traction can be gained on the Sellke construction by the derivation of a Wald-type
identity. This was done by Ball [40], who obtained a triangular system of linear equations for
the probability pk of observing k additional cases in a population of S0 initial susceptibles and I0
initial infectives:

l∑
k=0

( l
k
)
pk(S0

k

)
(Φ(β(S0 − l)))k+I0

= 1, (l = 0, 1, . . . , S0), (2.31)

where Φ is the Laplace transform of the infectious period distribution, so for Markovian dynamics
Φ(x) = γ /(x + γ ). Note that pk = Pr(Z = (k + I0)) in our conventions. Clearly, (2.31) can be written
in the form

Bp = 1, (2.32)

where 1 is a column vector with all entries equal to one, and we call B = (Bkl) the Ball matrix. We
now consider three methods for numerical solution of (2.32).

(i) Direct substitution

The equation (2.32) can be solved directly, since the Ball matrix B is left triangular

pk = 1 −
∑
l<k

Bklpl. (2.33)

Unfortunately, this procedure becomes numerically divergent for large population sizes. The
essential reason for this is that the binomial coefficients in (2.31) become extremely large for large
l and k ≈ l/2. Figure 2a shows the large mass in the middle of the Ball matrix, which drives this
numerical instability.

Extension: multiple-precision arithmetic. Demiris & O’Neill [41] showed how the problem of
numerical divergence could be overcome through the use of multiple-precision arithmetic. We
provide code in the electronic supplementary material, S3.1, to implement this using MATLAB’s
vpa() function, which can be easily modified to work at standard machine precision. A limitation
of this method, however, is the large computational cost involved, since multiple-precision
algorithms are typically extremely costly.

(ii) Iterative methods

A large number of numerical methods are available for the solution of equations of type (2.32) [42].
We find that the use of the conjugate gradient method on the equation

Ap = b, for A = B�B, b = B�1, (2.34)

is stable for population sizes up to around 102. This problem is illustrated in figure 2b, which
shows a concentration of the mass of A in one area of the matrix that is similar to that of B noted
above. In contrast, iterative schemes that can be applied directly to non-symmetric equations
as (2.32) such as biconjugate methods (e.g. MATLAB’s bicstab()) or minimum-residual methods
(e.g. MATLAB’s gmres()) do not out-perform direct substitution.
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· = · =

· = · =

(a) (b)

(c) (d)

Figure 2. Visualization of the Ball equations in different matrix representations. In each case, shading intensity∝ value1/5,
but with different constants of proportionality. Parameters are N = 100, β = 2/(N − 1), I0 = 1, S0 = N − I0, exponential
infectious period distribution with unit mean. Matrices are defined in §2c of the main paper. (a) Raw Bp= 1, (b) symmetrized
Ap= b, (c) preconditioned Ep= c for PCG and (d) preconditioned Gp= h for GMRES.

Extension: preconditioners. A major benefit of iterative methods is the potential to use
preconditioners [42]. We find that the use of a Jacobi preconditioner together with an initial
probability vector based on asymptotic results [8,41] can give accurate results even for N = 103.
This preconditioner is formed through the matrix D = (Dkl) for

Dkl =
{

Akl if k = l,

0 otherwise.
(2.35)

Then the preconditioned conjugate gradients method (PCG) effectively solves

Ep = c, for E = D−1A, c = D−1b. (2.36)

This problem is visualized in figure 2c, which shows how this preconditioner evens out the
density of mass in the matrix involved. Code is provided in electronic supplementary material,
S3.2, to implement this method. There remains the possibility of further preconditioning based
on the properties of E to enhance convergence further without significant computational cost, but
we were unable to find an appropriate second preconditioner.

While we could not find a preconditioner that significantly improved biconjugate methods,
the minimal residual method given by MATLAB’s gmres() can be improved through the use of
the preconditioner F = (Fkl) where

Fkl =
{

max{Bkm}k
m=0 if k = l,

0 otherwise.
(2.37)

This improved GMRES method effectively solves

Gp = h, for G = F−1B, h = F−11, (2.38)
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and has comparable performance to direct substitution. This problem is visualized in figure 2d.
As for PCG, the possibility of finding a second preconditioner is still open and could yield a
significant improvement over direct substitution if an appropriate one is found.

(iii) Gontcharoff polynomials

Another way of computing the mass function of the final-size distribution is via the expression
for the PGF of this distribution given slightly indirectly in theorem 2.6 of Ball [40] (Ball gives the
PGF for N − Z, the number of susceptibles remaining at the end of the epidemic). We can use the
fact that a mass function (pk, k ∈ Z+) can be recovered from its generating function φ(z) = ∑

k pkzk

(z ∈ [0, 1]) using the relationship (2.22) to find that, for k = 0, 1, . . . , n,

Pr(Z = (k + I0)) =
k∑

l=0

S0!
(S0 − k)!l!

qI0+l
S0−lGl−k(0|ES0−kU). (2.39)

Here qi = Φ(iβ) (i = 0, 1, . . .) (the probability that an infective fails to infect any of a given set of i
susceptibles), U = (ui = qi, i = 0, 1, . . .), EjU = (uj+i, i = 0, 1, . . .) and the Gontcharoff polynomials
Gk(x|U) (k = 0, 1, . . .) are defined by

G0(x|U) = 1

and

Gk(x|U) = xk

k!
−

k−1∑
i=0

uk−i
i

(k − i)!
Gi(x|U), (k = 1, 2, . . .).

See eqn (3.11) of Picard & Lefèvre [43]. Ball does not use Gontcharoff polynomials in his results,
but rather a collection of polynomials (αk(s), k = 0, 1, . . .) defined as the solution to a triangular
system of linear equations. Modulo some scaling, this system of equations is equivalent to the
definition of the Gontcharoff polynomials given above: it is not hard to show that αk(s) = k!Gk(s).
Gontcharoff polynomials are useful in formal proofs, and do have something of a probabilistic
interpretation when evaluated at 1 [44, §3.1]. It turns out that the scaling αk(s) = k!Gk(s) can be
better for computational purposes and is used in our implementation in electronic supplementary
material, S3.3.

Extension: heterogeneous populations and generalized transmission. The approach of Picard &
Lefèvre [43] generalizes the work of Ludwig [25] and Bahr & Martin-Löf [45], considering the very
general case where ‘each infective during [their infectious period] fails to transmit the infection
within any given set of susceptibles with a probability depending only on the size of that set’ [43:
p. 269]. Polynomial-based equations of similar form to (2.39) can therefore be derived for more
general models of transmission, and also for heterogeneous populations. These equation sets
typically have similar numerical behaviour to each other.

(d) Asymptotic results
There is an extensive literature on asymptotic results for epidemic final sizes in large
populations. This goes back to the earliest mathematical representations of the mean behaviour
of epidemics [46], and also limiting distributions of simple epidemics [47], but more recently
involves formal convergence proofs [45,48] and results obtained for quite complex population
structures, including multiple types [49], households [50] and networks [28].

At the heart of most asymptotic results is a transcendental equation for the probability π that
an individual avoids ‘global’ infection (defined in a model-specific way) of the form

π = F(π), for F : [0, 1] → (0, 1]. (2.40)

Here, π = 1 (i.e. asymptotically vanishing levels of global infection) will always be a solution. If
F′(1) ≤ 1, then π = 1 is the desired result, but if F′(1) > 1 then we wish to find the largest π < 1
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that satisfies the equation (2.40). For complex models, there may be many non-maximal solutions,
rendering general root-finding algorithms, such as bisection, unreliable. Considering

π̂ = Fm(1 − ε), (2.41)

should, however, provide an accurate estimate for π for sufficiently small ε and a sufficiently large
number m of iterations of F. In the case of household-structured models, there is then the question
of derivation of the distribution of final-size proportions, which can often be done using the
methods outlined elsewhere in this paper. Sample code for reproduction of fig. 2 of Ball et al. [51]
using a Jump chain method and (2.41) is given in electronic supplementary material, S4.

(e) Epidemics on networks
There has been much recent interest in epidemic models where the population is connected on a
network [52,53]. In these models, the population is made up of N individuals indexed by integers
i, j, . . . and the contacts from i to j happen at the points of a Poisson process of rate βi,j. If i is
infectious and j susceptible at the point of contact, then j becomes infectious. Recovery happens, as
before, after a time drawn from the infectious period distribution. This very general formulation
can be somewhat simplified when there are several individuals with the same epidemiological
characteristics (i.e. if there is a large discrete symmetry group for β = (βi,j)). Alternatively, one may
wish to preserve individual identity but make the simplifying assumption that β = τG, where
G = (Gi,j) is the adjacency matrix of an undirected, symmetrical, topological network without
self-edges. Both simplifications are more commonly considered than the most general case [52,53].

(i) Monte Carlo methods

All Monte Carlo methods discussed so far are relatively simply adapted to populations with
network structure. For the case of Gillespie’s method, this involves direct simulation of the
Markov Chain

(Ii, Sj) → (Ii, Ij) at rate βi,j

and Ii → R at rate γ .

⎫⎬
⎭ (2.42)

Code to perform direct network epidemic simulation is already available in a form that is readily
adapted [6, program 7.7].

For the Sellke method on networks, thresholds Qi ∼ exp(1) can be generated at the start of
the process, however, the ordering of thresholds to obtain an expression similar to (2.4) is not
straightforward. Instead, we provide sel_net.m in electronic supplementary material, S5.1.1, in
which new generations of infectives are created iteratively. This is somewhat similar to Ludwig’s
approach, but with the difference that the random numbers are generated for the susceptible
nodes rather than the infectious contacts produced by infectives.

Ludwig’s method is, given its links with random directed networks, particularly natural in the
context of epidemics on networks. In this case, the ranks are constructed iteratively as before, but
the picking with probability given by (2.7) is applied only to remaining susceptible neighbours
of the individual concerned. We provide the function lud_net.m in electronic supplementary
material, S5.1.2, that implements this algorithm.

(ii) Machine precision methods

There are two distinct meanings to the final-size distribution for network models. The first, as
considered by Neal [54], is the final-size PMF averaged over realizations of a given random graph
model. This has, to our knowledge, only been done so far for the Bernoulli/Erdös-Rényi random
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graph where each link is present with probability π , independently of the presence or the absence
of all other links. This work generates a set of equations very similar to (2.31):

(Np)l =
l∑

k=0

( l
k
)
pk(S0

k

)
qI0+k

S0−l

= 1, (l = 0, 1, . . . , S0), where qk =
k∑

l=0

(
k
l

)
π l(1 − π)k−lΦ(βl), (2.43)

which can then be solved using similar methods to those discussed for the Ball equations above.
Code that creates the matrix N is provided in electronic supplementary material, S5.2.1.

The second broad class of distributions concerns the probabilities of different outcomes for a
given β—typically the marginal probability for each node that it is ultimately infected. Here there
is a ‘multitype’ formula also derived by Ball [40] that can be adapted. If we have a vector n = (ni)

whose elements are the initial number of susceptibles of type i, and also m = (mi) with elements
corresponding to the initial number of infectives of each type, then the relevant equations are

v∑
u=0

(n−u
v−u

)
pu(n

v

)∏N
i=1(Φi((β(n − v))i))

ui+mi
= 1, 0 ≤ v ≤ n, (2.44)

where operations on vectors are defined in the natural way [8,40]. Code to generate the relevant
matrix is given in electronic supplementary material, S5.2.2. It is also possible to consider a
Markovian model as defined by (2.42). We provide code in electronic supplementary material,
S5.2.3, to return an appropriate generator Q for this Markov chain when β = τG, which can then
be analysed using methods for Markov chains already discussed.

An interesting recent development is the approach of Sharkey [55]. This method makes a
‘closure’ assumption that has been commonly used in pairwise epidemic network models [53]
to derive a set of O(N2) differential equations describing the temporal behaviour of a network
epidemic that is provably exact for loop-less networks (I. Z. Kiss 2012, personal communication).
Since the non-network homogeneous models considered are essentially of fully connected cliques
this makes the Sharkey model inappropriate for these applications, however, it can be compared
with other methods when the network structure is loop-less, and code to evaluate the model is
already available [55, appendix D].

3. Results and discussion
We compare and benchmark each method systematically in table 1. These were carried out on a
Mac Pro with a dual quad-core 3.2 GHz chipset and 16 GB of RAM running MATLAB V. 7.9, 64-bit
version. The machine precision ε ≈ 2.2 × 10−16, meaning that numbers close to 1.0 differing by
this amount may be evaluated as equal by the machine. For variable-precision algorithms, the
minimum number of digits (considering only powers of 2) needed to obtain accurate results is
reported. For iterative matrix methods solving Ax = b, and using the vector norm |v| = √

v · v,
the standard diagnostic ‘residual’ is recorded, and is equal to |b − Ax|/|b|. For machine precision
methods, we quote times for evaluation of the entire PMF, while for Monte Carlo methods
we quote times per sample. We also display the behaviour of each algorithm as a function of
population size graphically in figure 3.

The exact times given in seconds will of course vary significantly between machines, and
may be subject to significant modification with more optimized code—in addition, the exact
part of the code that should be timed to make a fair comparison is not clear, for example, where
sparse matrices need to be generated, this is not included in our time measurement because the
sparse structure of these matrices can be stored in a parameter-independent manner. Despite these
caveats, however, some strong signatures show up in the benchmarking that can be interpreted
and generalized.
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Figure 3. Scaling of timewithpopulation size. Parameters areβ = 3/(N − 1)withunitmean (a,b) exponentially distributed,
(c) constant, recovery. (a) Monte Carlo methods, (b) Markov chain methods and (c) arbitrary recovery.

(a) Numerical efficiency of Monte Carlo methods
If a Monte Carlo calculation is necessary, then Gillespie’s method is typically the least efficient
method. The Sellke construction is much faster for both final-size and temporal dynamics (in
fact, it is the only approach that can generate temporal dynamics for an arbitrary infectious
period distribution). Gillespie’s method is, however, the only Monte Carlo approach that can
deal straightforwardly with waning immunity. There is also the question of efficiency at different
parameter values. For subcritical epidemics where the expected final size is much smaller than
the population size, Ludwig’s method can involve generation of many fewer pseudo-random
numbers than Sellke’s, for example.

When considering the usefulness of any Monte Carlo method, it is useful to know how many
samples are required. Figure 4 shows three measures of convergence. Suppose the probability
of final size z, pz, and the associated cumulative probability Cz = ∑z

w=1 pz are known (in our
examples through Bailey’s method). Then if a proportion qz of simulations have final size z
and we define the empirical cumulative probability Ez = ∑z

w=1 qz, the measures used are: (i) the
Kullback–Leibler (KL) divergence

DKL(q||p) =
N∑

z=1

qzln
(

qz

pz

)
, (3.1)

using the convention that 0ln(0) = 0; (ii) the Kolmogorov–Smirnov (KS) D-statistic

DKS(p, q) = max{abs(Cz − Ez)}N
z=1; (3.2)

(iii) the summed absolute error

DSAE(p, q) =
N∑

z=1

abs(pz − qz). (3.3)

Which of these measures is most relevant depends on the precise application. For example, the KL
divergence is often used in estimation, while the KS D-statistic is used to assess model adequacy.
Figure 4 indicates that the convergence with number of samples n is, respectively: (i) O(n−1);
(ii) O(n−1/2); (iii) O(n−1/2).

While we have considered ‘exact’ Monte Carlo methods, approximate simulation algorithms
also exist, such as the τ -leaping method introduced by Gillespie [56]. This was motivated by
the desire to improve the numerical efficiency of the ‘Gillespie algorithm’, and assumes that the
transition rates of the model are held fixed for a period of time τ , implying that the number of
events of each type that occur during that time period have independent Poisson distributions.
The algorithm is appropriate to use and provides most benefit, when (i) the changes to the state
of the system have no or minimal impact on the transition rates of all event types, and (ii) it is
unlikely for the number of events to lead to a state which is inconsistent with the state space
of the model. The τ -leaping methods therefore seem unlikely to provide substantial benefits
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measures of distribution proximity. Parameters areβ = 3/(N − 1)with unit mean exponentially distributed recovery. (a) KL-
divergence, (b) KS D-statistic and (c) summed average error.

for epidemic models: for example, requirement (i) is unlikely to be satisfied for homogeneously
mixing models and (ii) will not be satisfied for network models. Nevertheless, a thorough analysis
of this question with more sophisticated approximations [57] could be of significant interest.

(b) Numerical efficiency of Markov chain-based methods
For models based on Markov chains, multiple methods are available to calculate various
quantities at machine precision. Of these, Bailey’s method is the fastest, and is robust even for
system sizes over 104 with the limitation on system size related to the resources available to
store and process a dense N × N matrix, but does rely on special properties of the SIR model.
Of the methods that apply to more general Markov chains, the exact calculation considered
will determine the appropriate method: matrix exponentials can capture temporal dynamics;
which of the null space and path sum/integral methods is faster is likely to be machine- and
implementation-dependent, but both are efficient for calculation of a wide range of quantities.
The system size limitations for these approaches are related to the resources available to store
and process large sparse matrices, but as for Bailey’s method there is no inherent numerical
instability involved.

(c) Numerical efficiency of arbitrary infectious period methods
If a complex infectious period distribution is required then it may be impractical to use phase-
type infectious distributions and Markovian approaches are unsuitable. Of the machine precision
methods this leaves the Ball matrix equations and the use of Goncharoff polynomials. While these
approaches are often much lower-dimensional than Markovian models, they are both inherently
numerically unstable: the former because some elements of the Ball matrix are much larger than
others; and the latter because solution involves summing many different positive and negative
terms, leading to ‘catastrophic cancellation’. Where possible, however, direct substitution of the
Ball equations is numerically efficient; also Gontcharoff polynomials are comparable in numerical
efficiency and stability to direct substitution.

When the system size becomes large enough to generate numerical instability, Jacobi-
preconditioned conjugate gradients can be used to reach system sizes of 103 while retaining
numerical efficiency. An important point about all iterative methods, however, is that small
negative probabilities can be returned for any value of the PMF that is close to zero. While these
do not lead to practical problems or major numerical instability, variable-precision should still be
viewed as a gold-standard method, albeit one that can be prohibitively computationally costly.
On the other hand, in the context of inference schemes such as those based on random-walk
Metropolis–Hastings sampling over parameters θ , if a probability vector p(θ) has been evaluated
at one step and a change in parameters δθ is proposed, then p(θ) can be used as the starting
vector for iterative calculation of p(θ + δθ), and would be expected to converge more quickly
than an initial vector based on asymptotic results if δθ is small.
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Table 2. Comparison of methods discussed in the main text for final sizes on the network in figure 5. For simulation methods,
times are mean per simulation averaged over 104 realizations. For all benchmarks, mean infectious period is 1 and infectious
period distribution is exponential. Benchmark I is for a fixed loop-less network as shown in figure 5c, with τ = 1. Benchmark
II is an average over 20-node p= 0.2 Bernoulli graphs with τ = 3/((N − 1)p) . Times are given in seconds; a dash ‘—’ is
displayed if the method is unable to calculate the benchmark.

method type waning? infectious period transient? topology Benchmark I Benchmark II
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gillespie simulation yes phase-type yes all 3.0 × 10−4 8.4 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sellke simulation no arbitrary feasible all 2.2 × 10−4 2.4 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ludwig simulation no arbitrary no all 2.5 × 10−4 3.1 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Matrix exponential machine precision yes phase-type yes any fixed 3.0 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sharkey machine precision no exponential yes loop-less 3.0 × 10−4 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ball multitype machine precision no arbitrary no any fixed 8.4 × 10−4 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Neal machine precision no arbitrary no Bernoulli — 3.0 × 10−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) Network methods
We also performed benchmarking of network methods, as shown in table 2. Here the conclusions
are very similar to those for homogeneous models, but we note that for special topologies
(averages over Bernoulli graphs or loop-less fixed networks) there are particularly efficient
methods available. This is likely to be a general feature: for certain special networks, there will be
techniques available that exploit the restricted topology; but in the most general case less efficient
but more versatile approaches will be necessary. In this context, we note the efficiency of the
Sellke construction, coupled with the possibility of reconstructing temporal dynamics as for the
homogeneous case.

(e) Implications for inference
Since one of the main motivations for our study is the relevance of final-size calculations for
statistical work, we now consider the implications of our results for estimation of epidemiological
parameters. A theoretically attractive approach to inference is via exact evaluation of the
likelihood. We have considered here machine-precision methods which facilitate achieving this
goal. The inference itself is typically performed within a Bayesian framework, using Markov
chain Monte Carlo (MCMC) methods [41,58]. However, all of the machine-precision methods
we have considered become practically infeasible to implement as the population size, or the
complexity of the epidemic model, increases, owing to growth in the number of equations to
be solved and numerical instabilities. We have demonstrated in this work that deployment of
appropriate numerical methods such as preconditioning or use of path sums can significantly
extend the reach of machine-precision methods.

The MCMC inference framework is very flexible and so difficulties such as infeasible
evaluation of the exact likelihood can often be overcome by some form of imputation or data
augmentation [58,59]. In the context of final-size data for epidemics, an example is the random
graph approach developed by Demiris & O’Neill [60] for stochastic multi-type epidemics in
structured populations. Often such approaches are heavily reliant on being able to restrict
the search space, or at least to be able to sample over it efficiently, by good choice of prior.
This is typically not a trivial task. Another approach which is gaining in popularity is to use
simulation-based methods, such as Approximate Bayesian Computation or pseudo-marginal
methods [58,61–63]. This approach relies on the ability to simulate data efficiently, and hence
our comparison of three Monte Carlo methods will facilitate the use of such simulation-based
inference methods.

For small population sizes, there is a variety of methods which may be used to perform
inference. The advantage of machine precision methods is that the PMF is computed without
Monte Carlo errors, and hence inference based upon such calculations is reliable. However, these
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Figure 5. Topologies and epidemic probabilities for network benchmarks. (a) A typical Bernoulli random graph with
independent probability p= 0.2 of each link. (b) The final-size probabilities of epidemic sizes averaged over realizations of
p= 0.2 Bernoulli graphs with τ = 3/((N − 1)p) and unit mean exponentially distributed recovery time. (c) Test network
used for Benchmark II. (d) Marginal probabilities for infection on the test network starting on node 1 with τ = 1 and unit mean
recovery time. (a) Sample Bernoulli network, (b) final-size probabilities, (c) test network and (d) marginal probabilities.

methods may be time-consuming, and it may be more efficient to evaluate a Monte Carlo estimate.
The difficulty is in determining how many simulations are required in order to estimate the mass
function to sufficient accuracy for the problem in hand. To assist in determining this we have
considered three measures of ‘distance’ between the machine-precision evaluation and the Monte
Carlo estimate (figure 4). This informs us that to achieve very close to the same precision as the
machine-precision methods, based upon the Benchmark cases running times in tables 1 and 2, that
often the machine-precision methods are more computationally favourable. However, if one is
happy to forgive some inaccuracy—possibly in bias and confidence—in parameter estimates, then
some speed-up is possible using Monte Carlo methods. This trade-off will often be also dependent
upon the application, in terms of the total running time required and available. In any case,
as the population size increases Monte Carlo estimation methods become more appealing, and
eventually become necessary. Additionally, whether the infectious period distribution can be well
approximated by a sufficiently low-dimensional phase-type distribution can lead to additional
questions about speed and accuracy. Nevertheless, certain general statements as discussed earlier
will generally hold: for SIR epidemics, Sellke’s method typically outperforms the Gillespie
algorithm, while only Markovian models can deal with waning immunity. Temporal data will
also restrict the use of Sellke’s method to Monte Carlo simulation, while Markovian models
can have temporal quantities evaluated at machine precision through the use of, for example,
matrix exponentials.

http://rspa.royalsocietypublishing.org/


20

rspa.royalsocietypublishing.org
ProcRSocA469:20120436

..................................................

 on August 13, 2013rspa.royalsocietypublishing.orgDownloaded from 
4. Conclusions
Since the work of Bailey [7], much effort on stochastic epidemic models has focused on analytic
results to enhance understanding [8]. Modern computational resources, however, mean that
there are three particularly strong reasons to consider numerical algorithms. First, there is the
possibility of making a fast sweep over a large region of parameter space to aid intuitive
understanding. Secondly, there is improving the performance of computationally intensive
inference. Thirdly, there is enhancement of the performance of other ‘inverse problems’ such as
optimization of public health intervention strategies.

In this work, we have reviewed a fairly comprehensive selection of the existing methods for
generation of the epidemic final-size distribution, and compared their numerical performance.
We have shown how Jacobi-preconditioned conjugate gradients can be used to help alleviate
the reported limitations of the Ball method; however, we consider it likely that problem-specific
preconditioners and other numerical techniques can be developed with the aim of addressing the
epidemiological questions above. We would furthermore encourage anyone reading this paper to
contribute to such developments.

T.H. is supported by the UK Engineering and Physical Science Research Council. J.V.R. was supported under
Australian Research Council’s Discovery Projects funding scheme (project no. DP110102893). We are grateful
to Lorenzo Pellis and three anonymous referees for helpful comments on this manuscript.

References
1. Anderson RM, May RM. 1991 Infectious diseases of humans. Oxford, UK: Oxford University

Press.
2. Ferguson N, Keeling M, Edmunds W, Gant R, Grenfell B, Amderson R, Leach S. 2003 Planning

for smallpox outbreaks. Nature 425, 681–685. (doi:10.1038/nature02007)
3. Riley S et al. 2003 Transmission dynamics of the etiological agent of SARS in Hong Kong:

impact of public health interventions. Science 300, 1961–1966. (doi:10.1126/science.1086478)
4. Tildesley MJ, Savill NJ, Shaw DJ, Deardon R, Brooks SP, Woolhouse MEJ, Grenfell BT, Keeling

MJ. 2006 Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK.
Nature 440, 83–86. (doi:10.1038/nature04324)

5. Baguelin M, Hoek AJV, Jit M, Flasche S, White PJ, Edmunds WJ. 2010 Vaccination against
pandemic influenza A/H1N1v in England: a real-time economic evaluation. Vaccine 28,
2370–2384. (doi:10.1016/j.vaccine.2010.01.002)

6. Keeling MJ, Rohani P. 2007 Modeling infectious diseases in humans and animals. Princeton, NJ:
Princeton University Press. See www.modelinginfectiousdiseases.org.

7. Bailey NTJ. 1957 The mathematical theory of epidemics. London, UK: Griffin.
8. Andersson H, Britton T. 2000 Stochastic epidemic models and their statistical analysis. Lecture

Notes in Statistics, no. 151. Berlin, Germany: Springer.
9. Gilks WR, Richardson S, Spiegelhalter DJ (eds) 1995 Markov Chain Monte Carlo in practice.

London, UK: Chapman and Hall.
10. O’Neill P, Roberts G. 1999 Bayesian inference for partially observed stochastic epidemics.

J. R. Stat. Soc. A 162, 121–129. (doi:10.1111/1467-985X.00125)
11. Brooks S, Gelman A, Jones GL, Meng XL (eds) 2011 Handbook of Markov Chain Monte Carlo.

Boca Raton, FL: CRC Press.
12. Longini IM, Koopman JS, Monto AS, Fox JP. 1982 Estimating household and community

transmission parameters for influenza. Am. J. Epidemiol. 115, 736–751.
13. Fraser C, Cummings DAT, Klinkenberg D, Burke DS, Ferguson NM. 2011 Influenza

transmission in households during the 1918 pandemic. Am. J. Epidemiol. 174, 505–514.
(doi:10.1093/aje/kwr122)

14. Stigler SM. 2002 Stigler’s lay of eponomy. In Statistics on the table: the history of statistical concepts
and methods, ch. 14. Cambridge, MA: Harvard University Press.

15. Gillespie DT. 1977 Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81,
2340–2361. (doi:10.1021/j100540a008)

16. Feller W. 1940 On the integro-differential equations of purely discontinuous Markoff
processes. Trans. Am. Math. Soc. 48, 488–515. (doi:10.1090/S0002-9947-1940-0002697-3)

http://dx.doi.org/doi:10.1038/nature02007
http://dx.doi.org/doi:10.1126/science.1086478
http://dx.doi.org/doi:10.1038/nature04324
http://dx.doi.org/doi:10.1016/j.vaccine.2010.01.002
http://www.modelinginfectiousdiseases.org
http://dx.doi.org/doi:10.1111/1467-985X.00125
http://dx.doi.org/doi:10.1093/aje/kwr122
http://dx.doi.org/doi:10.1021/j100540a008
http://dx.doi.org/doi:10.1090/S0002-9947-1940-0002697-3
http://rspa.royalsocietypublishing.org/


21

rspa.royalsocietypublishing.org
ProcRSocA469:20120436

..................................................

 on August 13, 2013rspa.royalsocietypublishing.orgDownloaded from 
17. Kendall DG. 1950 An artificial realization of a simple ‘birth-and-death process. J. R. Stat. Soc.
B (Methodol.) 12, 116–119.

18. Bartlett MS. 1953 Stochastic processes or the statistics of change. J. R. Stat. Soc. C (Appl. Stat.)
2, 44–64. (doi:10.2307/2985327)

19. White LJ, Waris M, Cane PA, Nokes DJ, Medley GF. 2005 The transmission dynamics
of groups A and B human respiratory syncytial virus (hRSV) in England &
Wales and Finland: seasonality and cross-protection. Epidemiol. Infect. 133, 279–289.
(doi:10.1017/S0950268804003450)

20. Atchison C, Lopman B, Edmunds, WJ. 2010 Modelling the seasonality of rotavirus disease
and the impact of vaccination in England and Wales. Vaccine 28, 3118–3126. (doi:10.1016/j.
vaccine.2010.02.060)

21. Ball FG, Lyne OD. 2002 Optimal vaccination policies for stochastic epidemics among a
population of households. Math. Biosci. 177 & 178, 333–354. (doi:10.1016/S0025-5564(01)
00095-5)

22. Ross JV, House T, Keeling MJ. 2010 Calculation of disease dynamics in a population of
households. PLoS ONE 5, e9666. (doi:10.1371/journal.pone.0009666)

23. Neuts MF. 1975 Probability distributions of phase type. In Liber amicorum Professor emeritus
(ed. H Florin), pp. 173–206. Leuven, Belgium. Katholieke Universiteit Leuven, Departement
Wiskunde.

24. Sellke T. 1983 On the asymptotic distribution of the size of a stochastic epidemic. J. Appl.
Probab. 20, 390–394. (doi:10.2307/3213811)

25. Ludwig D. 1975 Final size distributions for epidemics. Math. Biosci. 23 33–46. (doi:10.1016/
0025-5564(75)90119-4)

26. Pellis L, Ferguson N, Fraser C. 2008 The relationship between real-time and discrete-
generation models of epidemic spread. Math. Biosci. 216, 63–70. (doi:10.1016/j.mbs.2008.
08.009)

27. Ball F, Neal P. 2008 Network epidemic models with two levels of mixing. Math. Biosci. 212,
69–87. (doi:10.1016/j.mbs.2008.01.001)

28. Ball F, Sirl D, Trapman P. 2009 Threshold behaviour and final outcome of an epidemic on a
random network with household structure. Adv. Appl. Probab. 41, 765–796. (doi:10.1239/aap/
1253281063)

29. Ball F, Britton T, Sirl D. 2011 Household epidemic models with varying infection response.
J. Math. Biol. 63, 309–337. (doi:10.1007/s00285-010-0372-6)

30. Newman M. 2010 Networks: an introduction. Oxford, UK: Oxford University Press.
31. Sidje RB. 1998 EXPOKIT. A software package for computing matrix exponentials. ACM Trans.

Math. Softw. 24, 130–156. (doi:10.1145/285861.285868)
32. Neuts MF, Li J. 1996 An algorithmic study of S-I-R stochastic epidemic models. In Athens

Conference on Applied Probability and Time Series Analysis: Applied probability, in honor of JM Gani
(eds RPCC Heyde, YV Prohorov, ST Rachev). Lecture Notes in Statistics, pp. 295–306. Berlin,
Germany: Springer.

33. Daniels HE. 1974 The maximum size of a closed epidemic. Adv. Appl. Probab. 6, 607–621.
(doi:10.2307/1426182)

34. Ross JV. 2011 Invasion of infectious diseases in finite homogeneous populations. J. Theor. Biol.
289, 83–89. (doi:10.1016/j.jtbi.2011.08.035)

35. Abate J, Whitt W. 1992 Numerical inversion of probability generating functions. Oper. Res.
Lett. 12, 245–251. (doi:10.1016/0167-6377(92)90050-D)

36. Pollett PK, Stefanov VE. 2002 Path integrals for continuous-time Markov chains. J. Appl.
Probab. 39, 901–904. (doi:10.1239/jap/1037816029)

37. Sakurai T. 2003 Computational techniques for solving stochastic models. PhD thesis,
Department of Electrical and Electronic Engineering, The University of Melbourne, Australia.

38. Keeling MJ, Ross JV. 2008 On methods for studying stochastic disease dynamics. J. R. Soc.
Interface 5, 171–181. (doi:10.1098/rsif.2007.1106)

39. Kowal P. 2006 Null space of a sparse matrix. MATLAB File Exchange. See http://www.
mathworks.fr/matlabcentral/fileexchange/11120-null-space-of-a-spa-rse-matrix.

40. Ball F. 1986 A unified approach to the distribution of total size and total area under the
trajectory of infectives in epidemics models. Adv. Appl. Probab. 18, 289–310. (doi:10.2307/
1427301)

41. Demiris N, O’Neill PD. 2006 Computation of final outcome probabilities for the generalised
stochastic epidemic. Stat. Comput. 16, 309–317. (doi:10.1007/s11222-006-8320-4)

http://dx.doi.org/doi:10.2307/2985327
http://dx.doi.org/doi:10.1017/S0950268804003450
http://dx.doi.org/doi:10.1016/j.vaccine.2010.02.060
http://dx.doi.org/doi:10.1016/j.vaccine.2010.02.060
http://dx.doi.org/doi:10.1016/S0025-5564(01)00095-5
http://dx.doi.org/doi:10.1016/S0025-5564(01)00095-5
http://dx.doi.org/doi:10.1371/journal.pone.0009666
http://dx.doi.org/doi:10.2307/3213811
http://dx.doi.org/doi:10.1016/0025-5564(75)90119-4
http://dx.doi.org/doi:10.1016/0025-5564(75)90119-4
http://dx.doi.org/doi:10.1016/j.mbs.2008.08.009
http://dx.doi.org/doi:10.1016/j.mbs.2008.08.009
http://dx.doi.org/doi:10.1016/j.mbs.2008.01.001
http://dx.doi.org/doi:10.1239/aap/1253281063
http://dx.doi.org/doi:10.1239/aap/1253281063
http://dx.doi.org/doi:10.1007/s00285-010-0372-6
http://dx.doi.org/doi:10.1145/285861.285868
http://dx.doi.org/doi:10.2307/1426182
http://dx.doi.org/doi:10.1016/j.jtbi.2011.08.035
http://dx.doi.org/doi:10.1016/0167-6377(92)90050-D
http://dx.doi.org/doi:10.1239/jap/1037816029
http://dx.doi.org/doi:10.1098/rsif.2007.1106
http://www.mathworks.fr/matlabcentral/fileexchange/11120-null-space-of-a-spa-rse-matrix
http://www.mathworks.fr/matlabcentral/fileexchange/11120-null-space-of-a-spa-rse-matrix
http://dx.doi.org/doi:10.2307/1427301
http://dx.doi.org/doi:10.2307/1427301
http://dx.doi.org/doi:10.1007/s11222-006-8320-4
http://rspa.royalsocietypublishing.org/


22

rspa.royalsocietypublishing.org
ProcRSocA469:20120436

..................................................

 on August 13, 2013rspa.royalsocietypublishing.orgDownloaded from 
42. Golub GH, van Loan CF. 1996 Matrix computations, 3rd edn. Baltimore, MD: Johns Hopkins
University Press.

43. Picard P, Lefèvre C. 1990 A unified analysis of the final size and severity distribution
in collective Reed–Frost epidemic processes. Adv. Appl. Probab. 22, 269–294. (doi:10.2307/
1427536)

44. Ball FG. 2000 Susceptibility sets and the final outcome of stochastic SIR epidemic models.
Research Report 00-09, Division of Statistics, School of Mathematical Sciences, University of
Nottingham, UK.

45. Bahr BV, Martin-Löf A. 1980 Limit theorems for some epidemic processes. Adv. Appl. Probab.
12, 319–349. (doi:10.2307/1426600)

46. Kermack W, McKendrick A. 1927 A contribution to the mathematical theory of epidemics.
Proc. R. Soc. Lond. A 115, 700–721. (doi:10.1098/rspa.1927.0118)

47. Daniels HE. 1967 The distribution of the total size of an epidemic. In Proc. of the Fifth Berkeley
Symp. on Mathematical Statistics and Probability, Berkeley, 21 June–18 July 1965 and December
1965–7 January 1966, vol. 4, pp. 281–293. Berkeley, CA: University of California Press.

48. Scalia-Tomba G. 1990 On the asymptotic final size distribution of epidemics in heterogeneous
populations. In Stochastic processes in epidemic theory (eds JP Gabriel, C Lefèvre, P Picard).
Lecture Notes in Biomathematics, no. 86, pp. 189–196. Berlin, Germany: Springer.

49. Ball F, Clancy D. 1993 The final size and severity of a generalised stochastic multitype
epidemic model. Adv. Appl. Probab. 25, 721–736. (doi:10.2307/1427788)

50. Neal P. 2005 Compound poisson limits for household epidemics. J. Appl. Probab. 42, 334–345.
(doi:10.1239/jap/1118777174)

51. Ball F, Mollison D, Scalia-Tomba G. 1997 Epidemics with two levels of mixing. Ann. Appl.
Probab. 7, 46–89. (doi:10.1214/aoap/1034625252)

52. Bansal S, Grenfell BT, Meyers LA. 2007 When individual behaviour matters: homogeneous
and network models in epidemiology. J. R. Soc. Interface 4, 879–891. (doi:10.1098/rsif.
2007.1100)

53. Danon L, Ford AP, House T, Jewell CP, Keeling MJ, Roberts GO, Ross JV, Vernon MC. 2011
Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. 2011,
1–28. (doi:10.1155/2011/284909)

54. Neal P. 2003 SIR epidemics on a Bernoulli random graph. J. Appl. Probab. 40, 779–782.
(doi:10.1239/jap/1059060902)

55. Sharkey KJ. 2011 Deterministic epidemic models on contact networks: correlations and
unbiological terms. Theor. Popul. Biol. 79, 115–129. (doi:10.1016/j.tpb.2011.01.004)

56. Gillespie DT. 2001 Approximate accelerated stochastic simulation of chemically reacting
systems. J. Chem. Phys. 115, 1716–1733. (doi:10.1063/1.1378322)

57. Anderson DF, Ganguly A, Kurtz TG. 2011 Error analysis of tau-leap simulation methods. Ann.
Appl. Probab. 21, 2226–2262. (doi:10.1214/10-AAP756)

58. O’Neill PD, Balding DJ, Becker NG, Eerola M, Mollison D. 2000 Analyses of infectious disease
data from household outbreaks by Markov chain Monte Carlo methods. J. R. Stat. Soc. C (Appl.
Stat.) 49, 517–542. (doi:10.1111/1467-9876.00210)

59. O’Neill PD. 2009 Bayesian inference for stochastic multitype epidemics in structured
populations using sample data. Biostatistics 10, 779–791. (doi:10.1093/biostatistics/kxp031)

60. Demiris N, O’Neill PD. 2005 Bayesian inference for stochastic multitype epidemics in
structured populations via random graphs. J. R. Stat. Soc. B 67, 731–745. (doi:10.1111/j.1467-
9868.2005.00524.x)

61. Baguelin M, Newton JR, Demiris N, Daly J, Mumford JA, Wood JLN. 2010 Control of equine
influenza: scenario testing using a realistic metapopulation model of spread. J. R. Soc. Interface
7, 67–79. (doi:10.1098/rsif.2009.0030)

62. Neal P. 2010 Efficient likelihood-free Bayesian computation for household epidemics. Stat.
Comput. 1–18. (doi:10.1007/s11222-010-9216-x)

63. McKinley TJ, Ross JV, Deardon R, Cook AR. Submitted. Simulation-based Bayesian inference
for epidemic models.

http://dx.doi.org/doi:10.2307/1427536
http://dx.doi.org/doi:10.2307/1427536
http://dx.doi.org/doi:10.2307/1426600
http://dx.doi.org/doi:10.1098/rspa.1927.0118
http://dx.doi.org/doi:10.2307/1427788
http://dx.doi.org/doi:10.1239/jap/1118777174
http://dx.doi.org/doi:10.1214/aoap/1034625252
http://dx.doi.org/doi:10.1098/rsif.2007.1100
http://dx.doi.org/doi:10.1098/rsif.2007.1100
http://dx.doi.org/doi:10.1155/2011/284909
http://dx.doi.org/doi:10.1239/jap/1059060902
http://dx.doi.org/doi:10.1016/j.tpb.2011.01.004
http://dx.doi.org/doi:10.1063/1.1378322
http://dx.doi.org/doi:10.1214/10-AAP756
http://dx.doi.org/doi:10.1111/1467-9876.00210
http://dx.doi.org/doi:10.1093/biostatistics/kxp031
http://dx.doi.org/doi:10.1111/j.1467-9868.2005.00524.x
http://dx.doi.org/doi:10.1111/j.1467-9868.2005.00524.x
http://dx.doi.org/doi:10.1098/rsif.2009.0030
http://dx.doi.org/doi:10.1007/s11222-010-9216-x
http://rspa.royalsocietypublishing.org/

	Introduction
	Motivation
	Model definition

	Material and methods
	Monte Carlo methods
	Machine-precision, Markov chain methods
	Machine-precision, arbitrary infectious period methods
	Asymptotic results
	Epidemics on networks

	Results and discussion
	Numerical efficiency of Monte Carlo methods
	Numerical efficiency of Markov chain-based methods
	Numerical efficiency of arbitrary infectious period methods
	Network methods
	Implications for inference

	Conclusions
	References



