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A new approach to the ‘‘apparent survival’’ problem: estimating
true survival rates from mark–recapture studies

JAMES J. GILROY,1 THOMAS VIRZI, REBECCA L. BOULTON,2 AND JULIE L. LOCKWOOD

Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road,
New Brunswick, New Jersey 08901 USA

Abstract. Survival estimates generated from live capture–mark–recapture studies may be
negatively biased due to the permanent emigration of marked individuals from the study area.
In the absence of a robust analytical solution, researchers typically sidestep this problem by
simply reporting estimates using the term ‘‘apparent survival.’’ Here, we present a hierarchical
Bayesian multistate model designed to estimate true survival by accounting for predicted rates
of permanent emigration. Initially we use dispersal kernels to generate spatial projections of
dispersal probability around each capture location. From these projections, we estimate
emigration probability for each marked individual and use the resulting values to generate
bias-adjusted survival estimates from individual capture histories. When tested using
simulated data sets featuring variable detection probabilities, survival rates, and dispersal
patterns, the model consistently eliminated negative biases shown by apparent survival
estimates from standard models. When applied to a case study concerning juvenile survival in
the endangered Cape Sable Seaside Sparrow (Ammodramus maritimus mirabilis), bias-adjusted
survival estimates increased more than twofold above apparent survival estimates. Our
approach is applicable to any capture–mark–recapture study design and should be particularly
valuable for organisms with dispersive juvenile life stages.

Key words: Ammodramus maritimus mirabilis; Bayesian; Cape Sable Seaside Sparrow; demography;
dispersal; emigration rates; hierarchical multistate models; juvenile survival.

INTRODUCTION

Accurate estimates of survival are essential in almost

all branches of ecology. Researchers typically estimate

survival rates using capture–mark–recapture (CMR)

sampling protocols, applying analytical techniques

derived from the Cormack-Jolly-Seber (CJS) modeling

framework (Cormack 1964, Jolly 1965, Seber 1965).

Over many years, CMR methodology has been refined

to resolve various confounding issues including varia-

tion in detection probability and temporary emigration

(Pollock et al. 1990, Lebreton et al. 1992). However, one

confounding factor remains something of an ‘‘elephant

in the room’’ for survival analysis from live-recapture

CMR data: permanent emigration from the study area

(Marshall et al. 2004, Zimmerman et al. 2007, Cooper et

al. 2008, Horton and Letcher 2008). While temporary

emigration can be accounted for using the ‘‘robust

approach’’ to data sampling and analysis (Pollock et al.

1990), few widely applicable methods are available to

differentiate permanent emigration from mortality

under live-recapture CMR sampling (Marshall et al.

2004). In lieu of a working solution to this problem, it

has become customary to report CJS-based estimates
using the term ‘‘apparent survival,’’ offering a simple

acknowledgment of the uncertainty associated with

permanent emigration (Lebreton et al. 1992).

If the geographical limits of a finite study area

correspond perfectly with those of the population of

interest (e.g., an island population), the conflation of

mortality and permanent emigration may be sensible;

permanent emigrants genuinely represent functional

losses to the focal population. If the study area is nested

within a wider population of interest, however, emi-

grants surviving outside the study area may continue to

contribute to population processes. In these circum-

stances, mortality and emigration have diametrically
opposite implications for population dynamics. Evi-

dently, lumping these opposing components within the

same parameter will give a misleading impression of true

survival within the target population. If these ‘‘appar-

ent’’ survival estimates are used to make further

inferences about population dynamics (e.g., in popula-

tion viability analysis), resultant conclusions may be

flawed and misleading.

This issue draws together two allied but disparate

avenues of inquiry associated with CMR sampling:

survival estimation and dispersal modeling. Despite their

close interrelation, the analytical methods used within

these two fields have evolved largely in isolation;
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researchers interested in survival have focused largely on

developing the CJS framework (Lebreton et al. 1992),

while those studying dispersal have focused on applying

kernel-based distributional models (Kot et al. 1996,

Fujiwara et al. 2006). Few attempts have been made to

combine these fields in order to draw inferences about

survival and permanent emigration (but see Baker et al.

1995, Cooper et al. 2008). Here, we present a Bayesian

approach in which information on survival and dispersal

is combined in order to account for permanent emigra-

tion probability within finite-plot CMR data. We test the

model using simulated data sets representative of typical

finite-plot studies, and present a case study concerning

juvenile survival in the endangered Cape Sable Seaside

Sparrow (Ammodramus maritimus mirabilis).

METHODS

Using dispersal kernels to estimate emigration probability

In finite-plot capture–mark–recapture (CMR) studies,

recaptures provide information on dispersive move-

ments up to a theoretical limit corresponding with the

maximum distance between two points in the sampled

area (Baker et al. 1995). By fitting a distributional model

(kernel) to these data, it is possible to generate spatially

explicit predictions of dispersal probability around a

given capture location (Kot et al. 1996, Van Houtan et

al. 2010). Our approach is to apply these predictions as

supplementary information in the process of estimating

survival from capture histories.

To illustrate, we consider a scenario in which CMR

sampling occurs in a single finite study plot within the

range of a dispersive species. For simplicity, we assume

that dispersal occurs in discrete periods between

sampling events, and that emigration from the study

plot is always permanent (e.g., in the case of species with

high natal dispersal). In this scenario the probability of

recapture P(x) at time t of an individual marked within

the plot at time t � 1 is composed of the survival

probability S, the detection probability p (for an

individual within the plot), and the probability that a

surviving individual will remain in the plot at time t,

which we term the residence probability r; thus,

PðxÞt ¼ Strtpt: ð1Þ

We cannot estimate r directly from CMR data as it is

completely confounded with mortality. Hence, in a

classical CJS (Cormack-Jolly-Seber)model the probability

of recapture collapses to the product of p and the apparent

survival rate / (i.e., the probability of surviving and

remaining within the study area; Lebreton et al. 1992).

However, if we assume dispersal is random in direction

(and survival probability is similar inside and outside the

plot), we can simply use a one-dimensional dispersal kernel

to estimate r by generating a probability density surface

around the capture location (Fig. 1). The kernel is

estimated by estimating the parameters of a distribution

function (e.g., Gaussian, Cauchy, lognormal) that best fits

the distribution of observed dispersal events (Kot et al.

1996, Fujiwara et al. 2006). If dispersal direction is

nonrandom, two-dimensional kernels may be used to

model directional bias.We estimate r using the cumulative

FIG. 1. Hypothetical examples of probability density
surfaces describing dispersal probability around a single
capture location within a study plot (delimited by broken red
line), generated from a lognormal distribution. Surfaces reflect
environments of varying heterogeneity: (a) homogeneous
environment in which dispersal probability is independent of
environmental conditions; (b) heterogeneous environment
comprising suitable and unsuitable habitats (zero dispersal
probability in the latter), where heterogeneity is adequately
sampled within the study plot; (c) heterogeneous environment
where the plot is poorly representative of heterogeneity within
the wider landscape, so that a dispersal kernel modeled from
plot-specific data may be a poor predictor of movements
outside the plot.
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density function (CDF) of the kernel, calculating the

proportion of the total cumulative probability density

falling within the study plot. The probability of emigration

is simply 1� r. For kernels with unbounded support, an

appropriate cutoff distance may be necessary in order to

feasibly estimate r in a geographical information system

(e.g., projecting up to 99.99% of the cumulative probability

density around a capture location).

The validity of this approach hinges on how well the

dispersal kernel predicts the true distribution of dispers-

al events in space. Dispersal probability is likely to vary

in both space and time, and may be strongly influenced

by factors such as habitat quality, patchiness, and

barriers to movement (Schneider 2003, Schooley and

Wiens 2004). If this heterogeneity is adequately repre-

sented within the study plot, a plot-specific kernel may

be valid across the wider landscape (e.g., Fig. 1b).

However, if environmental conditions outside the study

plot differ widely from those within, settlement patterns

outside the plot may be difficult to predict using models

derived from within-plot data (e.g., Fig. 1c). The

modeling approach described in the next section

assumes that meaningful kernel-based predictions of

spatial dispersal probability can be generated for the

system in question.

The emigration model

Our model is an extension of the Bayesian CJS model

developed by Calvert et al. (2009), adopting a hierar-

chical structure to model heterogeneity across discrete

random variables (e.g., sites, years). We describe

parameter notation for hierarchical structuring around

years (index y), although the model can easily be

generalized to other structures. In this parameterization,

we assume that dispersal occurs between sampling

periods, and that emigration is always permanent. The

model can be readily extended to account for temporary

emigration (provided that data can be partitioned into

secondary sampling periods, i.e., days or weeks within

years) by including an additional level of parameter

indexing, estimating detection probabilities in a manner

analogous to the robust approach (see Appendix A;

Pollock et al. 1990, Calvert et al. 2009).

Following initial capture, marking, and release,

individuals (i ) belong either to one of K observable

states representing living individuals within the study

area, or an unobservable state K þ 1 representing

individuals that are dead or have permanently emigrat-

ed. All model parameters and variables are defined in

Table 1. The model is separated into two elements: (1) a

standard CJS-based hierarchical model that concerns

individual capture histories, and (2) a hidden Markov

process that concerns residence probabilities estimated

through dispersal-kernel analysis. The CJS-based model

adopts a state-space parameterization, separating the

likelihood of observed individual capture histories (xi,y)

into process and observation components. The process

component estimates apparent survival and transitions

between true underlying states (zi,y), while the observa-

tion component estimates detection probabilities for

individuals in observable states (denoted by the binary

indicator wi,y). The likelihood for the CJS-based model

takes the following general form:

P x j/;W; pf g
¼ P z;w j/;W; pf g

¼
YN

i¼1

YY

y¼ciþ1

P zi;y j zi;y�1/
a
yW

a;b
y

n o
3 P wi;y j zi;ypb

y

n o
ð2Þ

where a ¼ zi,y�1 and b ¼ zi,y. Note that the model

conditions on time at first capture for each individual.

The process component of the CJS-based model is

defined by a categorical distribution with probabilities

given thus:

Pðzi;y ¼ b j zi;y�1 ¼ aÞ

¼

/a
yW

a;b
y a ¼ 1; . . . ;K b ¼ 1; . . . ;K

1� /a
y a ¼ 1; . . . ;K b ¼ K þ 1

1 a ¼ K þ 1 b ¼ K þ 1

0 a ¼ K þ 1 b ¼ 1; . . . ;K

8
>>><

>>>:

ð3Þ

where the top row represents probabilities associated

with transitions between the K observable states (e.g.,

study areas), while the second row represents the

probability of transition to the unobservable state

(mortality plus permanent emigration). The remaining

rows ensure that individuals in the unobservable state

remain there permanently. The observation component

is a Bernoulli process determined by the probability of

detection of an individual (indicated by the data

structure containing wi,y values), conditional on its true

state zi,y. Probabilities are defined thus:

Pðwi;y j zi;y ¼ aÞ ¼ pa
y a ¼ 1; . . . ;K

0 a ¼ K þ 1

�
ð4Þ

where the top row represents detection probabilities for

each observable state and the bottom row dictates that

detection is impossible for individuals in the unobservable

state (apparent mortality). The hidden Markov process is

computed simultaneously with the CJS-based model,

decomposing apparent mortality (i.e., transitions to state

Kþ1 ) into true mortality and permanent emigration. The

process is based on the notion that the true survival

probabilitySy for amarked sample of individuals in a finite

study area is related to the apparent survival rate/yand the

residence probability ry:

Sy ¼
/y

ry
: ð5Þ

Using a set of kernel-derived estimates of r for each

individual and capture occasion, we rearrange Eq. 5 into a

likelihood function where S*, an estimate of S, is derived

using the apparent survival estimate /y taken from the

CJS-based model, with values of r modeled as a normal

distribution with mean estimated thus:
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P ri;y j xi;y ¼ a
� �

¼
/a

y

S�a
y

a ¼ 1; . . . ;K

0 a ¼ K þ 1:

8
><

>:
ð6Þ

The function is conditional on the observed state of the

individual xi,y, reflecting the limitation that r values can

only be generated when the state and location of the

individual were observed in the preceding time period.

Parameter values at each hierarchical level (e.g., years)

are assumed to form a random sample drawn from a

‘‘hyperprior’’ distribution (Carlin and Louis 1996). In

order to ensure that parameter values are bounded

between 0 and 1, we specify hyperprior distributions on

the logit scale. Following Calvert et al. (2009), we use

diffuse conjugate normal distributions for parameter

means and gamma distributions for parameter preci-

sions s (used in WinBUGS [Lunn et al. 2000], rather

than variance 1/s). For observable state transition

probabilities W, parameter values must sum to 1 for

each observable state. As such, in a model with K

possible state transitions, hyperpriors are specified for K

� 1 transitions, with the Kth transition being defined as

one minus the sum of all other transitions. As our focus

is on unbiased parameter estimation, we do not directly

address the issues of model goodness of fit or model

selection directly in this study, although both are

discussed in Appendix A.

Testing model performance with simulated data

We used a stochastic simulation process to generate

realistic data sets with six years of mark-recapture

sampling in a single study plot (full details in Appendix

B). We incorporated two age classes ( juvenile and

adult), and restricted dispersal to juveniles so that all

dispersive movements occurred in the first year of life.

Dispersal was simulated as a one-dimensional process

where individuals were assigned random capture loca-

tions relative to the plot boundary, moving out to a

distance sampled from a lognormal distribution with

fixed or time-varying parameters. We generated 25 data

sets for each of eight scenarios combining variation in

recapture probability, true juvenile survival rate and

dispersal distribution (see Appendix B for details).

Sample sizes were fixed at N ¼ 100 juveniles captured

and released per year.

To analyze each data set we estimated individual-

specific residence probabilities ri,y from spatial projec-

tions of a lognormal dispersal-kernel cumulative density

function with parameters corresponding with the mean

underlying dispersal distribution (l ¼ 5, r ¼ 2). The

resulting ri,y values and sampled capture histories were

then used to fit the emigration model in WinBUGS

version 1.4 (Lunn et al. 2000) using the code given in

Appendix C. We used the Gelman-Rubin diagnostic

(Gelman and Rubin 1992) to assess convergence based

on three chains for each scenario, setting a precaution-

ary burn-in run of 10 000 iterations and estimating

parameters based on 50 000 subsequent iterations.

We also examined model performance when residence

probability (r) was estimated using a dispersal kernel

derived from right-censored data, as expected in typical

finite plot studies where long-distance movements are

detected infrequently. We compared three scenarios of

varying study plot size, capturing the shortest 25%, 50%,

and 75% of dispersal events. We generated 25 data sets

for each scenario and estimated kernel parameters for

each data set (including only within-plot recaptures)

using maximum-likelihood routines in the fitdistr

function in R version 2.9.2.3 We used ri,y values

estimated from each kernel to fit the emigration model.

We then repeated each simulation allowing some

recaptures to occur within a narrow range of distances

corresponding to the 90% and 95% limits of the true

cumulative density function of the kernel. This scenario

was therefore akin to a study design with two plots

located within the dispersal range of a target species,

allowing the detection of a small proportion of long-

distance dispersal events (i.e., those occurring between

disparate plots).

TABLE 1. Descriptions of model parameters and data structures used in the Bayesian multistate model incorporating information
on emigration probability.

Parameter or data structure Definition

Sa
t Probability that an individual in state a at time t survives to time t þ 1

/a
t Probability that an individual in state a at time t survives to time t þ 1 and does not

permanently emigrate from the study area
Wa;b

t Probability that an individual in state a at time t will be in state b at time t þ 1 given that it
survives to t þ 1

pa
t Probability that an individual in state a at time t will be detected at time t

xi;t Observed state of individual i at time t
zi;t True state of individual i at time t
wi;t Binary indicator of whether individual i was observed at time t
ri;t Estimated probability that individual i observed at time t will remain within the study area

at time t þ 1, given that it survives to t þ 1
ci Time of first capture for individual i
K Total number of observable states

3 http://www.r-project.org
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Field-based case study: Cape Sable Seaside Sparrow

Between 1998 and 2007, intensive capture–mark–

recapture monitoring was conducted in eight finite plots

(5.5 km2 in total) across the Cape Sable Seaside

Sparrow’s range in southern Florida, USA (Van Houtan

et al. 2010; see Plate 1). Robust-approach apparent

survival estimates for these data were presented by

Boulton et al. (2009); we revisit their data set to evaluate

the potential effect of permanent emigration on juvenile

survival estimates. We estimated residence probabilities

using a published juvenile dispersal kernel generated

from the same data set (Van Houtan et al. 2010). We

mapped habitat suitability (treated as a dichotomous

variable) using occupancy data from annual breeding

season point counts conducted at 1-km intervals

throughout the known range (Van Houtan et al.

2010), and generated kernel projections representing

two dispersal hypotheses: (1) dispersal probability

independent of habitat suitability and (2) dispersal

constrained to suitable habitat (see Appendix D). We

used both sets of residence probability estimates to fit

the Bayesian emigration model with age-specific survival

parameters ( juvenile or adult, K ¼ 2), using the

uninformative priors and convergence diagnostics de-

scribed for simulated data sets.

RESULTS

Survival estimates from the emigration model closely

approximated true values across all simulated scenarios,

while the equivalent standard CJS model consistently

produced negatively biased estimates (Fig. 2a, b). Year-

specific estimates showed little evidence of parameter

‘‘shrinkage’’ towards the mean (Calvert et al. 2009,

Appendix E), suggesting that interannual variation was

captured effectively by the emigration model given the

sample sizes we simulated (n¼100 individuals marked per

year). The model was robust to temporal variation in

emigration probability, with little change inmean squared

error rates relative to time-constant dispersal scenarios

(Appendix F). Negative bias increased significantly when

kernels derived from right-censored data were used to

estimate residence probability, particularly when only

short-distance dispersal events were captured within the

studyplot (Fig. 2c).However, biaswas reduced for all plot

sizeswhen recaptureswere allowed to occurwithin a small

proportion of the true kernel tail (i.e., long-distance

events), analogous to a multi-plot study design (Fig. 2d).

PLATE 1. A male Cape Sable Seaside Sparrow sings from the seasonally flooded marl prairie of Everglades National Park,
Florida, USA. Long-term monitoring has provided a detailed understanding of the ecology of this threatened species, but the
estimation of survival rates has been hampered by uncertainties associated with the dispersal of marked individuals beyond study
plot boundaries. Our methods provide a means of controlling for this uncertainty, using information derived from observed
dispersal events. Photo credit: J. J. Gilroy.
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For the Cape Sable Seaside Sparrow data set (Boulton

et al. 2009, Van Houtan et al. 2010), spatial kernel

projection yielded individual residence probability esti-

mates ranging from 0.276 to 0.725 (mean 0.528, 95% CI

0.305–0.699) under an assumption that dispersal proba-

bility was independent of habitat suitability. When

dispersal probability was constrained to suitable habitats,

estimates ranged from0.264 to 0.690 (mean 0.518, 95%CI

0.290–0.649), indicating that these assumptions had

negligible impact on the estimation of emigration

probability. The juvenile survival estimate from the

emigration model assuming habitat independence (0.339

6 0.078, mean 6 SD) was more than double that of the

standard CJS model (0.151 6 0.055), and showed a

significantly wider 95% credible interval (0.191–0.585 for

the emigration model, 0.094–0.240 for CJS), reflecting

increased uncertainty once permanent emigration was

taken into account. Results changed little when themodel

wasfitted usingkernel projectionswithhabitat-dependent

dispersal, producing a slightly higher mean juvenile

survival rate of 0.342 6 0.082. Annual survival estimates

and 95% credible intervals are given in Appendix G.

DISCUSSION

Since the inception of analytical methods for survival

estimation from live-recapture data, researchers have

FIG. 2. Performance of the Bayesian emigration model against simulated capture-history data sets. The upper panels show
correlations between mean true survival rates and model estimates (posterior means and 95% credible intervals) for a dispersive age
class, showing (a) estimates from the standard Cormack-Jolly-Seber survival model (solid circles) and (b) estimates from the
emigration model (open squares). The diagonal lines indicate perfect correlation. The lower panels show biases calculated from
emigration-model survival estimates (posterior median minus true value) when ill-fitting dispersal kernels were used to estimate
residence probability. Kernels were modeled for each simulated data set using recaptures from plots with a maximum dimension
equating to the 25th, 50th, and 75th percentiles of the cumulative distribution function (CDF) of the true dispersal distribution. In
panel (c), sampling occurred only within the study plot; in panel (d), recaptures were allowed within a small proportion of the tail of
the true dispersal distribution (between the 90th and 95th percentiles), analogous to a second study plot. All data sets shown were
simulated with low recapture probability (P¼ 0.5) and fixed dispersal distributions; ‘‘HM’’ stands for hierarchical mean.
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struggled to develop widely applicable methods to deal

with the confounding issue of permanent emigration

(Marshall et al. 2004, Zimmerman et al. 2007, Cooper et

al. 2008). By combining information on survival and

dispersal within a Bayesian framework, we were able to

generate unbiased estimates of survival despite high rates

of permanent emigration. Our model performed consis-

tently across simulated scenarios of varying detection

probability, survival rate, and dispersal probability.

Fundamentally, the model is similar to other hierarchical

applications of the CJS family (Gimenez et al. 2007,

Calvert et al. 2009), and is relatively simple to implement.

It generates standard apparent survival estimates (from

the CJS-based model component) alongside true survival

estimates accounting for emigration probability, so no

information is lost relative to traditional survival models.

Rather, valuable information is gained on the likely

impact of permanent emigration on survival estimates

within a given study system.

In real-world CMR studies, we anticipate that

application of our model may be hindered by inadequate

sampling of the true dispersal distribution (Schneider

2003, Cooper et al. 2008). Our simulations suggested

that the inclusion of even small numbers of long-

distance dispersal events can dramatically improve

kernel fit, reducing bias in subsequent survival estimates.

This result was unsurprising given that the distribution

we used to simulate dispersal (lognormal) exhibits an

inverse power law tail, and therefore shows self-

similarity across spatial scales, allowing adequate

modeling from restricted samples (Halley and Inchausti

2002). Inverse power law distributions are thought to

occur frequently among dispersive organisms (Brown et

al. 2002), and have been detected in numerous birds

(Van Houtan et al. 2007) and butterflies (Fric and

Konvicka 2007). Study designs involving multiple plots

are likely to be highly beneficial in these cases, as the

detection of even small numbers of long-distance

movements between plots should facilitate accurate

kernel fitting (Halley and Inchausti 2002, Cooper et al.

2008). Direct modeling of spatial variation in detection

probability within the kernel likelihood function will

also act to reduce bias associated with right censorship

(Van Houtan et al. 2010), while nonparametric kernels

might be more appropriate in sampling designs with

severe right censorship. Whichever approach is taken,

extreme care should be exercised when selecting models

used to represent dispersal; gross errors such as the

selection of an inappropriate model family for the

dispersal kernel might lead to highly misleading

estimates of emigration probability. In cases where there

is considerable uncertainty in selecting the best model to

represent dispersal, increased spatial sampling effort

may be the most sensible approach to generating robust

survival estimates.

While the problem of sampling the full distribution of

dispersal distances can be addressed through appropri-

ate study design and analysis, environmental heteroge-

neity presents a greater challenge to robust estimation of

survival and dispersal (Ovaskainen et al. 2008). As

dispersal is an emergent phenomenon reflecting interac-

tions between an organism and its environment, a kernel

generated from CMR data may only be truly meaningful

within the conditions occurring in the sampled area

(Schneider 2003). Owing to the lack of data beyond plot

boundaries, predictions of emigration probability must

ultimately rely on uninformed assumptions about

dispersal behavior with respect to environmental varia-

tion. One way to account for this uncertainty is by

constructing models representing different plausible

hypotheses about off-plot dispersal. In the sparrow

analysis, we compared scenarios where dispersal was

assumed to be dependent or independent of habitat

variation. In fact, survival and emigration estimates for

the sparrow varied little between these divergent

scenarios, reflecting the low relative impact of long-

distance dispersal events (i.e., those reaching unsuitable

habitats) on the overall probability of emigration for

any given individual. Rather, emigration probability was

largely dependent on the likelihood of short-distance

movements carrying individuals to areas of suitable

habitat just outside the study plot bounds.

In the absence of data on permanent emigration, we

have no means of testing hypotheses relating to emigra-

tion rates. As such, probability density surfaces generated

under our approach are more akin to best guesses than to

data-based inferences. While relatively crude, we believe

our approach represents a step in the right direction

towards a better integration of survival and dispersal

within empirical demographic models.We anticipate that

further advances will be made via extensions to our

approach, particularly if dispersal-kernel estimation can

be directly incorporated within a spatially explicit CJS

model (e.g., Saracco et al. 2010). We encourage research-

ers to make maximum use of the information at hand

within capture-history data, and take advantage of the

highly flexible range of tools available for demographic

modeling within the Bayesian framework. We hope our

model will provide a basis for further advances in the field

of survival estimation in study systems where permanent

emigration is likely to occur.
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Appendix E
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Appendix F

Mean squared error values for juvenile survival parameter estimates from the Cormack-Jolly-Seber model and the emigration
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Appendix G
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