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Abstract

We have previously shown that the defective ability of alveolar macrophages (AM) to phagocytose apoptotic cells
(‘efferocytosis’) in chronic obstructive pulmonary disease/emphysema (COPD) could be therapeutically improved using the
C-type lectin, mannose binding lectin (MBL), although the exact mechanisms underlying this effect are unknown. An S-type
lectin, galectin-3, is also known to regulate macrophage phenotype and function, via interaction with its receptor CD98. We
hypothesized that defective expression of galectin/CD98 would be associated with defective efferocytosis in COPD and that
mechanisms would include effects on cytoskeletal remodeling and macrophage phenotype and glutathione (GSH)
availability. Galectin-3 was measured by ELISA in BAL from controls, smokers and current/ex-smokers with COPD. CD98 was
measured on AM using flow cytometry. We assessed the effects of galectin-3 on efferocytosis, CD98, GSH, actin
polymerisation, rac activation, and the involvement of PI3K (using b-actin probing and wortmannin inhibition) in vitro using
human AM and/or MH-S macrophage cell line. Significant decreases in BAL galectin-3 and AM CD98 were observed in BAL
from both current- and ex-smoker COPD subjects vs controls. Galectin 3 increased efferocytosis via an increase in active GTP
bound Rac1. This was confirmed with b-actin probing and the role of PI3K was confirmed using wortmannin inhibition. The
increased efferocytosis was associated with increases in available glutathione and expression of CD98. We provide evidence
for a role of airway lectins in the failed efferocytosis in COPD, supporting their further investigation as potential
macrophage-targeted therapies.
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Background

Chronic Obstructive Pulmonary Disease/emphysema (COPD)

is a disease that is poorly managed with currently available

therapies. The World Health Organization estimates that 80

million people have moderate to severe COPD and this will be the

third leading cause of death world-wide by 2030 [1). There still

exist gaps in the understanding of the pathogenic mechanisms of

the disease; however, we have shown a significant defect in the

ability of pulmonary macrophages to phagocytose apoptotic

airway epithelial cells (defective efferocytosis) [2–4], which

contributes to an excess of apoptotic material present in the

airways of these patients [5]. This uncleared material can then

undergo secondary necrosis and perpetuate chronic inflammation

[5,6]. We have also demonstrated impaired phagocytosis of

bacteria in COPD; an important finding given the increased

bacterial colonization and increased susceptibility for infection/

exacerbation [7].

Lectins are soluble carbohydrate-binding proteins that include

C-type (lung surfactants and mannose binding lectin (MBL)), S-

type (galectins), L-type, heparin binding proteins and pentraxins.

They contain carbohydrate recognition domains (CRD) and are

traditionally recognised for their roles in recognition of pathogen-

associated molecular patterns (PAMPs) and facilitation of patho-

gen clearance [8–11]. More recently we and others have shown

that lectins also have the ability to facilitate phagocytosis of

apoptotic cells [12,13]. MBL, for example, has been shown to

recognize nucleic acids including fragmented DNA on apoptotic

cells, products of tissue damage (eg, heat shock proteins, cell

membrane material) [8]. We have shown that defective effer-

ocytosis in COPD (and other chronic inflammatory lung diseases,

including bronchiolitis obliterans syndrome following lung trans-

plantation) is associated with a decrease in airway levels of several

C-type lectins including MBL and surfactants [14,15], although

levels of S-type lectins have not been assessed in COPD. We

further showed that MBL administration to smoking mice

improved efferocytosis and reduced inflammation; however, the

precise mechanisms for this effect are unclear [16].

Both MBL and galectin-3 have been shown to have effects on

components of the actin reorganization pathway that occurs

during the phagocytic process. We showed that the pro-

efferocytosis effects of MBL were accompanied by an increase in

intracellular Rac1/2/3 [16]. Galectin-3 has also been shown to

activate phosphatidylinositol 3-kinase (PI3K), which has a well-
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recognized role in the reorganization of the actin skeleton and

activation of Rac, during myelin phagocytosis in microglia [17].

Lectins may also contribute to intracellular production of

glutathione (GSH), an antioxidant present in the lung that is

important for effective efferocytosis [18,19]. The availability of

extracellular GSH is essential to maintain intracellular GSH

homeostasis; when GSH availability is limited, cellular functions

including efferocytosis and respiratory burst are reduced [18].

GSH is produced following transport of its precursor amino acid,

cystine, into the cell via its transporter- xCT/CD98 [20]. Both

MBL and galectin-3 bind to CD98 [8,21], and the interaction of

galectin-3 and CD98 has been shown to induce an ‘M2’

alternatively activated macrophage phenotype (with an improved

efferocytosis ability) [18,21]. It is therefore possible that low levels

of galectin-3, or reduced expression of CD98, could compromise

the levels of GSH and subsequent efferocytosis ability of airway

macrophages, and play a role in the defective efferocytosis

observed in COPD.

We firstly measured galectin-3 and macrophage CD98 expres-

sion in the airways of well-categorized controls, smokers and

COPD groups. We then determined whether administration of

exogenous galectin-3 would improve efferocytosis in vitro, and

investigated potential mechanisms for this effect including in-

creased GSH availability, effects on macrophage phenotype, actin

polymerisation, Rac1 activation, and the involvement of PI3K.

Methods

Bronchoscopy and Preparation of Alveolar Macrophages
(AM)
Ethical approval was granted by the Royal Adelaide Hospital

Ethics Committee and written informed consent was obtained for

each patient or control recruited for the study. Flexible bronchos-

copy was performed and bronchoalveolar lavage samples (BAL)

obtained according to recommendations by the American

Thoracic Society as previously reported [2–4]. The diagnosis of

COPD was established using the GOLD criteria (FEV1/FVC

,70%) with clinical correlation [22].

Alveolar macrophages from BAL were prepared as previously

reported [2–4]. Briefly, macrophage cell counts in BAL were

adjusted to 46105/mL in RPMI 1640 media, supplemented with

10% foetal calf serum, 1% weight per volume L-Glutamine and

penicillin/streptomycin (Gibco BRL, Berlin, Germany) (culture

medium). One mL aliquots were then adhered to 24 well culture

plates for 2 h, then fluid removed and the purified macrophages

gently recovered using ice-cold culture medium and gentle

pipetting. We have previously shown that this process results in

no significant changes in apoptosis or macrophage function (data

not shown). Total and differential cell counts were obtained and

the macrophage cell counts adjusted to 46105/ml in culture

medium Macrophages were purified by adhesion to plastic as

previously reported [2–4].

Human Subjects
BAL galectin-3 was evaluated for (i) never-smoker controls

(n = 15) (ii) healthy smoker controls (n = 12) (iii) healthy ex-smoker

controls (n = 8) (iv) subjects with moderate severity COPD (30; 18

current smokers and 12 ex-smokers) (Table 1). All ex-smokers had

ceased smoking for at least 12 months.

Reagents and Antibodies
For assessment of CD98 expression, CD98-PE (BD Biosciences,

San Jose, CA) and CD14 and CD45 [phycoerythrin cyanide-5

(PC-5)] (Immunotech/Coulter) were employed. For assessment of

the efferocytosis function of human AM, CD33 [phycoerythrin

cyanide-5 (PC-5)] (Immunotech/Coulter, Marseille, France) and

mitotracker red (Molecular Probes, Oregon, USA) were employed.

For assessment of efferocytosis in a MH-S cell line, MHC II (I-A/

I-E) [fluorescein isothiocyanate [FITC)] (eBiosciences, San Diego,

California, USA) and mitotracker red were used. Recombinant

human galectin-3 was produced and purified as previously

described [23]. For the Rac1 pull-down assay, anti-Rac1 and

anti-Cdc42 were obtained from Millipore. For actin studies,

rhodamine phalloidin was obtained from Molecular Probes.

Leupeptin, aprotinin, NaF, Na3VO4 and 2-vinylpyridine were

obtained from Sigma Chemical Company Ltd (St Louis, Missouri,

USA). B-actin antibody was purchased from Cell Signaling

(Danvers, Massachusetts, USA).

ELISA Measurement of Galectin-3
Galectin-3 levels were determined in batches of frozen BAL

samples (after removal of cells) from subjects with COPD and

control subjects using commercial ELISA kits (R&D Systems

Table 1. BAL patient demographics.

N [M/F]
Age
(Years)

Pack-
Years

FEV1
(% Pred)

FEV1/
FVC

Volume
(mL)

Volume
(% instilled)

WCC
(x109/L)

Mac
(%)

Lymph
(%)

Neut
(%)

Control
never-smokers

[7/8] 49
(27–72)

0 99
(81–134)

83
(74–98)

72
(42–88)

48
(28–59)

0.2
(0.04–0.75)

82
(27–93)

10 (4–26) 7 (0–25)

Control
ex-smokers

[5/3] 59
(33–72)

20
(8–30)*

103
(65–126)

82
(72–103)

70
(43–81)

47
(29–54)

0.13
(0.06–0.31)

85
(70–95)

9 (2–28) 6 (1–14)

Control
smokers

[7/5] 56
(26–66)

40
(7–120)*

83
(74–97)

75
(70–88)

63
(26–85)

40
(17–57)

1.18
(0.14–7.6)

83
(61–98)

12 (0–33) 7 (1–33)

COPD
Curr- smokers

[11/7] 56
(30–72)*

39
(8–80)*

71
(41–102)*

62
(42–69)*

54
(24–81)**

36
(16–54)**

0.25
(0.04–1.65)

90
(58–98)*

3 (1–11)** 11 (0–41)

COPD
ex-smokers

[8/4] 65
(46–73)*

40
(10–179)*

60
(47–89)*

58
(28–66)*

47
(14–84)**

31
(10–56)**

0.30
(0.03–0.55)

86
(10–96)

7 (2–20) 7 (0–20)

Data shown as median (range). Abbreviations: COPD: chronic obstructive pulmonary disease, FEV1: forced expiratory volume in 1 second, FVC: forced vital capacity.
WCC: total leukocyte count, Volume (mL): the recovered volume of BAL, Volume (% instilled): % volume recovered from instillation of 150 mL, Mac: alveolar
macrophages, Lymp: lymphocytes, Neut: neutrophils.
*p,0.05;
**,0.001 vs. control.
doi:10.1371/journal.pone.0056147.t001
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(Minneapolis, MN)) following the procedure recommended by the

manufacturer. Galectin-3 concentration was expressed as nano-

grams of protein/mL. The mean minimum detectable dose was

0.016 ng/mL.

Flow Cytometric Analysis of CD98 on AM
Flow cytometry was utilized to assess expression of CD98 on

AM from a cohort of subjects as previously reported [3].

Efferocytosis Assay
Flow cytometry was utilized to assess the ability of AM to

phagocytose apoptotic bronchial epithelial cells as previously

reported [2–4].

Cell Lines
A murine alveolar macrophage cell line (MH-S; CRL-2019;

American Type Culture Collection, Manassas, VA) was main-

tained in RPMI-1640 medium supplemented with 10% FCS,

sodium pyruvate (1 mM), L-glutatmine, HEPES (10 mM), sodium

bicarbonate (1.5 g/L), b-mercaptoethanol (0.05 mM) and genta-

mycin. Normal mouse mammary gland epithelial cells (NMuMG)

were maintained in DMEM (Gibco) Invitrogen, Auckland, New

Zealand) supplemented with 10% FCS, 10 mg/mL insulin,

100 U/mL penicillin, and 50 mg/mL streptomycin. 16 HBE

bronchial epithelial cells for the efferocytosis assay were main-

tained as previously reported [2].

Effect of Galectin-3 on Efferocytosis in vitro
AM collected from 4 of the control subjects and 7 subjects with

COPD were incubated with galectin-3 (50 or 100 mg/mL) or

media control for 10 min at 37uC in serum free media before the

addition of apoptotic airway epithelial cells (ratio 4:1) and

assessment of efferocytosis as previously reported [2–4]. To

address if these effects were mediated by its carbohydrate-binding

domain we tested the effect of galectin-3 on efferocytosis in the

Figure 1. Decreased levels of galectin 3 in BAL in COPD. Galectin-3 analyzed by ELISA in stored samples of BAL from never-smoker controls
(n = 15), healthy smoker controls (n = 12), healthy ex-smoker controls (n = 8) and 30 subjects with moderate severity COPD (18 current-smokers and
12 ex-smokers).Box plots present median625th and 75th percentiles with the 10th and 90th percentiles shown by whiskers outside the box.
*p,0.05; **p,0.01 vs. never smoker controls.
doi:10.1371/journal.pone.0056147.g001

Figure 2. Decreased AM expression of CD98 in COPD.
Percentage of alveolar macrophages (AM) expressing CD98. CD98 was
measured by flow cytometry on AM from 8 never-smoker control
subjects and 11 subjects with COPD (6 current smokers and 5 ex-
smokers). Data presented as box plots as described in Figure 1.
*p,0.05; **p,0.01 vs. never smoker controls.
doi:10.1371/journal.pone.0056147.g002
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presence of lactose (5 mM), a disaccharide, competitive for

carbohydrate-binding by galectin-3.

Effect of Galectin-3 on Arginase-1 Activity
Activity of arginase-1, a marker of alternative macrophage

activation, was measured in supernatants from AM collected from

the 5 healthy controls that had been incubated with galectin-3 for

48 h, using a commercial QuantiChrom TM Arginase Assay Kit

(BioAssay Systems, Hayward, CA, USA) as previously described

[4].

Intracellular Glutathione-redox Assays
The glutathione-redox is the ratio of reduced glutathione (GSH)

to oxidized glutathione (GSSG). GSH and GSSG levels were

measured as we have previously described [24]. Briefly, MH-S

macrophages were treated varying concentrations of galectin-3 for

2 h and suspended in ice-cold extraction buffer (1% Triton X-100

and 0.6% sulfosalicyclic acid) and lysed by repeated freezing and

thawing. Lysates were centrifuged (10,0006g) for 5 min at 4uC
before measurement of GSH and GSSG. Oxidized Glutathione

(GSSG) was measured after derivatizing the reduced GSH with 2-

vinylpyridine (1 M). Oxidized GSH standards were used and the

GSSG-to-GSH ratio calculated.

Involvement of PI3K in Galectin-3 Induced Efferocytosis
MH-S macrophages were seeded in 24-well plates at 26105

cells/well and incubated overnight. Cells were pre-treated with the

PI3K inhibitor wortmannin (5–50 nM) for 30 min at 37uC, prior
to treatment with galectin-3. The efferocytosis assay was

performed using NMuMG mouse epithelial cells as phagocytic

targets as previously reported [16].

Effect of Galectin-3 on Rac Activation
Rac pull-down activity assays were performed according to the

manufacturer’s indications (Millipore). Briefly, 5.06106 MH-S

macrophages were plated overnight in reduced serum conditions

and were exposed to galectin-3 (50 mg/mL) for 10 min prior to the

addition of apoptotic NMuMG cells. Non-ingested cells were

removed. Cell extracts were prepared at 4uC from equal amounts

of cell protein, using prechilled Mg2 lysis buffer (125 mM HEPES,

750 mM NaCl, 5% Igepal CA-630, 50 mMMgCl2, 5 mM EDTA

and 10% glycerol; with the following inhibitors: 10 mg/mL

leupeptin, 10 mg/mL aprotinin, 1 mM sodium orthovanadate,

and 1 mM sodium fluoride). Extracts were cleared by centrifuga-

tion for 10 min at 4uC in the presence of glutathione agarose. Fifty

mL samples were withdrawn for analysis of total Rac1 and b-actin

Figure 3. Galectin-3 increases efferocytosis in vitro. AM from 4
control subjects and 7 subjects with COPD were incubated with or
without 100 mg/mL galectin-3 (Gal-3) for 10 min prior to efferocytosis
assay. To address if these effects were mediated by its carbohydrate-
binding domain we also tested the effect of galectin-3 on efferocytosis
in the presence of lactose (5 mM). (A) Data presented by box plots as
described in Figure 1. p,0.01 versus control with no galectin-3 added.
(B) Individual data points showing % efferocytosis pre- and post-
treatment with 100 mg/mL Gal-3.
doi:10.1371/journal.pone.0056147.g003

Figure 4. Galectin-3 increases AM arginase secretion. AM from 5
healthy controls were treated with galectin-3 (100 mg/mL) for 48 h.
Arginase was measured in culture supernatant by ELISA. p,0.05 versus
control with no galectin-3 added.
doi:10.1371/journal.pone.0056147.g004

Lectins Improve Macrophage Function in COPD
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to ensure equal loading. The remainder of each extract was

incubated for 1 h at 4uC with 10 mL of p21-activated kinase-PBD

agarose (50% slurry), which selectively binds the active or GTP-

loaded forms of Rac and Cdc42. The beads were washed three

times with assay buffer and eluted with SDS-PAGE sample buffer.

The eluates were then subjected to immunoblot analysis using

Rac1-specific antibody.

Figure 5. Galectin-3 increases available glutathione. MH-S macrophages were treated with varying concentrations of galectin-3 for 1 h. Cells
were lysed and intracellular concentrations of GSH (A) reduced (available) GSH (B) oxidized GSH (GSSG) and (C) the ratio of GSH to GSSG were
measured following enzymatic recycling assay. Data represent mean 6 SEM of 4 separate triplicate experiments. *p,0.05 versus control.
doi:10.1371/journal.pone.0056147.g005

Lectins Improve Macrophage Function in COPD
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Effect of Galectin-3 on Actin Polymerization
MH-S cells were seeded in 8-well chamber slides (BD

Biosciences, Bedford, MA, USA) overnight and treated with

galectin-3 for 10 min prior to the addition of UV-irradiated

apoptotic epithelial cells that been labeled with 200 nM

MitoTracker Green [2]. Non-ingested cells were removed and

cells were fixed with 4% paraformaldehyde. Cells were permea-

bilized with 0.1% Triton X-100. Cells were stained with

rhodamine-phalloidin for 20 min at room temperature in the

dark. Coverslips were mounted with Moval and images were

captured using a Bio-Rad Radiance 2100 confocal microscope (at

Detmold Imaging Core Facility, Hanson Institute) and Biorad

LaserSharp 2000 software for image viewing and processing. In

Figure 6. Galectin-3 improves efferocytosis by effects on PI3K. MH-S cells were treated with different concentrations of the PI3K inhibitor
(wortmannin) prior to the addition of galectin-3 and assessment of efferocytosis. Data represent mean 6 SEM of 3 separate triplicate experiments.
*p,0.05; **p,0.01, versus galectin-3 with no wortmannin added.
doi:10.1371/journal.pone.0056147.g006

Figure 7. Involvement of PI3K in galectin-3 induced Rac1 activation. Serum-starved MH-S cells were pre-treated with 50 nM wortmannin or
diluent for 30 min before the addition of galectin-3 (50 mg/mL) and apoptotic target cells. Active GTP-bound form of Rac1 protein was isolated by
pull-down assay and compared to total Rac1 expression was used as a loading control. Data represent 4 separate triplicate experiments. The lanes of
the blots (top) correspond with the legends given below the bar diagram. *p,0.05 versus galectin-3 with no wortmannin added.
doi:10.1371/journal.pone.0056147.g007

Lectins Improve Macrophage Function in COPD
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some experiments, wortmannin was added to assess the effects of

inhibition of PI3K on actin polymerization.

Statistical Analysis
The Kruskall-Wallis and Mann Whitney U tests were applied to

analyze the data. Analyses were performed using GraphPad Prism

software; p,0.05 was considered significant.

Results

BAL Galectin-3 Levels and AM CD98 Expression are
Decreased in COPD
Galectin-3 levels were significantly decreased in the BAL of both

current and ex-smoker COPD and healthy smoker subjects,

compared to controls; but not in healthy ex-smokers (Figure 1).

There was a small but significant decrease in percentage of AM

expressing CD98 from both COPD groups vs. controls (Figure 2)

and in mean fluorescence intensity of staining (data not shown).

There was no significant correlation between galectin-3 or CD98

and age (not shown). There were no significant associations

between BAL yield and levels of galectin-3 (correlation 0.073), and

no significant differences in galectin-3 levels between the low

recovery group (less than 30% instilled) versus higher recovery

group (greater than 30%) BAL (p= 0.291).

Galectin-3 Increases Efferocytosis, in vitro
Addition of recombinant human galectin-3 to AM in vitro

resulted in a dose-dependent increase in efferocytosis (77%

increase with 100 mg/mL, p =0.0028) which was inhibited in

the presence of lactose (Figure 3), showing that the stimulatory

effects of galectin-3 were mediated by its carbohydrate-binding

domain.

Galectin-3 Increases AM Arginase-1 secretion
There was a significant increase in levels of the alternative

activation marker (‘M2’), arginase-1, following treatment of AM

with 100 mg/mL galectin-3 for 48 h (Figure 4).

Galectin-3 Improves Available GSH
Treatment of MH-S cells with galectin-3 increased GSH and

the GSH/GSSG ratio in a dose-dependent manner, reaching

statistical significance at 100 mg/mL (Figure 5).

Galectin-3 Improvement in Efferocytosis is Mediated by
PI3K
MH-S macrophages were pre-treated with wortmannin (5–

50 nM) for 30 min prior to addition of 100 mg/mL galectin-3 and

apoptotic targets. Wortmannin significantly decreased the effects

of galectin-3 on efferocytosis (Figure 6).

Figure 8. Co-localization of apoptotic cells in F-actin rich
phagocytic cups and phagosomes in galectin-3 treated macro-
phages.MH-S macrophages were pre-treated with 50 mg/ml galectin-3
for 10 min before the addition of MitoTracker Green (MTG) labelled
apoptotic epithelial cells. After the indicated time periods, un-ingested
apoptotic targets were removed and the cells were fixed, permeabi-
lized, and treated with rhodamine-phalloidin to stain actin. (A)
Distribution of ingested apoptotic epithelial cells and (B) F-actin inside
macrophages. (C) An overlay of these images demonstrates F-actin
surrounding the apoptotic targets.
doi:10.1371/journal.pone.0056147.g008
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Galectin-3 Improvement in Efferocytosis is Mediated by
PI3K and Rac1 Activation
We assessed Rac1 activation in MH-S cells pre-treated with or

without the PI3K inhibitor wortmannin, and then challenged with

apoptotic cells in the presence of galectin-3. The active GTP

bound form of Rac1 was detectable in cells incubated with

apoptotic targets and significantly increased in the presence of

galectin-3 (Figure 7). Pre-treatment of cells with wortmannin

completely abolished the formation of active GTP-bound form of

Rac1. Note that the total amount of Rac1 protein was similar in

the treatment groups; this was further confirmed with ß-actin

probing indicating that GDP-GTP exchange was inhibited by

wortmannin (Figure 7).

Figure 9. Role for PI3K in F-actin rich phagocytic cups and phagosomes in galectin-3 treated macrophages.MH-S cells were pre-treated
with wortmannin before challenge with labeled apoptotic cells in the presence or absence of galectin-3. The cells were then fixed and stained with
rhodamine-labeled phalloidin. The appearance of the actin-rich areas was noticeable after 30 min incubation. PI3K inhibition by wortmannin
attenuated phagocytosis and the formation of actin-rich phagocytic cups.
doi:10.1371/journal.pone.0056147.g009

Lectins Improve Macrophage Function in COPD
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Actin Rearrangement Induced by Galectin-3 is Inhibited
by Wortmannin
MH-S cells were pre-treated with wortmannin before challenge

with labeled apoptotic cells in the presence or absence of galectin-

3. The cells were then fixed and stained with rhodamine-labeled

phalloidin. Co-incubation of MH-S cells with galectin-3 and

apoptotic cells induced the formation of actin-rich phagocytic cups

around the ingested apoptotic targets (Figure 8). The appearance

of the actin-rich areas was noticeable after 30 min incubation

(Figure 9). PI3K inhibition by wortmannin attenuated phagocy-

tosis and the formation of actin-rich phagocytic cups (Figure 9).

Discussion

Our data indicates a potential role for extracellular galectin-3 in

the failed efferocytosis that occurs in COPD, and shows that the

mechanisms include effects on cytoskeletal remodelling, macro-

phage phenotype and GSH availability. Both galectin-3 and its

receptor CD98 were decreased in the airways of both current and

ex-smoker COPD. Galectin-3 was also significantly reduced in

BAL from healthy smokers, indicating at least a partial potential

effect of cigarette smoke. However, consistent with our findings

with MBL, we also noted significant changes in ex-smoker COPD

subjects who had ceased smoking indicating that the defects

continue once COPD is established, despite cessation of smoking.

A significantly lower volume of BALF was recovered from both

current and ex-smokers with COPD, compared to healthy

controls, consistent with our previous studies. It should be noted

that low recovered BAL fluid tends to contain less alveolar lining

fluid, potentially resulting in relatively low concentrations of

soluble mediators and more neutrophils (that could express/

interact with CD98). We did not, however, note any differences in

the percentage of neutrophils in BALF from any group.

Previous studies from our group and others have highlighted the

importance of deficiencies in BAL levels of soluble lectins

including MBL in the pathogenesis of COPD [14]. Only one

study implicated a role for galectin-3; intracellular expression was

increased in the small airway epithelium and alveolar macro-

phages of severe COPD patients [25]. While this appears

contradictory to our results, the pleiotrophic functions of

galectin-3 are important in the interpretation of these results.

There is a significant amount of evidence which demonstrates that

biological effects of galectin-3 depend on its intracellular or

extracellular location. Extracellular galectin-3 has been shown to

induce apoptosis in activated T-cells [26], while intracellular

galectin-3 protects cells from apoptosis and promotes their

proliferation [27].

Interestingly, both MBL and galectin-3 bind to CD98 [8,21],

and the interaction of galectin-3 and CD98 has been shown to

induce an ‘M2’ alternatively activated macrophage phenotype

[21] (with improved ability to phagocytose apoptotic cells). The

reduced expression of galectin-3, MBL and CD98 are thus

consistent with our previous findings of a mixed but predomi-

nantly ‘M1’ phenotype in the airways in COPD, with reduced

efferocytic ability. We showed that the pro-efferocytosis effects of

galectin-3 are likely to involve its effects on macrophage

phenotype, as galectin-3 was able to steer AM to a more ‘M2’

phenotype, evident by an increase in arginase release.

Previous studies have demonstrated a role for lectins, including

galectin 3, in host defence against pathogens by promoting

opsonisation by complement and/or pathogen clearance by host

macrophages [28–30]. The uptake of beads in the presence of

galectin-3 could be prevented by the addition of lactose, via

mechanisms that include carbohydrate recognition [30]. We have

now shown that exogenous galectin-3 also improved efferocytosis

via similar mechanisms. While the dose of galectin-3 used in our

studies was quite high, previous studies have shown that levels of

extracellular galectin-3 can be as high as 50 mg/mL in BAL after

infection in murine models [31], and we did not find any evidence

of cell death as a result of galectin-3 treatment in our study.

In this study we were particularly interested in dissecting the

mechanisms for the effects of lectins on efferocytosis. Rac1 is

a small GTPase which regulates the reorganization of the actin

cytoskeleton by activating various effector molecules [32]. We

previously showed that the pro-efferocytosis effects of MBL were

accompanied by an increase in intracellular Rac1/2/3, suggesting

an effect on the actin reorganization that occurs during the

phagocytic process [16]. In the present study we showed that the

efferocytosis-enhancing effects of galectin-3 were accompanied by

reorganization of actin and an increase in active Rac. These

changes were significantly attenuated by the inhibition of PI3K,

not surprising given the pivotal role that PI3K plays in remodeling

of the actin cytoskeleton, enabling the formation of phagocytic

cups and, subsequently, the ability of the phagosome to internalize

the apoptotic cell target [21]. It should be noted that the

attenuation was only partial, implicating the potential involvement

of further factors in the galectin-3 effects. Interestingly, a recent

study investigating phagocytosis of degenerated myelin by

microglia also showed that galectin-3 improved phagocytosis by

upregulating and prolonging K-Ras-GTP dependent PI3K activity

and also by upregulating expression of complement 3 and

scavenger receptor AI/II [17]. Extending our studies to include

other inhibitors and assessing the effects of galectin-3 on arginase

activity using AM from COPD subjects would provide additional

interesting data.

We then showed that a second potential mechanism may be the

effect of lectins on intracellular production of glutathione (GSH).

We have showed decreased GSH availability in COPD airways [4]

and confirmed with our smoking murine model the role of GSH in

the failed efferocytosis in COPD [4]. We now demonstrate that

galectin-3 improves available intracellular macrophage GSH.

Galectin-3, as an endogenous ligand for CD98 [8,21], when

present at normal (high) concentrations could cross-link xCT/

CD98 and increase intracellular cystine and its conversion to

cysteine and thus increase synthesis of GSH [20,33]. The low

levels of galectin-3 and reduced expression of CD98 in COPD

subjects are thus likely to compromise the levels of GSH and

subsequent efferocytosis ability of airway macrophages, and play

a role in the defective efferocytosis. In summary, our data

implicate a role for galectin-3 in the macrophage dysfunction that

occurs in COPD. Further studies will be important for a better

understanding of the links between galectin-3, smoking and

COPD.
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