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A B S T R A C T

During a seismic event, the walls within an unreinforced masonry (URM) building
must possess sufficient capacity to withstand out-of-plane collapse. Traditionally,
design against this type of failure has been performed using a force-based (FB)
approach, in which the engineer must ensure that the force capacity of the wall is
not exceeded during a design earthquake. In recent years, however, seismic design
philosophy for ductile systems has experienced a move away from FB methods
and toward displacement-based (DB) methods, where the aim is to ensure that
structural deformations are kept within acceptable displacement limits.

URM walls subjected to out-of-plane actions make a prime candidate for the devel-
opment of such methodology. This is particularly true for two-way spanning walls,
which have significant displacement capacity as well as good energy dissipation ca-
pability during cyclic response—both highly favourable characteristics with respect
to seismic performance.

This thesis documents research undertaken at the University of Adelaide into
the seismic response of two-way URM walls subjected to out-of-plane actions.
The aims of this work were to facilitate improvements to the presently-used FB

design methods and to provide a basis for the development of a reliable DB design
approach.

The following outcomes have been achieved:

• Characterisation of the load-displacement behaviour of two-way walls through
quasistatic cyclic testing using airbags;

• Verification of this behaviour under true seismic loading conditions by means
of dynamic shaketable tests;

• Improvements to the current state-of-the-art design approach for predicting
the ultimate load capacity of walls possessing tensile bond strength;
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xii abstract

• A probabilistic approach to deal with the different modes of possible failure
in horizontal bending;

• Development of analytical methodology for predicting the load capacity of
walls using the assumption of zero tensile bond strength;

• A proposed model for representing the nonlinear inelastic load-displacement
behaviour of two-way walls; and finally,

• Implementation of the load-displacement model into a simple DB seismic
assessment procedure.

It is anticipated that this research will eventually culminate in a multi-tiered seismic
design procedure incorporating both the FB and DB components, with applicability
toward the design of new buildings and assessment of existing buildings alike.
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N O TAT I O N

symbols

The following list contains frequently used variables, functions and operators
appearing in this thesis. A list of commonly used subscripts and their meanings is
also provided (p. xxvii), and where applicable, these are indicated for the respective
symbols. The third column indicates the dimensions, whereby: L = length,
t = time, M = mass, F = force, ‘–’ = dimensionless, X = generic property.

a acceleration L t−2

(subscripts: amp, min, max)
a dimensionless parameter related to mechanism shape –

aw.avg wall average acceleration L t−2

aw.cent wall central acceleration L t−2

A area L2

Ao surface area of opening L2

Aw surface area of wall L2

A′ virtual displaced area L
C〈X〉 coefficient of variation of X –

Char〈X〉 characteristic value of X X
const(X) constant component of X X

d vertical distance measured from top edge of the wall L
dX differential of X X
Dn Kolmogorov-Smirnov test statistic –

e′ virtual work performed by OBL F
(subscripts: m, r)

E Young’s modulus of elasticity F L−2

E external work F L
(subscripts: m, r, W, O, tot)

Ej elasticity modulus of mortar joint F L−2

Em elasticity modulus of masonry F L−2

xxi



xxii notation

Eu elasticity modulus of brick unit F L−2

E′ external virtual work F
(subscripts: see E, external work)

E〈X〉 expected value (mean) of X X
f frequency t−1

fc cutoff frequency t−1

fe effective frequency of linearised SDOF system t−1

fmc unconfined compressive strength of masonry F L−2

fmt flexural tensile strength of masonry F L−2

fo excitation frequency t−1

fut modulus of rupture of brick unit F L−2

f 〈· · ·〉 stress capacity function, defined by Eq. (6.22) F L−2

F force F
(subscripts: w, ult, amp, min, max, env)

Fht force resistance at ∆ = 1
2 tu F

Fo generic force capacity under uniform acceleration loading F
F∗o generic force capacity under modal acceleration loading F
Fut ratio of mean fut and mean fmt –

g acceleration due to gravity L t−2

Gh geometric constant defined by Eq. (5.30) –
Gn natural slope of diagonal crack –
he element height L
hu brick unit height L
H height L

Hd height of diagonal crack L
He, Heff effective mechanism height L

Ho opening height L
Hr height of in-plane mechanism module, or short vertical crack L

Ht, Htot total mechanism height L
Hw wall height L
kbe bed joint elastic torsion coefficient –
kbp bed joint plastic torsion coefficient –

kline geometric constant defined by Eq. (5.11) –
kres geometric constant defined by Eq. (5.36) –

kstep geometric constant defined by Eq. (5.10) –
K stiffness F L−1

Ke effective stiffness of linearised SDOF system F L−1

Kht effective secant stiffness at ∆ = 1
2 tu F L−1



notation xxiii

Kini initial uncracked stiffness F L−1

lC crack span L
lu brick unit length L
L length L

La length of short horizontal crack L
Ld length of diagonal crack L

Le, Leff effective mechanism length L
Lo opening length L

Lt, Ltot total mechanism length L
Lw wall length L
m moment per single element F L

(subscripts: v, h, d, step, line, mix, ult, res)
M mass M
M moment F L

(subscripts: v, h, d, vy, vo)
Mw wall mass M
M∗ effective mass of SDOF system M
M̄ moment per unit length of crack F

(subscripts: v, h, d, c)
Med〈X〉 median value of X X

n number of samples in data set –
n flexure/torsion interaction exponent –

nhs, nvs number of horizontal and vertical supports –
N axial force F

Nm, Nr number of out-of-plane and in-plane modules participating in
the mechanism (subscripts: m, r)

–

Nw number of out-of-plane walls in a specimen –
pX(· · ·) probability density function of X –

Pstep probability of stepped failure –
PX(· · ·) cumulative distribution function of X –

P−1
X (· · ·) inverse cumulative distribution function of X –
Pr(· · ·) probability –

q pressure F L−2

(subscripts: w, ult, test, calc)
r coefficient of fmt, in expression for τum –
r dimensionless parameter related to mechanism shape –

rh, rv ratios of applied moments at failure and their uniaxial moment
capacities (subscripts: h, v)

–



xxiv notation

ro bed joint overlap ratio, defined by Eq. (4.26) –
rand(X) random component of X X

RC cycle centrality ratio –
R f rotational restraint factor along vertical edge –

RK〈· · ·〉 moment derivative (dM/dx) equation defined for various
mechanism cross sections

F

RO cycle overlap ratio –
Rts rotational restraint factor for top edge –

(subscripts: m, w)
RT elastic spectrum reduction factor based on period –
Rvs rotational restraint factor for vertical edge –
Rξ elastic spectrum reduction factor based on damping –

s shear slip L
sb bed joint overlap length L
se element length L
Sa spectral acceleration L t−2

Sd spectral displacement L
S〈X〉 standard deviation of X X

t time t
t thickness; wall thickness L

tj mortar joint thickness L
tu brick unit thickness or wall thickness in single leaf masonry L
T torsion F L
T period t
Te effective period of linearised SDOF system t
To excitation period t
u displacement L
u effective displacement of SDOF system L

ud effective displacement demand L
u′ virtual displacement –
u̇ velocity L t−1

ü acceleration L t−2

U energy; internal work F L
(subscripts: m, r, w, C, fs, vy, O, tot)

Ubox energy enclosed within F-∆ cycle bounding box F L
Uloop energy enclosed within F-∆ hysteresis loop over full cycle F L

U
1/2cyc energy enclosed within F-∆ hysteresis loop over half-cycle F L

U′ internal virtual work F



notation xxv

(subscripts: see U, internal work)
U ′

r 〈· · ·〉 internal virtual work function for in-plane panel, defined by
Eq. (6.36)

F L

V shear force F
V volume L3

V ′ virtual displaced volume L2

w〈· · ·〉 load distribution function F L−1

W weight F
Weff effective mechanism weight F
Who horizontally acting component of overburden weight F
Wtot total mechanism weight F
Wvo vertically acting component of overburden weight F
Ww wall weight F

x spatial coordinate L
y spatial coordinate L
Z moment modulus L3

Zbe elastic modulus over single element L3

Z̄ moment modulus per unit length L2

(subscripts: v, h)
α normalised effective aspect ratio, defined by Eq. (6.44) –

αs aspect ratio parameter defined by Eq. (7.37) –
β effective aspect ratio, defined by Eq. (6.43) –
γ weight density F L−3

Γ mode participation factor –
δ normalised displacement, defined by Eq. (2.2) –

(subscripts: r, h, s, f, u, y)
∆ displacement L

(subscripts: amp, min, max, peak, env, y, m, r, w)
∆w.cent central wall displacement L

∆w.cent0 central wall displacement, zeroed at start of run L
∆0.8Fu displacement range encompassing 80% of ultimate strength L

∆〈· · ·〉 displacement shape function L
∆′ virtual displacement –

(subscripts: see ∆, displacement)
ε OBL eccentricity factor, defined in Figure 6.6 –
ε strain –
ζ internal work contribution factor –
η orthogonal strength ratio, defined by Eq. (5.4) –



xxvi notation

(subscripts: step, line, mix, res)
η OBL orthogonal factor, defined by Eq. (6.4) –

(subscripts: m, r, w)
θ rotation; crack rotation –

(subscripts: v, h, d)
θκ angle of applied moment –
θ′ virtual rotation L−1

(subscripts: see θ, rotation)
κ non-dimensional stiffness, as λ/δ –
κ slope of applied moment –
λ lateral load multiplier, defined by Eq. (2.3) –

(subscripts: o, p, r, h, s, f)
λo collapse load multiplier –
µ friction coefficient –
µ coefficient of σv, in expression for τum –

µm friction coefficient of masonry –
µo friction coefficient between wall and overburden load –
µ∆ displacement ductility –

ν Poisson’s ratio –
νu Poisson’s ratio of the brick unit –
ξ viscous damping ratio –

ξe total effective viscous damping –
ξhyst equivalent viscous damping based on hysteresis –
ξnom nominal viscous damping –

v slope of in-plane shear crack –
ρ mechanism cross sectional shape parameter –

ρ〈· · ·〉 mass density function M L−1

σ axial stress F L−2

σv vertical compressive stress F L−2

σvo vertical compressive stress applied at top of the wall F L−2

(subscripts: m, r, w)
Σv ratio of σv and mean fmt –

τ shear stress F L−2

τf frictional shear stress capacity of masonry bond F L−2

τum ultimate shear stress capacity of masonry bond F L−2

φ capacity reduction factor –
(subscripts: char, mean, med)

Φ OBL degree-of-freedom factor, defined by Eq. (6.6) –



notation xxvii

(subscripts: m, r, w)
Φ〈· · ·〉 mode shape function –

ΦN(· · ·) standard normal cumulative distribution function –
ϕ mode shape –
ϕ crack angle –

ϕn natural angle of diagonal crack –
ψ overburden weight ratio, defined by Eq. (6.1) –
ω angular frequency t−1

ωe effective angular frequency of linearised SDOF system t−1

X̂ expected value (mean) of X X
X′ virtual form of X X L−1

subscripts

amp amplitude
avg average

c capacity
calc from calculation
char characteristic value

C crack
d diagonal bending

e, eff effective
env envelope

f combined frictional F-∆ component
fs frictional shear
h horizontal bending
h horizontal bending F-∆ component

ini initial
line line failure mode in horizontal bending

m out-of-plane module
max maximum

mean mean value
med median value
min minimum
mix mixed failure mode (stepped and line) in horizontal bending

nom nominal
o rigid body capacity



xxviii notation

O overburden load
p, peak peak

r in-plane module/wall
r rocking F-∆ component

res residual (post-cracking) capacity
s overburden load sliding F-∆ component

step stepped failure mode in horizontal bending
t, tot total

test from experimental test
u, ult ultimate capacity

v vertical bending
vo vertical bending along top edge
vy vertical bending along vertical crack
w wall; out-of-plane wall

W self-weight
y yield

abbreviations

BCRA British Ceramic Research Association

CDF cumulative distribution function

CoV coefficient of variation

CS capacity spectrum

DB displacement-based

DOF degree-of-freedom

DSM dry-stack masonry

FB force-based

FRP fibre-reinforced polymer

KS Kolmogorov-Smirnov

LVDT linear variable differential transformer

MDOF multi-degree-of-freedom



notation xxix

OBL overburden load

PDF probability density function

PGA peak ground acceleration

PGD peak ground displacement

PGV peak ground velocity

PID proportional-integral-derivative

PSA peak spectral acceleration

PSD peak spectral displacement

PSV peak spectral velocity

SDOF single-degree-of-freedom

StD standard deviation

THA time-history analysis

URM unreinforced masonry

VW virtual work
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