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Limits on the observable dynamics of mixed states
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It is shown that the observability of a large class of operations on mixed states is fundamentally limited. We
consider trace-preserving, unital operations. This class includes unitary and perfect premeasurement operations.
An upper bound on the trace distance between an untransformed state and a state transformed by one of these
operations is derived. The bound is dependent only on the purity of the state. In the case of maximal mixedness,
the bound implies all operations of this class are unobservable.

DOI: 10.1103/PhysRevA.85.062124 PACS number(s): 03.65.Ta, 03.67.−a, 03.65.Ud

I. INTRODUCTION

Given a particular quantum state that is subjected to a class
of operations on the state, does the state change? And if so,
how observable is that change? This question is related to the
study of the preservation of information subject to quantum
processes [1–3] by Nielsen et al. Their work focuses on the
slightly different question of quantifying changes to quantum
states given specific operations. By asking our initial question
instead of that raised by Nielsen et al. the properties of the state
are emphasized. We shall in particular explore the relationship
between structural properties of a state (i.e., entanglement) and
its dynamics.

There is also a foundational motivation for this. Since
the inception of quantum mechanics (QM), there has been
an uneasy dichotomy between two points of view: is QM
a fundamental description of nature or merely an algorithm
to calculate probabilities for outcomes of experiments? The
friction between these two viewpoints comes from the man-
ifestly nonclassical phenomena QM predicts, constrains, or
allows. This list of phenomena includes interference, the
uncertainty principle, nonlocality through entanglement (Bell
inequalities) or otherwise [4], quantum teleportation, and
no-cloning theorems [5]. The relationships between these
phenomena remain unclear [6–9]. Our interest lies in how the
structure of the allowed states of a quantum theory constrains
its dynamics [8,9]. We suggest that the results of this paper
may be extrapolated to probabilistic theories more general
than quantum mechanics.

We utilize a symmetry of quantum states called envariance
[10] which emerges dynamically due to their entanglement
structure. This symmetry is a consequence of the tensor
product structure (TPS) of quantum states.1 In classical
deterministic theories, Cartesian products are used to define
assemblies of subsystems rather than tensor products, and so
a symmetry equivalent to envariance does not exist.

We shall use an operational definition of the observability
of the change of a quantum state: the trace distance (defined
in Sec. V) between the transformed and untransformed state.

*cael.hasse@adelaide.edu.au
1It has been shown [8] that TPSs are a generic feature of probabilistic

theories with subsystems. Some form of envariance may then exist in
such theories as well.

An upper bound on this measure of the observability of the
dynamics is derived. The bound is only dependent on the
purity of the state. Another intriguing aspect of quantum states
is the mathematical equivalence of states of subsystems of
an entangled system to mixed states representing classical
ensembles of quantum states. This connection allows the
bound to apply to entangled systems as well.

Envariance is defined in Sec. II. In Sec. III, we describe how
the information contained in the subsystems of an entangled
bipartite system can be less than the information contained in
the whole system. It is also shown how the mixedness of a state
constrains knowledge on all nondegenerate observables of that
state. These two qualities of quantum states are then used
to motivate Sec. IV, where the class of invariant operations
on a completely mixed state is considered. This symmetry is
then used in Sec. V to derive an upper bound on the trace
distance between an untransformed state and a transformed
one. Concluding remarks are presented in Sec. VI.

II. ENVARIANCE

Envariance [10,11] is a symmetry of entangled composite
systems. We define a composite system, in general, as a state
that can be decomposed in terms of eigenstates of two or more
mutually commuting observables where subsets of the total
set of mutually commuting observables completely describe
subsystems. Therefore a particle state with the quantum
numbers spin and position can be considered composite, with
spin and position describing separate subsystems.

Zurek’s [10] original use of envariance was to provide a
proof of Born’s rule under “very mild” assumptions. We shall
be using envariance in a different context and thus assume
Born’s rule from the outset.

Consider a composite system that can be decomposed into
two subsystems, α and β, with the state |ψ〉 ∈ Hα ⊗ Hβ . Now
suppose there exist unitary operators Uα and Uβ , where

Uα := Ūα ⊗ Iβ, (1)

with Iβ being the identity on Hβ and Ūα : H̃α → H̃α , where
H̃α is a subspace of Hα , with an analogous definition for Uβ .
A state |ψ〉 is said to be envariant under Uα (or Uβ) if the
following holds:

UαUβ |ψ〉 = |ψ〉 or Uα|ψ〉 = U
†
β |ψ〉. (2)
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Note that from now on, we shall be considering finite-
dimensional Hilbert spaces only.

Suppose we have a state of the form

|ψ〉 = 1√
N

N∑
j=1

eiφj |αj 〉|βj 〉, (3)

where {|αj 〉} and {|βj 〉} form orthonormal bases for H̃α

and H̃β , respectively, N = dim(H̃α) = dim(H̃β), and φj are
arbitrary phases. These states are envariant under all unitary
transformations of H̃α (or H̃β). When H̃α = Hα , the state
is maximally entangled (for subsystems α and β), and the
group of envariant transformations is the group of all unitary
transformations of Hα alone [i.e., they can be decomposed as
in Eq. (1)].

Consider now the case of a state with Schmidt decomposi-
tion,

|�〉 =
n∑

j=1

cj e
iφj |αj 〉|βj 〉, (4)

with cj ∈ R+ such that ci �= cj for i �= j , i.e., the coefficients
of the Schmidt decomposition have unequal norms. In this
case, the group of envariant transformations includes only
relative (and overall) phase changes between the components
|αi〉|βi〉, i.e., unitaries of the form

Uα :=
⎛
⎝ n∑

j=1

eiλj |αj 〉〈αj | +
N∑

j=n+1

|αj 〉〈αj |
⎞
⎠ ⊗ Iβ, (5)

Uβ :=
(

n∑
k=1

e−iλk |βk〉〈βk| +
M∑

k=n+1

|βk〉〈βk|
)

⊗ Iα, (6)

where dim(Hα) = N,dim(Hβ) = M , and λj ∈ (0,2π ) ∀ j .
These unitaries have the desirable property

UαUβ |�〉 = |�〉. (7)

The most general case is where some of the coefficients
ci are equal and others are not. For the subspaces of Hα

spanned by the components whose coefficients are equal, we
have envariance over the entire subspace. For the rest of the
space, it is only relative phases of the components with unequal
coefficients that can be envariantly transformed.

III. ALLOWED STATES

The emergence of envariance is a reflection of the property
of entangled quantum states, where complete knowledge of
the entire system (i.e., the state being pure) means incomplete
knowledge of the subsystems. This can be understood in
several ways.

(1) The reduced density matrices, tracing out α or β (trα[ρ]
or trβ[ρ] for some pure ρ), have nonzero von Neumann
entropy, leaving a mixed state partially equivalent to a classical
lack of knowledge about the subsystem. However, the number
of invariant degrees of freedom is only indirectly related to the
amount of entanglement, as mentioned in Ref. [11]. We shall
consider this point in more detail later on.

(2) Consider a Bell state,

|ν〉 = 1√
2

(|↑〉1|↓〉2 + |↓〉1|↑〉2) , (8)

which is maximally entangled and as such has an SU(2) sub-
group of envariant transformations which we can parametrize
by the Pauli matrices,

ei �θ ·�σ1 |ν〉 = ei �θ ·�σ2 |ν〉, (9)

where σ i
j is the ith Pauli matrix for the j th particle. Thus,

rotating the spin of particle 1 is the same as rotating the
spin of particle 2 instead. This implies only the relative
orientations of the rays within the subsystem Hilbert spaces
are known. Zurek has cited a similar idea as his motivation for
using envariance [12] and calls it the “relativity of quantum
observables.” The situation can be said to have a kind of
Machianity [13], analogous to the situation where the universe
consists of point particles and only relative distances between
them are known, not global displacement or orientation. The
state only contains information about the correlations between
the particles.

(3) For maximally entangled subsystems, the probabilities
for fine-grained (nondegenerate) measurement outcomes of a
subsystem whose reduced density matrix has its maximum
von Neumann entropy become equal in any basis. This can
be seen with the use of envariance, which is equivalent to a
basis ambiguity of the subsystems. For instance, with the Bell
state the probabilities for a particular particle to be spin up or
down in the z direction are the same, while the probabilities
for the particle to be spin left or right in the x or y direction are
also the same. This is in contrast to an unentangled spin-1/2
particle where there always exists a direction where the spin
is definitely known.

This last example is a special case of a phenomenon that
does not apply to classical physics. The uncertainty principle
is usually applied to pure states, but the situation changes
for mixed states, such that the bounds on the uncertainties for
incompatible observables become more strict. To show this, we
utilize the concavity of the expression −xlnx (with x ∈ R+)
[14] such that for a density matrix ρ and a fine-grained basis
{|i〉}, 〈i|j 〉 = δij ,

∑
i |i〉〈i| = I, the von Neumann entropy

S(ρ) has the property

S(ρ) := −tr[ρlnρ] =
∑

i

〈i| − ρlnρ|i〉

� −
∑

i

〈i|ρ|i〉ln〈i|ρ|i〉. (10)

Choosing {|i〉} to be the eigenstates of a fine-grained
observable, then 〈i|ρ|i〉 is the probability to measure outcome
“i” such that the Shannon entropy of said observable (call it
O) is given by

HO(ρ) = −
∑

i

〈i|ρ|i〉ln〈i|ρ|i〉. (11)

Thus,

S(ρ) � HO(ρ). (12)

For an alternative proof see Ref. [15].
This applies to all fine-grained observables of the system

described by ρ. In the case of the Bell state, the reduced
density matrix obtained by tracing out one of the particles
has maximum von Neumann entropy such that all nontrivial
observables of the subsystem also have maximum Shannon
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entropy. Thus if a subsystem contains quantum correlations
with another, the information we have about the subsystem is
more constrained than in the case of classical physics where
Shannon entropies of “incompatible” observables are allowed
to be independent.

IV. OBSERVABLE DYNAMICS OF COMPLETELY
MIXED STATES

Intuitively, when one lacks knowledge of a system, one
expects our ability to distinguish the dynamics of the system
to be lessened. We have seen that in the case of mixed quantum
states, our knowledge of the system is less than allowed
classically.

We begin quantifying the distinguishability of dynamics
of mixed states by extending envariance of completely mixed
states to nonunitary operations. In this regard we choose to
describe a quantum process in an operator-sum representation
which maps density matrices to density matrices. A general
physical operation on α can be described by a set [16] of
operation elements Ekα ∈ Hα ⊗ H̄α , where H̄α is the dual to
H. The operation is then given by

Eα(ρ) =
K∑

k=1

EkαρE
†
kα. (13)

We shall be concerned with operations Eα , whose elements are
trace preserving (

∑
k E

†
kαEkα = Iα) and also unital:

K∑
k=1

EkαE
†
kα = Iα. (14)

Let ρα be a completely mixed state of a system α, purified by
system β,

ρα := trβ[|ψ〉〈ψ |] = 1
N
Iα. (15)

All unital operations leave ρα invariant (see Appendix A), i.e.,

Eα(ρα) = ρα. (16)

Some operations satisfying these conditions include (1)
unitary EU (ρ) = UρU †, (2) perfect premeasurements EP (ρ) =∑K

k=1 PkρPk , where Pk are projectors of a complete basis,
and (3) combinations of unitary and perfect premeasurement
operations, e.g., EUP (ρ) = EU ◦ EP (ρ). Interestingly, general-
ized measurements [16] where the outcome is unknown do
not necessarily satisfy these conditions, e.g., for measurement
operators of a two-level system M1 = |0〉〈0| and M2 = |0〉〈1|,
the left-hand side of Eq. (14) with Eiα = Mi does not equal
unity; M1M

†
1 + M2M

†
2 �= I.

V. UPPER BOUND FOR GENERAL MIXED STATES

Let us now consider a general mixed state of α,

ρ̃α =
n∑

j=1

|cj |2|αj 〉〈αj |. (17)

A purification of α by β is given by the Schmidt decomposition
(4), where now ci and cj may be equal for i �= j . The group
of envariant operations on |�〉 is, in general, greatly reduced
compared to the maximally entangled state. Thus the set of all

operations that can be shown to leave ρ̃α invariant by the use
of envariance is also reduced. This limits the previous proof of
the unobservability of the dynamics of α for cases where the
state is not completely mixed.

Our proposal is that even with a large reduction in the set
of symmetries, the original set may apply in a partial sense.
The motivation is that a large reduction in the symmetry can
occur with only a very small reduction in the von Neumann
entropy of α [11]. Mixed states with less than maximum von
Neumann entropy may still have some form of limitations on
their observable dynamics for the full set of trace-preserving
operations satisfying Eq. (14). This turns out to be the case.

To see this, we initially rewrite �. Let us extend the sum
over j from 1 to N and define cj = 0 for n + 1 � j � N .2 For
M < N , we enlarge Hβ until the dimensionalities are equal.
We then decompose � into two parts, one that is maximally
symmetric over Hα and the rest of the state;

cj = 1√
N

+ dj , (18)

where dj := cj − 1/
√

N , such that

|�〉 = 1√
N

N∑
j=1

eiφj |αj 〉|βj 〉 +
N∑

j=1

dj e
iφj |αj 〉|βj 〉. (19)

Define

|�1〉 = 1√
N

N∑
j=1

eiφj |αj 〉|βj 〉, (20)

Q|�2〉 =
N∑

j=1

dj e
iφj |αj 〉|βj 〉, (21)

where the constant Q =
√∑

j d2
j is chosen such that �2 is

normalized to 1.
Our measure of the purity of α is given by Q. It is not

equal to the usual measure of purity, which is tr[ρ̃2
α]. One

can consider Q2 as the χ2 value between the distribution of
amplitudes {cj } and the constant distribution 1/

√
N . It follows

from
∑

j c2
j = 1 and 0 � c2

j � cj that Q is bounded:

0 � Q �
√

2 − 2/
√

N. (22)

The maximal value occurs for pure states of α, while Q = 0
corresponds to completely mixed states (all cj equal).

We now utilize a measure of the distinguishability of
quantum states, the trace distance, defined as

D(ρ,σ ) := 1
2 tr|ρ − σ |, (23)

where ρ and σ are density matrices and |X| :=
√

X†X is the
positive square root of X†X (defined by taking a spectral
decomposition X†X = ∑

i ei |xi〉〈xi | and taking the positive
square roots of the eigenvalues

√
X†X = ∑

i

√
ei |xi〉〈xi |).

2However, the choice of the size of the extension may be chosen to
be smaller depending on whether E leaves certain subspaces of Hα

invariant.
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It can be shown that [16]

D(ρ,σ ) = max
P

tr[P (ρ − σ )], (24)

where P is a projector and the maximization is taken over all
possible projectors. This gives a clear physical interpretation
of the trace distance. If experimentalists wanted to distinguish
whether they had state ρ or σ , the trace distance gives the
maximum possible difference in probabilities for a projective
measurement outcome for the two states. For instance, if for
two states D = 1, it is, in principle, possible to do a projective
measurement where the probability of getting a confirmatory
result for one state is 1 while the other is 0, and hence only
one measurement is ever needed to distinguish the states.

We are now in a position to derive an upper bound on
Dα := D(Eα(ρ̃α),ρ̃α). Let the state ρ

�
= |�〉〈�| be acted on by

Eα as defined in Sec. IV. In the case where Q = 0, |�〉 = |�1〉
and

Eα(ρ
�
|Q=0) = Eβ(ρ

�
|Q=0), (25)

where Eβ(ρ) = ∑K
k=1 EkβρE

†
kβ (cf. Appendix A).3 As these

two states are equal, they are indistinguishable. For the
general case where Q may not be zero, a measure for
the distinguishability of the two states can be given by the
trace distance:

Dαβ := D(Eα(ρ
�
),Eβ(ρ

�
)). (26)

In Appendix B, we show that Dαβ satisfies the following
bound:

Dαβ � 2
√

1 − ∣∣1 − Q2 + 1
4Q4

∣∣. (27)

This is related to Dα in the following way. If β is an ancilla
subsystem used to purify α or the experimentalist does not
have access to subsystem β, then we can ask about our ability
to tell whether Eα has happened at all. This can be quantified
by

D(trβ[Eα(ρ
�
)],trβ[Eβ(ρ

�
)]) = D(Eα(trβ[ρ

�
]),trβ[ρ

�
]) = Dα.

(28)

The partial trace over β is trace preserving, so Dα is bounded
by Dαβ :

Dα � Dαβ � 2
√

1 − ∣∣1 − Q2 + 1
4Q4

∣∣. (29)

For values of Q <
√

2 − √
3 ≈ 0.5, the right-hand side of (29)

becomes less than 1 and hence bounds Dα . For Q = 0, (29)
gives Dα = 0, which is the same result achieved in Sec. IV.
The upper bound on Dα given by (29) is our central result.

The nontrivial nature of this bound can be seen by
considering cases where Dα is not bounded because Q is

larger than
√

2 − √
3.

(1) Consider two bases for α, {|αk〉} and {|α̃k〉}, such that
〈αm|α̃m〉 = 0 for some m. Take a pure state σ = |αm〉〈αm|. The
purity as given by Q is then

Q =
√

2 − 2/
√

N >

√
2 −

√
3 (30)

3For cases where Hβ has to be enlarged and β is considered a real
subsystem, Eβ may not strictly be physical.

for N � 2. One can see that if α experiences a unitary
transformation

Uα =
∑

k

|α̃k〉〈αk|, (31)

then the states have zero overlap:

〈αm|UασU †
α|αm〉 or D(UασU †

α,σ ) = 1. (32)

Thus the two states are, in principle, easily distinguishable.
(2) Suppose the system α, still given by the pure state σ ,

experiences a perfect premeasurement such that

σ →
N∑

i=1

PiσPi, (33)

where Pi = |Ai〉〈Ai | and {|Ai〉} forms a complete orthonormal
basis for Hα such that |αm〉 = ∑N

i=n(1/
√

N )|Ai〉. It is conve-
nient to use the definition of fidelity [16] for density matrices
ρ and τ ,

F (ρ,τ ) := tr[
√

ρ1/2τρ1/2], (34)

to obtain[
F

(
σ,

∑
i

PiσPi

)]2

= 〈αm|
∑

i

PiσPi |αm〉 = 1

N
. (35)

In this case, the fidelity bounds the trace distance

1 −
[
F

(
σ,

∑
i

PiσPi

)]2

= 1 − 1

N
� D

(
σ,

∑
i

PiσPi

)
.

(36)

Thus, the observability of the process D(σ,
∑

i PiσPi) tends
to 1 as N tends to ∞.

Finally, we note that the bound may be extended to mixed
states of a composite α and β system. Let

ρ̄ =
∑
m

rmρm, (37)

where
∑

m rm = 1 and ρm is a pure density matrix of the
composite system ∀ m. Define Qm as the Q measure of the
purity of the trβ(ρm) state and define Eα and Eβ in the usual
way. Then, using the convexity of the trace distance,

D(Eα(ρ̄),Eβ(ρ̄)) �
∑
m

rmD(Eα(ρm),Eβ(ρm))

� 2
∑
m

rm

√
1 −

∣∣∣∣1 − Q2
m + 1

4
Q4

m

∣∣∣∣. (38)

Thus, the distinguishability of the dynamics of α in a mixed
composite state is bounded by the average of the bounds of the
pure states ρm.

VI. REMARKS

We have shown that given a trace-preserving unital oper-
ation, the trace distance between the transformed state and
its original is bounded by (29) given that the purity is small
enough (Q � 0.5). For maximally mixed states where Q = 0,
the bound implies the operation must be unobservable.
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The bound (29) is motivated in Secs. III and IV on the
intuition that lack of knowledge of a state leads to lack
of an ability to distinguish the dynamics. We note that
trace-preserving, unital operations cannot decrease the von
Neumann entropy [17]. This leads us to ask whether the class
of trace-preserving, unital operations is the largest such class
where (29) or a stronger bound holds that depends only on the
purity of the input state.
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APPENDIX A: SYMMETRIES OF COMPLETELY
MIXED STATES

The proof of the invariance of ρα under unital operations
is trivial. Here we provide an alternative proof which gives
the tools needed for Sec. V. The first step is to extend the
symmetry of the second version of (2) for pure state (3) to
μα|ψ〉 = μβ |ψ〉, where μα := μ̄α ⊗ Iβ is a general linear
operation on pure states. The operations μ̄α could, for instance,
be a projector onto a subspace of Hα . Also, suppose |ψ〉 is
maximally entangled with respect to subsystems α and β.
Since μα acts identically on subsystem β, it follows that

μα|ψ〉 = 1√
N

N∑
j=1

eiφj (μ̄α|αj 〉)|βj 〉. (A1)

Define 〈αi |μ̄α|αj 〉 := μij such that

μα|ψ〉 = 1√
N

N∑
j=1

eiφj

(
N∑

i=1

μij |αi〉
)

|βj 〉

= 1√
N

N∑
i=1

|αi〉
⎛
⎝ N∑

j=1

eiφj μij |βj 〉
⎞
⎠

= 1√
N

N∑
i=1

|αi〉|β̃i〉, (A2)

where |β̃i〉 := ∑N
j=1 eiφj μij |βj 〉. For nonunitary μα , {|β̃j 〉}

need not be orthonormal.4

Define

μβ := Iα ⊗
N∑

k=1

eiφk |β̃k〉〈βk| := Iα ⊗ μ̄β, (A3)

∴ μα|ψ〉 = μβ |ψ〉. (A4)

This symmetry is not equivalent to envariance as μβ may
not be invertible, and hence, in general, there does not exist
a μ−1

β such that μαμ−1
β |ψ〉 = |ψ〉. With Eq. (A4), we can

consider symmetry properties of completely mixed states. Let

4Many |β̃j 〉 may even be the null state.

the completely mixed state be a state of system α;

ρα := trβ[|ψ〉〈ψ |] = 1

N
Iα. (A5)

Suppose we have a quantum operation Eα(ρ) = ρ ′ that is given
in an operator-sum representation;

Eα(ρ) =
K∑

k=1

EkαρE
†
kα, (A6)

where Ekα are linear maps Ekα : Hα → Hα . The effect of Eα

upon ρα is then

Eα(ρα) =
K∑

k=1

Ekαtrβ [|ψ〉〈ψ |] E
†
kα

= trβ

[
K∑

k=1

Ekα|ψ〉〈ψ |E†
kα

]
. (A7)

Since Ekα is of the form μ̄α , there exists an Ekβ such that
Ekα|ψ〉 = Ekβ |ψ〉 and, similarly, 〈ψ |E†

kα = 〈ψ |E†
kβ . Then

Eα(ρα) = trβ

[
K∑

k=1

Ekβ |ψ〉〈ψ |E†
kβ

]

= trβ

[
K∑

k=1

E
†
kβEkβ |ψ〉〈ψ |

]
. (A8)

If
∑K

k=1 E
†
kβEkβ = Iβ , then

Eα(ρα) = ρα. (A9)

The completely mixed state is then invariant under Eα if Eα

satisfies the condition
∑K

k=1 E
†
kβEkβ = Iβ , which is equivalent

to the unital condition
K∑

k=1

EkαE
†
kα = Iα. (A10)

APPENDIX B: PROOF OF UPPER BOUND
OF TRACE DISTANCE

To prove Eq. (27), we shall need a few identities. Using the
definition of di and taking � to be normalized, we find

N∑
i=1

c2
i = 1 =

N∑
i=1

(
1√
N

+ di

)2

= 1 +
N∑

i=1

d2
i + 2√

N

N∑
i=1

di,

∴
N∑

i=1

d2
i = − 2√

N

N∑
i=1

di. (B1)

We also compute the overlap

〈�1|�2〉 = 1

Q
√

N

N∑
i=1

di = −1

2
Q, (B2)

using Eq. (B1). Defining

ρ11 := |�1〉〈�1|, ρ12 := |�1〉〈�2|,
(B3)

ρ21 := |�2〉〈�1|, ρ22 := |�2〉〈�2|,
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we have

ρ = |�〉〈�| = ρ11 + Q(ρ12 + ρ21) + Q2ρ22. (B4)

The ρ’s have some useful relationships, namely,

ρ2
11 = ρ11, ρ2

22 = ρ22, ρ12ρ21 = ρ11,

ρ12ρ12 = −Q

2
ρ12, ρ21ρ12 = ρ22,ρ21ρ21 = −Q

2
ρ21. (B5)

The trace distance has particular properties which shall also
be used. Thus,

Dαβ := D(Eα(ρ),Eβ (ρ))

� D(Eα(ρ),Eα(ρ11)) + D(Eα(ρ11),Eβ(ρ))

= D(Eα(ρ),Eα(ρ11)) + D(Eβ(ρ11),Eβ(ρ))

� D(ρ,ρ11) + D(ρ11,ρ) = 2D(ρ11,ρ). (B6)

Because ρ and ρ11 are pure,

D(ρ11,ρ) =
√

1 − [F (ρ11,ρ)]2, (B7)

where F is the fidelity;

F (ρ11,ρ) = tr
[(

ρ
1/2
11 ρρ

1/2
11

)1/2] = tr[(ρ11ρρ11)1/2]

= tr[(ρ11[ρ11 + Q(ρ12 + ρ21) + Q2ρ22]ρ11)1/2]

= tr
[(

ρ11 − 1
2Q2ρ11 − 1

2Q2ρ11 + 1
4Q4ρ11

)1/2]
=

√
1 − Q2 + 1

4Q4. (B8)

Thus,

Dαβ � 2
√

1 − ∣∣1 − Q2 + 1
4Q4

∣∣. (B9)
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