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We investigate the perturbative and nonperturbative renormalization of composite operators in lattice

QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators).

These include operators which are relevant to the calculation of moments of hadronic structure functions.

The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover

fermions and utilize the Rome-Southampton method also known as the regularization independent

momentum or RI-MOM scheme. We compare the results of this approach with various estimates from

lattice perturbation theory, in particular, with recent two-loop calculations.

DOI: 10.1103/PhysRevD.82.114511 PACS numbers: 12.38.Gc, 11.10.Gh

I. INTRODUCTION

The investigation of hadron structure has become a
central topic of lattice QCD. In many cases this involves
the evaluation of matrix elements of local operators be-
tween hadron states. For example, (moments of) general-
ized parton distributions can be extracted from matrix
elements of quark-antiquark operators, i.e., operators com-
posed of a quark field, its adjoint, and a number of gluon
fields entering through covariant derivatives which act on
the quark fields. In general such operators have to be
renormalized. In this process the operator of interest may
receive contributions also from other operators, i.e., it may
mix with these additional operators. On the lattice, mixing
occurs more frequently than in the continuum due to the
restricted space-time symmetries. Since in the end one
wants to make contact with phenomenological studies,
which almost exclusively refer to operators renormalized

in theMS scheme of dimensional regularization, one needs
the renormalization factors leading from the bare operators

on the lattice to the MS operators in the continuum.
The most straightforward approach toward the calcula-

tion of renormalization factors is based on lattice perturba-
tion theory (for a review see Ref. [1]). Unfortunately, this
method meets with some difficulties. First, perturbation
theory on the lattice is computationally much more com-
plex than in the continuum and therefore the calculations

rarely extend beyond one-loop order (see, however,
Refs. [2–4]). Second, lattice perturbation theory usually
converges rather slowly so that the accuracy of perturbative
renormalization factors is limited. Identifying one source
of these poor convergence properties, Lepage and
Mackenzie proposed as a remedy the so-called tadpole-
improved perturbation theory [5]. Still, considerable un-
certainty remains. Third, mixing with operators of lower
dimension cannot be treated by perturbation theory.
In special cases, when the renormalization factors con-

tain no ultraviolet divergences, a nonperturbative determi-
nation is possible with the help of Ward identities [6].
However, there are many interesting operators that cannot
be renormalized by this method.
A general nonperturbative approach to renormalization

has been developed within the Schrödinger functional
scheme (see, e.g., Refs. [7,8]; reviews are given in
Refs. [9,10]). In this method the finite size of the lattices
employed in the simulations (alongwith appropriate bound-
ary conditions in Euclidean time) is used to set the renor-
malization scale. In the end continuum perturbation theory
is employed to convert the results from the Schrödinger

functional scheme to theMS scheme. Though theoretically
appealing the practical implementation of the procedure
requires a lot of effort and has to be repeated for every
new operator again from the very beginning.
Another nonperturbative method for computing renor-

malization coefficients of arbitrary quark-antiquark opera-
tors is the Rome-Southampton method (also known as the
regularization independent momentum or RI-MOM
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scheme) introduced in Ref. [11]. It mimics the procedure
used in continuum perturbation theory. The basic objects
are quark two-point functions with an insertion of the
operator under consideration at momentum zero. These
are computed in a suitable gauge, e.g., the Landau gauge.
In continuum perturbation theory the two-point functions
are calculated order by order in an expansion in powers
of the strong coupling constant while in the Rome-
Southampton method they are evaluated within a
Monte Carlo simulation on the lattice. In order to extract
from these data renormalization factors which yield renor-

malized operators in theMS scheme in the continuum limit
one needs a renormalization condition which is applicable
to lattice data as well as to perturbative continuum results.
A suitable condition has been given in Ref. [11].

Compared with the Schrödinger functional approach the
Rome-Southampton method is distinguished by its rela-
tively simple implementation. Furthermore, one can deal
with all desired operators in a single simulation. On the
other hand, the Schrödinger functional method is explicitly
gauge invariant, while the Rome-Southampton method
requires gauge fixing.

In a previous publication [12] we have performed an
extensive study of nonperturbative renormalization for a
variety of quark-antiquark operators using the Rome-
Southampton method, motivated by our investigations of
hadron structure functions. This was done with Wilson
fermions in the quenched approximation for two values
of the lattice spacing. Later on, these studies have been
extended to improvedWilson fermions, based on quenched
simulations at three values of the lattice spacing [13].
Meanwhile we are using gauge field configurations gener-
ated with two flavors of dynamical quarks, which has made
a reconsideration of renormalization necessary.

In this paper we present results for renormalization
factors obtained within the Rome-Southampton approach
with nf ¼ 2 dynamical quarks. We work with nonpertur-

batively OðaÞ-improved Wilson fermions (clover fermi-
ons). The operators are, however, not (yet) improved. We
continue to apply the momentum sources introduced in
Ref. [12]. In addition, we have refined our approach,
subtracting lattice artifacts through one-loop boosted per-
turbation theory. As in Ref. [12] we consider only flavor-
nonsinglet quark-antiquark operators. For some thoughts
concerning flavor-singlet operators see Refs. [14,15].

The paper is organized as follows: After introducing in
Sec. II the operators to be studied we explain the method of
nonperturbative renormalization in Sec. III. Our imple-
mentation of this method employing momentum sources
is described in Sec. IV. After a brief overview of our gauge
field configurations in Sec. V we discuss the chiral ex-
trapolation of our data in Sec. VI. Section VII reviews
formulas from continuum perturbation theory that will be
needed in the analysis. Results from lattice perturbation
theory are compiled in Sec. VIII. Section IX explains how

we apply lattice perturbation theory in order to subtract
lattice artifacts. In Sec. X we describe our method
of extracting the renormalization factors from the
Monte Carlo data. The results (perturbative as well as
nonperturbative) are then presented and discussed in
Sec. XI. Finally, we present our conclusions in Sec. XII.
Some technical details are explained in the appendixes.

II. THE OPERATORS

In the Euclidean continuum we want to study the
operators

O��1...�n
¼ �u��D

$
�1

. . .D
$

�n
d; (1)

O5
��1...�n

¼ �u���5D
$

�1
. . .D
$

�n
d; (2)

OT
���1...�n

¼ �u���D
$

�1
. . .D
$

�n
d (3)

(with ��� ¼ ði=2Þ½��; ��� and D$� ¼ D�

! �D
 

�) or rather

Oð4Þ irreducible multiplets with definite charge conjuga-
tion parity. In particular, we obtain twist-2 operators by
symmetrizing the indices and subtracting the traces. We
have given the quark fields definite flavors (assumed to be
degenerate) in order to make apparent that we are consi-
dering the flavor-nonsinglet case. Hence the twist-2 opera-
tors do not mix and are multiplicatively renormalizable.
Working with Wilson fermions it is straightforward to

write down lattice versions of the above operators. One
simply replaces the continuum covariant derivative by its
lattice analogue. However,Oð4Þ being restricted to its finite
subgroup Hð4Þ (the hypercubic group) on the lattice, the
constraints imposed by space-time symmetry are less strin-
gent than in the continuum and the possibilities for mixing
increase [16–19].
While theHð4Þ classification for operatorsO��1...�n

and

O5
��1...�n

with n � 3 has been treated in detail in Ref. [18],

we have to refer to Ref. [20] for the operators OT
���1...�n

.

Note however that the classification of the latter operators
for n � 2 can be derived from the results presented in
Ref. [18].
In our investigations of hadronic matrix elements we

have considered the following operators whose renormal-
ization factors have already been studied in Ref. [12]:

Ov2;a
¼ Of14g; (4)

Ov2;b
¼ Of44g � 1

3
ðOf11g þOf22g þOf33gÞ; (5)

Ov3
¼ Of114g � 1

2
ðOf224g þOf334gÞ; (6)

O v4
¼ Of1144g þOf2233g �Of1133g �Of2244g; (7)
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O a2 ¼ O5
f124g; (8)

O r2;a ¼ O5
f14g; (9)

O r2;b ¼ O5
f44g �

1

3
ðO5
f11g þO5

f22g þO5
f33gÞ; (10)

O r3 ¼ O5
f114g �

1

2
ðO5
f224g þO5

f334gÞ: (11)

Their labels refer to the structure function moments that
they determine. These operators have been selected such
that they have a definite transformation behavior under
Hð4Þ (i.e., belong to an irreducible multiplet) with as little
mixing as possible. Moreover we have tried to minimize
the number of nonzero momentum components required in
the evaluation of the hadronic matrix elements. Note,
however, that in the numerical simulations reported in
Ref. [13] different operators [though from the same
Hð4Þ multiplets] have been used for the matrix elements
v3 and v4.

The operators Ov2;a
and Ov2;b

transform according to

inequivalent representations of Hð4Þ, although they belong
to the same irreducible Oð4Þ multiplet in the continuum.
Therefore their renormalization factors calculated on the
lattice need not coincide. The same remark applies to Or2;a

and Or2;b .

Since our matrix element calculations now involve addi-
tional operators, not considered in Ref. [12], we have
extended the above list by the following operators, again
guided by the Hð4Þ classification given in Refs. [18,20]:

O v3;a
¼ Of124g; (12)

O h1;a ¼ OT
1f23g; (13)

O h1;b ¼ OT
122 �OT

133; (14)

O h2;a ¼ OT
4f123g; (15)

O h2;b ¼ OT
1f122g �OT

1f133g þOT
2f233g; (16)

O h2;c ¼ OT
13f23g þOT

23f13g þOT
41f24g þOT

42f14g; (17)

Oh2;d ¼ OT
1211 �OT

1222 þOT
13f23g

þOT
23f13g �OT

41f24g �OT
42f14g: (18)

The operator Ov3;a
yields the same structure function mo-

ment as Ov3
. However, in contrast to Ov3

it cannot mix

with any operator of the same or lower dimension. On the
other hand, it has the disadvantage that one needs spatial
momenta with two nonvanishing components in order to
extract the moment v3 from its matrix elements. The latter

fact is the reason why we did not employ it in our previous
investigations of nucleon structure. The operators con-
structed from OT��� are relevant for transversity.
Furthermore, we have studied the following operators

without derivatives (‘‘currents’’):

O S ¼ �ud; (19)

O P ¼ �u�5d; (20)

O V
� ¼ �u��d; (21)

O A
� ¼ �u���5d; (22)

O T
�� ¼ �u���d; (23)

where all quark fields are taken at the same lattice point.
Finally we have also considered the quark wave function
renormalization constant Zq.

In Table I we list all operators studied, along with the
Hð4Þ representation they belong to and their charge con-
jugation parity C.
While in the evaluation of hadronic matrix elements the

members of a given operator multiplet require different
momentum components to be nonzero and hence are of
different usefulness, such distinctions do not matter in our
computation of renormalization factors. Therefore we
consider not only individual operators but also complete
operator bases for the representations under study. The
representations studied and the chosen bases are given in
Appendix A.
Concerning the mixing properties a few remarks are in

order. Mixing with operators of equal or lower dimension
is excluded for the operators Ov2;a

, Ov2;b
, Ov3;a

, Oa2 , Or2;a ,

Or2;b , Oh1;a , Oh1;b , Oh2;a , Oh2;b , Oh2;c as well as for the

currents.

TABLE I. Operators and their transformation behavior
[18,20]. The charge conjugation parity is denoted by C.

Operator Representation C Operator Representation C

OS �ð1Þ1 þ1 Oh1;b �ð8Þ1 þ1
OP �ð1Þ4 þ1 Ov3

�ð8Þ1 �1
OV

� �ð4Þ1 �1 Ov3;a
�ð4Þ2 �1

OA
� �ð4Þ4 þ1 Or3 �ð8Þ2 þ1

OT
�� �ð6Þ1 �1 Oa2 �ð4Þ3 þ1

Ov2;a
�ð6Þ3 þ1 Oh2;a �ð3Þ2 �1

Ov2;b
�ð3Þ1 þ1 Oh2;b �ð3Þ3 �1

Or2;a �ð6Þ4 �1 Oh2;c �ð6Þ2 �1
Or2;b �ð3Þ4 �1 Oh2;d �ð6Þ3 �1
Oh1;a �ð8Þ2 þ1 Ov4

�ð2Þ1 þ1
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The case of the operator Ov3
, for which there are two

further operators with the same dimension and the same
transformation behavior, is discussed in Refs. [18,19].
Similarly, Oh2;d could mix with another operator of the

same dimension. The operators Ov4
, Or3 , on the other

hand, could in principle mix not only with operators of
the same dimension but also with an operator of one
dimension less constructed from OT���. A few more details
on the mixing issue can be found in Ref. [13], in particular
in Appendix B.

Our analysis ignores mixing completely. This seems to
be justified forOv3

. Here a perturbative calculation gives a

rather small mixing coefficient for one of the mixing
operators [17,19], whereas the other candidate for mixing
does not appear at all in a one-loop calculation of quark
matrix elements at momentum transfer zero, because its
Born term vanishes in the forward direction. The same is
true for all operators of dimension less or equal to 6 which
transform identically to Ov4

: Their Born terms vanish in

forward matrix elements, hence they do not show up in a
one-loop calculation at vanishing momentum transfer. In
the case of Or3 , however, the mixing with an operator of

lower dimension is already visible at the one-loop level
even in forward direction. Nevertheless, the nucleon matrix
elements of the operators mixing withOv3

andOv4
seem to

be small, at least in the quenched approximation [13].

III. THE METHOD

We calculate our renormalization constants with the help
of the procedure proposed by Martinelli et al. [11] (the
Rome-Southampton approach). It follows closely the defi-
nitions used in (continuum) perturbation theory. We work
on a lattice of spacing a and volume V in Euclidean space.
For a fixed gauge let

G��ðpÞ ¼ a12

V

X
x;y;z

e�ip�ðx�yÞhu�ðxÞOðzÞ �d�ðyÞi (24)

denote the nonamputated quark-quark Green function with
one insertion of the operator O at momentum zero. It is to
be considered as a 12� 12 matrix in the combined color
and Dirac space. The corresponding vertex function (or
amputated Green function) is given by

�ðpÞ ¼ S�1ðpÞGðpÞS�1ðpÞ; (25)

where for q ¼ u or q ¼ d

S��ðpÞ ¼ a8

V

X
x;y

e�ip�ðx�yÞhq�ðxÞ �q�ðyÞi (26)

denotes the quark propagator. We define the renormalized
vertex function by

�RðpÞ ¼ Z�1q Z�ðpÞ (27)

and fix the renormalization constant Z by imposing the
renormalization condition

1

12
trð�RðpÞ�BornðpÞ�1Þ ¼ 1 (28)

at p2 ¼ �2
p, where �p is the renormalization scale. So Z

can be calculated from the relation

Z�1q Z
1

12
trð�ðpÞ�BornðpÞ�1Þ ¼ 1 (29)

with p2 ¼ �2
p. Here �BornðpÞ is the Born term in the vertex

function of O computed on the lattice, and Zq denotes the

quark field renormalization constant. The latter is taken as

ZqðpÞ ¼
trð�iP

�

�� sinðap�ÞaS�1ðpÞÞ
12
P
�

sin2ðap�Þ
; (30)

again at p2 ¼ �2
p. Aiming at a mass-independent renor-

malization scheme we finally have to extrapolate the
resulting values of Z to the chiral limit.
Note that there will be no OðaÞ lattice artifacts in

Eq. (29), because they come with operators of opposite
chirality in the vertex function, and these drop out when the
trace is taken. Still, matrix elements of the renormalized
operators will in general haveOðaÞ lattice artifacts because
the operators are not improved. Once improved operators
are available one can evaluate their renormalization factors
using the methods described in this paper.
Equations (28) and (30) (in the chiral limit) together

define a renormalization scheme of the momentum sub-
traction type which is called the RI0-MOM scheme [11]. RI
stands for ‘‘regularization independent.’’ This nomencla-
ture refers to the fact that the definition of the RI0-MOM
scheme does not depend on a particular regularization—
here we have used a lattice cutoff just for definiteness and
because the lattice regularization will be the basis of our

numerical investigations. The MS scheme, on the other
hand, can only be defined within dimensional regulariza-
tion and is therefore restricted to perturbation theory.
The RI0-MOM scheme differs from the RI-MOM

scheme only in the definition of the quark field renormal-
ization constant, which in the RI0-MOM scheme is more
suitable for the numerical evaluation.
In general, the RI0-MOM scheme will not agree with any

of the momentum subtraction schemes used in continuum
perturbation theory. It is therefore desirable to convert our

results to a more popular scheme like the MS scheme.

Another reason for converting to the MS scheme lies in
the fact that many of the operators discussed in this paper
appear in the operator product expansion along with the
corresponding Wilson coefficients, which are generally

given in theMS scheme. Hence we have to perform a finite
renormalization leading us from the RI0-MOM scheme to

the MS scheme if we want to use our renormalized opera-
tors together with the perturbative Wilson coefficients.
This finite renormalization factor can be computed in
continuum perturbation theory using, e.g., dimensional
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regularization. The details needed for the evaluation of this
factor will be discussed in Sec. VII.

If the operator under study belongs to an Oð4Þ multiplet
of dimension greater than 1, i.e., if it carries at least one
space-time index, the trace in Eq. (29) will in general
depend on the direction of p. This has the immediate
consequence that the renormalization condition (28) vio-
lates Oð4Þ covariance even in the continuum limit. In the
continuum, one can restore Oð4Þ covariance by a summa-
tion over the members of theOð4Þmultiplet. On the lattice,
each operator when renormalized according to Eq. (29) has
in general its own Z factor, and only after conversion to
a covariant scheme all operators in an irreducible Hð4Þ
multiplet will have the same renormalization factor.
However, it is also possible to define a common Z factor
for all members of such an Hð4Þ multiplet already in the
RI-MOM framework by taking a suitable average. If
j ¼ 1; 2; . . . ; N labels the members of the chosen basis of
the multiplet we can average over this basis and calculate
Z from

Z�1q Z
1

N

XN
j¼1

1

12
trð�jðpÞ�Born

j ðpÞ�1Þ ¼ 1 (31)

with p2 ¼ �2
p. This procedure has two advantages. It is

simpler than working with a different renormalization
factor for every single operator, and it leads to a smoother
dependence of the results on p2, because it reduces the
amount of Oð4Þ violation.

The bases actually used in our calculations are given in
Appendix A. Whenever we want to refer to this averaging
procedure we shall write the respective operator with a bar
on top, i.e., Ov2;a

means precisely the operator (4) while
�Ov2;a

refers to a result for the operator multiplet (A1), and

analogously for the currents.
Ideally, the scale �p at which our renormalization con-

stants are defined should satisfy the conditions

1=L2 � �2
QCD � �2

p � 1=a2 (32)

on a lattice with linear extent L. The inequality
�2

QCD � �2
p should ensure that we can safely use (con-

tinuum) perturbation theory to transform our results from
one scheme to another. The inequality �2

p � 1=a2 is sup-

posed to keep discretization effects small. So we have to
find a way between the Scylla of difficult to control non-
perturbative effects and the Charybdis of lattice artifacts.
Whether in a concrete calculation the conditions (32) may
be considered as fulfilled remains to be seen.

Let us finally comment on our notation for the renor-
malization scale. In the case of a general scheme S we use

the letter M, in the case of the MS scheme we use �. We
take �p when dealing with the RI0-MOM scheme and �M

in the case of the MOM scheme to be defined below.

IV. NUMERICAL IMPLEMENTATION

Let us sketch the main ingredients of our calculational
procedure [12]. To simplify the notation we set the lattice
spacing a ¼ 1 in this section. Moreover we suppress Dirac
and color indices. In a first step the gauge field configura-
tions are numerically fixed to some convenient gauge, the
Landau gauge in our case [21]. Representing the operator
under study in the formX

z

OðzÞ ¼X
z;z0

�qðzÞJðz; z0Þqðz0Þ; (33)

we calculate the nonamputated Green function (24) as the
gauge field average of the quantity

ĜðpÞ ¼ 1

V

X
x;y;z;z0

e�ip�ðx�yÞŜðx; zÞJðz; z0ÞŜðz0; yÞ; (34)

constructed from the quark propagator Ŝ on the same gauge
field configuration. Working in the limit of exact isospin
invariance we do not have to distinguish between u and d
propagators. With the help of the relation

Ŝðx; yÞ ¼ �5Ŝðy; xÞþ�5; (35)

we rewrite ĜðpÞ as

ĜðpÞ ¼ 1

V

X
z;z0

�5

�X
x

Ŝðz; xÞeip�x
�þ

�5Jðz; z0Þ

�
�X

y

Ŝðz0; yÞeip�y
�
: (36)

The quantities X
x

Ŝðz; xÞeip�x (37)

appearing in this expression can be calculated by solving
the lattice Dirac equation with a momentum source:X

z

Mðy; zÞ
�X

x

Ŝðz; xÞeip�x
�
¼ eip�y: (38)

HereMðx; yÞ represents the fermion matrix. So the number
of required matrix inversions is proportional to the number
of momenta considered. But the quark propagators, which
we need for the amputation and the computation of the
quark wave function renormalization, are immediately
obtained from the quantities already calculated.
Strictly speaking, one should evaluate the quark propa-

gators going into the calculation of SðpÞ in Eq. (26) on
configurations that are statistically independent of those
used for the computation of the Green functions (24) in
order to avoid unwanted correlations [22]. If we calculate
these expectation values on two independent ensembles,
statistical fluctuations in the quark propagators and the
Green functions (24) are uncorrelated, and (31) gives a
good estimate of the true Z. If we calculate both expecta-
tion values on the same ensemble, the fluctuations will be
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correlated, particularly if the configuration number Nconf is
small. It can be shown [23] that this will give a bias
proportional to 1=Nconf . In our case statistical fluctuations
are very small, because of our use of momentum sources,
so we do not expect a large problem. Indeed, estimating the
bias introduced by our procedure (see, e.g., Refs. [23,24]
for appropriate methods) we confirm this expectation. Note
that such correlations exist also in the calculation of had-
ronic matrix elements from ratios of correlation functions.
However, given the typical number of configurations used
in these studies, the bias should be very small.

Another computational strategy would be to choose a
particular location for the operator. Translational invari-
ance ensures that this will give the same expectation value
after averaging over all gauge field configurations. For this
method we need to solve the Dirac equation with a point
source at the location of the operator and (in the case of
extended operators) for a small number of point sources in
the immediate neighborhood. For operators with a small
number of derivatives the point source method would
require fewer inversions, but it turns out that relying on
translational invariance increases the statistical errors.

The required gauge fixing necessarily raises the question
of the influence of Gribov copies. Fortunately, investiga-
tions of this problem indicate that the fluctuations induced
by the Gribov copies are not overwhelmingly large and
may be less important than the ordinary statistical fluctua-
tions [25,26] (see also Ref. [27]).

Since the numerical effort is proportional to the number
of momenta, the proper choice of the momenta considered
is of particular importance. In order to minimize cutoff
effects we choose them close to the diagonal of the
Brillouin zone and achieve for most operators an essen-
tially smooth dependence on the renormalization scale�2

p.

It goes without saying that in this way we cannot eliminate
lattice artifacts completely. However, more sophisticated
strategies for coping with the cutoff effects such as those
suggested in Refs. [28,29] would require the use of far
more momenta than we can afford when working with
momentum sources. As the treatment of lattice artifacts
is a subtle issue anyway we have decided to keep the
advantage of small statistical errors provided by the above
procedure and to deal with the discretization errors in a
different manner.

A specific lattice artifact is caused by the OðaÞ chiral
symmetry breaking term of the quark propagator. In posi-
tion space this term is concentrated at very short distances,
for fermion actions obeying the Ginsparg-Wilson condi-
tion it is even exactly a delta function. In momentum space
it gives rise to the Wilson mass term, �ap2 in the inverse
propagator. The authors of Ref. [30] discuss one method of
suppressing this artifact (for an earlier treatment of the
same effect see Ref. [31]). Here, our approach to
this problem is to define Zq from Eq. (30), in which the

trace removes the Wilson mass term, and to suppress the

remaining Oða2Þ lattice artifacts by using the perturbative
subtraction scheme described in Sec. IX.

V. MONTE CARLO ENSEMBLES

We work with two degenerate flavors of nonperturba-
tively improvedWilson fermions (clover fermions). For the
explicit form of the fermionic action see, e.g., Ref. [31]. As
our gauge field action we take Wilson’s plaquette action. In
Table II we collect the parameters of our simulations, �,
	 ¼ 	sea, the clover coefficient cSW, and the lattice volume
along with am
, the pion mass in lattice units. Table III
contains the critical hopping parameters 	c as well as the
values of the Sommer parameter r0=a and the average
plaquette P ¼ h13 trUhi in the chiral limit [32] which are

employed in this paper. Note that the results for the chiral
extrapolation of r0=a given here are based on a larger set of
data than that used in Ref. [32].
The statistical errors will be calculated by means of the

jackknife procedure.

TABLE II. Simulation parameters �, 	 ¼ 	sea, clover coeffi-
cient cSW, and lattice volume along with the corresponding
values of the pion mass in lattice units.

� 	 cSW V am


5.20 0.1342 2.0171 163 � 32 0.5847(12)

5.20 0.1350 2.0171 163 � 32 0.4148(13)

5.20 0.1355 2.0171 163 � 32 0.2907(15)

5.25 0.1346 1.9603 163 � 32 0.4932(10)

5.25 0.1352 1.9603 163 � 32 0.3821(13)

5.25 0.13575 1.9603 243 � 48 0.25556(55)

5.25 0.1360 1.9603 243 � 48 0.18396(56)

5.29 0.1340 1.9192 163 � 32 0.5767(11)

5.29 0.1350 1.9192 163 � 32 0.42057(92)

5.29 0.1355 1.9192 243 � 48 0.32696(64)

5.29 0.1359 1.9192 243 � 48 0.23997(47)

5.29 0.1362 1.9192 243 � 48 0.15784(75)

5.40 0.1350 1.8228 243 � 48 0.40301(43)

5.40 0.1356 1.8228 243 � 48 0.31232(67)

5.40 0.1361 1.8228 243 � 48 0.22081(72)

5.40 0.13625 1.8228 243 � 48 0.19053(62)

5.40 0.1364 1.8228 243 � 48 0.1535(13)

TABLE III. Critical hopping parameters 	c along with chirally
extrapolated values for the Sommer parameter r0=a and the
average plaquette P.

� 	c r0=a P

5.20 0.136008(15) 5.454(59) 0.538608(49)

5.25 0.136250(7) 5.880(26) 0.544780(89)

5.29 0.136410(9) 6.201(25) 0.549877(109)

5.40 0.136690(22) 6.946(44) 0.562499(46)

M. GÖCKELER et al. PHYSICAL REVIEW D 82, 114511 (2010)

114511-6



VI. CHIRAL EXTRAPOLATION

As already mentioned in Sec. III we have to extrapolate
our results obtained at nonvanishing quark masses to the
chiral limit. This will be done for each � at fixed values of
p2. In the cases where the simulations for different values
of 	 have been performed on different volumes, i.e., for
� ¼ 5:25 and � ¼ 5:29, the sets of momenta used depend
on 	, and some kind of interpolation is required. For this
purpose we fit the data on the larger lattices (243 � 48)
with cubic splines in lnða2p2Þ. Except for very small
momenta, which will not influence the final results, these
fits yield a very good description of our data. An example is
shown in Fig. 1.

Of course, ‘‘wiggles’’ in the data (caused by lattice
artifacts) will be smoothed out by this interpolation.
These wiggles are less pronounced on the larger lattices
than on the smaller ones. That is why we have chosen to
work with the momenta coming from the smaller lattices so
that we can use the data on these lattices directly without
any interpolation and have to interpolate only the results
obtained on the larger lattices.

Alternatively, one could use the interpolation for all 	
values. This however leads to negligible differences in the
final results.

For the chosen momenta we can then extrapolate our
data to the chiral limit. This is done linearly in ðr0m
Þ2,
i.e., by means of a fit of the form

Z ¼ z0 þ z1ðr0m
Þ2; (39)

where the fit parameter z0 is identified with the desired
value of the renormalization factor in the chiral limit. Note
that this is essentially a linear fit in the quark mass. The
ansatz is motivated by the fact that in perturbation theory

the leading quark mass dependence is linear as the chiral
limit is approached (see, e.g., Ref. [31]).
With the possible exception of the smallest momenta

these fits work well. Examples are shown in Figs. 2 and 3.
Nevertheless, we have also performed quadratic extrapo-
lations of the form

Z ¼ z0 þ z1ðr0m
Þ2 þ z2ðr0m
Þ4 (40)

in order to get an idea of the impact of the chiral extrapo-
lation on the final results. (Note that this corresponds to a
three-parameter fit at three data points for � ¼ 5:20.)
However, there is an exceptional case where these sim-

ple extrapolations are not trustworthy. This is the pseudo-
scalar density OP. In this case one expects that Z ¼ ZP

vanishes with the quark mass mq, because Z
�1
P develops a

pole in mq. Therefore we follow Ref. [33] and try to

subtract the pole contribution using a fit of the form

2 5 10
-1

2 5 1 2 5 10 2

a
2

p
2

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

FIG. 1. ZRI0-MOM for the operator �OT at � ¼ 5:29, 	 ¼ 0:1362
on a 243 � 48 lattice. The curves represent splines with two
interior knots fitted to the data and to the data� the statistical error.
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FIG. 2. Chiral extrapolation for Oa2 at � ¼ 5:40.
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FIG. 3. Chiral extrapolation for OS (subtracted data, as ex-
plained in Sec. IX) at � ¼ 5:40.
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1

ZP

¼ s0
1

amq

þ s1 þ s2amq (41)

with

amq ¼ 1

2

�
1

	
� 1

	c

�
: (42)

Here 	c is the critical hopping parameter defined for fixed
� by the vanishing of the pseudoscalar mass m
. The
values used in this paper can be found in Table III. The
fit parameter s1 is then identified with the inverse of ZP in
the chiral limit. Examples of such fits are shown in Fig. 4.
The curvature in the data is clearly visible establishing the
existence of the Goldstone pole.

How can we judge the reliability of the resulting num-
bers? From the operator product expansion [34,35] we
expect that s0 is inversely proportional to �2

p, i.e., �
2
ps0

should become independent of �2
p. Therefore we plot

a2�2
ps0 versus �

2
p in Fig. 5. The �2

p independence seems

to be satisfied with reasonable accuracy. Thus we are
confident that our extrapolation for ZP works fairly well.
Nevertheless, the results for ZP must be considered with
some caution.

VII. INPUT FROM CONTINUUM
PERTURBATION THEORY

In Sec. III we have explained how one can compute
nonperturbative renormalization factors leading us from
the bare lattice operators (at lattice spacing a) to renormal-
ized operators in the RI0-MOM scheme (renormalization
scale�p). In this section we collect results from continuum

perturbation theory which will be needed for the conver-

sion to standard renormalization schemes such as the MS
scheme.
If the operator O under study is multiplicatively

renormalizable the operator renormalized in some scheme
S at the scale M is related to the bare lattice operator
Obare by

OSðMÞ ¼ ZS
bareðM;aÞObare: (43)

The scale dependence of the renormalized operator is
determined by the anomalous dimension

�S ¼ �M d

dM
lnZS

bare: (44)

Here the derivative is to be taken at fixed bare parame-
ters, and it is implicitly assumed that the cutoff has
been removed in the end. In perturbation theory �S is
expanded in powers of some renormalized coupling
constant gSðMÞ:

�S ¼ �0

gSðMÞ2
16
2

þ �S
1

�
gSðMÞ2
16
2

�2
þ �S

2

�
gSðMÞ2
16
2

�3

þ �S
3

�
gSðMÞ2
16
2

�4
þ � � � : (45)

Note that the one-loop coefficient �0 is scheme
independent.
Similarly we define the quark field renormalization con-

stant ZS
q;bareðM;aÞ in the scheme S so that the renormalized

quark propagator is given by ZS
q;bareðM;aÞSbare. In the

RI0-MOM scheme, ZRI0-MOM
q;bare is then specified by Eq. (30)

or its continuum analogue. For the anomalous dimension
of the quark field we adopt the definition

�S
q ¼ �M d

dM
lnZS

q;bare: (46)

The running of the coupling constant gSðMÞ as the scale
M is varied is controlled by the � function
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amq

1.8
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2 2
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2 2
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2 2
= 1.683

a
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FIG. 4. Chiral extrapolation of 1=ZP (subtracted data, as ex-
plained in Sec. IX) at � ¼ 5:40. The symbols at am ¼ 0
represent the chirally extrapolated values, i.e., the quantity s1.
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FIG. 5. a2�2
ps0 (from a fit to subtracted data, as explained

in Sec. IX) as a function of �2
p for the pseudoscalar density at

� ¼ 5:40.
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�S ¼ M
d

dM
gSðMÞ: (47)

Again, the derivative is to be taken at fixed bare parameters
and it is implicitly assumed that the cutoff has been re-
moved in the end. The perturbative expansion of the �
function can be written as

�S ¼ ��0

gSðMÞ3
16
2

� �1

gSðMÞ5
ð16
2Þ2 � �S

2

gSðMÞ7
ð16
2Þ3

� �S
3

gSðMÞ9
ð16
2Þ4 þ � � � : (48)

In this case the first two coefficients �0 and �1 are scheme
independent.

Integrating Eq. (47) we obtain

M

�S
¼

�
�0

16
2
gSðMÞ2

�ð�1=2�
2
0Þ
exp

�
1

2�0

� 16
2

gSðMÞ2
�

� exp

�Z gSðMÞ

0
dg0

�
1

�Sðg0Þ þ
1

�0

16
2

g03
� �1

�2
0

1

g0

��
(49)

with the � parameter �S appearing as an integration
constant.

In the same spirit we define the so-called RGI (renor-
malization group invariant) operator, which is independent
of scale and scheme, by

O RGI ¼ �ZSðMÞOSðMÞ ¼ ZRGIðaÞObare (50)

with

�ZSðMÞ ¼
�
2�0

gSðMÞ2
16
2

��ð�0=2�0Þ

� exp

�Z gSðMÞ

0
dg0

�
�Sðg0Þ
�Sðg0Þ þ

�0

�0g
0

��
(51)

and

ZRGIðaÞ ¼ �ZSðMÞZS
bareðM;aÞ; (52)

where ZRGI depends only on a (or on the bare coupling
parameter �). Once we know ORGI (or equivalently ZRGI),
multiplication with �ZSðMÞ�1 will allow us to evaluate
ZS
bareðM;aÞ and hence the operator O (or rather its matrix

elements) in any scheme and at any scale we like, provided
we know the � and � functions sufficiently well.

In the two-loop approximation, i.e., setting �S
n ¼

�S
n ¼ 0 for n 	 2, one can evaluate the integral in

Eq. (51) easily:

�ZSðMÞ ¼
�
2�0

gSðMÞ2
16
2

��ð�0=2�0Þ

�
�
1þ �1

�0

gSðMÞ2
16
2

�ð�0�1��S
1
�0Þ=2�0�1

: (53)

Whenever we need them we evaluate the integrals in
Eqs. (49) and (51) exactly (by numerical methods) and
do not reexpand them in gSðMÞ.

With the help of themethods described in Secs. III and IV

we can compute ZRI0-MOM
bare ð�pÞ numerically for some range

of scales �p. Knowledge of �ZRI0-MOMð�pÞ would then

permit us to compute ZRGI. However, being not covariant
for most operators, the RI0-MOM scheme is not very suit-
able for evaluating anomalous dimensions. Therefore we
will adopt a two-step procedure for computing ZRGI. In the

first step we transform the numerical results for ZRI0-MOM
bare to

a covariant ‘‘intermediate’’ scheme S, e.g., theMS scheme,
and in the second step we use the anomalous dimension and
the � function in this scheme to compute �ZS and hence
ZRGI. Thus we could in principle compute ZRGIðaÞ as

ZRGIðaÞ ¼ �ZSðM ¼ �pÞZS
RI0-MOM

ðM ¼ �pÞ
� ZRI0-MOM

bare ð�p; aÞ; (54)

where ZS
RI0-MOM

denotes the finite renormalization factor

leading from the RI0-MOM scheme to the scheme S and all
the scales have been identifiedwith the scale�p initially set

in the RI0-MOM scheme.

The most obvious choice for S is of course the MS
scheme. However, it will turn out to be advantageous to
consider also a kind of (perturbative) momentum subtrac-
tion scheme, which we call the MOM scheme. This is
defined by requiring that in the renormalized vertex func-
tion the coefficient of the tree-level (or Born) term equals
one at the renormalization scale�M. Tomake this definition
unambiguous one has to specify in each case the basis used
for the other contributions. The quark field renormalization
constant is taken to be the same as in theRI0-MOM scheme:

ZMOM
q;bareð�M; aÞ ¼ ZRI0-MOM

q;bare ð�M; aÞ: (55)

The MOM scheme is covariant and rather ‘‘close’’ to the
RI0-MOM scheme so that the conversion factor ZMOM

RI0-MOM

from RI0-MOM to MOM usually differs less from one than

the factor ZMS
RI0-MOM

leading from RI0-MOM toMS.

We can expand the conversion factor leading from

RI0-MOM to MS in powers of the MS coupling constant:

ZMS
RI0-MOM

ð�Þ ¼ 1þ c1
gMSð�Þ2
16
2

þ c2

�
gMSð�Þ2
16
2

�2

þ c3

�
gMSð�Þ2
16
2

�3
þ � � � : (56)

Using

ZMS
MOMð�Þ ¼ 1þ c01

gMSð�Þ2
16
2

þ c02
�
gMSð�Þ2
16
2

�2

þ c03
�
gMSð�Þ2
16
2

�3
þ � � � ; (57)

we obtain for the conversion factor from RI0-MOM to
MOM:
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ZMOM
RI0-MOM

ð�Þ ¼ ZMS
RI0-MOM

ð�Þ
ZMS
MOMð�Þ

¼ 1þ ðc1 � c01Þ
gMSð�Þ2
16
2

þ ðc2 � c1c
0
1 þ c021 � c02Þ

0
@gMSð�Þ2

16
2

1
A2

þ ðc3 � c2c
0
1 þ c1c

02
1 � c1c

0
2 � c031

þ 2c01c
0
2 � c03Þ

0
@gMSð�Þ2

16
2

1
A3

þ � � � : (58)

If the vertex function �ðpÞ is proportional to the Born
term �BornðpÞ (as it happens in simple cases), theRI0-MOM
scheme and the MOM scheme do not differ. So we have

ZMS
RI0-MOM

ð�Þ ¼ ZMS
MOMð�Þ (59)

and consequently ci ¼ c0i. However, in the generic case the
matrix �ðpÞ will contain also contributions that are not a
multiple of �BornðpÞ. As we consider only operators which
are multiplicatively renormalizable in the continuum these

additional contributions are finite, but they make ZMS
RI0-MOM

different from ZMS
MOM and are responsible for the depen-

dence of ZMS
RI0-MOM

on the direction of the momentum p. An

explicit example is discussed in Appendix B.
Working with the MOM scheme it is quite natural to

expand in a coupling constant which is similarly defined
through a momentum subtraction procedure. Therefore we

have also considered the gMOMgg scheme as defined in

Ref. [36]. The corresponding coupling constant g
gMOMgg is

related to the MS coupling constant gMS by

g
gMOMggð�Þ2
16
2

¼ gMSð�Þ2
16
2

þ d1

�
gMSð�Þ2
16
2

�2

þ d2

�
gMSð�Þ2
16
2

�3
þ d3

�
gMSð�Þ2
16
2

�4
þ � � � ; (60)

where in the Landau gauge

d1 ¼ 70

3
� 22

9
nf; (61)

d2¼516217

576
�153

4
�3�

�
8125

54
þ4

3
�3

�
nfþ376

81
n2f; (62)

d3 ¼ 304676635

6912
� 299961

64
�3 � 81825

64
�5

þ
�
� 13203725

1296
þ 13339

27
�3 þ 1885

9
�5

�
nf

þ
�
580495

972
þ 40

9
�3

�
n2f �

5680

729
n3f: (63)

As usual, �n denotes the value of Riemann’s � function at
the argument n. Choosing S ¼ MOM in Eq. (51) we shall

always work with the gMOMgg coupling.

Using the above expressions, all expansions in the MS
coupling may be rewritten as expansions in powers of thegMOMgg coupling. For example, the coefficients �MOM

i of
the anomalous dimension in theMOM scheme expanded in

powers of g
gMOMgg are related to the coefficients �MS

i of the

anomalous dimension in the MS scheme expanded in

powers of gMS by

�MOM
1 ¼ �MS

1 � 2�0c
0
1 � d1�0; (64)

�MOM
2 ¼ �MS

2 � 2�1c
0
1 � 2�0ð2c02 � c021 Þ

� 2d1ð�MS
1 � 2c01�0Þ þ �0ð2d21 � d2Þ; (65)

�MOM
3 ¼ �MS

3 � 2�MS
2 c01 � 3d1½�MS

2 � 2c01�1

� 2�0ð2c02 � c021 Þ� þ ð�MS
1 � 2�0c

0
1Þð5d21 � 2d2Þ

� 2�1ð2c02 � c021 Þ � 2�0ð3c03 � 3c01c02 þ c031 Þ
þ �0ð5d1d2 � 5d31 � d3Þ: (66)

For the actual evaluation of the expansion coefficients ci
and c0i one starts from the bare vertex function for the
operator under consideration computed in dimensional
regularization and imposes the respective renormalization
conditions yielding the renormalized vertex functions in the
different schemes. These differ only by (scale-dependent)
factors, from which the desired conversion factors can be
derived immediately, once the quark field renormalization
factor has been extracted from the quark propagator. The
results for the coefficients c1, c2, c3 and c

0
1, c

0
2, c

0
3 as well as

the sources from which we have taken the required pertur-
bative vertex functions are given in Appendix C.

VIII. LATTICE PERTURBATION THEORY

As long as no mixing with operators of lower dimension
is involved it is possible to compute renormalization fac-
tors in lattice perturbation theory. Although straightfor-
ward in principle, the actual calculations tend to become
rather cumbersome in practice. Hence they rarely extend
beyond one-loop order (see, however, Refs. [2–4]). This is
a severe limitation since lattice perturbation theory con-
verges rather slowly in most cases of interest. Therefore
various improvement schemes have been devised, such as
boosted perturbation theory and tadpole improvement [5].
In spite of these problems we want to compare our

nonperturbative results with the corresponding values ob-
tained in (improved) lattice perturbation theory. For the

renormalization factor ZMS
bareð�; aÞ a straightforward appli-

cation of one-loop lattice perturbation theory yields results
of the form
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ZMS
bareð�; aÞpert ¼ 1� g2

16
2
ð�0 lnða�Þ þ CF�Þ; (67)

where � ¼ �ðcSWÞ is a finite constant depending on the
details of the lattice action and we have CF ¼ 4=3 for the
gauge group SU(3). If mixing occurs, the single renormal-
ization factor of a multiplicatively renormalizable operator
is replaced by a matrix of Z factors. However, we shall
neglect this complication and restrict ourselves to the
matrix element on the diagonal corresponding to the op-
erator under consideration. Working with an anticommut-
ing �5 also in the continuum part of the calculation one
obtains the values given in Table IV. They do not depend on
the particular operator but only on the Hð4Þ multiplet to
which the operator belongs. In the case cSW ¼ 0 results for
Ov4

, Oh1;b , Oh2;b , and OT
�� have already been obtained in

Ref. [39]. Note that � is gauge invariant for our quark-
antiquark operators, however, in the case of the quark wave
function renormalization constant Zq it is not. The result

given in Table IV corresponds to the Landau gauge.
In order to obtain the corresponding results in tadpole-

improved perturbation theory we write (with � ¼ 1=a) for
an operator with nD covariant derivatives

1� g2

16
2
CF�¼ u0

unD0
unD�10

�
1� g2

16
2
CF�

�

¼ u0
unD0

�
1� g2LAT

16
2
CF

��

�
þOðg4LATÞ; (68)

where

u0 ¼
�
1

3
trUh

�
1=4 ¼ 1� g2

16
2
CF


2 þOðg4Þ (69)

and

�� ¼ �þ ðnD � 1Þ
2: (70)

This reflects the fact that one has nD operator tadpole
diagrams and one leg tadpole diagram, which are of the
same magnitude but contribute with opposite sign. It re-
mains to make a physically reasonable choice for the
expansion parameter gLAT. Here we identify gLAT with
the boosted coupling

gh ¼ g

u20
: (71)

Now we have two options. Either we stay with the
expression (67) and its tadpole-improved analogue

ZMS
bareð�;aÞti¼u1�nD0

�
1� g2LAT

16
2
ð�0 lnða�ÞþCF

��Þ
�

(72)

or we apply these formulas only at a fixed scale � ¼ �0

(e.g., �0 ¼ 1=a) using the renormalization group to
change �:

ZMS
bareð�; aÞRGpert ¼ �ZMSð�Þ�1�ZMSð�0ÞZMS

bareð�0; aÞpert;
(73)

ZMS
bareð�; aÞRGti ¼ �ZMSð�Þ�1�ZMSð�0ÞZMS

bareð�0; aÞti:
(74)

The latter option seems preferable leading to the estimates

�ZMSð�0ÞZMS
bareð�0; aÞpert and �ZMSð�0ÞZMS

bareð�0; aÞti for
ZRGI. Working in the chiral limit we compute u0 from
the chirally extrapolated values for P ¼ u40 given in

Table III. To be consistent with lowest order perturbation
theory we set cSW ¼ 1.
Further improvement can be attempted by tadpole-

improved, renormalization-group-improved boosted per-
turbation theory or TRB perturbation theory [13,40]. This
works as follows. In Eq. (44) we have defined the anoma-
lous dimension �S by differentiating ZS

bare with respect to

the renormalization scale M at fixed cutoff and bare pa-
rameters. Alternatively one can keep the renormalized
quantities fixed and take the derivative with respect to the
cutoff, the lattice spacing a in our case. Then one obtains

�LAT ¼ �a d

da
lnZS

bare: (75)

TABLE IV. Finite contributions to the renormalization factors

ZMS
bare in lattice perturbation theory. The result for the quark field

is given in the Landau gauge.

Operator �ðcSWÞ Ref.

OS 12:95241þ 7:73792cSW � 1:38038c2SW [31]

OP 22:59544� 2:24887cSW þ 2:03602c2SW [31]

OV
� 20:61780� 4:74556cSW � 0:54317c2SW [31]

OA
� 15:79628þ 0:24783cSW � 2:25137c2SW [31]

OT
�� 17:01808� 3:91333cSW � 1:97230c2SW [31]

Zq 16:64441� 2:24887cSW � 1:39727c2SW [31]

Ov2;a
1:27959� 3:87297cSW � 0:67826c2SW [31]

Ov2;b
2:56184� 3:96980cSW � 1:03973c2SW [31]

Or2;a 0:34512� 1:35931cSW � 1:89255c2SW [31]

Or2;b 0:16738� 1:24953cSW � 1:99804c2SW [31]

Oh1;a 1:25245� 3:10180cSW � 1:59023c2SW [37]

Oh1;b 0:52246� 2:99849cSW � 1:46224c2SW [37]

Ov3
�12:12740� 2:92169cSW � 0:98166c2SW [13,37,38]

Ov3;a
�11:56318� 2:89800cSW � 0:98387c2SW [37]

Or3 �12:86094� 1:49316cSW � 1:68673c2SW [37]

Oa2 �12:11715� 1:51925cSW � 1:71846c2SW [37]

Oh2;a �11:54826� 2:41077cSW � 1:51175c2SW [37]

Oh2;b �11:86877� 2:30651cSW � 1:34908c2SW [37]

Oh2;c �11:74773� 2:36201cSW � 1:45084c2SW [37]

Oh2;d �12:9268� 2:38849cSW � 1:3900c2SW this work

Ov4
�25:50303� 2:41788cSW � 1:12826c2SW [13,38]
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Note that the derivative with respect to a also acts on cSW,
unless only the tree-level value cSW ¼ 1 is used. The
anomalous dimension �LAT is to be considered as a func-
tion of some bare coupling constant gLAT ¼ gLATðaÞ. This
could be the usual bare coupling g, but for our purposes it
will be more advantageous to work with the boosted cou-
pling gh. Expanding in gLAT and recalling that the one-
loop coefficient �0 is universal we can write

�LATðgLATÞ ¼ �0

g2LAT
16
2

þ �LAT
1

�
g2LAT
16
2

�2
þ � � � : (76)

Similarly we define

�LATðgLATÞ¼�adgLATda

¼��0

g3LAT
16
2

��1

g5LAT
ð16
2Þ2þOðg7LATÞ; (77)

where �0 and �1 have the same values as in the � function
(47). Expressing ZRGIðaÞ ¼ �ZSðMÞZS

bareðM;aÞ in terms

of �LAT and �LAT we find

ZRGI ¼
�
2�0

g2LAT
16
2

��ð�0=2�0Þ

� exp

�Z gLAT

0
dg0

�
�LATðg0Þ
�LATðg0Þ

þ �0

�0g0

��
: (78)

In the two-loop approximation we obtain

ZRGI ¼
�
2�0

g2LAT
16
2

��ð�0=2�0Þ

�
�
1þ �1

�0

g2LAT
16
2

�ð�0�1��LAT
1 �0Þ=2�0�1

: (79)

Choosing gLAT ¼ gh one has

�LAT
1 ¼ �h

1

¼ �MS
1 þ 2�0CF�ðcSWÞ þ 16
2�0

�
t1 � 1

4
CF

�
;

(80)

where [41–44]

t1 ¼ 0:4682013� ð0:0066960
� 0:0050467cSW þ 0:0298435c2SWÞnf: (81)

Tadpole improvement finally yields the result in TRB
perturbation theory:

ZRGI
TRB ¼ u1�nD0

�
2�0

g2h
16
2

��ð�0=2�0Þ

�
�
1þ �1

�0

g2h
16
2

�ðð�0�1��h
1
�0Þ=2�0�1Þþ
2ð1�nDÞCFð�0=�1Þ

:

(82)

Applying this formula we shall set again cSW ¼ 1 to be
consistent with lowest order perturbation theory.

For the operators OS, OP, OV
�, OA

�, and OT
�� without

derivatives two-loop calculations of the renormalization
factors in lattice perturbation theory have recently ap-
peared [3,4]. The various improvement schemes can be
applied also to these two-loop expressions. However, the
resulting formulas become considerably more compli-
cated. Therefore we defer the corresponding discussion
to Appendix D.

IX. PERTURBATIVE SUBTRACTION
OF LATTICE ARTIFACTS

In the perturbative form (67) of the renormalization
factors the lattice spacing a only appears in the logarithm
(and implicitly in the bare gauge coupling g). In the
remaining contributions the limit a! 0 has been per-
formed at fixed � leading to the finite constant �. In this
way all lattice artifacts vanishing like powers of a have
been eliminated. However, there is no need to do so. In
fact, a� is not necessarily small in our Monte Carlo results.
Hence it is worthwhile to keep a finite and to compare the
lattice artifacts in the perturbative expressions with their
nonperturbative counterparts.
To do this we simply write down the one-loop integrals

for general external momentum p and perform the integra-
tions numerically. The integrals can no longer be reduced
to a small number of standard integrals, they have to be
done independently at each value of p, and can only be
obtained in numerical form. They will in general not only
depend on p2 but also on the direction of the momentum.
For general p we can write the one-loop expression for

ZRI0-MOM
bare in the form

ZRI0-MOM
bare ðp; aÞ ¼ 1þ g2

16
2
CFFðp; aÞ þOðg4Þ; (83)

where the quark mass has been set equal to zero.
Neglecting all contributions which vanish as a! 0 we
get from Fðp; aÞ the expression ~Fðp; aÞ; e.g., for the scalar
density OS it is given by

~Fðp; aÞ ¼ 3 lnða2p2Þ � 16:9524� 7:73792cSW

þ 1:38038c2SW (84)

in the Landau gauge. The difference between F and ~F
represents the lattice artifacts in one-loop perturbation
theory. Though being Oða2Þ, F� ~F can be fairly large
for the momenta in the actual simulations. An example
for the case of the scalar density OS is shown in Fig. 6.
We can (and will) use this calculated difference to

correct for the discretization errors in our lattice data (see
also Ref. [45]). We take

Dðp; aÞ ¼ Fðp; aÞ � ~Fðp; aÞ (85)

as an estimate of the perturbative discretization errors in our

Monte Carlo renormalization constants ZRI0-MOM
bare ðp; aÞMC

and define subtracted renormalization constants by
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ZRI0-MOM
bare ðp; aÞMC;sub ¼ ZRI0-MOM

bare ðp; aÞMC

� g2h
16
2

CFDðp; aÞ (86)

employing boosted perturbation theory with u0 in gh taken
at the respective 	 value, i.e., before the chiral extrapola-
tion. Working consistently with one-loop perturbation the-
ory we set cSW ¼ 1. This procedure removes all the g2a2

discretization terms in ZRI0-MOM
bare ðp; aÞMC, leaving lattice

artifacts Oðg4a2Þ. As we shall see, the use of the boosted
coupling gh seems to do a reasonable job of estimating the
higher-order discretization effects.

Unfortunately, this procedure becomes rather cumber-
some for operators with more than one derivative. So we
can use it only for the quark wave function renormaliza-
tion, the currents, and the operators with one derivative.

X. EXTRACTING THE
RENORMALIZATION FACTORS

The simplest procedure for obtaining a value of ZRGIðaÞ
would be to plot the right-hand side of Eq. (54), i.e., of the
relation

ZRGIðaÞ ¼ �ZSðM ¼ �pÞZS
RI0-MOM

ðM ¼ �pÞ
� ZRI0-MOM

bare ð�p; aÞ; (87)

versus�p and to read offZ
RGIðaÞ in an interval of�p where

the inequalities (32) are satisfied. In this region the value of
ZRGIðaÞ would be independent of �p, i.e., one would ob-

serve a plateau, and one could determine the final result by
fitting a constant to the data for ZRGIðaÞ. Examples of such
plots before and after the perturbative subtraction of lattice
artifacts are shown in Fig. 7, and in Fig. 8 subtracted and

FIG. 6. Lattice artifacts for the scalar density. The dotted
straight line shows ~Fðp; aÞ, while the two other curves represent
Fðp; aÞ for the momentum directions indicated in the plot. The
black squares denote the values of Fðp; aÞ at the momenta used
on the 163 � 32 lattices, which have been chosen close to the
diagonal of the Brillouin zone.

5 1 2 5 10 2 5 10
2

p
2

[GeV
2
]

0.8

0.84

0.88

0.92

0.96

1.0

= 5.20
= 5.25
= 5.29
= 5.40

5 1 2 5 10 2 5 10
2

p
2

[GeV
2
]

0.8

0.84

0.88

0.92

0.96

1.0

= 5.20
= 5.25
= 5.29
= 5.40

FIG. 7. ZRGI for the operator �OT before (upper plot) and after
(lower plot) the perturbative subtraction of lattice artifacts.
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FIG. 8. ZRGI for the quark field renormalization constant Zq

before and after the perturbative subtraction of lattice artifacts.
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unsubtracted results for the quark field renormalization
constant Zq are directly compared at � ¼ 5:20 and

� ¼ 5:40. Equivalently one could fit the values obtained

for ZS
bareð�p; aÞ ¼ ZS

RI0-MOM
ð�pÞZRI0-MOM

bare ð�p; aÞ in the

plateau region by �ZSð�pÞ�1ZRGIðaÞ (with ZRGIðaÞ as fit
parameter) using the most accurate perturbative expres-
sions for ZS

RI0-MOM
and �ZS .

However, in our actual simulations it is not so clear how
well the inequalities (32) are fulfilled, and there are two
effects to be considered that jeopardize the reliability of
this approach. First, there will be lattice artifacts which
vanish like powers (up to logarithms) of a for a! 0
[28,29]. In order to reduce the corresponding contamina-
tion one would like to perform the fit at small values of�p.

Second, the truncation of the perturbative expansions in
�ZS and ZS

RI0-MOM
will produce noticeable effects in the

region of small �p leading, in particular, to a dependence

of the results on the intermediate scheme S. In order to
minimize the related uncertainties one would like to move
the fit interval to large values of �p. Because of these

conflicting requirements it is a nontrivial matter to extract
a final value for ZRGI from the data.

Let us first investigate to which extent we can separate
truncation effects from lattice artifacts. According to

Eq. (54), ZS
bareð�p; aÞ ¼ ZS

RI0-MOM
ð�pÞZRI0-MOM

bare ð�p; aÞ
can be written as

ZS
bareð�p; aÞ ¼ �ZSð�pÞ�1ZRGIðaÞ: (88)

In this way, we have factorized the dependence of
ZS
bareð�p; aÞ on the renormalization scale �p and on the

cutoff a. Consequently we can write

ZS
bareð�p; aÞ ¼ ZRGIðaÞ

ZRGIða0ÞZ
S
bareð�p; a

0Þ: (89)

Hence multiplication by an appropriate
(�p-independent) scaling factor should bring the values

of ZS
bareð�p; aÞ obtained for different values of a (or �)

onto a single curve representing a function fSð�pÞ of �p

only, provided �p is small enough so that lattice artifacts

can be neglected. Note that the ratio ZS
bareðs�p; aÞ=

ZS
bareð�p; aÞ for some fixed value of s, the so-called step

scaling function, has a decent continuum limit. This coin-
cides with fSðs�pÞ=fSð�pÞ in the region where fSð�pÞ is
well defined.

In most cases, this collapse onto a single function works
quite well for a reasonable range of renormalization scales,
even if mixing is allowed. For an example see Fig. 9. So the
factorization of�p dependence and a dependence seems to

be possible (except for the highest values of �p).

However, the available perturbative results cannot de-
scribe the �p dependence below �2

p 
 5 GeV2, as exem-

plified by Fig. 7. It would be interesting to investigate
whether this observation is related to the claim [46]
that Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

evolution cannot be used below Q2 ¼ 5 GeV2 (at least in
the region of larger values of Bjorken’s variable x [47]).
Note also that an even later onset of (three-loop) perturba-
tive behavior has been found for the quenched gluon
propagator [48,49].
In Fig. 7 we have taken S ¼ MOM and we have ex-

ploited the freedom to select the scheme S0 for the cou-
pling used in the perturbative expansion of ZS

RI0-MOM

choosing S0 ¼ gMOMgg. Generally, the plateaus in ZRGI

look better for S ¼ MOM than for S ¼ MS. This may be
due to the fact that the perturbative expansion of ZS

RI0-MOM

seems to be better behaved for S ¼ MOM. For S0, the
choice S0 ¼ gMOMgg turns out to be preferable. An ex-

ample comparing results obtained with S ¼ MS, S0 ¼ MS

to results obtained with S ¼ MOM, S0 ¼ gMOMgg is
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FIG. 9. ZMOM
bare (perturbatively subtracted) for the operator �OT

as a function of the renormalization scale �p. The upper plot

shows the actual results. In the lower plot they have been
multiplied by suitable (�p-independent) scaling factors.
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shown in Fig. 10. Note that the difference between the two
sets of results is caused by the different truncation errors of
the respective perturbative expansions.

In order to account for the deviations of the data from a
perfect plateau, e.g., due to lattice artifacts and the trunca-
tion of the perturbative expansions, we have then applied a
more complicated procedure than a simple fit with a con-
stant. In particular, one should take into account that
residual lattice artifacts and truncation errors might con-
spire to produce a fake plateau. Therefore we consider it
important to include correction terms for both types of
errors. We have tried to incorporate higher terms in the
perturbative expansions of �ZSð�pÞ and ZS

RI0-MOM
ð�pÞ

treating the corresponding coefficients as additional fit
parameters. Similarly we have attempted to correct for
discretization effects by including a simple ansatz for
lattice artifacts. Again, the parameters in this ansatz have
to be fitted. Nevertheless, the number of fit parameters will
not get too large because we fit the data for all four �
values simultaneously. Only the quantities ZRGIðaÞ, our
final results, depend on �; the other parameters do not.

When we perform the fits we make the following
choices. In the expansions for ZS

RI0-MOM
ð�pÞ and

�ZSð�pÞ originating from continuum perturbation theory

we use as many terms as are available. The same applies to
the � function used when computing the running coupling
gSð�pÞ. We choose the MOM scheme as the intermediate

scheme S and expand ZS
RI0-MOM

in the gMOMgg coupling.

All data for �2
p 	 10 GeV2 are included in the fit. The

correlations between the data at different momenta but the
same � are not taken into account. Two examples of such
fits are shown in Fig. 11. More details concerning the fit
procedure can be found in Appendix E.

In some cases, the data on our coarsest lattice
(� ¼ 5:20) are not very well reproduced by the fit; see,
e.g., the upper plot in Fig. 11. Excluding these data would,
however, lead only to tiny changes in the results. Therefore
we have kept� ¼ 5:20 in the fit for all operators. Note that
the ‘‘divergence’’ of the fit curves (and the data) in the
vicinity of �2

p ¼ 3 GeV2 is mainly caused by the Landau

pole in the renormalized coupling constant in the gMOMgg
scheme.
While the fits for the subtracted data are reasonable it

was hardly possible to obtain a satisfactory fit for the
unsubtracted numbers. Although plots of unsubtracted
data do not differ dramatically from plots of subtracted
data (see Fig. 12 for results for an operator where no
subtracted data are available), the fit curves look quite
strange. Therefore we have to conclude that our fit
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FIG. 10. ZRGI (perturbatively subtracted) for the operator �Oh1;a
at � ¼ 5:40 as a function of the renormalization scale �p. The

open circles (filled squares) have been obtained with S ¼ S0 ¼
MS (S ¼ MOM, S0 ¼ gMOMgg).
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FIG. 11. ZRGI (perturbatively subtracted) for the operators �OT

(upper plot) and �Ov2;a
(lower plot) as a function of the renor-

malization scale. Also shown are the fit curves used for the
determination of ZRGI.
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procedure is applicable only to perturbatively subtracted
data and we must apply a different procedure to unsub-
tracted data. So we choose the following method. We read
off ZRGI at a reasonable value of �2

p and take as the error

the maximum of the differences with the results at one
lower and one higher value of the scale. The choice of these
three scales is to some extent dictated by the necessity to
avoid large lattice artifacts as well as large truncation
errors in the perturbative expansions. We take the values
�2

p ¼ 10 GeV2, 20 GeV2, and 30 GeV2.

XI. RESULTS

Before we present and discuss our results we have to
consider the influence of the two parameters that enter our
analysis: the physical value of r0 and r0�MS. The pertur-

bative expressions which are needed in the evaluation of
ZRGI are functions of �2

p=�
2
MS

, where �2
p is related to the

momenta in lattice units q2 by a2�2
p ¼ q2. Since we use r0

to set the scale we write

�2
p ¼ ðr0=aÞ

2q2

r20
(90)

so that

�2
p

�2
MS

¼ ðr0=aÞ
2q2

ðr0�MSÞ2
: (91)

This shows that the physical value of r0 has an influence
only on the scale �p to which a particular Z value is

associated. As the question of the scale at which perturba-
tion theory becomes applicable is not completely immate-
rial we shall set r0 to a reasonable value, for which we take
0.467 fm [50,51] (see also Ref. [52]). However, the precise
number does not matter too much because r0 enters only
logarithmically.

The value chosen for r0�MS, on the other hand, has an

impact on the results for the renormalization factors. In
particular, varying r0�MS modifies the scale dependence of

the right-hand side of Eq. (54) and improves or deteriorates
the appearance of the plateau. We take r0�MS ¼ 0:617

from Ref. [32], which is consistent with the value found
in Ref. [53].
In order to estimate the systematic errors due to the

uncertainties in thevalues of r0 and r0�MSwehave repeated

our analysis using r0 ¼ 0:467 fm, r0�MS ¼ 0:662 and

r0 ¼ 0:5 fm, r0�MS ¼ 0:617 instead of our standard values
r0 ¼ 0:467 fm, r0�MS ¼ 0:617. Note that r0�MS ¼ 0:662

results from r0�MS ¼ 0:617ð40Þð21Þ as given in Ref. [32]

by adding the errors in quadrature. The ensuing differences
will be shown in the same format as the (statistical) errors,
however with the sign information included. For reasons of
better readability they are given below the results
themselves. The first (second) number corresponds to the
difference caused by the variation of r0�MS (r0). For ex-
ample, the entry

0:45155ð80Þ
ð568Þð15Þ

means that the analysis with r0 ¼ 0:467 fm and r0�MS ¼
0:617 produced the result 0:45155� 0:00080 while using
r0 ¼ 0:467 fm along with r0�MS ¼ 0:662 led to 0.45723

and working with r0 ¼ 0:5 fm, r0�MS ¼ 0:617 gave

0.45170. Note that the first error [(80) in the example] is
determined from the deviation of the ZRGI data from a
perfect plateau as explained in more detail below, where
also further sources of systematic errors will be discussed.
In the cases where lattice artifacts have been subtracted

perturbatively as explained in Sec. IX we have determined
values for ZRGI by means of the fit procedure described in
the previous section. The corresponding results will be
called the fit results.
For unsubtracted data we apply the alternative method

mentioned at the end of Sec. X. We evaluate ZRGI at the
scales �2

p ¼ 10 GeV2, 20 GeV2, and 30 GeV2, interpolat-

ing linearly in �2
p between adjacent data points. We take

the value at 20 GeV2 as our central value and estimate the
error from the maximum of the deviations of the values at
the other two scales. This error is always larger (in most
cases considerably larger) than the statistical error. These
results will be called the interpolation results.
Of course, the same method can also be applied to the

subtracted data. Except forOS at � ¼ 5:20, the error of the
interpolation results is again larger than the statistical error.
So, for the operators for which perturbatively subtracted
data exist we have interpolation results and fit results, both
based on the subtracted numbers, as well as interpolation
results extracted from the unsubtracted data. For the op-
erators for which no subtracted data are available we have
only the interpolation results. Note that the v4 operators are
particularly difficult: �BornðpÞ vanishes on the diagonal of

5 1 2 5 10 2 5 10
2

p
2

[GeV
2
]

2.0

2.1

2.2

2.3

2.4

2.5

2.6

= 5.20
= 5.25
= 5.29
= 5.40

FIG. 12. ZRGI for the operator �Oh2;b as a function of the
renormalization scale.
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the Brillouin zone close to which all our momenta lie, and
large lattice artifacts are obvious in the Monte Carlo data.
So the corresponding nonperturbative results should be
considered with caution.

Finally, we have to decide which numbers we want to
consider as the most reliable results to be used in the
applications. It is clear that we make use of the perturba-
tively subtracted data whenever they are available. In these
cases our fits seem to exploit the Monte Carlo data in an
optimal manner, and therefore we take the fit results as our
final numbers. However, the errors computed by the
MINUIT program [54] appear to be seriously underesti-

mated as they are mainly determined by the statistical
uncertainties. Hence we adopt a kind of hybrid approach
taking the errors from the interpolation results (based on
the subtracted numbers) because they take into account the
deviation of our ZRGI data from a perfect plateau. The
uncertainties due to the scale setting and the value of
�MS are again taken from the fit results.

For the operators with two or more derivatives we do
not have much choice. So we take the interpolation results
(including the systematic uncertainties) as our final
numbers. All our final results are collected in Tables V
(operators with at most one derivative, based on pertur-
batively subtracted data) and VI (operators with more
than one derivative, based on unsubtracted data).

The impact of an uncertainty in r0 or r0�MS is easy to

quantify and therefore given in Tables V and VI. Further
systematic errors are more difficult to control. In particular,
the error caused by gauge fixing is hard to estimate reliably.
However, as already remarked above, the existing inves-
tigations indicate that the ‘‘Gribov noise’’ does not exceed
the present statistical errors [25–27]. Since they are not the
dominating uncertainty it seems justified to neglect the
influence of Gribov copies although a more detailed study
would clearly be desirable.
The necessity of gauge fixing in the Rome-

Southampton approach has also another consequence:
The operators of interest, though of course gauge invari-
ant, can mix with non-gauge-invariant (NGI) operators.
However, in perturbation theory this effect shows up only
in two-loop order and can thus reasonably be expected to
be small. NGI improvement terms for the quark propa-
gator were discussed at some length in Refs. [55,56].
While Oðg2Þ perturbation theory cannot distinguish be-
tween the gauge-invariant and NGI improvement terms,
in an Oðg3Þ calculation of the qqg vertex [57], we could
calculate the NGI improvement coefficient, and found it
indeed to be numerically small. Mixing with gauge-
invariant operators, on the other hand, can in most cases
be excluded by means of symmetry arguments (see
Sec. II).

TABLE V. Final nonperturbative results for operators with at most one derivative obtained
with r0 ¼ 0:467 fm and r0�MS ¼ 0:617 from perturbatively subtracted data. Estimates of

systematic errors have been included.

Operator ZRGIj�¼5:20 ZRGIj�¼5:25 ZRGIj�¼5:29 ZRGIj�¼5:40
OS 0.45061(28) 0.44990(65) 0.44880(72) 0.45155(80)

(608)(21) (593)(18) (584)(17) (568)(15)

OP 0.3376(95) 0.3422(95) 0.347(11) 0.367(11)

ð43Þð�5Þ ð42Þð�6Þ ð4Þð�1Þ ð4Þð�1Þ
�OV 0.7228(35) 0.7323(28) 0.7373(37) 0.7513(25)

ð�3Þð1Þ ð�3Þð1Þ ð�3Þð2Þ ð�3Þð1Þ
�OA 0.7527(21) 0.76024(78) 0.76439(30) 0.77682(54)

ð1Þð�8Þ ð6Þð�70Þ ð6Þð�62Þ ð6Þð�60Þ
�OT 0.9027(16) 0.91453(58) 0.92055(68) 0.9368(14)

ð�40Þð�1Þ ð�390Þð�6Þ ð�389Þð1Þ ð�39Þð0Þ
Zq 0.7501(18) 0.7557(12) 0.75958(80) 0.7703(14)

ð�7Þð�6Þ ð�7Þð�6Þ ð�66Þð�49Þ ð�7Þð�5Þ
�Ov2;a

1.5028(47) 1.5182(58) 1.5298(61) 1.5526(54)

ð�164Þð8Þ ð�162Þð7Þ ð�161Þð6Þ ð�159Þð6Þ
�Ov2;b

1.5089(56) 1.5233(81) 1.5336(96) 1.5555(28)

ð�159Þð�7Þ ð�156Þð�5Þ ð�157Þð�5Þ ð�155Þð�6Þ
�Or2;a 1.4920(17) 1.5071(38) 1.5194(55) 1.5430(34)

ð�159Þð0Þ ð�156Þð1Þ ð�156Þð�1Þ ð�154Þð0Þ
�Or2;b 1.5382(23) 1.5514(67) 1.5614(92) 1.5822(15)

ð�159Þð�15Þ ð�158Þð�14Þ ð�158Þð�13Þ ð�155Þð�12Þ
�Oh1;a 1.5791(39) 1.5963(58) 1.6096(41) 1.6363(37)

ð�187Þð0Þ ð�185Þð1Þ ð�185Þð0Þ ð�184Þð�1Þ
�Oh1;b 1.5989(43) 1.6155(63) 1.6282(47) 1.6541(44)

ð�191Þð�1Þ ð�189Þð0Þ ð�188Þð0Þ ð�186Þð�1Þ

PERTURBATIVE AND NONPERTURBATIVE . . . PHYSICAL REVIEW D 82, 114511 (2010)

114511-17



A few further systematic uncertainties can be estimated
more easily. We have tested the sensitivity to the chiral
extrapolation by repeating the analysis employing a qua-
dratic chiral extrapolation [see Eq. (40)]. This changed

the results by less than 1%, except for the case of �Ov4
at

� ¼ 5:20, where a change of 1.8% was observed. In order
to estimate the error caused by the truncation of the per-
turbative series we have reduced the order of all perturba-
tive expressions involved by one compared to the maximal
value available. This led to changes of at most 1%. Finally,
we have considered the uncertainty related to the chiral
extrapolation of r0=a. Since little is known about the quark
mass dependence of r0, we had to rely on some phenome-
nological ansatz [32] leading to chirally extrapolated val-
ues of r0=a with errors of the order of 1% (see Table III).
Varying the values of r0=a used in the analysis by 1%
produced changes of at most 0.5% in the results for ZRGI.
Thus it seems justified to assign an additional uncertainty
of about 2% to our results.

In the case of the perturbative estimates we consider the
choices ‘‘bare PT,’’ ‘‘TI PT,’’ and ‘‘TRB PT’’. Here bare PT

and TI PT refer to the expressions�ZMSð�0ÞZMS
bareð�0; aÞpert

and�ZMSð�0ÞZMS
bareð�0; aÞti, respectively, both evaluated at

�0 ¼ 1=a [see Eqs. (73) and (74)]; TRB PT corresponds to
the estimate by tadpole-improved, renormalization-group-
improved boosted perturbation theory in Eq. (82). Because
of our choice �0 ¼ 1=a the perturbative estimates do not
depend on r0. The bare PT and TI PT values do however
depend on r0�MS as well as on the intermediate scheme S,
which was taken to be theMS scheme in Eqs. (73) and (74).
We stick to this choice and set r0�MS ¼ 0:617. TheTRBPT

value, on the other hand, is independent of these choices.
Note, however, that all three perturbative estimates depend
on the chosenvalue of cSW. As remarked above, we have set
cSW ¼ 1. For the operators without derivatives we give the
resulting numbers in Table VII. The analogous results ob-
tained from the two-loop calculations as described in
Appendix D are given in Table VIII. All these perturbative
numbers apply to any member of the Hð4Þ multiplet to
which the operator listed belongs.

TABLE VI. Final nonperturbative results for operators with two and three derivatives obtained
with r0 ¼ 0:467 fm and r0�MS ¼ 0:617 from unsubtracted data. Estimates of systematic errors

have been included.

Operator ZRGIj�¼5:20 ZRGIj�¼5:25 ZRGIj�¼5:29 ZRGIj�¼5:40
�Ov3

2.3796(97) 2.385(23) 2.410(30) 2.4337(69)

ð�481Þð17Þ ð�48Þð5Þ ð�49Þð�2Þ ð�489Þð18Þ
�Ov3;a

2.3586(70) 2.365(13) 2.385(18) 2.4084(98)

ð�501Þð0Þ ð�50Þð4Þ ð�51Þð3Þ ð�515Þð13Þ
�Or3 2.3979(67) 2.401(25) 2.426(32) 2.4488(59)

ð�485Þð7Þ ð�49Þð4Þ ð�49Þð�3Þ ð�492Þð14Þ
�Oa2 2.357(14) 2.360(11) 2.383(24) 2.4084(94)

ð�50Þð�2Þ ð�50Þð3Þ ð�51Þð2Þ ð�515Þð4Þ
�Oh2;a 2.4265(77) 2.435(14) 2.4588(69) 2.486(10)

ð�518Þð10Þ ð�52Þð4Þ ð�525Þð6Þ ð�53Þð1Þ
�Oh2;b 2.4408(68) 2.448(14) 2.4710(76) 2.4967(79)

ð�521Þð13Þ ð�52Þð4Þ ð�528Þð8Þ ð�533Þð13Þ
�Oh2;c 2.4363(72) 2.444(14) 2.4680(68) 2.494(10)

ð�520Þð4Þ ð�52Þð4Þ ð�527Þð4Þ ð�53Þð1Þ
�Oh2;d 2.420(10) 2.427(19) 2.450(12) 2.475(11)

ð�52Þð2Þ ð�52Þð5Þ ð�52Þð2Þ ð�53Þð2Þ
�Ov4

3.59(25) 3.60(12) 3.631(47) 3.720(87)

ð�9Þð�1Þ ð�9Þð�5Þ ð�93Þð�11Þ ð�95Þð�141Þ

TABLE VII. Perturbative estimates for ZRGI based on one-
loop lattice perturbation theory. The intermediate scheme S is
taken to be the MS scheme and r0�MS ¼ 0:617. In all cases

cSW ¼ 1 is used.

Operator ZRGIj�¼5:20 ZRGIj�¼5:25 ZRGIj�¼5:29 ZRGIj�¼5:40
OS bare PT 0.5602 0.5532 0.5486 0.5399

TI PT 0.4902 0.4865 0.4843 0.4811

TRB PT 0.4637 0.4615 0.4598 0.4553

OP bare PT 0.5396 0.5331 0.5288 0.5209

TI PT 0.4573 0.4547 0.4533 0.4519

TRB PT 0.4398 0.4382 0.4370 0.4336

OV
� bare PT 0.8507 0.8521 0.8532 0.8562

TI PT 0.7721 0.7760 0.7792 0.7872

TRB PT 0.7800 0.7837 0.7866 0.7940

OA
� bare PT 0.8656 0.8669 0.8679 0.8706

TI PT 0.7959 0.7994 0.8023 0.8094

TRB PT 0.8008 0.8042 0.8069 0.8136

OT
�� bare PT 0.9811 0.9878 0.9926 1.0029

TI PT 0.9212 0.9296 0.9357 0.9494

TRB PT 0.9547 0.9617 0.9673 0.9815
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Let us now compare the results obtained by the various
methods, i.e., by the different procedures of extracting
ZRGI from the Monte Carlo data and by the different
versions of lattice perturbation theory. In particular, for
the operators for which perturbatively subtracted data exist
we can compare the results extracted from the perturba-
tively subtracted data, both by interpolation and by means
of the fit procedure, and the interpolation results based on
the unsubtracted numbers. Of course, ideally they should
agree within the errors. In reality, this is not always true.
Note, however, that the errors of the fit results only account
for the (rather small) statistical uncertainties of the raw
data while the errors of the interpolation results are domi-
nated by systematic effects.

Figures 13–15 give an overview of our results for
� ¼ 5:40. The corresponding plots for the other � values
look similar. For the operators without derivatives (see
Fig. 13) the nonperturbative results obtained with the
different methods (with and without perturbative subtrac-
tion of lattice artifacts) are well consistent in most cases.
The one-loop perturbative estimates are larger, but tadpole
improvement works. TRB perturbation theory, on the other
hand, leads to further improvement only in a few cases, for
some operators it is even worse than ordinary tadpole-
improved perturbation theory.

In the case of the operators with one derivative (see
Fig. 14) the agreement between the different methods for
the nonperturbative results is less convincing, in particular,
the interpolation results obtained without perturbative sub-
traction of lattice artifacts lie about 1–2% lower. Also the
numbers from bare perturbation theory are smaller than the
nonperturbative results. Again, tadpole improvement
moves the perturbative estimates in the right direction,

though too far in some cases. However, TRB perturbation
theory leads to a significant overestimation.
For operators with two derivatives (see Fig. 15) the only

nonperturbative numbers we have at our disposal are those
obtained without perturbative subtraction of lattice arti-
facts. Since the corresponding results for operators with
one derivative lie consistently below those coming from

TABLE VIII. Perturbative estimates for ZRGI based on two-
loop lattice perturbation theory. The intermediate scheme S is
taken to be the MS scheme and r0�MS ¼ 0:617. In all cases the

one-loop value for cSW is used.

Operator ZRGIj�¼5:20 ZRGIj�¼5:25 ZRGIj�¼5:29 ZRGIj�¼5:40
OS bare PT 0.5165 0.5110 0.5074 0.5012

TI PT 0.4618 0.4596 0.4585 0.4578

TRB PT 0.4577 0.4558 0.4543 0.4503

OP bare PT 0.4860 0.4813 0.4784 0.4735

TI PT 0.4175 0.4170 0.4171 0.4192

TRB PT 0.4201 0.4194 0.4188 0.4170

OV
� bare PT 0.7861 0.7887 0.7908 0.7963

TI PT 0.6943 0.7013 0.7068 0.7204

TRB PT 0.7067 0.7129 0.7179 0.7301

OA
� bare PT 0.8101 0.8124 0.8142 0.8191

TI PT 0.7320 0.7380 0.7428 0.7545

TRB PT 0.7401 0.7456 0.7500 0.7608

OT
�� bare PT 0.9789 0.9857 0.9905 1.0009

TI PT 1.0007 1.0064 1.0105 1.0190

TRB PT 1.0085 1.0136 1.0178 1.0285
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FIG. 13. Results for operators without derivatives at � ¼ 5:40.
The filled symbols correspond to our fit results (circles), inter-
polation results based on subtracted (squares), and unsubtracted
(triangles) data. Our final numbers are the fit results with the
errors taken from the interpolation results based on the sub-
tracted data. The open symbols represent estimates from bare
perturbation theory (circles), tadpole-improved perturbation the-
ory (squares), and TRB perturbation theory (triangles) based on
one-loop calculations.
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FIG. 14. Results for operators with one derivative at � ¼ 5:40.
The filled symbols correspond to our fit results (circles), inter-
polation results based on subtracted (squares), and unsubtracted
(triangles) data. Our final numbers are the fit results with the
errors taken from the interpolation results based on the sub-
tracted data. The open symbols represent estimates from bare
perturbation theory (circles), tadpole-improved perturbation the-
ory (squares), and TRB perturbation theory (triangles) based on
one-loop calculations.
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the perturbatively subtracted data, it is tempting to guess
that this is also the case for operators with two derivatives
though we cannot quantify the difference. The behavior of
the perturbative estimates is similar to that observed for
operators with one derivative. Bare perturbation theory
underestimates the results considerably, while tadpole-
improved perturbation theory comes much closer to the
nonperturbative numbers. The results from TRB perturba-
tion theory lie too high again. It should however be noted
that the relative positions of the nonperturbative renormal-
ization factors for almost all operators considered are
surprisingly well reproduced by any of the perturbative
estimates.

In Fig. 16 we plot our fit results for the operators without
derivatives together with the one-loop and two-loop per-
turbative estimates, again for � ¼ 5:40. Let us comment
on the numbers from bare lattice perturbation theory first,
represented by circles in the figure. They exhibit the ex-
pected behavior: The two-loop results come closer to the
nonperturbative numbers than the one-loop estimates,
though only slightly in the case of the tensor current
OT

��. Except for the tensor current, tadpole improvement

works also in the two-loop approximation moving the
perturbative values, indicated by squares, closer to the
nonperturbative numbers. However, the results from TRB
perturbation theory, shown by triangles, do not differ much
from the values found by tadpole-improved two-loop per-
turbation theory. At the moment it is unclear why the tensor
current shows such a peculiar behavior.

The perturbative estimates can easily be calculated at
arbitrary values of the bare coupling constant g. However,
for tadpole improvement one also needs nonperturbative
values for u0 (or for the average plaquette P ¼ u40) at these
couplings. Such values can (approximately) be obtained

from the results for P given in Table III by a simple Padé fit
taking into account the known two-loop expression for P
[58]. In Fig. 17 we plot the tadpole-improved perturbative
results for the renormalization factor of the local axial
current OA

� in the one- and two-loop aproximation along

with our nonperturbative numbers and those from the
ALPHA Collaboration [59].
In a few cases we can compare our nonperturbative

renormalization factors with results obtained by other
methods. The renormalization factor of the local vector
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FIG. 15. Results for operators with two derivatives at
� ¼ 5:40. The filled triangles correspond to our nonperturbative
results obtained by the interpolation method. The open symbols
represent estimates from bare perturbation theory (circles),
tadpole-improved perturbation theory (squares), and TRB per-
turbation theory (triangles) based on one-loop calculations.
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FIG. 16. Results for operators without derivatives at � ¼ 5:40.
The crosses correspond to our nonperturbative results obtained
by fits of the subtracted data. The open symbols represent
estimates from bare perturbation theory (circles), tadpole-
improved perturbation theory (squares), and TRB perturbation
theory (triangles) in the one-loop approximation. The corre-
sponding estimates based on two-loop calculations are shown
by the filled symbols.
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FIG. 17. Renormalization factor of the local axial current as a
function of g2. The curves represent one- and two-loop tadpole-
improved perturbation theory. The circles are our nonperturba-
tive results from Table V. The squares are numbers obtained by
the ALPHA Collaboration [59].
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current OV
�, usually called ZV , can also be extracted from

hadron three-point functions by considering the time com-
ponent of the current and imposing charge conservation.
Some time ago we have employed this approach in the case
of the nucleon [60] on a subset of the gauge field ensembles
used in the present work. The results are given in Table IX
along with the renormalization factor of the local axial
current OA

�, usually called ZA, obtained by the ALPHA

Collaboration by means of the Schrödinger functional
method [59]. We also include the results for ZV from the
ALPHA Collaboration [61]. Note that in these determina-
tions no gauge fixing is required. Hence the reasonable
agreement of the numbers in Table IX with those found in
the present work indicates that the Gribov noise is small.

In addition, we give in this table values for ZRGI
m ¼

ðZA=ZPÞRGI, where ZP is the renormalization factor of
the pseudoscalar densityOP. The factor ZRGI

m renormalizes
the quark mass as determined from the lattice axial Ward
identity. In Ref. [62] we have calculated it by a method
similar to that used in the present paper and applied the
results in an evaluation of the strange quark mass. For
easier comparison we also give the numbers following
from Table V. They differ from the older results by at
most 2%.

Factors for converting ZRGI to the MS scheme, i.e.,

�ZMSð�Þ�1 evaluated for our standard values of r0 and
r0�MS can be found in Appendix F.

XII. CONCLUSIONS

As more and more detailed questions about hadron
structure are treated in lattice QCD the renormalization
of composite operators has become an important issue and
perturbative as well as nonperturbative methods have been
developed. In this paper we have presented results of a
nonperturbative study in the RI-MOM scheme for a large
variety of quark-antiquark operators, based on simulations
with nf ¼ 2 dynamical clover fermions. The results for the

renormalization constants will be applied in the evaluation
of phenomenologically relevant hadron matrix elements.
Apart from these numbers, there are also a few lessons of a
more general nature to be learned from our investigation.

The renormalization factors connecting the bare opera-
tors on the lattice with their renormalized counterparts in

some renormalization scheme, e.g., the MS scheme, de-
pend on the cutoff used, the lattice spacing a in our case,
and the renormalization scaleM. The dependence on these
two quantities should factorize, and this is indeed observed
in a broad range ofM. However, the available results from
continuum perturbation theory for the anomalous dimen-
sions and the � function can describe the M dependence
only for relatively large values of the scale, above
M2 
 5 GeV2.
Only in the region where the scale dependence is well

described by continuum perturbation theory is it possible to
extract reliable values for the renormalization factors. On
the other hand, for large values of the renormalization scale
lattice artifacts may jeopardize the whole approach. It is
therefore important to keep discretization effects under
control, and we have seen that this purpose can be achieved
(at least approximately) by subtracting lattice artifacts with
the help of lattice perturbation theory.We did this at the one-
loop level, but to all orders in a. Unfortunately, our proce-
dure turned out to be too complicated for operators with
more than one covariant derivative. Alternatively, one can
calculate the lattice artifacts proportional to a2 in one-loop
lattice perturbation theory. This has recently been done for
operators without derivatives [63]. Since it should be
possible to extend such calculations to more complicated
operators, it would be interesting to see if subtraction of the
a2 contributions is already sufficient for our purposes.
With the help of lattice perturbation theory one can not

only calculate lattice artifacts, but also the renormalization
factors themselves. However, due to the notoriously poor
convergence properties of bare lattice perturbation theory
some kind of improvement is mandatory, at least if only
one-loop calculations are available. Indeed, we have found
that tadpole improvement does quite a good job, although
it is hard to predict how good the results actually are. For
operators without derivatives, there are now even two-loop
results. In bare perturbation theory they lead to a reduction
of the difference with our nonperturbative renormalization
factors, but the situation is less clear when tadpole im-
provement is included. Perhaps the ideal perturbative
scheme is still to be found.
Let us finally mention a few possible directions for

future research. The RI-MOM scheme has the disadvant-
age that it requires gauge fixing. In principle, this problem

TABLE IX. Results from alternative approaches. See Table 3 in Ref. [60] for ZV , Eq. (3.7) in
Ref. [61] for ZV (ALPHA), and Eq. (4.10) in Ref. [59] for ZA (ALPHA). The numbers for Zm in
Ref. [62] are taken from Table III in that reference.

ZRGIj�¼5:20 ZRGIj�¼5:25 ZRGIj�¼5:29 ZRGIj�¼5:40
ZV 0.7304(18) 0.7357(13) 0.7420(7)

ZV (ALPHA) 0.739(5) 0.744(5) 0.749(5) 0.759(5)

ZA (ALPHA) 0.770(16) 0.774(13) 0.778(11) 0.786(5)

Zm [62] 2.270(12) 2.191(24) 2.177(14) 2.124(6)

Zm (this work) 2.230(63) 2.222(62) 2.203(70) 2.117(63)
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could be overcome by working with correlation functions
in coordinate space, and a first implementation of this idea
has been published [64]. It seems, however, that very fine
lattices are necessary for this method.

Another possible modification concerns the choice of
the momenta. In our application we have followed the
original RI-MOM scheme, where the momentum transfer
at the operator insertion vanishes. However, a generaliza-
tion to nonexceptional momenta is possible [65–67].

A third variant of nonperturbative renormalization is
motivated by the fact that the renormalization condition
(28) involves only a particular trace of the vertex function
�ðpÞ. On the other hand, we have the complete vertex
functions (as 4� 4 matrices after averaging over color)
at our disposal, the bare ones computed nonperturbatively
on the lattice as well as the renormalized ones calculated

perturbatively in theMS scheme. So instead of introducing
the intermediate RI0-MOM scheme by imposing (28) one
could directly compare the bare nonperturbative vertex
function �ðpÞ with the renormalized perturbative vertex

function �MSðpÞ in the MS scheme. Up to lattice artifacts
we should have

�MSðpÞ ¼ ðZMS
q;bareÞ�1ZMS

bare�ðpÞ; (92)

where �MSðpÞ as well as the renormalization factors ZMS
q;bare

and ZMS
bare also depend on the renormalization scale �. An

analogous relation should hold for the quark propagator

and ZMS
q;bare.

Of course, it is not to be expected that (92) is satisfied
exactly: Not only lattice artifacts would spoil the identity,
but also the truncation of the perturbative expansion. So
one would have to develop some kind of fit procedure for

extracting ZMS
bare from (92). In any case, it might be an

interesting exercise to see how well (92) is fulfilled for
our data.
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APPENDIX A: OPERATOR BASES

In this appendix we list the operator bases we used when
calculating the renormalization factors with the help of
Eq. (31).

For v2;a (representation �ð6Þ3 , C ¼ þ1):
O f��g; 1 � �< � � 4: (A1)

For v2;b (representation �ð3Þ1 , C ¼ þ1):
O 11þO22�O33�O44; O33�O44; O11�O22:

(A2)

For r2;a (representation �ð6Þ4 , C ¼ �1):
O 5
f��g; 1 � �< � � 4: (A3)

For r2;b (representation �ð3Þ4 , C ¼ �1):
O 5

11þO5
22�O5

33�O5
44; O5

33�O5
44; O5

11�O5
22:

(A4)

For h1;a (representation �ð8Þ2 , C ¼ þ1):
2OT

�1f�2�3g þOT
�2f�1�3g; OT

�2f�1�3g;

1 � �1 < �2 < �3 � 4:
(A5)

For h1;b (representation �ð8Þ1 , C ¼ þ1):
OT

122 �OT
133; OT

122 þOT
133 � 2OT

144;

OT
211 �OT

233; OT
211 þOT

233 � 2OT
244;

OT
311 �OT

322; OT
311 þOT

322 � 2OT
344;

OT
411 �OT

422; OT
411 þOT

422 � 2OT
433:

(A6)

For v3 (representation �ð8Þ1 , C ¼ �1):
Of122g �Of133g; Of122g þOf133g � 2Of144g;

Of211g �Of233g; Of211g þOf233g � 2Of244g;

Of311g �Of322g; Of311g þOf322g � 2Of344g;

Of411g �Of422g; Of411g þOf422g � 2Of433g:

(A7)

For v3;a (representation �ð4Þ2 , C ¼ �1):
O f234g; Of134g; Of124g; Of123g: (A8)

For r3 (representation �ð8Þ2 , C ¼ þ1):
O5
f122g �O5

f133g; O5
f122g þO5

f133g � 2O5
f144g;

O5
f211g �O5

f233g; O5
f211g þO5

f233g � 2O5
f244g;

O5
f311g �O5

f322g; O5
f311g þO5

f322g � 2O5
f344g;

O5
f411g �O5

f422g; O5
f411g þO5

f422g � 2O5
f433g:

(A9)

For a2 (representation �ð4Þ3 , C ¼ þ1):
O 5
f234g; O5

f134g; O5
f124g; O5

f123g: (A10)

For v4 (representation �ð2Þ1 , C ¼ þ1):
Of1122g þOf3344g �Of1133g �Of2244g;

Of1122g þOf3344g þOf1133g þOf2244g
� 2Of1144g � 2Of2233g: (A11)
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For h2;a (representation �ð3Þ2 , C ¼ �1):
OT

14f23g þOT
24f13g þOT

34f12g ¼ �3OT
4f123g;

3OT
13f24g þOT

14f23g þ 3OT
23f14g þOT

24f13g � 2OT
34f12g

¼ �9OT
3f124g � 3OT

4f123g;

2OT
12f34g þOT

13f24g þOT
14f23g �OT

23f14g �OT
24f13g

¼ 3OT
1f234g � 3OT

2f134g: (A12)

For h2;b (representation �ð3Þ3 , C ¼ �1):
OT

1f122g �OT
1f133gþOT

2f233g;

�2OT
1f122g�OT

1f133g þ3OT
1f144gþOT

2f233g�3OT
2f244g;

�OT
1f133gþOT

1f144g�OT
2f233g þOT

2f244g�2OT
3f344g: (A13)

For h2;c (representation �ð6Þ2 , C ¼ �1):
O T

13f32g þOT
23f31g �OT

14f42g �OT
24f41g;

OT
12f23g þOT

32f21g �OT
14f43g �OT

34f41g;

OT
12f24g þOT

42f21g �OT
13f34g �OT

43f31g;

OT
21f13g þOT

31f12g �OT
24f43g �OT

34f42g;

OT
21f14g þOT

41f12g �OT
23f34g �OT

43f32g;

OT
31f14g þOT

41f13g �OT
32f24g �OT

42f23g:

(A14)

For h2;d (representation �ð6Þ3 , C ¼ �1):
O T

1211 �OT
1222 þOT

13f32g þOT
23f31g þOT

14f42g þOT
24f41g;

OT
1311 �OT

1333 þOT
12f23g þOT

32f21g þOT
14f43g þOT

34f41g;

OT
1411 �OT

1444 þOT
12f24g þOT

42f21g þOT
13f34g þOT

43f31g;

OT
2322 �OT

2333 þOT
21f13g þOT

31f12g þOT
24f43g þOT

34f42g;

OT
2422 �OT

2444 þOT
21f14g þOT

41f12g þOT
23f34g þOT

43f32g;

OT
3433 �OT

3444 þOT
31f14g þOT

41f13g þOT
32f24g þOT

42f23g:

(A15)

For the vector current (representation �ð4Þ1 , C ¼ �1):
O V

�; 1 � � � 4: (A16)

For the axial-vector current (representation �ð4Þ4 ,

C ¼ þ1):
O A

�; 1 � � � 4: (A17)

For the tensor current (representation �ð6Þ1 , C ¼ �1):
O T

��; 1 � �< � � 4: (A18)

APPENDIX B: EXAMPLE FOR
CONVERSION FACTORS

We want to explain in detail how the difference between

ZMS
RI0-MOM

and ZMS
MOM arises, considering the operator

O f��g ¼ 1

2
�uð��D

$
� þ ��D

$
�Þd (B1)

for � � � as an instructive example. The operator Ov2;a

belongs to this multiplet of operators.
Using dimensional regularization, straightforward per-

turbation theory in 4� � dimensions yields in the Landau
gauge

�ðpÞ ¼ ið��p� þ ��p�Þ þ g2

16
2
CF

�
ið��p� þ ��p�Þ

�
�
� 8

3

�
2

�
þ lnð4
Þ � �E � lnðp2=�2ÞÞ � 31

9

�

� 2

3
p�p�

ip

p2

�
þOðg4Þ (B2)

up to terms which vanish for �! 0. For QCD we have
CF ¼ 4=3. In this appendix we restrict ourselves to one-
loop order. Hence the coupling constant g can be identified
with the bare coupling or with some renormalized cou-
pling. Moreover, to this order and in the Landau gauge the
quark wave function renormalization constant Zq is equal

to one in all schemes of interest to us (RI0-MOM, MS, and
MOM); see also Eq. (C33). So we can ignore it in the
following.
For the operator (B1) we have

�BornðpÞ ¼ ið��p� þ ��p�Þ (B3)

and the term proportional to p represents an additional
structure which is not a multiple of the Born term. The

renormalized vertex function in the MS scheme reads

�MSðpÞ¼�BornðpÞþ g2

16
2
CF

�
�BornðpÞ

�
8

3
lnðp2=�2Þ�31

9

�

�2

3
p�p�

ip

p2

�
þOðg4Þ (B4)

and we get

ZMS
dimreg ¼ 1þ g2

16
2
CF � 83

�
2

�
þ lnð4
Þ � �E

�
þOðg4Þ:

(B5)

On the other hand, we can represent �ðpÞ as a linear
combination of �BornðpÞ and p�p�ðip=p2Þ. Requiring

that in the MOM scheme the coefficient of �BornðpÞ be
unity for p2 ¼ �2 we find

ZMOM
dimreg¼1þ g2

16
2
CF

�
8

3

�
2

�
þ lnð4
Þ��E

�
þ31

9

�
þOðg4Þ;

(B6)
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such that

�MOMðpÞ ¼ �BornðpÞ þ g2

16
2
CF

�
�BornðpÞ � 83 lnðp2=�2Þ

� 2

3
p�p�

ip

p2

�
þOðg4Þ: (B7)

Finally we obtain from Eq. (29)

ZRI0-MOM
dimreg ¼ 1þ g2

16
2
CF

�
8

3

�
2

�
þ lnð4
Þ � �E

�

þ 31

9
þ 4

3

p2
�p

2
�

p2ðp2
� þ p2

�Þ
�
þOðg4Þ: (B8)

Now we can calculate

ZMS
RI0-MOM

ð�Þ ¼ ZMS
dimreg

ZRI0-MOM
dimreg

¼ 1þ g2

16
2
CF

�
� 31

9
� 4

3

p2
�p

2
�

p2ðp2
� þ p2

�Þ
�

þOðg4Þ (B9)

and

ZMS
MOMð�Þ ¼

ZMS
dimreg

ZMOM
dimreg

¼ 1þ g2

16
2
CF

�
� 31

9

�
þOðg4Þ;

(B10)

in agreement with the results given in Appendix C.

APPENDIX C: RESULTS FROM CONTINUUM
PERTURBATION THEORY

In this appendix we collect the results from continuum
perturbation theory that go into our computations. They all
refer to nc ¼ 3 colors and Landau gauge, but the number of
flavors nf is left free. Note that we quote only the papers

which give the results with the largest number of loops.
We begin with the coefficients of the � function [see

Eq. (48)]. In the MS scheme they are given by (see
Ref. [68])

�0 ¼ 11� 2

3
nf; (C1)

�1 ¼ 102� 38

3
nf; (C2)

�2 ¼ 2857

2
� 5033

18
nf þ 325

54
n2f; (C3)

�3 ¼ 149753

6
þ 3564�3 �

�
1078361

162
þ 6508

27
�3

�
nf

þ
�
50065

162
þ 6472

81
�3

�
n2f þ

1093

729
n3f: (C4)

In the gMOMgg scheme one finds [36]

�2 ¼ 186747

64
� 1683

4
�3 �

�
35473

96
� 65

6
�3

�
nf

�
�
829

54
� 8

9
�3

�
n2f þ

8

9
n3f; (C5)

�3 ¼ 20783939

128
� 1300563

32
�3 � 900075

32
�5

�
�
2410799

64
� 1323259

144
�3 � 908995

144
�5

�
nf

þ
�
1464379

648
� 12058

27
�3 � 7540

27
�5

�
n2f

�
�
3164

27
� 64

9
�3

�
n3f þ

320

81
n4f; (C6)

while �0 and �1 are scheme independent in the Landau
gauge.
We now turn to the coefficients of the anomalous di-

mension in the MS scheme. Our conventions have been
given in Sec. VII; see, in particular, Eqs. (44) and (45). For

notational simplicity the superscript MS will be omitted.
Note that we assume an anticommuting �5, so the coef-
ficients �i correspond more precisely to the so-called naive
dimensional regularization.
While OV

� and OA
� have of course vanishing anomalous

dimension, we find for OS and OP (see Refs. [69,70])

�0 ¼ �8; (C7)

�1 ¼ � 404

3
þ 40

9
nf; (C8)

�2 ¼ �2498þ
�
4432

27
þ 320

3
�3

�
nf þ 280

81
n2f; (C9)

�3 ¼ � 4603055

81
� 271360

27
�3 þ 17600�5

þ
�
183446

27
þ 68384

9
�3 � 1760�4 � 36800

9
�5

�
nf

þ
�
� 10484

243
� 1600

9
�3 þ 320

3
�4

�
n2f

þ
�
664

243
� 128

27
�3

�
n3f: (C10)

For OT
�� we have [71]

�0 ¼ 8

3
; (C11)

�1 ¼ 724

9
� 104

27
nf; (C12)
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�2 ¼ 105110

81
� 1856

27
�3 �

�
10480

81
þ 320

9
�3

�
nf � 8

9
n2f:

(C13)

The operators Ov2;a
, Ov2;b

, Or2;a , and Or2;b have the same

anomalous dimension. From Ref. [72] we get

�0 ¼ 64

9
; (C14)

�1 ¼ 23488

243
� 512

81
nf; (C15)

�2 ¼ 11028416

6561
þ 2560

81
�3

�
�
334400

2187
þ 2560

27
�3

�
nf � 1792

729
n2f: (C16)

For Ov3
, Ov3;a

, Oa2 , and Or3 we extract from Ref. [73]

�0 ¼ 100

9
; (C17)

�1 ¼ 34450

243
� 830

81
nf; (C18)

�2 ¼ 64486199

26244
þ 2200

81
�3

�
�
469910

2187
þ 4000

27
�3

�
nf � 2569

729
n2f: (C19)

The anomalous dimension of Ov4
can be found in

Ref. [72]:

�0 ¼ 628

45
; (C20)

�1 ¼ 5241914

30375
� 26542

2025
nf; (C21)

�2 ¼ 245787905651

82012500
þ 11512

405
�3

�
�
726591271

2733750
þ 5024

27
�3

�
nf � 384277

91125
n2f: (C22)

The three-loop anomalous dimension of transversity op-
erators has been calculated by Gracey. For Oh1;a and Oh1;b

we get from Ref. [74]

�0 ¼ 8; (C23)

�1 ¼ 124� 8nf; (C24)

�2 ¼ 19162

9
�

�
5608

27
þ 320

3
�3

�
nf � 184

81
n2f: (C25)

In Ref. [75] we find for Oh2;a , Oh2;b , Oh2;c , and Oh2;d :

�0 ¼ 104

9
; (C26)

�1 ¼ 38044

243
� 904

81
nf; (C27)

�2 ¼ 17770162

6561
þ 1280

81
�3

�
�
552308

2187
þ 4160

27
�3

�
nf � 2408

729
n2f: (C28)

Finally, we can take the anomalous dimension of the quark
field to four loops from Ref. [76]:

�0 ¼ 0; (C29)

�1 ¼ 134

3
� 8

3
nf; (C30)

�2 ¼ 20729

18
� 79�3 � 1100

9
nf þ 40

27
n2f; (C31)

�3 ¼ 2109389

81
� 565939

162
�3 þ 2607

2
�4 � 761525

648
�5

�
�
324206

81
þ 4582

27
�3 þ 79�4 þ 320

3
�5

�
nf

þ
�
7706

81
þ 320

9
�3

�
n2f þ

280

243
n3f: (C32)

Let us now consider the coefficients needed for the
conversion from the RI0-MOM scheme and the MOM

scheme to the MS scheme, as defined in Eqs. (56) and
(57), respectively. Since theRI0-MOM scheme is in general
not covariant, these coefficients may depend on the direc-
tion of the momentum p. In order to keep the paper at a
reasonable length we refrain from giving the bases that are
used in the representation of the vertex functions and enter
the precise definition of the MOM scheme. The calculation
makes use of the perturbative expressions for the

vertex functions and of the ratio ZMOM
q;bare=Z

MS
q;bare ¼

ZRI0-MOM
q;bare =ZMS

q;bare. This ratio coincides with the quantity

CRI0
2 in Ref. [76], where we can read off the expansion

ZMOM
q

ZMS
q

¼ 1þ b2

�
gMSð�Þ2
16
2

�2
þ b3

�
gMSð�Þ2
16
2

�3
þ � � � ;

(C33)

with

b2 ¼ � 359

9
þ 12�3 þ 7

3
nf; (C34)

b3 ¼ � 439543

162
þ 8009

6
�3 þ 79

4
�4 � 1165

3
�5

þ
�
24722

81
� 440

9
�3

�
nf � 1570

243
n2f: (C35)
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From Ref. [76] we get for OS and OP

c1 ¼ 16

3
; (C36)

c2 ¼ 4291

18
� 152

3
�3 � 83

9
nf; (C37)

c3 ¼ 3890527

324
� 224993

54
�3 þ 2960

9
�5

�
�
241294

243
� 4720

27
�3 þ 80

3
�4

�
nf

þ
�
7514

729
þ 32

27
�3

�
n2f: (C38)

With the help of Ref. [77] we find for OT
��

c1 ¼ 0; (C39)

c2 ¼ � 3847

54
þ 184

9
�3 þ 313

81
nf; (C40)

c3 ¼ � 9858659

2916
þ 678473

486
�3 þ 1072

81
�4 � 10040

27
�5

þ
�
286262

729
� 2096

27
�3 þ 80

9
�4

�
nf

�
�
13754

2187
þ 32

81
�3

�
n2f: (C41)

For the vector and axial-vector currents OV
� and OA

� one

finds from Ref. [77]

c1 ¼ 0; (C42)

c2 ¼
�
� 134

3
þ 8

3
nf

�
R; (C43)

c3 ¼
�
� 52321

18
þ 607�3 þ

�
8944

27
� 32�3

�
nf � 208

27
n2f

�
R;

(C44)

with R ¼ p2
�=p

2. If the index � is averaged over in the

renormalization condition [see Eq. (31)], R takes the
value 1=4.

Why do c2 and c3 not vanish although the vector current
is conserved in the continuum? In the continuum the quark
propagator SðpÞ and the vertex function ��ðpÞ of the

vector current are linked by the Ward identity

i ��ðpÞ ¼ @

@p�

S�1ðpÞ: (C45)

By Lorentz symmetry the massless inverse propagator
must have the form

S�1ðpÞ ¼ iAðp2Þp; (C46)

where we expect A to depend logarithmically on p2=�2.
Therefore the vertex function has the form

��ðpÞ ¼ Aðp2Þ�� þ dA

dp2
2p�p; (C47)

and the trace with the Born term gives

1

12
trð����ðpÞÞ ¼ Aðp2Þ þ 2p2 dA

dp2

p2
�

p2

¼ Aðp2Þ þ 2p2 dA

dp2
R: (C48)

The vector Ward identity therefore requires the existence
of terms proportional to R in the trace, with a coefficient
given by the logarithmic derivative of A. The coefficient c1
vanishes because in the Landau gauge there is no term in
the propagator of the form g2 lnðp2=�2Þ, but in most other
gauges c1 is nonzero and we already have a term propor-
tional to R at one loop.
In the following cases we express the coefficients c1, c2,

and c3 in the form

c1 ¼ cð1Þ1 þ cð2Þ1 R; (C49)

c2 ¼ cð1Þ2 þ b2 þ cð2Þ2 R; (C50)

c3 ¼ cð1Þ3 þ b2c
ð1Þ
1 þ b3 þ ðcð2Þ3 þ b2c

ð2Þ
1 ÞR; (C51)

where R contains the momentum dependence and is given

in Table X. The expressions RðjÞðpÞ for j ¼ 1; 2; 3; 4 read

Rð1Þ���
ðpÞ ¼
p2
�ðp2

� � p2
�Þ2

ðp2
� � p2

�Þ2 þ 4p2
�ðp2

� þ p2
�Þ

þ p2
�ðp2

� þ p2
� � 2p2


Þ2
ðp2

� þ p2
� � 2p2


Þ2 þ 4p2
�ðp2

� þ p2
� þ 4p2


Þ
; (C52)

Rð2Þ���ðpÞ ¼
p2
�p

2
�p

2
�

p2
�p

2
� þ p2

�p
2
� þ p2

�p
2
�

; (C53)

Rð3ÞðpÞ ¼ ðp2
1 � p2

4Þ2ðp2
2 � p2

3Þ2
ðp2

1 þ p2
4Þðp2

2 � p2
3Þ2 þ ðp2

2 þ p2
3Þðp2

1 � p2
4Þ2

;

(C54)

Rð4ÞðpÞ ¼ ððp2
1 þ p2

4Þðp2
2 þ p2

3Þ � 2p2
1p

2
4 � 2p2

2p
2
3Þ2

p2
1ðp2

2 þ p2
3 � 2p2

4Þ2 þ p2
2ðp2

1 þ p2
4 � 2p2

3Þ2 þ p2
3ðp2

1 þ p2
4 � 2p2

2Þ2 þ p2
4ðp2

2 þ p2
3 � 2p2

1Þ2
: (C55)
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ForOv2;a
,Ov2;b

,Or2;a , andOr2;b one extracts from Ref. [74]

cð1Þ1 ¼ �
124

27
; (C56)

cð1Þ2 ¼ �
68993

729
þ 160

9
�3 þ 2101

243
nf; (C57)

cð1Þ3 ¼ �
451293899

157464
þ 1105768

2187
�3 � 8959

324
�4 � 4955

81
�5

þ
�
8636998

19683
� 224

81
�3 þ 640

27
�4

�
nf

�
�
63602

6561
þ 256

243
�3

�
n2f; (C58)

cð2Þ1 ¼ �
8

9
; (C59)

cð2Þ2 ¼ �
2224

27
� 40

9
�3 þ 40

9
nf; (C60)

cð2Þ3 ¼ �
136281133

26244
þ 376841

243
�3 � 43700

81
�5

þ
�
15184

27
� 1232

81
�3

�
nf � 9680

729
n2f: (C61)

In the case of the operatorsOh1;a andOh1;b one obtains from
Ref. [74]

cð1Þ1 ¼ �
14

3
; (C62)

cð1Þ2 ¼ �
2237

18
þ 62

3
�3 þ 32

3
nf; (C63)

cð1Þ3 ¼�
1852993

432
þ97391

108
�3�79

4
�4�7060

27
�5

þ
�
306881

486
�122

9
�3þ80

3
�4

�
nf�

�
1160

81
þ32

27
�3

�
n2f;

(C64)

cð2Þ1 ¼ cð2Þ2 ¼ cð2Þ3 ¼ 0: (C65)

Similarly, Ref. [75] yields for Oh2;a , Oh2;b , Oh2;c , and Oh2;d

cð1Þ1 ¼ �
218

27
; (C66)

cð1Þ2 ¼ �
669202

3645
þ 452

15
�3 þ 4394

243
nf; (C67)

TABLE X. Momentum dependent factors R. For the definitions of the lengthier expressions
RðjÞðpÞ, see Eqs. (C52)–(C55).

Operators R

Ov2;a
, Or2;a 2p2

1
p2
4

p2ðp2
1
þp2

4
Þ

Ov2;b
, Or2;b

ðp2
4
�ðp2

1
þp2

2
þp2

3
Þ=3Þ2

2p2ðp2
4
þðp2

1
þp2

2
þp2

3
Þ=9Þ

Ov3
, Or3

�9p2
4
ðp2

1
�ðp2

2
þp2

3
Þ=2Þ2

p2ðð4p2
1
þp2

2
þp2

3
Þp2

4
þðp2

1
�ðp2

2
þp2

3
Þ=2Þ2Þ

Ov3;a
, Oa2

�9p2
1
p2
2
p2
4

p2ððp1p4Þ2þðp2p4Þ2þðp1p2Þ2Þ

Ov4

64ðp2
1
�p2

2
Þ2ðp2

4
�p2

3
Þ2

p2ððp2
1
þp2

2
Þðp2

4
�p2

3
Þ2þðp2

3
þp2

4
Þðp2

2
�p2

1
Þ2Þ

�Ov2;a
, �Or2;a

1
3p2

P
�<�

p2
�p

2
�

p2
�þp2

�

�Ov2;b
, �Or2;b

1
6p2

�
ðp2

1
þp2

2
�p2

3
�p2

4
Þ2

p2 þ ðp2
3
�p2

4
Þ2

p2
3
þp2

4

þ ðp2
1
�p2

2
Þ2

p2
1
þp2

2

�
�Ov3

, �Or3 � 9
8p2ðRð1Þ1234ðpÞ þ Rð1Þ2134ðpÞ þ Rð1Þ3124ðpÞ þ Rð1Þ4123ðpÞÞ

�Ov3;a
, �Oa2 � 9

4p2ðRð2Þ123ðpÞ þ Rð2Þ124ðpÞ þ Rð2Þ134ðpÞ þ Rð2Þ234ðpÞÞ

�Ov4

32
p2ðRð3ÞðpÞ þ Rð4ÞðpÞÞ
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cð1Þ3 ¼ �
1020141085

157464
þ 59050063

43740
�3 � 7679

324
�4

� 12434

27
�5 þ

�
98639141

98415
þ 12712

1215
�3 þ 1040

27
�4

�
nf

�
�
177970

6561
þ 416

243
�3

�
n2f; (C68)

cð2Þ1 ¼ cð2Þ2 ¼ cð2Þ3 ¼ 0: (C69)

The operators Ov3
, Ov3;a

, Or3 , and Oa2 require the
coefficients

cð1Þ1 ¼ �
214

27
; (C70)

cð1Þ2 ¼ �
4763093

29160
þ 152

5
�3 þ 32363

1944
nf; (C71)

cð1Þ3 ¼ �
8619089351

1574640
þ 12125507

10935
�3 � 8599

324
�4 � 2525

9
�5

þ
�
1364405723

1574640
þ 814

135
�3 þ 1000

27
�4

�
nf

�
�
1227463

52488
þ 400

243
�3

�
n2f; (C72)

cð2Þ1 ¼
4

9
; (C73)

cð2Þ2 ¼
4432

135
þ 56

15
�3 � 50

27
nf; (C74)

cð2Þ3 ¼
279011797

131220
� 1717789

2430
�3 þ 9370

27
�5

�
�
1665047

7290
þ 28

5
�3

�
nf þ 4210

729
n2f; (C75)

extracted from Ref. [75]. For Ov4
we find

cð1Þ1 ¼ �
7214

675
; (C76)

cð1Þ2 ¼ �
764724499

3645000
þ 1756

45
�3 þ 5655503

243000
nf; (C77)

cð1Þ3 ¼�
282373048664443

39366000000
þ796627067

546750
�3�43507

1620
�4

�38398

81
�5þ

�
1160956742099

984150000
þ3208

135
�3þ1256

27
�4

�
nf

�
�
1167227687

32805000
þ2512

1215
�3

�
n2f; (C78)

cð2Þ1 ¼ �
1

40
; (C79)

cð2Þ2 ¼ �
731129

432000
� 23

90
�3 þ 119

1200
nf; (C80)

cð2Þ3 ¼ �
1047728166241

9331200000
þ 109467991

2916000
�3 � 13111

648
�5

þ
�
232632277

19440000
þ 755

972
�3

�
nf � 51959

162000
n2f;

(C81)

from Ref. [75]. When using Gracey’s results given in
Refs. [74,75,77] it is important to note that Gracey’s
RI0-MOM scheme is not the same as ours. Furthermore,
Eqs. (A.1) and (A.9) in Ref. [75] are not quite correct, but
we hope that we have worked with properly rectified
versions. Another correction concerns Eq. (4.4) in
Ref. [74], where the coefficient of TFNf in the a2 contri-
bution should be 468 and not 486.
The corresponding coefficients c01, c

0
2, and c

0
3 in Eq. (57)

for the conversion from MOM to MS are obtained by
setting R ¼ 0. So in the cases where the coefficients ci
are independent of R we have c0i ¼ ci and the RI0-MOM
scheme can be identified with the MOM scheme, at least to
the order considered.

APPENDIX D: LATTICE PERTURBATION
THEORY TO TWO LOOPS

In the two-loop approximation of bare lattice perturba-
tion theory we have

ZMS
bareð�; aÞpert ¼ 1þ g2

16
2
ð��0 lnða�Þ þ z1Þ

þ
�

g2

16
2

�2
ðl1ln2ða�Þ þ l2 lnða�Þ þ z2Þ: (D1)

For the currents the coefficients l1, l2, z1, z2 can be read off
from Refs. [3,4] as functions of cSW. Note that z1 ¼ �CF�
in the notation of Sec. VIII.
Anticipating that we may want to expand in a coupling

gLAT different from the bare lattice coupling g, e.g., the

boosted coupling gh [see Eq. (71)], we express the MS
coupling gMS as a function of gLAT:

1

g2
MS

¼ 1

g2LAT
þ 2

�0

16
2
lnða�Þ � tLAT1

þ
�
2

�1

ð16
2Þ2 lnða�Þ � tLAT2

�
g2LAT þOðg4LATÞ: (D2)

Here tLATi ¼ ti � pi (i ¼ 1; 2), where the constants pi

encode the relation between g and gLAT:

1

g2LAT
¼ 1

g2
� p1 � p2g

2 þOðg4Þ: (D3)

For gLAT ¼ g one has pi ¼ 0, hence tLATi ¼ ti, and the
relation between gMS and g takes the usual form [41–44].
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For setting up tadpole improvement we need the
expansion

u0 ¼ 1þ r1
g2

16
2
þ r2

�
g2

16
2

�2
þOðg6Þ (D4)

¼ 1þ r1
g2LAT
16
2

þ rLAT2

�
g2LAT
16
2

�2
þOðg6LATÞ; (D5)

where rLAT2 ¼ r2 � 16
2r1p1. The coefficients r1 and r2
can be found from Ref. [58]. For an operator with nD
covariant derivatives the tadpole-improved two-loop ex-
pression for the renormalization factor then takes the form

ZMS
bareð�; aÞti ¼ u1�nD0

�
1þ g2LAT

16
2
ð��0 lnða�Þ þ z1

þ ðnD � 1Þr1Þ þ
�
g2LAT
16
2

�2
ðl1ln2ða�Þ

þ ðl2 þ 16
2p1�0 � ðnD � 1Þr1�0Þ lnða�Þ þ zLAT2

þ ðnD � 1ÞrLAT2 þ 1

2
ðnD � 1ÞðnD � 2Þr21

þ ðnD � 1Þr1z1Þ þOðg6LATÞ
�
; (D6)

where zLAT2 ¼ z2 � 16
2p1z1. Of course, for the currents
we have nD ¼ 0. As in Sec. VIII, the corresponding

estimates for ZRGI are finally given by �ZMSð�0Þ�
ZMS
bareð�0; aÞpert and �ZMSð�0ÞZMS

bareð�0; aÞti with �0 ¼
1=a. For the expansion parameter we take gLAT ¼ gh ¼
g=u20. Therefore we have

p1 ¼ � r1
4
2

¼ 1

4
CF ¼ 1

3
; (D7)

p2 ¼ � 2r2 þ 3r21
128
4

: (D8)

In order to implement TRB perturbation theory at the
two-loop level we start from Eq. (78). Using the three-loop
expressions for �LAT and �LAT we obtain

ZRGI¼
�
2�0

g2LAT
16
2

��ð�0=2�0Þ
expfFðg2LAT=ð16
2ÞÞg; (D9)

with

FðxÞ¼�LAT
2 �0��0�

LAT
2

4�0�
LAT
2

f1ðxÞ

þ�1�
LAT
2 �0þ�0�1�

LAT
2 �2�0�

LAT
2 �LAT

1

2�2
0�

LAT
2

f2ðxÞ; (D10)

where

f1ðxÞ ¼ ln

�
1þ �1

�0

xþ �LAT
2

�0

x2
�

(D11)

and

f2ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�LAT

2 =�0 � ð�1=�0Þ2
q

� arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�LAT

2 =�0 � ð�1=�0Þ2
q

x

2þ ð�1=�0Þx
�
: (D12)

The explicit expression for �LAT
1 has been given in

Eq. (80). For the tadpole-improvement factor we make
the ansatz

u1�nD0 expðc1f1ðg2LAT=ð16
2ÞÞ þ c2f2ðg2LAT=ð16
2ÞÞÞ
(D13)

determining the coefficients c1 and c2 such that

expðc1f1ðg2LAT=ð16
2ÞÞ þ c2f2ðg2LAT=ð16
2ÞÞÞ
¼ unD�10 þOðg6LATÞ: (D14)

Then the final result in TRB perturbation theory reads

ZRGI
TRB ¼ u1�nD0

�
2�0

g2LAT
16
2

��ð�0=2�0Þ
expf~c1f1ðg2LAT=ð16
2ÞÞ

þ ~c2f2ðg2LAT=ð16
2ÞÞg; (D15)

with

~c1 ¼ �LAT
2 �0 � �0�

LAT
2

4�0�
LAT
2

þ ðnD � 1Þ �0

�LAT
2

�
rLAT2 þ r1

2

�1

�0

� r21
2

�
; (D16)

~c2 ¼ �1�
LAT
2 �0 þ �0�1�

LAT
2 � 2�0�

LAT
2 �LAT

1

2�2
0�

LAT
2

þ 2ðnD � 1Þ
�
r1 � �1

�LAT
2

�
rLAT2 þ r1

2

�1

�0

� r21
2

��
:

(D17)

Finally we have to decide how to deal with cSW. We
insert the one-loop expression [57,78,79]

cSW ¼ 1þ 0:268588g2 þOðg4Þ (D18)

in the above expansions and reexpand the result in the
coupling constant. This means that we set cSW ¼ 1 in the
one-loop coefficients and the two-loop coefficients get
additional contributions proportional to the one-loop coef-
ficient in the expansion of cSW.

APPENDIX E: FIT DETAILS

In this appendix we give the details of the fits applied in
the cases where perturbatively subtracted data are
available.
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Working with the ‘-loop approximation of the conver-
sion factor ZS

RI0-MOM
ðMÞ we write generically

ZS
RI0-MOM

ðMÞ ¼ 1þX‘
i¼1

cSS
0

i

�
gS

0 ðMÞ2
16
2

�
i þ Rc

‘ðMÞSS
0

¼ Zc
‘ðMÞSS

0 þ Rc
‘ðMÞSS

0
(E1)

with the remainder Rc
‘ðMÞSS

0 ¼ OðgS0 ðMÞ2‘þ2Þ. The

scheme S0 chosen for the coupling in which ZS
RI0-MOM

is

expanded could be theMS scheme as in Eqs. (56)–(58), but

another option would be the gMOMgg scheme.
Unfortunately, in many cases the perturbative expansion

of ZS
RI0-MOM

is not very well convergent, in particular, for

S ¼ S0 ¼ MS. However, if one chooses S ¼ MOM, Zc
3

turns out to be equal to 1 for OS, OP, OT
��, Oh1;a , Oh1;b ,

Oh2;a , Oh2;b , Oh2;c , Oh2;d . Generally, the use of the
gMOMgg

coupling seems to improve the convergence for S ¼ MS as
well as for S ¼ MOM. Working with S ¼ MOM instead

of S ¼ MS seems to have the additional advantage that at
least some of the effects of ZS

RI0-MOM
are shifted to the

factor �ZS via the anomalous dimension. In �ZS we can
then exploit renormalization group improvement.

Similarly, using the n-loop approximation of the �
function and the anomalous dimension we express
�ZSðMÞ as

�ZSðMÞ ¼
�
2�0

gSðMÞ2
16
2

��ð�0=2�0Þ

� exp

�Z gS ðMÞ2=16
2

0
dx

�
P

n�2
i¼0 ð�0�

S
iþ1 � �0�

S
iþ1Þxi

2�0

P
n�1
i¼0 �S

i x
i

þ RS
n ðMÞ

�

¼ �S
n ðMÞeRS

n ðMÞ (E2)

with RS
n ðMÞ ¼ OðgSðMÞ2nÞ. From the MS anomalous di-

mension one can compute the anomalous dimension in the

scheme S to n loops, provided the conversion factor ZMS
S

(and the � function) is known to n� 1 loops; see Eqs. (64)
–(66) for S ¼ MOM.

With the help of the above representations of ZS
RI0-MOM

and �ZS we get from Eq. (88)

ðZc
‘ð�pÞSS0 þ Rc

‘ð�pÞSS0 ÞZRI0-MOM
bare ð�p; aÞ

¼ ZRGIðaÞ�S
n ð�pÞ�1e�RS

n ð�pÞ: (E3)

In this relation as well as in Eq. (88) lattice artifacts
vanishing like a power of a have been neglected. For larger
values of �p this is not justified any more, even after

perturbative subtraction of lattice artifacts. Therefore we
write

ZRI0-MOM
bare ð�p; aÞ ¼ ZRI0-MOM

bare ð�p; aÞMC � Aða2�2
pÞ; (E4)

subtracting the (remaining) lattice artifacts A from the

Monte Carlo data ZRI0-MOM
bare ð�p; aÞMC. Of course, A could

be much more complicated than a simple function of a2�2
p,

but in the end we have to restrict ourselves to a polynomial
in a2�2

p anyway. So we use this simplified expression

already here for notational convenience and obtain

Zc
‘ð�pÞSS0ZRI0-MOM

bare ð�p; aÞMC

¼ ZRGIðaÞ�S
n ð�pÞ�1e�RS

n ð�pÞ

1þ Rc
‘ð�pÞSS0=Zc

‘ð�pÞSS0
þ Zc

‘ð�pÞSS0Aða2�2
pÞ: (E5)

Given that Zc
‘ð�pÞSS0 ¼ 1þOðgSð�pÞ2Þ we approximate

this relation by

Zc
‘ð�pÞSS0ZRI0-MOM

bare ð�p; aÞMC

¼ ZRGIðaÞ�S
n ð�pÞ�1e�RS

n ð�pÞ

1þ Rc
‘ð�pÞSS0

þ Aða2�2
pÞ: (E6)

As we shall parametrize ðRc
‘ÞSS

0
, RS

n , and A in the follow-

ing and fit the corresponding parameters, the above ap-
proximation should not be problematic. On the left-hand
side we have our (possibly subtracted) Monte Carlo re-
sults for the renormalization factors, extrapolated to the
chiral limit and converted to the intermediate scheme S
using the ‘-loop approximation. These numbers are fitted
with the expression on the right-hand side, where the
values of ZRGIðaÞ at our four values of a are the desired
numbers.
More precisely, we set

RS
n ð�pÞ ¼ f1g

Sð�pÞ2n þ f2g
Sð�pÞ2nþ2 þ � � � ; (E7)

Rc
‘ð�pÞSS0 ¼b1g

S0 ð�pÞ2‘þ2þb2g
S0 ð�pÞ2‘þ4þ��� ; (E8)

Aða2�2
pÞ ¼ g1a

2�2
p þ g2ða2�2

pÞ2 þ � � � ; (E9)

where b1; f1; . . . are the (fit) parameters. Remember that in
Sec. III we have argued that OðaÞ lattice artifacts are
absent. In principle, the coefficients g1; g2; . . . could de-
pend on the coupling, i.e., on �. However, in the range of
couplings we have at our disposal the variation of powers
of a is much larger than the possible variation (logarithmic
in a) of the coefficients. Therefore it seems justified to
neglect this dependence and to treat g1; g2; . . . as constants.
This might also help in disentangling lattice artifacts from
truncation errors.

For the operators considered here, the MS anomalous
dimension is known to three loops, in some cases even to
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four loops; see Appendix C. Upon combination with the
four-loop� function one can thus reach at least n ¼ 3. The

conversion factors ZMS
RI0-MOM

and ZMS
MOM, on the other hand,

are known to three loops in all cases.
There are quite a few parameters that can be varied in the

analysis:
(1) the intermediate scheme S;
(2) the scheme S0 chosen for the coupling in which

ZS
RI0-MOM

is expanded;

(3) the orders of the perturbative expansions used in
(E6), i.e., the numbers n and ‘;

(4) the order O� of the perturbative expansion of the �

function inserted in (49) when computing the run-
ning coupling gSðMÞ;

(5) the number of terms N1, N2, Na taken into account
in the correction terms (E7)–(E9), respectively; and

(6) the fit interval.
Ideally, the results should be independent of all these

choices. Moreover, one would expect that a significant
deviation from the ‘‘continuum limit’’ curve (obtained by
setting A ¼ 0) appears only for �p values where the data

show lattice artifacts, e.g., in the form of a violation of the
scaling property (89). Unfortunately, the fits of unsub-
tracted data do not follow this expectation, and this is the
main reason why we consider the corresponding results as
unreliable and do not apply our fit procedure to these data.

Our final choices are motivated by the following obser-
vations. The plateaus in ZRGI look better for the choice

S ¼ MOM than for S ¼ MS. This may be due to the above
mentioned fact that the perturbative expansion of ZS

RI0-MOM

seems to be better behaved for S ¼ MOM. For the scheme

S0 the choice S0 ¼ gMOMgg seems to be favorable. For the

operator �Oh1;a , a comparison between S ¼ S0 ¼ MS and

S ¼ MOM, S0 ¼ gMOMgg is shown in Fig. 10.
Not surprisingly, the maximal values for n and ‘ lead to

the best plateaus. For the number of terms taken into
account in (E7)–(E9) only 0 and 1 are reasonable choices.

As already mentioned, the perturbative behavior, i.e., the
plateau starts only at rather large values of the scale,
typically around �2

p 
 5 GeV2. So the lower limit �2
min

of the fit interval should be at least 5 GeV2. However, the
precise value does not seem to be too crucial, both
�2

min ¼ 5 GeV2 and �2
min ¼ 10 GeV2 look reasonable.

So we arrive at the following choices. In the expansions
originating from continuum perturbation theory which
enter the fit formulas we use as many terms as are avail-
able, i.e., we take for n and ‘ the largest values possible.
The same applies to O�, so we set O� ¼ 4. We choose

S ¼ MOM and S0 ¼ gMOMgg. All data for �2
p 	

10 GeV2 are included in the fit. It is clear that the pertur-
bative corrections (E7) and (E8) are hard to distinguish
when inserted in (E6) and it does not make much sense to
include both of them. So we set N1 ¼ 0 and N2 ¼ 1.
Furthermore we choose Na ¼ 1. Hence we end up with

six fit parameters: the four values ZRGIðaÞ along with the
coefficients b1 and g1. The data points are weighted by
their statistical errors although the deviations from the fit
curves are mostly of systematic origin.

APPENDIX F: GOING FROM RGI RESULTS TO
VALUES IN THE MS SCHEME

In this appendix we collect the factors by which one has
to multiply ZRGI in order to obtain the corresponding

number in the MS scheme. They are given in Tables XI,
XII, and XIII for various values of r0 and r0�MS.

TABLE XI. Factors for converting ZRGI to the MS scheme
obtained with r0 ¼ 0:467 fm and r0�MS ¼ 0:617.

Operator �2 ¼ 4 GeV2 �2 ¼ 5 GeV2

OS, OP 1.40701 1.44044

OT
�� 0.91926 0.91089

Zq 1.04534 1.04291

Ov2;a
, Ov2;b

, Or2;a , Or2;b 0.71544 0.70183

Oh1;a , Oh1;b 0.69538 0.68009

Ov3
, Ov3;a

, Oa2 , Or3 0.58648 0.56943

Oh2;a , Oh2;b , Oh2;c , Oh2;d 0.57878 0.56107

Ov4
0.50844 0.49008

TABLE XII. Factors for converting ZRGI to the MS scheme
obtained with r0 ¼ 0:467 fm and r0�MS ¼ 0:662.

Operator �2 ¼ 4 GeV2 �2 ¼ 5 GeV2

OS, OP 1.38514 1.41952

OT
�� 0.92491 0.91609

Zq 1.04704 1.04441

Ov2;a
, Ov2;b

, Or2;a , Or2;b 0.72464 0.71029

Oh1;a , Oh1;b 0.70575 0.68959

Ov3
, Ov3;a

, Oa2 , Or3 0.59809 0.58001

Oh2;a , Oh2;b , Oh2;c , Oh2;d 0.59085 0.57205

Ov4
0.52100 0.50145

TABLE XIII. Factors for converting ZRGI to the MS scheme
obtained with r0 ¼ 0:5 fm and r0�MS ¼ 0:617.

Operator �2 ¼ 4 GeV2 �2 ¼ 5 GeV2

OS, OP 1.42764 1.46022

OT
�� 0.91406 0.90608

Zq 1.04382 1.04155

Ov2;a
, Ov2;b

, Or2;a , Or2;b 0.70698 0.69402

Oh1;a , Oh1;b 0.68587 0.67134

Ov3
, Ov3;a

, Oa2 , Or3 0.57587 0.55972

Oh2;a , Oh2;b , Oh2;c , Oh2;d 0.56775 0.55100

Ov4
0.49699 0.47969
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