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Abstract

The potential for malodour in wine caused by theuawulation of ethylphenols has been
widely studied with respect to the breakdown of liyeroxycinnamic acidgp-coumaric
and ferulic acid, byD. bruxellensis The presence of esterified hydroxycinnamate
conjugates in grapes and wine is well establisimeltlaey account for a large proportion of
the hydroxycinnamate content. There exists theipitissthat these conjugates could also
provide the potential for spoilage, though they enanever been linked to the direct
formation of ethylphenols. The research highlightgihin this thesis examines the
potential role of a number of esterified conjugatethe production of ethylphenols By
bruxellensis Two classes of berry derived esters, the tartacid and glucose bound
hydroxycinnamates, as well as the vinification fedrethyl esters, were synthesised and

used for model fermentation experiments.

Chapter 2 describes the preparation of a numbeprofected hydroxycinnamic acid
derivatives that were used in the synthesis offygroxycinnamoyl tartrate esterg &and

8) for the first time. Coupling B-chloroacetyl protecteg-coumaric and ferulic acid21
and22) with di-tert-butyl-L-tartrate 84) followed by selective hydrolysis of thert-butyl
esters yieldeg@-coumaroyl tartrate7) and feruloyl tartrate8). Hydroxycinnamoyl glucose
esters 9 and10) were prepared using the same hydroxycinnamatear(d22), esterifying
with a prepared trichloroacetimidate glucosyl dosequence, though purification of the
glucose esters resulted in undesired chemical foanations. It was found that
photoisomerisation of the glucose esters couldrbegmted via synthesis under red light,
which gavetrans-9 and 10, however migration of the hydroxycinnamoyl moietyound
the glucose ring, which yielded mainly theQ2a- and 60O-a-esters, was a product of

submitting the esters to non-aqueous solvents anid oot be avoided.

The acyl migration of the glucose esters that whseoved in Chapter 2 has been
researched at a DFT B3LYP 6-31G* theoretical lenaChapter 3 with respect to both the
thermodynamics and kinetics of the transformationbe desired 13-f-esters were
thermodynamically favoured only in water, whileany other solvent studied theQ2a-
and 60-a-esters would prevail. Kinetically, migration toetB-O-position involved lower

energy barriers which can be equated to a morel qaucess, although the ring-flipped
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conformation needed to achieve the migration wqautimote subsequent migration to the
6-O-position. Step-wise migration, from theQt-to the 20-position, was found to be
thermodynamically less favoured than other migratiinvestigated. This effect can be
rationalised by the formation of a 5-membered cyititermediate in comparison to the 6-
membered intermediate produced durin@-1to 3-O-migration. However, the energy
barriers involved in 13-4 to 2-O0-Fmigration better explain the comparative extent of
migration observed between tpecoumaroyl and feruloyl glucose esters. The polssibi
of multiple glucose esters existing in wine was tbeus of a brief study, finding two
separatep-coumaroyl glucose esters in red and white winejlevh lesser extent of
migration in feruloyl glucose limited observatiom toncentrated wine alone. However,
due to co-elution of feruloyl glucoseld) with suspectedp-coumaroyl anthocyanin
derivatives in red wine, HPLC-MRM was required &tett it, which is the first report of

this compound in red wine.

Theoretical studies into observed photoisomerigaticand the synthesis o€is
hydroxycinnamates are described in Chapter 4. dikethyl hydroxycinnamates were
isolated and hydrolysed to give a mixtuwkcis/transhydroxycinnamic acids3(and4),
which could be separated by flash chromatograptoygh the pureis-isomers isomerised
rapidly under ambient conditions and slowly unded fight back to théransisomers.
Stable isomeric mixtures were achieved by irradmatwith ultra-violet light giving
mixtures of 40-50% of theis-isomer which could be used further in fermentastudies.
Computational evidence suggested that isomerisatiahe hydroxycinnamic acids was
favoured with greater resonance throughout the cotde Those with deprotonated
phenolic moieties possessed the most intramole@imtron movement, decreasing the
HOMO-LUMO gap and promoting photoisomerisation. 8emasolvent and substrate
effects were also noted, though the nature of tienpl and carboxyl clearly played the

most important role in determining stability of easomer.

Fermentation in the presence of the synthedisew-hydroxycinnamoyl esterg{12) and
investigation into the stereospecificity Bf bruxellensisenzyme activities was performed
as detailed in Chapter 5. In Australia, three gergrbups ofD. bruxellensisaccount for
98% of isolates, with the largest of these groupking up 85%. AWRI 1499 is a
representative of the largest genetic group, witiRd 1608 and AWRI 1613 belonging to

the two remaining significant genetic groups. le firesence of AWRI 1499, thens
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ethyl esters {1 and 12) were metabolised to varying extents with the gnefice for
breakdown of ethyl coumaratell) over ethyl ferulate 12). This selectivity was
investigated further and found to be common fohb®VRI 1499 and AWRI 1608, while
AWRI 1613 was unable to breakdown either ester. pteference for formation of 4-
ethylphenol {) over 4-ethylguaiacol?) from the ethyl esters could accentuate the w@Etio
these compounds as seen in wine, initially thoughbe brought about by the relative

concentration of the precursor acids.

Of the berry derived esters, the tartrate estéran@ 8) were not metabolised by AWRI
1499, and subsequent fermentations with AWRI 1608 5613 yielded the same result.
This confirmed that the tartrate esters cannot rimrie directly to the formation of
ethylphenols during exposure B bruxellensis The glucose esters were metabolised by
AWRI 1499 to a moderate extent (35% conversionyigiing information that these can
contribute to the accumulation of ethylphenols wgrbarrel ageing. Furthermore, the
isomerisation of the glucose esters lead to studtds the stereoselectivity oD.
bruxellensisenzyme activities, whereby the decarboxylase a$ agekhe ethyl esterase
showed selectivity for théransisomers and that theis-hydroxycinnamate content of
grapes and wine are not important in the accunanaaf ethylphenols. The experimental

procedures employed throughout Chapters 2-5 atmedin Chapter 6.
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