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Abstract 

 

The potential for malodour in wine caused by the accumulation of ethylphenols has been 

widely studied with respect to the breakdown of the hydroxycinnamic acids, p-coumaric 

and ferulic acid, by D. bruxellensis. The presence of esterified hydroxycinnamate 

conjugates in grapes and wine is well established and they account for a large proportion of 

the hydroxycinnamate content. There exists the possibility that these conjugates could also 

provide the potential for spoilage, though they have never been linked to the direct 

formation of ethylphenols. The research highlighted within this thesis examines the 

potential role of a number of esterified conjugates in the production of ethylphenols by D. 

bruxellensis. Two classes of berry derived esters, the tartaric acid and glucose bound 

hydroxycinnamates, as well as the vinification formed ethyl esters, were synthesised and 

used for model fermentation experiments. 

 

Chapter 2 describes the preparation of a number of protected hydroxycinnamic acid 

derivatives that were used in the synthesis of the hydroxycinnamoyl tartrate esters (7 and 

8) for the first time. Coupling 1-O-chloroacetyl protected p-coumaric and ferulic acids (21 

and 22) with di-tert-butyl-L-tartrate (34) followed by selective hydrolysis of the tert-butyl 

esters yielded p-coumaroyl tartrate (7) and feruloyl tartrate (8). Hydroxycinnamoyl glucose 

esters (9 and 10) were prepared using the same hydroxycinnamates (21 and 22), esterifying 

with a prepared trichloroacetimidate glucosyl donor sequence, though purification of the 

glucose esters resulted in undesired chemical transformations. It was found that 

photoisomerisation of the glucose esters could be prevented via synthesis under red light, 

which gave trans-9 and 10, however migration of the hydroxycinnamoyl moiety around 

the glucose ring, which yielded mainly the 2-O-α- and 6-O-α-esters, was a product of 

submitting the esters to non-aqueous solvents and could not be avoided. 

 

The acyl migration of the glucose esters that was observed in Chapter 2 has been 

researched at a DFT B3LYP 6-31G* theoretical level in Chapter 3 with respect to both the 

thermodynamics and kinetics of the transformations. The desired 1-O-β-esters were 

thermodynamically favoured only in water, while in any other solvent studied the 2-O-α- 

and 6-O-α-esters would prevail. Kinetically, migration to the 3-O-position involved lower 

energy barriers which can be equated to a more rapid process, although the ring-flipped 
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conformation needed to achieve the migration would promote subsequent migration to the 

6-O-position. Step-wise migration, from the 1-O- to the 2-O-position, was found to be 

thermodynamically less favoured than other migrations investigated. This effect can be 

rationalised by the formation of a 5-membered cyclic intermediate in comparison to the 6-

membered intermediate produced during 1-O- to 3-O-migration. However, the energy 

barriers involved in 1-O-β- to 2-O-β-migration better explain the comparative extent of 

migration observed between the p-coumaroyl and feruloyl glucose esters. The possibility 

of multiple glucose esters existing in wine was the focus of a brief study, finding two 

separate p-coumaroyl glucose esters in red and white wine, while a lesser extent of 

migration in feruloyl glucose limited observation to concentrated wine alone. However, 

due to co-elution of feruloyl glucose (10) with suspected p-coumaroyl anthocyanin 

derivatives in red wine, HPLC-MRM was required to detect it, which is the first report of 

this compound in red wine. 

 

Theoretical studies into observed photoisomerisations and the synthesis of cis-

hydroxycinnamates are described in Chapter 4. The cis-ethyl hydroxycinnamates were 

isolated and hydrolysed to give a mixture of cis/trans-hydroxycinnamic acids (3 and 4), 

which could be separated by flash chromatography, though the pure cis-isomers isomerised 

rapidly under ambient conditions and slowly under red light back to the trans-isomers. 

Stable isomeric mixtures were achieved by irradiation with ultra-violet light giving 

mixtures of 40-50% of the cis-isomer which could be used further in fermentation studies. 

Computational evidence suggested that isomerisation of the hydroxycinnamic acids was 

favoured with greater resonance throughout the molecule. Those with deprotonated 

phenolic moieties possessed the most intramolecular electron movement, decreasing the 

HOMO-LUMO gap and promoting photoisomerisation. Smaller solvent and substrate 

effects were also noted, though the nature of the phenol and carboxyl clearly played the 

most important role in determining stability of each isomer. 

 

Fermentation in the presence of the synthesised trans-hydroxycinnamoyl esters (7-12) and 

investigation into the stereospecificity of D. bruxellensis enzyme activities was performed 

as detailed in Chapter 5. In Australia, three genetic groups of D. bruxellensis account for 

98% of isolates, with the largest of these groups making up 85%. AWRI 1499 is a 

representative of the largest genetic group, with AWRI 1608 and AWRI 1613 belonging to 

the two remaining significant genetic groups. In the presence of AWRI 1499, the trans-
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ethyl esters (11 and 12) were metabolised to varying extents with the preference for 

breakdown of ethyl coumarate (11) over ethyl ferulate (12). This selectivity was 

investigated further and found to be common for both AWRI 1499 and AWRI 1608, while 

AWRI 1613 was unable to breakdown either ester. The preference for formation of 4-

ethylphenol (1) over 4-ethylguaiacol (2) from the ethyl esters could accentuate the ratio of 

these compounds as seen in wine, initially thought to be brought about by the relative 

concentration of the precursor acids.  

 

Of the berry derived esters, the tartrate esters (7 and 8) were not metabolised by AWRI 

1499, and subsequent fermentations with AWRI 1608 and 1613 yielded the same result. 

This confirmed that the tartrate esters cannot contribute directly to the formation of 

ethylphenols during exposure to D. bruxellensis. The glucose esters were metabolised by 

AWRI 1499 to a moderate extent (35% conversion), providing information that these can 

contribute to the accumulation of ethylphenols during barrel ageing. Furthermore, the 

isomerisation of the glucose esters lead to studies into the stereoselectivity of D. 

bruxellensis enzyme activities, whereby the decarboxylase as well as the ethyl esterase 

showed selectivity for the trans-isomers and that the cis-hydroxycinnamate content of 

grapes and wine are not important in the accumulation of ethylphenols. The experimental 

procedures employed throughout Chapters 2-5 are outlined in Chapter 6. 
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