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Abstract 

 

 

The research presented in this thesis focuses on the complex and interrelated oral and 

gastrointestinal mechanisms involved in the regulation of appetite and energy intake in 

lean and obese individuals.  The three broad areas of research that have been 

investigated in the thesis include: i) the gastrointestinal motor and hormonal functions 

involved in the regulation of energy intake in healthy individuals; ii) the effects of oral 

and intraduodenal nutrients on gastrointestinal motility and hormone release, appetite 

and energy intake in obese compared with lean individuals; and iii) the effects of acute 

and prolonged energy restriction on gastrointestinal function, appetite and energy 

intake. 

 

Following ingestion of a meal, the interaction of nutrients with receptors in the small 

intestinal lumen modulates gastropyloroduodenal motility, stimulates the release of 

gastrointestinal hormones, and suppresses appetite and energy intake.  It appears that 

modulation of gastrointestinal functions, that is, gastrointestinal motility and hormone 

release/suppression, mediate the regulation of appetite and acute energy intake in 

humans, at least in part.  Changes in motility and hormone secretion occur concurrently 

with changes in appetite; however, there is little information regarding which, if any, of 

these factors are independent determinants of energy intake.  In the study presented in 

Chapter 5, we determined independent predictors of energy intake and identified 

specific changes in gastrointestinal motor and hormone functions (i.e. stimulation of 
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pyloric pressures and plasma cholecystokinin) that are associated with the suppression 

of acute energy intake in healthy lean males. 

 

The incidence of obesity is rapidly increasing and, currently, the therapies used for the 

prevention and management of obesity have limited long-term benefits.  In addition, the 

available therapies have largely ignored the pivotal role of the gastrointestinal tract in 

the regulation of appetite.  There is evidence that gastrointestinal function in obesity is 

modified, which may be the result of the eating habits of obese individuals and, in turn, 

may also contribute to the maintenance of obesity by causing insufficient suppression of 

energy intake.  However, much of the literature relating to gastrointestinal function in 

the obese is inconclusive and controversial.  A better understanding of any adaptations 

that occur in obesity is important, particularly in regards to treatment approaches for 

weight loss. 

 

There is also evidence that previous patterns of energy intake, in excess or in restriction, 

even when sustained for short periods, have the capacity to modify gastrointestinal 

function and energy intake.  For example, in humans following a high fat diet for two 

weeks, gastric emptying and mouth-to-caecum transit in response to a high fat test meal 

were faster.  In contrast, fasting had the opposite effect and a four-day fast slowed 

gastric emptying of a glucose drink in both lean and obese subjects, suggesting that a 

reduction in nutrient exposure may increase the sensitivity of gastrointestinal responses 

to nutrients in the obese. 
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Although many studies have addressed aspects of gastrointestinal function in the obese, 

there is a lack of studies that have evaluated gastric emptying and gastrointestinal 

hormone release specifically GLP-1 and GIP, given the risk of diabetes in obesity, as 

well as previous patterns of nutrient intake concurrently.  In the study presented in 

Chapter 6, we evaluated the effects of oral ingestion of a nutrient liquid on gastric 

emptying, oro-caecal transit, plasma GLP-1 and GIP, appetite and energy intake, as well 

as, habitual energy and fat intake in lean, overweight and obese individuals.  We 

reported no differences in gastric emptying, intragastric distribution or oro-caecal transit 

between the lean, overweight and obese groups.  After the drink, blood glucose and 

plasma insulin were greater in the obese, when compared with both the lean and 

overweight groups, however, there were no differences in plasma GLP-1 or GIP 

concentrations, appetite and energy intake at the buffet meal or habitual energy intake 

between the groups.  In the obese, the magnitude of the rise in blood glucose was 

inversely related to the gastric emptying, suggesting that obesity per se, in the absence 

of differences in habitual energy intake, has no effect on gastric emptying or incretin 

hormone release and that gastric emptying influences postprandial blood glucose in the 

obese.     

 

In Chapter 7, we investigated the hypothesis that gastrointestinal and oral sensitivity to 

fat is compromised in the obese and directly related to their high fat/energy 

consumption.  For this purpose, we investigated the effects of an intraduodenal infusion 

(to bypass gastric emptying), of a fatty acid (oleic acid) on gastrointestinal function, 

appetite and energy intake, and relationships with habitual energy intake and oral fatty 

acid detection threshold in lean and obese individuals.  We report that pyloric pressure, 
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which plays a major role in the regulation of gastric emptying, was lower in response to 

intraduodenal oleic acid infusion, with trends for reduced cholecystokinin stimulation 

and energy intake responses in the obese compared with lean.  Oral fatty acid detection 

thresholds were higher in obese compared with lean subjects, and obese subjects also 

had greater habitual energy and fat intakes than lean subjects.  The results suggest that 

the ability to detect fats both orally and within the gastrointestinal tract is compromised 

in obese males, probably due to their increased fat consumption. 

 

In the study presented in Chapter 8, we evaluated the hypothesis that in obese 

individuals, the effects of duodenal fat on gastrointestinal motor and hormone function, 

and appetite would be enhanced by a short period on a very low calorie diet.  We 

demonstrated that following a 70% four-day very low calorie diet there was a 

significant increase in pyloric pressure and the stimulation of PYY and suppression of 

ghrelin was greater during an intraduodenal lipid infusion.  In addition, following the 

four-day very low calorie diet, appetite perceptions and energy intake in response to 

intraduodenal lipid were reduced, indicating that gastrointestinal function, appetite and 

energy intake in obese can be enhanced over a short period. 

 

Given that gastrointestinal function is sensitive to changes even over short periods of 

dietary restriction, it is important to determine whether these changes are maintained in 

the long term in order to determine the efficacy of energy restriction therapies for 

obesity.  To maintain dietary restriction and weight loss in the longer term, we used a 

30%, as opposed to 70%, energy-restricted diet.  In the study presented in Chapter 9, 

we evaluated the effects of an acute (in lean and obese) and prolonged (in obese only) 
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30% energy restriction on gastrointestinal function and appetite in response to an 

intraduodenal lipid infusion.  In contrast to the previous 70% very low calorie diet 

study, there were no differences in gastrointestinal motor or hormonal function in the 

obese following the acute or prolonged 30% dietary restriction period, although there 

was a trend for energy intake to be reduced.  However, in the lean, there was a decrease 

in plasma CCK and an increase in ghrelin concentrations following the acute period of 

dietary restriction with no differences in gastrointestinal motility or energy intake, 

suggesting that a 30% energy-restricted diet diminishes gastrointestinal hormone 

responses in lean, but not obese, which may suggest that obese are less sensitive to this 

caloric restriction. 

 

These observations will contribute to the advances in basic appetite physiology and will 

have clinical implications for further development of dietary interventions for the 

treatment of obesity.   
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Chapter 1: Thesis Overview 

 

 

Human eating behaviour is complex and a number of genetic, environmental and 

physiological factors contribute to the short- and long-term regulation of appetite and 

energy intake.  Physiological factors that influence when and how much we eat play an 

important role in the acute regulation of energy intake.  The human gastrointestinal tract 

is a highly specialised organ system that allows us to extract nutrients from complex 

mixtures of food matrices and expel or eliminate non-nutrient and potentially toxic 

compounds.  Following ingestion of a meal, there are a number of changes that occur 

within the oral cavity and gastrointestinal tract, of which the primary function is to 

achieve optimal nutrition as well as efficient nutrient digestion and absorption.  

 

The oral cavity is the first site of nutrient detection.  The interaction of nutrients with 

taste receptor cells on the tongue induce a signalling cascade that activates gustatory 

nerves and transmits sensory information to the hypothalamus and brainstem.  The 

human gustatory system detects the taste qualities of sweet, sour, bitter, umami and 

salty, and more recently, the existence of a taste modality responsive to oral fatty acids 

has become evident.  Oral taste perception is important as it prevents the ingestion of 

toxic substances, recognised often by the lack of palatability and/or bitter taste.  In 

addition, oral taste perception contributes to determining individual food preference and 

dietary habits, in that the ability to detect nutrients, particularly fat, may affect food 

choice since dietary fat enhances the palatability of foods.   
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The stomach acts primarily as a reservoir for food, but also as a principal organ in the 

initial stages of mixing and grinding of nutrients.  As food moves into the stomach after 

swallowing, the distension of the stomach activates gastric mechanoreceptors located in 

the wall of the proximal stomach that are responsive to stretch.  As food passes into the 

small intestine, segmentation allows mixing with digestive juices in the intestine and 

peristaltic motor activity propels the nutrients along the length of the intestine, allowing 

interaction of nutrients with the small intestine to activate luminal chemoreceptors.   

 

Gastric motility is controlled predominantly by the vagus nerve.  Vagal afferents project 

to the nucleus tractus solitaries, where they form synapses with interneurones that 

project to the dorsal motor nucleus of the vagus (DMNV) and to higher brain centres.  

From the DMNV, efferent projections return to the stomach modulating the activity of 

the muscle cells through activation of either inhibitor or excitatory motor neurons.  

Signals from chemical stimulation of the small intestine during food ingestion are 

triggered by the detection of food molecules by specialised cells in the mucosa of the 

small intestine.  These cells then release gut hormones, messenger molecules, which 

interact with receptors located on vagal afferents and signal to the brain.  The hormones 

may also act in a classical endocrine way by travelling in the bloodstream to interact 

with receptors located centrally in the brain.  These subconscious signals are then 

integrated by the brain centres that control food intake, most importantly in areas known 

as the medulla and hypothalamus, particularly the arcuate nucleus, either directly or via 

nerve fibres that project to the other hypothalamic areas, including the paraventricular 

nuclei (PVN) and the lateral hypothalamic areas (LHA).  The net output of the PVN 

enhances the potency of satiation signals in the hindbrain, thereby acting to inhibit 
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energy intake.  In contrast, the net output of the LHA suppresses the activity of satiation 

signals, thereby increasing energy intake.   

 

Together, the activation of mechanoreceptors and chemoreceptors induce feedback 

inhibition of gastric emptying, which serves to prolong gastric distension and regulate 

the rate at which nutrients enter the small intestine, allowing for their optimal digestion 

and absorption.  It is well known that signals arising from the gastrointestinal tract play 

a fundamental role in the regulation of appetite and that these are potentially modifiable 

to facilitate an increase or a reduction in energy intake. 

 

Previous patterns of dietary exposure have the capacity to modify gastrointestinal 

function, which may be associated with changes in appetite and energy intake.  

Gastrointestinal, motor and hormonal, appetite responses, and oral sensitivity to fat are 

attenuated following high fat diet exposure.  This may be an important mechanism 

underlying changes in energy intake, subsequent weight gain, and the development of 

obesity, as it is known that obese individuals display an increased preference for the 

consumption of fatty foods and that the proportion of dietary fat consumed in the diet is 

higher in obese individuals than in lean.  It is conceivable that obesity may, at least in 

part, be a disorder of compromised nutrient sensing due to increased energy and fat 

intake.  The mechanisms behind these abnormalities remain unclear, but may involve 

the desensitisation of gastrointestinal enteroendocrine cells, which may adapt to dietary 

conditions, including consumption of a high fat diet.  Although it appears that 

gastrointestinal hormone function is disturbed in the obese, the effects on 

gastrointestinal motility have not been widely investigated, while studies that have 
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evaluated the effects of nutrients on gastric emptying in obese humans are inconclusive 

and controversial.   

 

Conversely, dietary restriction may enhance the sensitivity of the small intestine to the 

presence of nutrients and thus facilitate appetite suppression.  There has been growing 

interest in understanding the effects of energy restriction on gastrointestinal function 

and energy intake that leads towards the design of better diets that are effective for 

weight loss, yet are not associated with adaptions counter-productive to weight loss.  It 

will be important to also determine whether these changes are maintained in the long 

term in order to determine the efficacy of energy restriction therapies for obesity.  Any 

potential modification in gastrointestinal function, including gastric emptying, 

gastrointestinal motility and hormone release, during energy restriction, and the 

relationship with subsequent changes in appetite and energy intake, may have 

implications for the obese, particularly concerning treatment approaches for weight loss. 

 

As the worldwide prevalence of obesity continues to increase, understanding the 

modulation of factors, including gastrointestinal motor and hormonal function, that play 

important roles in appetite regulation will enable us to understand the factors that 

contribute to their increased appetite and energy intake, and thus to develop strategies to 

counteract these changes, for better treatment outcomes.   
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Chapter 2: Oral and Gastrointestinal Factors Involved in the 

Regulation of Appetite and Energy Intake 

 

 

2.1  Introduction 

It is well established that the interaction of nutrients with small intestinal receptors 

induces effects on gastrointestinal function, including motility and hormone secretion, 

that contribute to the suppression of appetite and energy intake.  Recently, evidence has 

been emerging for a sensory system that detects the presence of fatty acids within the 

oral cavity, and thus may also play an important role in the regulation of energy intake. 

 

This chapter provides an overview of the gastrointestinal and orosensory factors 

involved in the regulation of appetite and energy intake.  Accordingly, literature relating 

to the acute effects of nutrients on gastric and small intestinal motor function, 

gastrointestinal hormone release, appetite, energy intake and oral fat perception, is 

reviewed.   

 

2.2  Anatomy and function of the oral cavity and the gastrointestinal 

tract 

The first site of nutrient detection occurs in the oral cavity where ingested material, 

including food and toxins, is sensed.  From an evolutionary point of view, this is vital 

for the health and survival of humans, with sweet and savoury sensations promoting the 

intake of energy-rich foods of nutritional benefit, while bitterness is closely associated 
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with the presence of toxins leading to its avoidance.  The term ‘taste’ generally refers to 

the flavour of food, which is generated from the inputs from all of the anatomically and 

functionally distinct sensory systems; however, from a biological perspective, taste 

refers only to sensations received from stimulated taste receptor cells in the oral cavity 

(Kare and Mattes 1990).  Taste begins on the tongue, where epithelial-derived taste 

receptor cells detect chemical cues (Travers et al. 1987; Lindemann 1996; Smith and 

Margolskee 2001).  Taste buds are onion-shaped structures of between 50 and 150 

clustered taste receptor cells that are distributed on the surface of the tongue and soft 

palate.  Each taste bud has projections at the apical tip of the taste bud called a taste 

pore through which tastants make contact with the taste cell receptors (see Figure 2.1).   

 

 

 

 

Figure 2.1: Basic anatomy of a taste
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These signals are transmitted from the basal nerve endings to the nucleus tractus 

solitarius in the brainstem where taste is perceived.  Human taste sensations are 

categorised into five distinguishable qualities: sweet, salty, sour, bitter and umami (the 

taste of monosodium glutamate [MSG]).  Although less well established, there is 

accumulating evidence supporting a taste component for fatty acid.   

 

Once food is swallowed, the ingested nutrients pass through the oesophagus, which is a 

muscular tube lined with stratified squamous epithelium, into the stomach, by 

peristalsis.  The stomach is a J-shaped sac-like organ, with elaborate neural and 

hormonal control mechanisms.  It is divided anatomically into the fundus, corpus and 

antrum (see Figure 2.2).   

 

 

 

 

Figure 2.2: Basic anatomy of the stomach and small intestine 
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Functionally, the stomach can be divided into two regions: i) the proximal 

compartment, which includes the fundus and the proximal corpus and predominantly 

acts as a temporary ‘store’ for ingested food; and ii) the distal compartment, which 

includes the antrum and is responsible for grinding solid food into smaller particles and 

mixing it with gastric secretions into a so-called chyme (Holt et al. 1982).  Connecting 

the antrum to the duodenum is the pylorus, which is a short 2 cm region.  The pylorus 

functions primarily to regulate the outflow of gastric contents into the small intestine, 

and this is the most important motor mechanism involved in the regulation of gastric 

emptying (Anvari et al. 1995).  The rate of gastric emptying is determined by the 

pressure generated in the proximal stomach through tonic contractions and by the size 

of the pyloric opening; that is, the higher the pressure and the larger the opening, the 

faster the rate of emptying.  Following meal ingestion (i.e. when the stomach contains 

food), the pylorus acts as a ‘sieve’ that impairs the emptying of particles greater than 1 

mm in diameter (Meyer et al. 1979).  Antral grinding of the larger particles reduces 

them to a size that can pass through the pylorus into the small intestine.  The small 

intestine is a muscular tube approximately 5 m in length and can be divided into three 

regions: the most proximal region, the duodenum (~ 25 cm long), the jejunum (~ 2 m 

long) and the distal region, the ileum (~ 3 m long).  The majority of digestion and 

absorption occurs in the small intestine once the chyme enters the duodenum.  Here, it is 

further mixed with bile, pancreatic juice from the pancreas and intestinal enzymes.  The 

process of nutrient digestion and absorption can last up to 4–5 hours (Borgstrom et al. 

1957); hence, nutrient exposure within the small intestine continues for hours after meal 

ingestion.   

 

http://en.wikipedia.org/wiki/Chyme
http://en.wikipedia.org/wiki/Duodenum
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2.3  Fasting and nutrient-induced, postprandial gastrointestinal 

motility 

The motor activity in the upper gastrointestinal tract alternates between two distinct 

patterns: i) the interdigestive migrating motor complex (MMC) in the fasted state; and 

ii) the fed motility pattern that is initiated in the postprandial state following food 

ingestion.  The following section describes the motility patterns in specific regions of 

the upper gastrointestinal tract, including the stomach, pylorus and small intestine, 

during the fasting and the postprandial states. 

 

2.3.1  Fasting motor patterns 

During the fasting state, the gastrointestinal tract exhibits a distinct cyclical pattern of 

motility, termed the MMC.  The MMC comprises of three phases with a cycle time of 

approximately 120 min (but that can vary greatly): i) phase I, a period of motor 

quiescence lasting for about 40–60 min; ii) phase II, a period of irregular phasic 

contractions with a progressively increasing frequency lasting for about 45–90 min; and 

iii) phase III, a period of regular contractions, which is characterised by intense, 

rhythmic contractions that occur at maximal frequency and amplitude of the electrical 

pacemaker, which in the stomach is three and in the duodenum 12 contractions per 

minute, lasting for about 5–10 min.  Approximately 50% of the phase III episodes 

commence in the stomach, with the remainder originating in the small intestine, 

ensuring that any undigested food in the upper gastrointestinal lumen is propelled 

distally.   
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2.3.2  Postprandial motor patterns 

The interaction of nutrients with chemoreceptors within the small intestinal lumen 

following meal ingestion is responsible for the conversion of fasting motility into a 

‘fed’ or postprandial motility pattern.  After a meal, two motor responses occur in the 

proximal stomach.  The first, termed ‘receptive relaxation’, is initiated by swallowing, 

which lasts for approximately 20 seconds, and is associated with a decrease in 

intragastric pressure.  Secondly, there is a prolonged period of relaxation of the 

proximal stomach termed ‘adaptive relaxation’, which occurs so that the meal can be 

accommodated, that is, the increase in intragastric volume is not usually associated with 

a substantial increase in intragastric pressure (Azpiroz and Malagelada 1987).  The 

distal stomach, or the antrum, is involved in grinding the food into small particles, as 

well as mixing the food with gastric secretions to initiate digestion.  The propulsive 

contractions move the chyme from the stomach into the duodenum in between phasic 

and tonic pyloric contractions, that is, when the pylorus is opened.  When chyme enters 

the duodenum from the stomach, there is further mixing with digestive secretions 

including pancreatic and gallbladder secretions and brush boarder enzymes, which 

further aid digestion and thereby making it available for absorption.  These postprandial 

motility patterns in the upper gastrointestinal tract including proximal gastric relaxation 

(Feinle et al. 1996), suppression of both antral and duodenal contractility (Heddle et al. 

1988b) and regular tonic and phasic pyloric contraction (Heddle et al. 1988b; Kumar et 

al. 1987; Heddle et al. 1989) lead to the slowing of gastric emptying and ensure that 

chyme is delivered from the stomach into the small intestine at an overall rate of 

approximately 1–3 kcal/min (Hunt et al. 1985) (see Figure 2.3).   
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Figure 2.3: Motor patterns associated with normal gastric emptying (Rayner and 

Horowitz 2005). 

 

2.3.2.1  Gastric emptying 

Gastric emptying is predominantly a pulsatile, rather than continuous, process and 

patterns of transpyloric flow reflect the integration of motor activity in the proximal 

stomach, antrum, pylorus and proximal small intestine (Horowitz et al. 1994).  The 

coordinated activity of the stomach and pylorus results in the delivery of chyme into the 

small intestine at a rate allowing for optimal digestion and absorption of ingested food.   

 

The patterns of gastric emptying are dependent upon the state, that is, liquid or solid, 

and the macronutrient composition of the ingested meal (Horowitz and Dent 1991; 

Edelbroek et al. 1992).  Gastric emptying of nutrients containing liquids and liquefied 

solids approximates an overall linear fashion (Horowitz and Dent 1991).  In contrast, 

gastric emptying of solids approximates an overall non-linear, monoexponential fashion 

a1172507
Text Box
 
                          NOTE:  
   This figure is included on page 11 
 of the print copy of the thesis held in 
   the University of Adelaide Library.
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(Horowitz and Dent 1991; Collins et al. 1991).  The emptying of solids is characterised 

by an initial lag phase, usually 10–30 min before emptying commences, during which 

solids move from the proximal into the distal stomach and are ground into small 

particles followed by an emptying phase that approximates a linear pattern (Collins et 

al. 1991), at least until the stomach is close to empty. 

 

2.4  Effects of nutrients on gastrointestinal hormones 

The presence of nutrients within the gastrointestinal lumen stimulates the release of a 

number of gastrointestinal hormones.  These include cholecystokinin (CCK) (Liddle et 

al. 1985; Lieverse et al. 1994a) and glucose-dependent insulinotropic polypeptide (GIP), 

secreted from the proximal small intestine (Rehfeld 1978; Fehmann et al. 1995), 

glucagon-like peptide-1 (GLP-1) (Flint et al. 1998a; Gutzwiller et al. 1999), and peptide 

tyrosine tyrosine (PYY) (Pappas et al. 1986), secreted from the distal small intestine 

(Eissele et al. 1992; Adrian et al. 1985a), while the release of ghrelin, predominantly 

secreted from the stomach (Kojima et al. 1999), is suppressed (Cummings et al. 2001; 

Wren et al. 2001a).  For the purpose of this chapter, insulin, which is secreted from the 

pancreas (Anderson and Long 1947), although not a gastrointestinal hormone, is 

discussed here because of its effects on blood glucose regulation.  The following section 

summarises the current knowledge of the mechanisms underlying the release or 

suppression of these hormones.  Their role in the regulation of gastrointestinal motility, 

blood glucose and energy intake is discussed later in the chapter.     
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2.4.1  Cholecystokinin 

CCK, one of the first discovered gastrointestinal hormones, was first identified and 

characterised to regulate the control of gall bladder contractions and pancreatic 

secretion and then also gastrointestinal motility.  Over the last 25–30 years, numerous 

and extensive studies demonstrated the biologically active CCK hormone to have a 

major role in the regulation of feeding.  CCK is synthesised predominantly in the ‘I’ 

cells of the duodenal and jejunal mucosa.  CCK peaks after 15–30 min of meal 

ingestion in response to the presence of nutrients, in particular, fat and protein (Liddle et 

al. 1985; Lieverse et al. 1994a; Larsson and Rehfeld 1978) and to a lesser extent, 

carbohydrate (Parker et al. 2005), in the small intestinal lumen.  CCK-8, CCK-58 and 

CCK-33/39 are the main biologically active forms of CCK found in the human brain, 

intestine and circulation, with CCK-58 and CCK-33/39 the most abundant forms 

(Eysselein et al. 1990).  CCK elicits a number of physiological effects within the 

gastrointestinal system, including the regulation of gastrointestinal motility (Brennan et 

al. 2005; Brennan et al. 2008), stimulation of gallbladder contraction (Liddle et al. 

1985), pancreatic enzyme secretion (Harper and Raper 1943), slowing of gastric 

emptying (Liddle et al. 1986), and suppression of energy intake (Kissileff et al. 1981).  

Two receptors have been described for CCK, CCK1 and CCK2 (Moran and Kinzig 

2004).  The CCK1 receptor is found in peripheral tissues, including pancreatic acini, 

gallbladder, pyloric smooth muscle and enteric vagal afferent nerves (Smith et al. 1984) 

and also in the central nervous system, particularly in regions involved in the regulation 

of food intake, including the nucleus tractus solitarius, the area postrema and the dorsal 

medial hypothalamus (Moran et al. 1986; Hill et al. 1987).  The CCK2 receptor is also 

present in the central nervous system, including the cerebral cortex, the hypothalamus, 
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and on vagal afferents (Gaudreau et al. 1983) and in the gastric mucosa (Wank et al. 

1994).  The physiological actions of CCK have been established by studies using the 

specific CCK1 receptor antagonist, dexloxiglumide (Beglinger et al. 2001; Fried et al. 

1991a; Lal et al. 2004; Meyer et al. 1989).   

 

2.4.2  Peptide tyrosine tyrosine 

PYY is a 36 amino acid peptide synthesised by endocrine ‘L’ cells, located 

predominantly in the ileum and the large intestine (Adrian et al. 1985a).  It is secreted as 

PYY(1-36), and is rapidly degraded to PYY(3-36) by the enzyme dipeptitidyl peptidase IV 

(DPP-IV) (Grandt et al. 1994).  The secretion of PYY is stimulated within 30 min of 

meal ingestion, plateaus within approximately 90 min, and can remain elevated for up to 

six hours (Ueno et al. 2008).  Its release is proportional to the caloric load of the 

ingested nutrients (Ekblad and Sundler 2002).  Despite being secreted predominantly in 

the distal small intestine, the release of PYY does not depend solely on direct nutrient 

exposure of the distal small intestine; studies in dogs have demonstrated that PYY may 

also be released indirectly by fat present in the proximal small intestine (Lin et al. 

2000), secondary to the stimulation of CCK secretion (Lin et al. 2000; Kuvshinoff et al. 

1990; McFadden et al. 1992).  PYY is one of the mediators of the ‘ileal brake’.  It slows 

gastric emptying and intestinal transit of a meal, in order to increase efficacy of 

digestion and nutrient absorption by the small intestine (Grudell and Camilleri 2007).  

While some studies have reported that administration of exogenous PYY(3-36) decreases 

energy intake in humans (Batterham et al. 2002; Neary et al. 2005), observations are 

inconsistent.  PYY also acts to inhibit pancreatic and gastric secretions and gall bladder 

contraction (Adrian et al. 1985b). 
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2.4.3  Ghrelin 

Ghrelin is a 28-amino acid peptide (Kojima et al. 1999) secreted predominantly from 

the fundic region of the stomach and from pancreatic islet cells and the distal small 

intestine (Tritos and Kokkotou 2006) by oxyntic cells.  It has been identified as the 

endogenous ligand for the growth hormone secretagogue receptor (Kojima et al. 1999; 

Date et al. 2000).  In contrast to most other gastrointestinal hormones, ghrelin 

concentrations are increased, rather than suppressed, in the fasting state (Cummings et 

al. 2001) and concentrations are reduced, following nutrient ingestion, with the 

magnitude of suppression depending on the meal composition (Erdmann et al. 2003).  

Studies in both animals and humans have demonstrated that ghrelin suppression is 

dependent upon exposure of nutrients to the small intestine, not the stomach (Parker et 

al. 2005; Williams et al. 2003a; Overduin et al. 2005).  It is thought that ghrelin may be 

involved in meal initiation (Cummings et al. 2001; Tschop et al. 2001a). 

 

2.4.4  Glucagon-like peptide-1 (GLP-1) 

GLP-1 is a 33-amino acid peptide hormone, which is a product of the glucagon gene.  It 

is released from ‘L’ cells, located predominantly in the distal small intestinal mucosa 

(Eissele et al. 1992), peaking after 15–30 min of meal ingestion.  GLP-1 is released in 

response to the presence of nutrients in the small intestine, predominantly by 

carbohydrate and fat (Näslund et al. 1998a; Feinle et al. 2003; Feinle et al. 2002), but 

also protein (Bowen et al. 2006) and is rapidly biodegraded into a biological inactive 

form in human serum by the enzyme DPP-IV (Mentlein et al. 1993).  GLP-1 is the 

major incretin hormone enhancing insulin secretion and suppressing glucagon release to 

regulate blood glucose control.  GLP-1 also slows gastric emptying (Nauck et al. 1997) 
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thereby reducing nutrient delivery to the small intestine, contributing to blood glucose 

control, and has also been shown to reduce energy intake (Turton et al. 1996); however, 

this effect is controversial. 

 

2.4.5  Glucose-dependent insulinotropic polypeptide 

GIP is a 42-amino acid peptide, synthesised and released from intestinal ‘K’ cells.  It is 

located predominantly in the duodenum and proximal jejunum (Fehmann et al. 1995) 

and, in humans, is secreted in response to carbohydrate (Kreymann et al. 1987) and fat 

(Falko et al. 1975).  GIP was originally isolated from porcine intestine on the basis of its 

ability to inhibit gastric acid secretion and was termed ‘gastric inhibitory peptide’ 

(Brown et al. 1970).  Later, it was found that intravenous administration of GIP 

simulates insulin secretion during hyperglycaemia (Dupre et al. 1973; Morgan 1996).  

The primary physiological role of GIP is that of an incretin hormone and, in addition, 

GIP also inhibits gluconeogenesis in the liver, enhances glucose uptake in muscles and 

promotes proliferation, survival and differentiation of pancreatic beta-cells (Meier and 

Nauck 2004).  

 

2.4.6  Insulin 

Insulin is released by β-cells of the islet of Langerhans in the pancreas.  Insulin is 

transported through the blood–brain barrier and accesses neurons in the hypothalamus 

to maintain energy homeostasis.  The magnitude of insulin secretion in response to 

carbohydrates is dependent on the release of the incretin hormones, GLP-1 and GIP 

(Lavin et al. 1998; Pilichiewicz et al. 2007a).  The primary role of insulin relates to 
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glucose homeostasis and it is released in response to an increase in blood glucose 

concentration. 

 

2.5  Effect of gastrointestinal hormones on gastrointestinal motility 

and blood glucose control 

Gastrointestinal hormones released in response to nutrient ingestion have a variety of 

functions in relation to gastrointestinal motility and blood glucose regulation.  In the 

following section, we discuss the role of CCK, GLP-1, PYY and ghrelin in 

gastrointestinal motility and the role of GLP-1 together with GIP in blood glucose 

homeostasis.  While many of the studies described have employed exogenous 

administration of hormones to demonstrate effects on gastrointestinal motor function, in 

order to establish a physiological role of these hormones, specific receptors antagonists 

need to be employed. 

 

2.5.1  CCK 

In both animals (Moran and McHugh 1988; McHugh and Moran 1986) and humans 

(Liddle et al. 1986), exogenous administration of CCK slows gastric emptying (Liddle 

et al. 1986; McHugh and Moran 1986).  The slowing of gastric emptying by CCK may 

be due to a reduction in antral and duodenal contractions and stimulation of tonic and 

phasic pressure waves (Brennan et al. 2005; Liddle et al. 1986; Rayner et al. 2000).  

Using specific antagonists to the CCK1 receptor (e.g. loxiglumide), research has 

established that in both animals and humans the effects of CCK on gastrointestinal 

function are mediated by CCK1 receptors (Feinle et al. 1996; Fried et al. 1991b; 

Katschinski et al. 1996).  For example, in rats, dexloxiglumide (the active enantiomer of 
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loxiglumide) blocks CCK-induced delays in gastric emptying (Scarpignato et al. 1996).  

In humans, the inhibitory effects of fat on gastric emptying and gastroduodenal motility 

are attenuated by administration of loxiglumide (Feinle et al. 1996; Katschinski et al. 

1996).  For example, in one study, gastric emptying of a liquid fat meal in humans 

reported that an intravenous infusion of loxiglumide stimulated antral contractions and 

decreased gastric half emptying time (Schwizer et al. 1997).  In another study, during 

duodenal perfusion of a mixed liquid meal for 150 min, loxiglumide administration 

decreased antral, pyloric and duodenal contractions (Katschinski et al. 1996), indicating 

that the inhibitory effects of fat on gastric emptying and gastrointestinal motility are 

mediated by CCK, at least in part.   

 

2.5.2  PYY 

Administration of PYY(3-36) modulates gastrointestinal motor function in both animals 

and humans.  Intramuscular infusion of PYY(3-36) in rhesus monkeys slows gastric 

emptying of saline in a dose-dependent fashion (Moran et al. 2005) and in humans, 

intravenous administration of PYY(3-36) slows gastric emptying and mouth-to-caecum 

transit (Savage et al. 1987).  Further, as PYY secreting cells are located predominantly 

in the distal small intestine and the secretion of PYY is related to the fat-induced 

inhibition of distal gastrointestinal motility, PYY acts as the primary mediator of the 

fat-induced ‘ileal brake’, that is, the slowing of gastric emptying and intestinal transit of 

the meal, in order to increase nutrient absorption, induced by distal small intestinal 

feedback (Read et al. 1984; Spiller et al. 1984).   
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2.5.3  Ghrelin 

In the fasted state, in both animals and humans, exogenous administration of ghrelin, 

induces phase III of the MMC in the antrum and duodenum (Fujino et al. 2003; Tack et 

al. 2006).  Following feeding, ghrelin stimulates antral contractions in animals (Fujino 

et al. 2003; Tanaka et al. 2009), and in humans, increases proximal gastric tone, 

promotes stomach emptying, and dose-dependently stimulates gastric motility (Tack et 

al. 2006; Masuda et al. 2000; Levin et al. 2006).  However, as previously discussed, 

ghrelin release is suppressed following meal ingestion (Monteleone et al. 2003; 

Greenman et al. 2004); hence, the relevance of the effect of ghrelin on gastric emptying 

is unclear.  In rats, intracerebroventricular or intravenous administration of a ghrelin 

agonist, Tranzyme Pharma (TZP-101), accelerates the rate of gastric emptying of a 

liquid meal (Dornonville de la Cour et al. 2004).  However, until the effects of a ghrelin 

receptor antagonist have been evaluated in humans, the role of endogenous ghrelin in 

the regulation of gastrointestinal motility remain uncertain. 

 

2.5.4  GLP-1 

Exogenous administration of GLP-1, administered at doses between 0.3 and 1.2 

pmol/kg/min, mimics the effects of nutrients and is consistent with the gastrointestinal 

motor effects underlying the slowing of gastric emptying in humans (Nauck et al. 1997; 

Meier et al. 2003; Schirra and Goke 2005; Delgado-Aros et al. 2002; Little et al. 2006a).  

This is associated with the relaxation of the proximal stomach (Delgado-Aros et al. 

2002; Schirra et al. 2002), suppression of antral and duodenal motility (Brennan et al. 

2005; Schirra et al. 2000), and stimulation of pyloric pressures (Schirra et al. 2000).  

The effect of endogenous GLP-1 on gastrointestinal motor function has been evaluated 
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using its specific receptor antagonist, exendin(9-39).  Exendin(9-39) has been reported to 

attenuate the effects of intraduodenal glucose on antropyloroduodenal (APD) motility in 

humans (Schirra et al. 2006), and block the effects of GLP-1 on gastric emptying in rats 

(Tolessa et al. 1998), suggesting that endogenous GLP-1 plays a physiological role in 

mediating the effects of nutrients on gastrointestinal motility. 

 

GLP-1 also plays an important role as an incretin hormone involved in the regulation of 

postprandial blood glucose concentrations (Kreymann et al. 1987).  GLP-1 enhances 

insulin secretion, suppresses glucagon release and stimulates insulin-dependent glucose 

disposal in peripheral tissues (Gutniak et al. 1992; D'Alessio et al. 1994), thereby 

decreasing blood glucose (Nauck et al. 1998).  These actions of GLP-1 have stimulated 

substantial interest for its potential use (Schirra et al. 1998), and that of specific GLP-1 

analogues and agonists (Nauck 1998), to improve blood glucose control in type 2 

diabetes (Meier et al. 2003; Nauck 1998).  While there is increasing evidence to suggest 

this is effective, the precise mechanisms by which GLP-1 improves blood glucose 

regulation remains poorly defined.  For example, while exogenous GLP-1 stimulates 

insulin secretion in the fasted state (Kreymann et al. 1987), when administered with a 

meal, there is an apparently paradoxical reduction in postprandial insulin concentrations 

(Nauck et al. 1997a).  Observations that postprandial insulin secretion is reduced, rather 

than increased, by exogenous GLP-1 in healthy subjects (Nauck et al. 1997) and type 2 

diabetes (Meier et al. 2003) suggest that the dominant mechanism by which exogenous 

GLP-1 improves postprandial blood glucose relates to the slowing of gastric emptying, 

and that GLP-1 may not be a physiological incretin hormone (Nauck et al. 1997).  This 

concept is supported by a recent study in which the ‘reversal’ of the inhibitory effect of 
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exogenous GLP-1 on gastric emptying by the gastrokinetic drug erythromycin was 

associated with a substantial attenuation of its glucose-lowering effect, despite 

augmentation of the insulin and GIP responses (Meier et al. 2005).     

 

2.5.5  GIP 

There is limited information available on the effects of GIP on gastrointestinal motility.  

The available literature indicates that GIP has no effect on gastric emptying or motility 

(Meier et al. 2004; Miki et al. 2005).  For example, in healthy humans, there was no 

difference in gastric emptying rates or emptying half time of a solid meal after treatment 

with intravenous GIP at 2 pmol/kg/min or placebo (Meier et al. 2004).  In mice, 

subcutaneous injection of 100 µg human GIP did not affect gastrointestinal transit of an 

orally ingested barium sulphate meal (Miki et al. 2005).  The primary physiological role 

for GIP is that of an incretin hormone.  GIP acts directly on pancreatic islets to stimulate 

insulin secretion (Adrian et al. 1978; Taminato et al. 1977), thereby regulating blood 

glucose concentrations.   

 

2.6  Effect of nutrients on appetite and energy intake, and the 

interrelation with gastrointestinal function  

The upper gastrointestinal tract is an important source of satiety signals, and it has been 

well established that the presence of nutrients in the small intestine suppress appetite 

and energy intake.  This section will discuss the gastrointestinal motor and hormonal 

functions thought to be involved in the regulation of appetite and energy intake. 
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2.6.1  Effects of nutrients on appetite and energy intake 

Powerful satiety signals arise from the gastrointestinal tract in response to food 

ingestion, through the interaction of nutrients with receptors in the small intestinal 

lumen.  Direct nutrient infusion into the small intestine allows the role of specific areas 

of the gastrointestinal tract in the control of appetite and energy intake to be 

investigated.  Subjects receive no cues regarding the taste or palatability of the nutrients 

infused and variations in gastric emptying are not a potentially confounding factor.  In 

humans, studies investigating the effects of intraduodenal nutrient administration have 

demonstrated that the presence of nutrients within the small intestinal lumen is 

associated with a decrease in perceptions of hunger, increase in fullness and 

subsequently a decrease in energy intake (Chapman et al. 1999; Cook et al. 1997; Lavin 

et al. 1996; MacIntosh et al. 2001a).  For example, intraduodenal infusion of lipid at 

0.25, 1.5 or 4 kcal/min suppressed hunger and subsequent energy intake in a dose-

dependent manner (Pilichiewicz et al. 2007b).  When infused directly into the small 

intestine, lipid increases fullness and decreases hunger in humans to a greater extent 

than isocaloric carbohydrate (Chapman et al. 1999; Cook et al. 1997; Andrews et al. 

1998; Seimon et al. 2009a).  In addition, in humans, infusion of nutrients (lipids, 

carbohydrates) into the small intestine is associated with suppression of food intake to a 

much greater extent than when the same nutrients are given intravenously (Lavin et al. 

1996; Welch et al. 1985).  For example, in a study in healthy subjects, where the effect 

of 20% glucose at 4 mL/min for 90 min administered intraduodenal and intravenous 

were compared, glucose suppressed hunger, increased fullness and reduced subsequent 

energy intake while the intravenous administration of glucose had little, if any, effect on 

perceptions of fullness or hunger or energy intake (Lavin et al. 1996; Welch et al. 
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1985), indicating that the effects of nutrients on appetite and energy intake are mediated 

primarily by the stimulation of small intestinal receptors.  The interaction of nutrients 

with specific receptors in the small intestine stimulates the release of gastrointestinal 

satiety hormones, some of which slow down gastric emptying, thereby prolonging 

postprandial gastric distension and in this way also contributing to satiety, and it is now 

increasingly recognised that the modulation of gastrointestinal motor and hormonal 

function by nutrients contributes to their suppression of appetite and acute energy 

intake.   

 

2.6.2  Role of gastrointestinal hormones in the regulation of appetite and energy 

intake 

It is estimated that more than 50 hormones and regulatory peptides are synthesised in 

the gastrointestinal tract, primarily in response to food ingestion.  Among the most 

studied gastrointestinal hormones are CCK, GLP-1, PYY and ghrelin.  The following 

sections focus on the roles of these hormones in the regulation of appetite and energy 

intake.   

 

2.6.2.1  CCK 

It has been well established that acute administration of exogenous CCK suppresses 

appetite and energy intake.  In rats, intraperitoneal administration of the biologically 

active, sulphated octapeptide of CCK, CCK-8, suppressed energy intake in a dose-

dependent fashion and also sham feeding (Gibbs et al. 1973).  In healthy young 

(Brennan et al. 2005; Kissileff et al. 1981) and older (MacIntosh et al. 2001b) humans, 

intravenous administration of CCK-8 and CCK-33 increased the perceptions of fullness, 
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decreased hunger and reduced subsequent energy intake although for definitive 

evidence of an involvement of endogenous CCK, receptor antagonist studies are 

required.  Only a limited number of studies have evaluated the role of endogenous CCK 

in the regulation of appetite and energy intake using loxiglumide, a CCK1 receptor 

antagonist (Beglinger et al. 2001; Lieverse et al. 1994b; Matzinger et al. 1999; 

Matzinger et al. 2000).  In healthy humans, loxiglumide completely abolished the 

inhibitory effect of the concurrent administration of intraduodenal fat on appetite and 

energy intake (Matzinger et al. 1999; Feinle et al. 2001).  Further, intravenous 

administration of dexloxiglumide for one hour prior to and during ingestion of a meal, 

increased energy intake and perceptions of hunger when compared with a saline 

infusion (Beglinger et al. 2001), providing evidence that CCK is an endogenous 

physiological satiety signal acting through CCK1 receptor-mediated mechanisms.   

 

2.6.2.2  PYY 

A number of studies have evaluated the effects of PYY on appetite and energy intake, 

with conflicting results.  It was originally reported that peripheral injection of PYY 

inhibits food intake in rats (Batterham et al. 2002); however, attempts to replicate these 

results have been unsuccessful, reporting no effect on energy intake (Tschop et al. 

2004).  In humans, intravenous infusion of ‘physiological’ concentration of PYY (2 

nmol/m2 of body-surface area) has been reported to inhibit energy intake for up to 12 

hours (Batterham et al. 2003).  However, a later study reported that only large doses of 

PYY(3-36), that is, 0.4–0.8 pmol/kg/min, suppressed energy intake in humans (Degen et 

al. 2005), which resulted in nausea, vomiting and abdominal pain in some subjects 

(Degen et al. 2005).  Accordingly, it remains uncertain whether the reduction in energy 
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intake was a specific or adverse effect of PYY.  It has been reported that pre-treatment 

of the arcuate nucleus with an antagonist specific for the Y2 receptor, BIIE0246, 

attenuated the inhibitory effect of an intraperitoneal dose of PYY(3-36) on food intake in 

rats (Abbott et al. 2005).  Further, when BIIE0246 was administered into the arcuate 

nucleus alone, food intake was increased (Abbott et al. 2005), providing a role of 

endogenous PYY in the regulation of energy intake.  However, this has not been 

evaluated in humans.   

 

2.6.2.3  GLP-1 

While GLP-1 is generally portrayed to have suppressant effects on energy intake, its 

effects in published studies are inconsistent.  While a number of studies have 

demonstrated that exogenous administration of GLP-1 increases the perception of 

fullness and decreases hunger in animals (Turton et al. 1996) and inhibits energy intake 

in lean individuals (Neary et al. 2005; Flint et al. 1998b), a few studies demonstrated no 

effect (Brennan et al. 2005; Long et al. 1999).  Exendin(9-39), a specific GLP-1 receptor 

antagonist, has been reported to attenuate the inhibitory effects of GLP-1 on energy 

intake in rats (Turton et al. 1996), suggesting that GLP-1 plays a physiological role in 

the regulation of appetite and energy intake at least in animals,.  No studies to date have 

evaluated the effect of exendin(9-39) on energy intake in humans.    

 

2.6.2.4  Ghrelin 

During fasting, plasma ghrelin concentrations are high and suppressed following food 

ingestion (Cummings et al. 2001), supporting the concept that ghrelin has a role in meal 

initiation.  Studies in both humans and rats have demonstrated that intravenous 
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administration of ghrelin stimulates food intake (Wren et al. 2001a; Wren et al. 2001b).  

In healthy subjects, intravenous administration of ghrelin (5 pmol/kg/min) increased 

energy intake by 28% from a buffet meal and increased hunger, when compared with 

saline (Wren et al. 2001b).  No studies have investigated the role of endogenous ghrelin 

on energy intake using a specific ghrelin receptor antagonist; hence, the physiological 

role of ghrelin in feeding behaviour has not been determined. 

 

2.6.3  Role of gastrointestinal motility on appetite and energy intake 

The modulation of gastric motor function by nutrients, specifically changes in pyloric 

motility, may contribute to the effects on appetite and energy intake.  For example, in 

dogs, electrical stimulation of the pylorus was associated with a suppression of energy 

intake (Xu et al. 2005).  A study in our laboratory found an inverse relationship between 

the stimulation of pyloric pressures and subsequent energy intake (Brennan et al. 2007), 

providing the first indication for a link between specific changes in gastrointestinal 

motor function and energy intake suppression in humans.  This suggests that an 

individual in whom there is greater stimulation of pyloric pressures may eat less, 

potentially because small intestinal feedback is greater.   

 

It appears that modulation of these gastrointestinal functions, that is, gastrointestinal 

motility and hormone release/suppression, mediate the regulation of appetite and acute 

energy intake in humans, at least in part, although it is important to recognise that the 

discussed relationships do not provide evidence for a causal association between 

gastrointestinal function and energy intake.  Changes in motility and hormone secretion 

occur concurrently with changes in appetite, and, therefore, it is not surprising that there 
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is little information regarding which, if any, of these factors are independent 

determinants of energy intake.  For example, although CCK does play a role in the 

process, this may potentially be mediated indirectly by its effect on motility.   

 

2.7  Nutrient tasting in the oral cavity 

Taste is an important determinant of the amount of food consumed during a meal.  Fat, 

in particular, increases the palatability of foods and can, therefore, lead to 

overconsumption.  It is well established that the human gustatory system can detect the 

taste qualities of sweet, sour, bitter, salty and umami or ‘glutamate taste’, which is the 

sensation elicited by MSG.  More recent evidence supports the existence of a sixth taste 

modality responsive to fatty acids (Chale-Rush et al. 2007a; Abumrad 2005; Chale-

Rush et al. 2007b; Gaillard et al. 2008; Mattes 2009a).  Dietary fats, which are 

predominantly in the form of triacylglycerols, are not an effective taste stimulus (Mattes 

2009a), although they contribute to the sensory properties of foods.  However, evidence 

suggests that the detection of fat in the oral cavity appears to be dependent on the 

presence of free fatty acids, the digestive products of fats.  Humans are able to detect a 

range of fatty acids, including polyunsaturated (linoleic acid [C18:2]), monounsaturated 

(oleic acid [C18:1]), and saturated (stearic [C18:0], lauric [C12:0], and caproic [C6:0]), 

even when olfaction is blocked using nose clips, and texture is masked using gum 

acacia and mineral oil (Chale-Rush et al. 2007a; b; Mattes 2009b), suggesting a true 

‘taste’ component to free fatty acid detection.  In humans, sensory detection of free fatty 

acids occurs within the millimolar range (0.02–0.64 mM) (Stewart et al. 2010).  This 

range of detection is consistent with the concentrations of free fatty acids that are 

naturally present in food (0.5% free fatty acid) (Mattes 2005), and it has recently been 
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reported that lipolytic activity in saliva is sufficient to produce micromolar amounts of 

fatty acids within the detectable range (Stewart et al. 2010).   

 

The following section will discuss our current understanding of the mechanism 

underlying the detection of oral fatty acids and the physiological responses induced by 

the detection of fatty acids in the oral cavity. 

 

2.7.1  Oral free fatty acid detection 

It is well established that oral detection of sweet, bitter, umami tastants occurs as a 

result of the interaction of nutrients with specific receptors on the apical surface of taste 

receptor cells.  The understanding of the mechanisms underlying oral fatty acid 

detection is more limited.  However, recently, a number of receptors that interact with 

fatty acids, including CD36, delayed rectifying potassium channels, and a series of G-

protein coupled receptors, including GPR40, GPR41, GPR43 and GPR120, have been 

reported to be present on taste receptor cells (Mattes 2009a).  The detection of free fatty 

acids by these mechanisms induces a signalling cascade.  Fatty acids activate the 

gustatory nerves that transmit sensory information to the nucleus tractus solitarius in the 

brainstem (Gaillard et al. 2008) to higher brain centres including the lateral 

hypothalamus and the nucleus accumbens, both of which play an important role in the 

regulation of food intake. 

 

CD36, a fatty acid transporter, appears to play a major role in fat detection within the 

oral cavity, binding long-chain fatty acids with an affinity in the nanomolar range 

(Baillie et al. 1996; Ibrahimi et al. 1996).  Studies have demonstrated that CD36 
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knockout mice are insensitive to free fatty acids compared with wild type mice, with no 

difference in their sensitivity to sweet and bitter stimuli (Gaillard et al. 2008; Laugerette 

et al. 2005).  It is still not known whether CD36 serves as a receptor or docking protein.  

Oral exposure to long-chain fatty acids increases calcium ions in taste receptor cells, 

and c-fos expression in the solitary tract nucleus, which is abolished in CD36 knockout 

animals (Gaillard et al. 2008).  GPR120 has been reported to be co-localised with 

phospholipase Cβ2 and α-gustducin in taste receptor cells (Matsumura et al. 2009), both 

of which are involved in the transduction of other tastes, such as sweetness and 

bitterness.  Compared to wild type controls, GPR40 and GPR120 knockout mice are 

less sensitive to an array of free fatty acids (Cartoni et al.), but respond equally to sweet, 

sour, bitter, salty and umami stimuli, demonstrating that GPR40 and GPR120 play an 

important role in mediating the gustatory responses to fatty acids.   

 

2.7.2  Physiological responses induced by oral fat exposure 

In humans, oral stimulation with meals containing fats, using modified sham-feeding 

techniques, have been reported to induce a number of physiological cephalic-phase 

responses where the sight, smell and taste of foods stimulate the secretion of digestive 

juices into the mouth, stomach and intestine, essentially preparing the gastrointestinal 

tract for nutrient exposure, optimising nutrient digestion and absorption.  For example, 

there is a stimulation of gastric lipase (Wojdemann et al. 1997) and insulin (Smeets et 

al. 2009) secretion, elevation of serum triglycerides (Mattes 2009c; Chavez-Jauregui et 

al.), stimulation of pancreatic polypeptide (Crystal and Teff 2006), suppression of 

ghrelin (Heath et al. 2004) and slowing of gastric emptying (Cecil et al. 1999).  For 

example, gastric emptying of a high fat meal was demonstrated to be much slower when 
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a meal was ingested orally, when compared with direct intragastric infusion (Cecil et al. 

1999), suggesting that orosensory stimulation by fat plays an important role in the 

regulation of gastrointestinal motor function.  In addition, modified sham feeding with 

high fat meals appears to reduce appetite (Smeets et al. 2009; Heath et al. 2004; Smeets 

and Westerterp-Plantenga 2006) and energy intake (Crystal and Teff 2006).  The studies 

described above evaluated the effects of meals containing triacylglycerides, rather than 

free fatty acids; hence, from these data it is not possible to discriminate between the 

effects of free fatty acids from other sensory factors, such as texture or viscosity.  

Therefore, it will be important to determine the effects of oral fatty acid exposure on 

gastrointestinal function, appetite and energy intake. 

 

2.8  Conclusion 

It is well established that modulation of gastrointestinal functions, that is, 

gastrointestinal motility and hormone release, regulate appetite and acute energy intake 

in humans.  However, these relationships do not provide evidence for a causal 

association between gastrointestinal function and energy intake, and this will be 

important to clarify. 
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Chapter 3: Effects of Dietary Excess and Restriction on 

Gastrointestinal Function and Energy Intake in Obesity 

 

 

Overweight and obesity occurs, in the broadest sense, as a result of energy intake 

exceeding energy expenditure.  There is evidence that the signals arising from the 

gastrointestinal tract, which are known to play a fundamental role in the regulation of 

appetite and energy intake, may be modified by both dietary excess and restriction.  The 

development of obesity may, at least in part, reflect a decreased sensitivity to the 

gastrointestinal effects of nutrients favouring an increase in appetite and energy intake.  

Currently, dietary restriction is the most common non-pharmacological approach to 

weight loss in obesity, and weight loss is usually not sustained in the long term.   

 

This chapter discusses data from experimental induced dietary excess and restriction on 

gastrointestinal function and energy intake, and gastrointestinal function in obesity. 

 

3.1  Definition of obesity 

Obesity is a condition defined as abnormal or excessive fat accumulation that may 

impair health.  Body mass index (BMI) is a simple index of weight-for-height that is 

commonly used to classify overweight and obesity in adults.  It is defined as an 

individual’s weight in kilograms divided by the square of their height in metres (kg/m2).  

A BMI of 19–25 kg/m2 is considered healthy/normal weight, 25.1–30 kg/m2 is 

considered overweight and a BMI of greater than 30.1 kg/m2 is considered clinically 
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obese.  BMI provides the most useful population-level measure of overweight and 

obesity, as it is the same for both sexes and for all ages of adults.  However, it is 

considered a rough guide because it is a measurement of body size and does not 

distinguish between an individual’s body fat or lean/muscle mass directly and provides 

no information relating to the distribution of fat throughout the body.  Waist 

circumference and the waist-to-hip ratio are two other proxy indicators of obesity, and 

the World Health Organisation (WHO) suggests waist circumference or waist-to-hip 

ratio to be used in addition to BMI, to provide information about the distribution of 

excess fat.   

 

3.2  Prevalence of obesity 

The worldwide prevalence of obesity continues to increase and has more than doubled 

since 1980.  Current projections from the WHO indicate that in 2008, 1.5 billion adults, 

20 years and older, were overweight.  Of these, over 200 million males and nearly 300 

million females were obese worldwide (WHO 2011).  In 2007–2008, results from the 

Australian Bureau of Statistics’ National Health Survey revealed that 61.4% of the 

Australian population were either overweight or obese.  Of these, 42.1% of adult males 

and 30.9% of adult females were classified as being overweight and 25.6% of males and 

24% of females were classified as being obese.  Based on current trends, the most recent 

projections reveal that, in Australia, of adults aged 20 years and older, 83% of males 

and 67% of females are expected to be overweight and/or obese by 2025 (Victorian 

Government Department of Human Services 2008). 
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3.3  Significance of obesity 

Obesity has been identified as a risk factor for a number of disorders, including type 2 

diabetes (Colditz et al. 1995), cardiovascular diseases (Manson et al. 1990), gallbladder 

disease (Stampfer et al. 1992), lipid disorders (Despres 1994), hypertension and 

musculoskeletal diseases (Must et al. 1999).  There is also evidence that obesity may be 

a risk factor for certain types of cancer, including hormone-dependent cancers such as 

prostrate, breast and uterine cancer, as well as colorectal and kidney cancers (Guh et al. 

2009; Pan and DesMeules 2009).  Obesity is the fifth-leading risk for global deaths, and 

at least 2.8 million adults die each year as a result of being overweight or obese.  The 

health, economic and psychosocial consequences of obesity are substantial and 

associated with considerable, albeit imprecisely defined, costs to the health care system, 

particularly in Western countries, with the financial cost of obesity in Australia 

estimated to be $8.28 billion in 2008 (Access Economics 2008).   

 

3.4  Current therapies for obesity 

Management strategies for weight reduction in obese individuals include physical 

interventions, such as exercise and diet, pharmacological treatments and surgery.  A 

number of dietary approaches have been advocated for the treatment of obesity.  For 

example, very low calorie diets (VLCDs) produce greater short-term weight loss, 

whereas low calorie diets and diets that are low in fat (Avenell et al. 2004; Foster et al. 

2003) or high in protein, low in carbohydrate (Johnston et al. 2004; Noakes et al. 2005) 

only produce modest weight loss.  However, weight loss in response to these diets is not 

sustained in the long term. 

 



Effects of dietary intake on gut function  Chapter 3 

34 

 

Numerous pharmacological treatments for obesity have been developed; however, most 

have limited efficacy and, often, adverse effects.  Pharmacotherapies, taken over a 

period of 1–2 years, have demonstrated a significant, though modest, decrease in 

weight, when compared with placebo.  However, in the majority of cases, weight loss 

following pharmacological intervention is not sustained in the longer term once therapy 

is discontinued, with individuals regaining some or all of the weight that was lost.  Over 

the years, many drugs that have been effective weight loss medications have had to be 

withdrawn from the market due to serious adverse effects.  For example, Fen-Phen, 

which is a combination of two compounds, fenfluramine and phentermine, was removed 

from the market in 1997, after it was reported to cause valvular heart disease and 

pulmonary hypertension (Connolly et al. 1997) and in 2000, phenylpropanolamine, an 

over-the-counter weight loss drug, was found to be an independent risk factor for 

hemorrhagic stroke in women (Kernan et al. 2000).  The first selective cannabinoid 

receptor blocker, Rimonabant, was withdrawn from the market because it caused 

depression and suicidal ideation (Lee et al. 2009).  In 2010, Sibutramine, a centrally 

acting serotonin-norepinephrine reuptake inhibitor structurally related to amphetamines, 

was withdrawn from the market because of its association with increased cardiovascular 

events and strokes (James et al. 2010).  In Australia, the only drugs approved for the 

treatment of obesity are phentermine and orlistat.  While phentermine is limited to 

short-term use (up to three months), orlistat can be used for longer-term treatment of 

obesity, but has a number of gastrointestinal adverse effects, such as diarrhoea, 

flatulence, bloating, abdominal pain, and dyspepsia, which may not be acceptable to 

some patients on long-term treatment.  Despite these limitations of weight loss drugs, in 

2000, anti-obesity drugs still accounted for sales of nearly $0.5 billion in the seven 

http://en.wikipedia.org/wiki/Pulmonary_hypertension
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largest global markets (Hallschmid et al. 2006), with the overall sales of anti-obesity 

drugs projected to at least triple by 2010 (Chin 2008).   

 

Bariatric surgery is arguably the most successful treatment of obesity for people with 

severe and complex obesity (BMI ≥ 35 kg/m2).  Established procedures are Roux-en-Y 

gastric bypass, gastric banding and sleeve gastrectomy.  Roux-en-Y gastric bypass has 

been known to be the most effective procedure since the 1980s.  The procedure involves 

creating a small-volume gastric pouch and producing a diversion for food to bypass the 

duodenum and upper jejunum so that nutrients are diverted directly to the more distal 

parts of the small intestine.  Thus, the increased exposure of the distal small intestine to 

nutrients is likely to modulate the release of distal gastrointestinal hormones associated 

with the reduction of energy intake, hence achieving significant long-term weight loss 

(60–80% of excess body weight loss) (DeMaria et al. 2002).  Further, Roux-en-Y 

gastric bypass leads to almost instant resolution of type 2 diabetes in 85% of patients in 

the absence of any significant weight loss (Pories et al. 1995).  

 

The available therapies have largely ignored the role of the gastrointestinal tract in the 

regulation of appetite, as well as the important relationships between gastrointestinal 

function and energy intake, and that these mechanisms may be compromised in obesity.  

A greater understanding of the mechanisms that contribute to the pathophysiology of 

obesity is required, which may result in the identification of novel targets for the 

treatment of obesity. 
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3.5  Gastrointestinal function in obesity 

As discussed previously, the gastrointestinal tract plays a pivotal role in the regulation 

of appetite and energy intake in healthy individuals and, therefore, it is important to 

characterise any disturbances in gastrointestinal function in obesity that may be 

contributing to the development and maintenance of obesity.  However, current studies 

on gastrointestinal motor and hormonal function in the obese are limited and 

controversial. 

 

3.5.1  Gastrointestinal motility in obesity 

Studies that have evaluated the effects of nutrients on gastric emptying in obese humans 

have found disturbances; however, data are inconclusive and controversial.  For 

example, gastric emptying has been reported to be similar (French et al. 1993; 

Zahorska-Markiewicz et al. 1986; Glasbrenner et al. 1993; Hutson and Wald 1993; 

Verdich et al. 2000), faster (Tosetti et al. 1996; Gryback et al. 1996; Wright et al. 1983; 

Näslund et al. 1998b) or slower (Maddox et al. 1989; Horowitz et al. 1983) in obese, 

compared with lean individuals.  These inconsistent results may be attributed, at least in 

part, to differences in methodologies between studies, including meal composition (e.g. 

solid, semi-solid or liquid meals, with radionuclide labels added to liver, eggs, cereal, 

porridge, potatoes and pancakes), time of day (after an overnight fast or in the 

afternoon), methodologies used to assess gastric emptying (e.g. scintigraphy or 

ultrasonography), differences in selection criteria for obese individuals (e.g. moderately 

compared with morbidly obese) or other factors that are known to influence gastric 

emptying, such as habitual diet of individuals.  The motor mechanisms underlying 

changes in gastric emptying have not been studied in the obese.  Currently, only one 
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study has evaluated whether changes in interdigestive motility occur in the obese, when 

compared with lean individuals (Pieramico et al. 1992).  The study reported 

disturbances in motility patterns in the fasting state, including a diminished phase I, 

increased phase II, and a less frequent occurrence of a phase III of the MMC in the 

obese, when compared with lean individuals.  However, the clinical significance of 

these changes is unclear, and antral or duodenal motility were not assessed.  No studies 

have evaluated the potential disturbances in postprandial gastrointestinal motor function 

in the obese.  It is likely that gastrointestinal motility is disturbed in obesity and given 

that obese individuals are less sensitive to nutrients, the feedback mechanisms 

regulating gastrointestinal motility may be altered.  In addition, in the obese, there is an 

increased capacity to absorb nutrients from the proximal small intestine (Wisen and 

Johansson 1992), resulting in reduced exposure of nutrients in the distal small intestinal 

lumen, thereby reducing feedback signals since effects of nutrients are dependent on the 

length of small intestinal exposure (Lin et al. 1990; Little et al. 2006b).   

 

3.5.2  Gastrointestinal hormones in obesity 

There is evidence that the secretion of gastrointestinal hormones, including CCK, PYY, 

ghrelin, GLP-1 and GIP, and the secretion of insulin may be altered in obesity.  This 

evidence comes from a number of studies that have investigated both fasting and 

postprandial gastrointestinal hormones concentrations in the obese.  For example, when 

compared with lean individuals, both fasting and postprandial plasma CCK 

concentrations were found to be greater in obese (Baranowska et al. 2000).  Since CCK 

suppresses appetite, an increase in plasma CCK concentrations in the obese may reflect 

a decreased sensitivity to CCK, which may be partly responsible for reduced satiety.  In 
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contrast, it has been reported that both fasting (le Roux et al. 2006; Batterham and 

Bloom 2003) and postprandial (le Roux et al. 2006) plasma PYY concentrations are 

reduced in obese individuals (see Figure 3.1), suggesting impaired PYY release in the 

obese, when compared with lean individuals. 

 

 

 

Figure 3.1: Plasma PYY concentrations in obese (n = 12) and lean (n = 12) healthy 

subjects during (t = 0–90 min) and following infusion of saline. * vs lean, 

P < 0.001 (Batterham et al. 2003). 

 

Ghrelin concentrations also appear to be modified in obesity.  Plasma ghrelin 

concentrations have been shown to be inversely related to BMI (Shiiya et al. 2002; 

Tschop et al. 2001b), with both fasting ghrelin concentrations (Tschop et al. 2001b; 

Druce et al. 2005; English et al. 2002), and meal-induced suppression of ghrelin 

(English et al. 2002), lower in obesity.     
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Following oral carbohydrate, but not fat, studies have reported reduced plasma GLP-1 

concentrations in obese, when compared with lean subjects (Ranganath et al. 1996; 

Verdich et al. 2001a).  In response to intraduodenal administration of fat and 

carbohydrate, fasting GLP-1 concentrations have been reported to be similar, with no 

differences in plasma GLP-1 concentrations between healthy lean and obese subjects 

(Feinle et al. 2002).  It is likely that the difference in GLP-1 release between lean and 

obese reflect changes in gastric emptying, rather than an impaired stimulation of GLP-1.  

The release of plasma GIP concentrations in the obese is inconclusive.  For example, 

some studies have shown plasma GIP concentration to be greater during fasting and in 

response to meal ingestion in the obese compared with the lean (Elahi et al. 1984; 

Vilsboll et al. 2003), while other studies found GIP concentrations to be reduced (Carr 

et al. 2010).  In addition, following oral administration of a mixed meal, insulin 

concentrations are greater in insulin resistant obese, when compared with lean, non-

diabetic individuals (Carr et al. 2010), suggesting β cell function is impaired in the 

obese. 

 

In summary, it appears that the release of gastrointestinal hormones is compromised in 

obese, compared with lean, individuals.  The differences in the secretion/suppression or 

the sensitivity of gastrointestinal hormones following meal ingestion are likely to 

contribute to an attenuated suppression of appetite and energy intake and blood glucose 

homeostasis.  These changes in gastrointestinal function may be a result of over eating 

and this hypothesis is supported by studies evaluating the effects of experimental 

dietary over- and under-exposure. 
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3.6  Role of high dietary fat intake in the development of obesity 

Although the causes of obesity are heterogeneous, it is generally accepted that one of 

the main environmental factors contributing to the current epidemic is the increased 

availability and overconsumption of high fat, energy-dense foods.  Human studies have 

demonstrated a direct relationship between the incidence of overweight and obesity and 

dietary fat intake (Rolls 1995; Golay and Bobbioni 1997).  For example, in countries in 

which the incidence of obesity is rising rapidly, about 45% of the daily energy intake is 

obtained by fat (Golay and Bobbioni 1997).  There is also evidence that obese 

individuals display an increased preference for the consumption of fatty foods, when 

compared with lean individuals, suggesting that fat intake is poorly regulated in the 

obese (Mela and Sacchetti 1991; Miller et al. 1990).  Further, the consumption of a diet 

high in fat has also consistently been shown to promote an increase in energy intake 

(Lissner et al. 1987; Tremblay et al. 1989).  In animal models, oral fatty acid sensitivity, 

measured by taste cell electrophysiological activity in response to stimulation with fatty 

acids, may regulate fat consumption and body weight regulation, that is, greater oral 

sensitivity in the rats is associated with reduced fat intake, reduced preference for fat, 

and reduced predisposition for obesity (Gilbertson et al. 1998).  Further, animal studies 

have established that ad libitum access to a high fat diet promotes an increase in energy 

intake and obesity and is associated with leptin and insulin resistance (Woods et al. 

2003).  Thus, there is evidence to implicate the consumption of a high fat diet in the 

promotion of increased energy intake. 
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3.7  Previous patterns of dietary intake in the modulation of 

gastrointestinal function 

It is well established that modifications in the diet can have major influences on 

gastrointestinal function and energy intake, and these effects have been extensively 

characterised in animals, particularly rodents (le Roux et al. 2006; Savastano and 

Covasa 2005; Covasa and Ritter 1998).  There is increasing evidence that such changes 

also occur in humans.  Thus, studies have been carried out in healthy, young, older and 

obese humans, demonstrating that dietary modifications, in excess or restriction, have 

the ability to modify gastrointestinal function, which may be associated with changes in 

appetite and energy intake.  In the following section, we summarise the current 

knowledge of the effects of dietary excess, that is, isocaloric high fat diets or hyper-

caloric high fat diet, and restriction on gastrointestinal function, including 

gastrointestinal motor and hormone function, appetite and energy intake.      

 

3.7.1  Effect of dietary excess on gastrointestinal motor function 

Studies in animals have indicated that the gastrointestinal motor response to fat is 

attenuated after acute energy excess.  For example, in rats, consumption of a high fat 

diet for two weeks attenuated the suppressive effects of small intestinal fat on gastric 

emptying compared with an isocaloric low fat diet (Covasa and Ritter 2000).  In 

addition, infusion of palm oil into the ileum at 0.3 mL/hour for three hours per day for 

three days per week for four weeks attenuated the lipid-induced slowing of stomach-to-

caecum transit in rats (Brown et al. 1994).   
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In healthy human males, consumption of a high fat, hyper-caloric diet (19.3 MJ/day) for 

14 days resulted in marked acceleration of gastric emptying and mouth-to-caecum 

transit of a high fat test meal (1.4 MJ), when compared with a low fat diet (9.1 MJ/day) 

(see Figure 3.2) (Cunningham et al. 1991a).   

 

 

 

Figure 3.2: Gastric emptying (A) and mount-to-caecum transit (B) of a high fat test 

meal (1.4 MJ) following a 14-day consumption of a low fat (9 MJ/day) or 

high fat (19.3 MJ/day) diet in healthy male subjects (n = 12).  * vs low fat, 

P < 0.05 (Cunningham et al. 1991a). 

 

In another study, gastric emptying was accelerated following consumption of a high fat 

(55% energy from fat), but not high carbohydrate (62% energy from carbohydrate), test 

meal, after exposure to a hyper-caloric, high fat diet (55% of energy from fat and an 

energy intake of 133%), for 14 days, indicating that the changes in gastric emptying 

following a high fat diet may be nutrient specific (Castiglione et al. 2002).  In healthy 

male subjects, exposure to a high fat, high energy diet (40% of energy from fat, 20.1 

MJ/day) for 14 days attenuated the effects of an intraduodenal lipid infusion (6.3 
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kJ/min) on pyloric pressures, when compared with an isocaloric, low fat diet (11% of 

energy from fat, 11.2 MJ/day) (Boyd et al. 2003), which is likely to reflect changes in 

gastric emptying.  Further, studies using dietary glucose supplementation have 

demonstrated changes in gastrointestinal function over short periods.  For example, in 

healthy lean males, supplementation of the diet with 400 g glucose/day for three days 

accelerated gastric emptying of a glucose drink (68.2 g glucose, 1.07 MJ) (Cunningham 

et al. 1991b).  Therefore, experimentally manipulating the energy content of a diet 

appears to accelerate small intestinal transit and gastric emptying. 

 

3.7.2  Effect of dietary excess on gastrointestinal hormone secretion 

Experimentally-induced overconsumption also appears to affect plasma hormone 

concentrations.  In rats, exposure to a high fat diet (20% energy as fat) for 14 days 

increased the CCK response to an intraduodenal triacylglycerol infusion by about 1.7-

fold (Spannagel et al. 1996).  The sensitivity to exogenous CCK also appears to be 

attenuated in response to a high fat diet (Covasa and Ritter 1998).  In this study, the 

inhibitory effects of an intraperitinal injection of CCK-8 on gastric emptying and energy 

intake were reduced following exposure to a high fat diet (34 or 54% energy as fat) for 

two weeks, when compared with an isocaloric low fat diet (5% energy as fat) (Covasa 

and Ritter 1998).  This suggests that both the secretion and sensitivity to the actions of 

CCK are modulated by a high fat diet.   

 

Only a few studies have investigated the effects of dietary excess on gastrointestinal 

hormones release in humans.  One study demonstrated a modest increase in fasting 

plasma CCK concentrations in healthy humans, following a three-week period on a high 
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fat diet (3.1 ± 0.3 pmol/L), when compared with an isocaloric low fat diet (4.3 ± 0.4 

pmol/L) (Little et al. 2008).  Another study reported increased postprandial CCK 

concentrations in response to a standard breakfast following exposure to the high fat 

diet (58% energy from fat) for 14 days, when compared with the pre-diet condition 

(French et al. 1995).  This suggests a decrease in sensitivity to fat occurs even following 

relatively short periods on high fat diet.  However, the CCK response to intraduodenal 

lipid (2.8 kcal/min), which bypasses the influence of gastric emptying, is not apparently 

affected by exposure to a high fat diet (Boyd et al. 2003).  It is therefore likely that, in 

humans, the increased postprandial plasma CCK response observed following 

consumption of a high fat diet (French et al. 1995) is primarily reflective of more rapid 

gastric emptying (Cunningham et al. 1991a).   

 

The secretion of PYY is also modulated by a high fat diet.  For example, in mice who 

had become obese in response to a high fat diet (60% energy as fat) for 16 weeks, 

plasma PYY concentrations were less, in both the fasting and postprandial states, when 

compared with rats that were maintained on an isocaloric low fat diet (2.6% energy as 

fat) (le Roux et al. 2006).  However, no studies have investigated the effects of dietary 

excess on PYY concentrations in humans.   

 

In rats, a high fat diet for 14 days decreased fasting plasma ghrelin concentrations by ~ 

30%, when compared with rats that were fed a control diet (Beck et al. 2002).  In 

humans, plasma ghrelin has been reported to be decreased following exposure to a 

three-week high fat diet (Robertson et al. 2004).   
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In summary, observations derived from animal and human studies reviewed in this 

section indicate that, although some inconsistencies remain, nutrient-induced 

modulation of gastrointestinal hormones occur following dietary excess, which may 

contribute to increased energy intake, and thereby, facilitate weight gain in the longer 

term. 

 

3.7.3  Effect of dietary excess on appetite and energy intake 

In humans, there is evidence that exposure to a high fat diet also modifies appetite and 

energy intake.  In healthy females, covert manipulation of the dietary fat content for two 

weeks resulted in a ~ 15% and 23% increase in total daily energy intake when 

consuming a high fat diet (45–50% fat), when compared with an isocaloric medium-fat 

diet (30–35% fat) and an isocaloric low fat diet (15–20% fat) respectively (Lissner et al. 

1987) (see Figure 3.3).  Further, French et al. reported that following exposure to a high 

fat diet (58% energy as fat) for a period of two weeks, hunger was increased, and 

fullness decreased, in healthy males who had gained ~ 2 kg of weight (French et al. 

1995).  They also reported a modest increase in food intake from a pre-selected meal, 

and an increase in average daily energy intake (0.66 MJ/day), as measured by food 

diaries, during the two-week period (French et al. 1995). 
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Figure 3.3: Average daily energy intake over two weeks in response to covert 

manipulations of the fat content of the diet in healthy female subjects (n = 

24).  * vs 15–20% and the 30–35% fat diet, P < 0.001 (Lissner et al. 

1987). 

 

3.7.4  Effect of dietary excess on oral fat sensitivity 

Similar to gastrointestinal and appetite responses, oral sensitivity to fat also appears to 

be attenuated following exposure to a high fat diet, and this may be an important 

mechanism mediating changes in energy intake and subsequent weight gain.  A very 

limited number of human studies have investigated the effects of a high fat diet on oral 

fat sensitivity.  One study identified a large diversity in oral sensitivity to fatty acids 

(oleic acid; C18:1), with detection thresholds ranging from 0.02–12 mM (Stewart et al. 

2010; Stewart et al. 2011a).  Although all subjects were able to detect the fatty acids 

across the range, individuals who had significantly lower habitual dietary energy and fat 

intakes, as assessed in two-day food diaries, were more sensitive to C18:1 (defined in 

the study as the ability to detect C18:1 at a concentration of 1.4 mM) than those who 

had greater habitual fat intake (Stewart et al. 2010; Stewart et al. 2011b).  A recent 
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study in humans evaluated the effects of a four-week high fat diet on taste sensitivity to 

C18:1 in lean and overweight/obese subjects.  Oral sensitivity to C18:1 was attenuated 

following the high fat diet in the lean but not obese, suggesting that the 

obese/overweight subjects were ‘adapted’ to high fat exposure, perhaps because of 

differences in habitual fat consumption (Stewart and Keast 2011c).  

 

Thus, it appears that a high fat diet attenuates both oral and gastrointestinal function, 

which may contribute to increased energy intake, and thereby, facilitate weight gain in 

the longer term.   

 

3.7.5  Effects of energy restriction on gastrointestinal function, appetite and energy 

intake 

Since, as described above, overexposure of the small intestine to fat appears to attenuate 

gastrointestinal sensitivity to fat and increase energy intake and subsequent weight gain, 

it is conceivable that dietary restriction may reverse these effects and enhance 

gastrointestinal sensitivity, and thus facilitate appetite suppression.  There has been 

growing interest in understanding the effects of energy restriction on gastrointestinal 

function and energy intake and how weight loss could be achieved by dietary 

restriction.  The current literature relating to the effects of short- and long-term dietary 

restrictions on gastrointestinal motor function, gastrointestinal hormone release, 

appetite, and energy intake will be discussed in the following sections. 
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3.7.5.1  Effects of acute energy restriction on gastrointestinal function, appetite and 

energy intake 

There is some evidence, although it is limited, that acute dietary restriction in healthy, 

lean humans has the capacity to increase the sensitivity of gastrointestinal responses to 

nutrients.  For example, a study evaluated the effects of a short-term fast (four days) on 

gastric emptying in lean and obese subjects (Corvilain et al. 1995).  Gastric emptying of 

a glucose drink was slower after the four-day, when compared with a 12-hour overnight, 

fast in both lean and obese subjects (Corvilain et al. 1995) (see Figure 3.4), suggesting 

that acute caloric restriction may enhance the sensitivity to the actions of intestinal 

nutrients.   

 

 

 

Figure 3.4: Gastric emptying of 75 g of a glucose load (320 mL), in lean (n = 12) and 

obese (n = 11) subjects on a four-day fast versus an overnight fast.  * vs 

overnight fast, P < 0.05 (Corvilain et al. 1995). 
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Doucet et al. evaluated the effects of a short-term (four-day) energy-restricted diet (–

800 kcal per day of an individual’s daily energy intake) on ghrelin concentrations in 15 

healthy male subjects, and reported no change in fasting or postprandial ghrelin 

concentrations following the four-day dietary energy restriction (Doucet et al. 2004).  

Since it has been shown that only a small increase in circulating ghrelin is observed 

when a diet is high in carbohydrate (65%) (Weigle et al. 2003), it is possible that the 

absence of a change in total ghrelin in the study by Doucet et al. (2004) could be 

explained by the relatively high carbohydrate content of the energy-restricted diet used 

(55%). 

 

If short-term dietary restriction has the capacity to enhance the sensitivity of the small 

intestine to the presence of nutrients, for example, the slowing of gastric emptying, it 

may also have the potential to modify other gastrointestinal functions and this will be 

evaluated in the study presented in Chapter 8. 

 

3.7.5.2  Effects of long-term energy restriction on gastrointestinal function 

It is well documented that a number of metabolic and physiological changes occur in 

obese subjects in response to weight loss.  Weight loss improves glycaemic control and 

increases insulin sensitivity by stimulating glucose phosphorylation and glucose 

transport (Williams et al. 2003b).  Conversely, there is evidence that during prolonged 

caloric restriction, adaptive metabolic changes take place, most likely to protect against 

excessive weight loss (Leibel et al. 1995).  For example, resting energy expenditure is 

reduced with weight loss, even after adjustment for loss of lean and fat mass (Heilbronn 

et al. 2006) and hunger is increased, driving increased energy intake (Doucet et al. 
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2003; Anton et al. 2009).  For example, Doucet et al. (2003) found desire to eat and 

hunger perceptions, both measured in a fasting state, to be significantly increased in 

obese individuals after a 15-week weight loss programme involving energy restriction 

(Doucet et al. 2003).  In addition, another study reported desire to eat significantly 

increased after a six-month low calorie diet (Anton et al. 2009).  Such changes could 

explain why adherence to weight loss diets are difficult and why body weight often 

stabilises, or even increases, despite continued adherence of individuals to the 

prescribed weight loss diet (Sjostrom et al. 1998).  Given that such metabolic changes 

occur in response to longer-term dietary restriction and given the importance of the 

gastrointestinal tract in appetite regulation, it is likely that, over time, adaptive changes 

may also take place at oral and gastrointestinal levels that may contribute to increases in 

energy intake and body weight.   

 

There are only a limited number of studies that have evaluated the effects of prolonged 

energy restriction on aspects of gastrointestinal function.  Studies have reported that 

both fasting PYY (Roth et al. 2005), and postprandial GLP-1 (Verdich et al. 2001a; 

Adam and Westerterp-Plantenga 2005), secretion increase following prolonged dietary 

restriction (3–6 months) in obese subjects.  In addition, circulating concentrations of 

ghrelin over a 24-hour period markedly increased after six months of a diet-induced 

weight loss (Cummings et al. 2002), suggesting that ghrelin may play a role in the 

adaptive responses to dietary restriction that limits the amount of weight that may be 

lost while dieting.   
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Thus, in summary, following acute energy restriction, there is evidence of increased 

sensitivity in the gastrointestinal responses to nutrients, whereas longer-term 

adaptations to dietary restriction seek to prevent further weight loss.  How this is related 

to gastrointestinal functions that play a role in energy intake regulation, including 

gastrointestinal motility and hormone release, and thus influences energy intake and 

body weight has not been evaluated comprehensively. 

 

3.8  Conclusion 

Investigation in the area of gastrointestinal function and appetite in the obese is critical, 

as characterisation of changes in the sensitivity of the gastrointestinal tract to the actions 

of nutrients that may occur during periods of energy restriction.  The studies described 

in the subsequent chapters of this thesis have addressed the following hypotheses: 

1) Gastropyloroduodenal motor and gastrointestinal hormonal factors and appetite 

perceptions are major determinants of acute energy intake (see Chapter 5). 

2) Oral ingestion of a nutrient liquid in obese, will be associated with accelerated 

gastric emptying and oro-caecal transit, diminished GLP-1 and comparable GIP, 

secretion, attenuated suppression of appetite and energy intake in whom, 

habitual energy and fat intake will be greater, compared with lean and 

overweight individuals (see Chapter 6).  

3) Gastrointestinal and oral sensitivities to oleic acid are related and sensitivity at 

both locations is compromised in the obese and directly related to fat 

consumption (see Chapter 7). 

4) Acute energy restriction (four days) will increase the sensitivity of the small 

intestine to lipid, resulting in increased stimulation of pyloric pressures and 
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PYY, but greater suppression of ghrelin, as well as reduced appetite and energy 

intake (see Chapter 8). 

5) Acute energy restriction (four days) enhances the effects of duodenal lipid on 

gastrointestinal function and appetite in lean and obese subjects, while following 

prolonged 30% energy restriction (12 weeks), associated with weight loss, these 

effects of energy restriction on gastrointestinal function and appetite would be 

lost in the obese (see Chapter 9).  
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Chapter 4: Subjects and Methodologies 

 

 

4.1  Introduction 

This chapter describes the techniques that were used in the studies presented in Chapters 

6–9.  All techniques were state-of-the-art techniques well established in our laboratory, 

including high resolution manometry for the measurement of APD motility (Heddle et 

al. 1988a), scintigraphy for the measurement of gastric emptying (Collins et al. 1991; 

Collins et al. 1983), radioimmunoassays for the analysis of plasma hormone 

concentrations (Seimon et al. 2009a; Feltrin et al. 2004; Feltrin et al. 2006), visual 

analogue scale (VAS) questionnaires for the assessment of appetite perceptions (Parker 

et al. 2004a), a standardised, cold, buffet-style meal for the assessment of acute energy 

intake (Feltrin et al. 2004), and diet diaries for the assessment of daily energy intake.  

Ascending-series three-alternate forced-choice methodology for the assessment of oral 

fatty acid taste thresholds (Meilgaard et al. 2007) was established in our laboratory in 

2009, in collaboration with Dr Russell Keast and Jessica Stewart, School of Exercise & 

Nutrition Sciences, Deakin University. 

 

4.2  Subjects 

4.2.1  Study subjects 

For all studies, healthy male subjects, aged 18–60 years, were enrolled.  Lean subjects, 

included in the studies described in Chapters 6, 7 and 9, were of normal body weight for 

their height with a BMI of 19–25 kg/m2, overweight subjects, included in the studies
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described in Chapters 6 and 7, had a BMI of 25.1–30 kg/m2, and obese subjects, 

included in the studies described in Chapters 6–9, had a BMI of 30.1–35 kg/m2 and a 

waist circumference of ≥ 102 cm.  In studies where lean, overweight and obese subjects 

were participating subjects were matched for age.  The number of subjects required for 

each study was determined using power calculations based on previous studies as 

outlined in the individual chapters.   

 

4.2.2  Subject recruitment 

Volunteers were recruited from an existing pool of volunteers available in the 

Discipline, through the use of flyers placed regularly on notice boards within the Royal 

Adelaide Hospital and local universities (University of Adelaide, University of South 

Australia and Flinders University) and by advertisements placed in the local Advertiser 

and Messenger newspapers and the Career One website, following the guidelines set by 

the Human Research Ethics Committee.   

 

4.2.3  Exclusion criteria 

Prior to the enrolment in a study, each subject underwent a screening process to 

exclude: 

1) significant gastrointestinal symptoms, disease or surgery 

2) current use of medications that may alter gastrointestinal motor function or 

appetite 

3) epilepsy 

4) cardiovascular or respiratory disease 

5) diabetes mellitus 
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6) any other significant illness as assessed by the investigator 

7) allergy to local anaesthetic 

8) high performance athletes 

9) weight change (increase or decrease) of ≥ 5% of total body weight in the three 

months prior to enrolment in the study 

10) exposure to ionising radiation (from X-ray machines or radioactive substances) 

as part of a research study in the previous 12 months (see Chapter 6) 

11) intake of > 20 g alcohol on a daily basis 

12) smoking. 

 

In addition, healthy lean subjects were required to be unrestrained eaters, as determined 

by a score of ≤ 12 on the eating restraint questionnaire component of the three-factor 

eating questionnaire (Stunkard and Messick 1985) (see Appendix I).  While the degree 

of eating restraint was assessed and recorded in the overweight and obese subjects, it 

was not used as an exclusion criterion, as overweight and obese subjects were expected 

to have some degree of eating restraint. 

 

4.3  Ethics committee approval 

All subjects provided written, informed consent prior to their inclusion in the study and 

were advised that they were free to withdraw from the study at any point.  All subjects 

were reimbursed for the time spent in the laboratory by way of an honorarium ($15 per 

hour for the study assessing gastric emptying using scintigraphy [see Chapter 6] and 

$18 per hour for all studies involving a nasoduodenal catheter [see Chapters 7–9]).  
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All studies were approved by the Royal Adelaide Hospital Ethics Committee and the 

University of Adelaide Human Research Ethics Committee was notified of the 

approval.  One study (described in Chapter 9) was also approved by the CSIRO 

Research Ethics Committee because dietary assessment for this study was conducted at 

CSIRO.  All clinical studies were registered as clinical trials on the Australian New 

Zealand Clinical Trials Registry, prior to commencement of the study. 

 

4.4  Assessment of gastrointestinal motor function 

High resolution manometry and scintigraphy were used to measure gastrointestinal 

motor function.  Manometry was used for the measurement of pressures in the APD 

region (see Chapters 7–9) and scintigraphy to assess gastric emptying, proximal, distal 

and total stomach retention and mouth-to-caecum transit (see Chapter 6).  

 

4.4.1  High resolution manometry 

High resolution water-perfusion manometry is a technique used to measure pressures in 

the gastrointestinal tract (Heddle et al. 1988a).  Pressures in the APD region were 

measured using a 16-channel silicone manometric catheter.    

 

4.4.1.1  Catheter design 

The manometric catheter (3.5 mm outer diameter, Dentsleeve International Ltd, Mui 

Scientific, Ontario, Canada) (see Figure 4.1) consisted of 16 side-holes (0.1 mm in 

diameter) separated by 1.5 cm intervals, for the recording of luminal pressures.  Six 

side-holes (channels 1–6) were positioned in the antrum, a 4.5 cm pyloric sleeve sensor 

(channel 7), with two channels present on the back of the sleeve (channels 8 and 9), was 
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positioned across the pylorus, and seven side-holes (channels 10–16) were positioned in 

the duodenum.  An additional channel (1 mm in diameter) was positioned 11.75 cm 

distal to the pylorus, and this was used for the administration of the intraduodenal 

infusions.   

 

 

 

Figure 4.1: Schematic representation of the manometric catheter incorporating six 

antral and seven duodenal side-holes, a pyloric sleeve sensor and 

duodenal infusion port. 

 

4.4.1.2  Nasoduodenal intubation and manometry 

On the morning of the study, after an overnight fast, the manometry catheter was 

inserted through a nostril into the stomach and allowed to pass into the duodenum by 

peristalsis (Heddle et al. 1988a).  To minimise discomfort during the intubation, local 

anaesthetic gel (Lignocaine 2% Gel Sterile, ORION Laboratories Pty Ltd, Balcatta, 
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Western Australia, Australia) and spray (Co-Phenylcaine Forte Spray, ENT 

Technologies Pty Ltd, Hawthorn East, Victoria, Australia) were applied to the nostril.   

 

The correct position of the catheter, so that the sleeve sensor straddled the pylorus, was 

monitored throughout the study by continuous measurement of the transmucosal 

potential difference (TMPD) (which is ~ –40mV on the most distal antral (channel 6), 

and ~ 0mV on the most proximal duodenal (channel 10), channel (Heddle et al. 1988a).  

For this, an intravenous cannula was placed subcutaneously in the left forearm and 

filled with sterile saline as a reference electrode (Heddle et al. 1988a).  All manometric 

channels were perfused with degassed, distilled water at 0.15 ml/min, except for the two 

TMPD channels (channel 6 and 10), which were perfused with degassed 0.9% saline 

(Heddle et al. 1988a).  Once the catheter was correctly positioned, fasting motility was 

monitored until the occurrence of a phase III of the MMC.  At the end of phase III, a 15-

min baseline was recording during phase I of the MMC, (which is a period of motor 

quiescence), after which, all study interventions began. 

 

4.4.1.3  Data acquisition and analyses 

Manometric pressures were digitised and recorded on a computer-based system, running 

commercially available software (Flexisoft, Oakfield Instruments, Oxfordshire, United 

Kingdom, A/Prof GS Hebbard, Melbourne, Australia, written in Labview 3.1.1 

[National Instruments]) and stored for subsequent analysis.  APD pressures were 

analysed for i) number and amplitude of pressure waves in the antrum and duodenum, 

ii) basal pyloric pressure and number and amplitude of isolated pyloric pressure waves 

(IPPW) and iii) pressure wave sequences (PWS).  Pressure waves in the antrum, pylorus 
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and duodenum were defined by an amplitude ≥ 10 mmHg, with a minimum interval of 

15 seconds between peaks for antral and pyloric waves, and three seconds for duodenal 

waves (Samsom et al. 1998).  Basal pyloric pressure (‘tone’) was calculated for each 

minute by subtracting the mean basal pressure (excluding phasic pressures) recorded at 

the most distal antral channel from the mean basal pressure recorded at the sleeve 

(Heddle et al. 1988b), using custom-written software (Professor A Smout, Department 

of Gastroenterology and Hepatology, University Medical Centre, Amsterdam, 

Netherlands) modified to our requirements.  Pressure waves in the antrum, pylorus and 

duodenum were considered related and defined as PWS, if they travelled between side-

holes at rates of 9–160 mm/s (Samsom et al. 1998).  Pressure waves were characterised 

according to the distance travelled, that is, over two (1.5–< 3 cm), three (3–< 4.5 cm), 

four (4.5–< 6 cm), …, 15 (21–< 22.5 cm) channels, and expressed as the total number 

of waves using custom-written software (by Professor A Smout). 

 

4.4.2  Scintigraphy 

Scintigraphy is the gold-standard technique for the measurement of gastric emptying, 

intragastric distribution and mouth-to-caecum transit, and measures the rate at which a 

radio-labelled meal empties from the stomach to the small intestine, and its transit 

through the intestine, by acquisition of images on a computer, using a gamma camera 

(Genie; GE Healthcare Technologies, Milwaukee, WI) (Collins et al. 1983).  In 

scintigraphic studies, radionuclide markers are incorporated into liquid, solid or semi-

solid meals.  Their course of emptying from the stomach into the small intestine is then 

tracked using the gamma camera, providing a measure for gastric emptying of the meal.  

99mTechnetium (Tc) is the most commonly used label for both solid and liquid meals 
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due to its short half-life of six hours.  99mTechnetium is complexed with sulphur colloid 

to prevent absorption by the gastrointestinal tract, and total body radiation exposure is 

approximately 0.48 mSv.   

 

In order to establish anatomical reference points, which were used to correct for the 

movement of the patients when the study was analysed, two markers (lead-lined plastic 

bottle tops, 1.5 cm in diameter) were taped onto the skin, one situated in the left 

hypochondrium at the end of the ninth rib, the other over the left anterior superior iliac 

spine.  These remained in position for the entire duration of the study.   

 

4.4.2.1  Data acquisition and analyses 

To obtain images, subjects stood with their back against the camera for one min to 

obtain an anterior image and then turn around facing the camera, with their abdomen 

against the gamma camera for one min to obtain a posterior image.  Images were taken 

every 15 min for the first 1.5 hours and then every 30 min for the next 3.5 hours.  Data 

were corrected for subject movement and radionuclide decay, and the geometric mean 

technique of the anterior and posterior data was calculated to correct for attenuation.  

From the acquired images, regions of interest were drawn around the total stomach, and 

gastric emptying curves (expressed as % retention over time) derived.  To evaluate 

intragastric meal distribution, the total stomach region of interest was divided into 

proximal and distal regions, with the proximal region corresponding to the fundus and 

proximal corpus and the distal region corresponding to the distal corpus and antrum 

(Collins et al. 1983).  The time for 50% of the liquid to empty (T50) from the stomach 

was determined from the gastric emptying curve (Collins et al. 1983).  Mouth-to-
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caecum transit was defined as the time from ingestion of the meal to the arrival of the 

head of the meal at the caecum (Collins et al. 1983).   

 

4.5  Assessment of plasma hormone and blood glucose concentrations 

For blood sampling, an intravenous cannula was inserted into an antecubital vein.  

Blood samples were collected in ice-chilled ethylenediaminetetraacetic acid (EDTA)-

treated tubes containing 400 kIU aprotinin (Trasylol; Bayer Australia Ltd, Pymble, 

Australia) per ml blood.  Plasma was obtained by centrifugation of blood samples at 

3200 rpm for 15 min at 4o C.  The plasma samples were then frozen at –70o C for later 

analysis.  Radioimmunoassays were used to measure plasma concentrations of CCK, 

PYY, ghrelin, glucagon-like peptide-1 (GLP-1), GIP and insulin.  All samples from 

individual subjects were always measured in the same run.  For logistical reasons, 

plasma CCK, PYY and ghrelin concentrations were determined in different laboratories 

using two different radioimmunoassays.  For the studies described in Chapters 7 and 8, 

plasma CCK, PYY and ghrelin were determined at the University of Munich, Germany 

and for the study described in Chapter 9, plasma CCK, PYY and ghrelin were 

determined at the Department of Medicine, University of Adelaide, Australia.   

 

4.5.1  Plasma cholecystokinin 

For the studies described in Chapters 7 and 8, plasma CCK concentrations (pmol/L) 

were determined by a sensitive and specific radioimmunoassay, as described (Riepl et 

al. 1996).  In short, the antibody (CH40IX), raised in rabbits, was specifically directed 

to the biologically active site of CCK including the sulphated tyrosyl residue at position 

7 from the C-terminal end and showed no cross-reactivity with unsulphated CCK-8, 
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unsulphated gastrin-17 or unsulphated gastrin-34.  The cross-reactivity to sulphated 

gastrin-17 was less than 1%.  The intra-assay coefficient of variation (CV) was 5.6% 

and the inter-assay CV was 7.2%, with a detection limit of 0.3 pmol/L.   

 

For the study described in Chapter 9, plasma CCK concentrations were measured using 

a previously adapted method (Santangelo et al. 1998).  Samples were extracted in 66% 

ethanol and extracts were dried down and resuspended in assay buffer (50 mM 

phosphate, 10 mM EDTA, 2 g/L gelatin, pH 7.4).  Standards were prepared using 

synthetic sulphated CCK-8 (Sigma Chemical, St Louis, MO, USA), antibody (C2581, 

Lot 105H4852, Sigma Chemical) was added at a working dilution of 1/17,500 and 

sulphated CCK-8 125I-labelled with Bolton and Hunter reagent (Perkin Elmer, Boston, 

MA, USA) was used as tracer.  Samples were incubated for seven days at 4˚C.  The 

antibody-bound fraction was separated by the addition of dextran-coated charcoal 

containing gelatin (0.015 g gelatin, 0.09 g dextran, 0.15 g charcoal in 30 ml assay 

buffer) and the radioactivity determined in the supernatants following centrifugation.  

The intra-assay CV was 7.1% and the inter-assay CV was 17.8%, with a detection limit 

of 1 pmol/L. 

 

4.5.2  Plasma peptide tyrosine tyrosine 

For the studies described in Chapters 7 and 8, immunoreactive total human plasma PYY 

(pmol/L) was measured by a commercially available radioimmunoassay (Linco 

Research, St Charles, MO) by using 125I-labelled bioactive PYY as the tracer and a PYY 

antiserum to determine the concentration of active PYY by the double antibody/PEG 

technique.  The PYY antibody was raised in guinea pigs and recognises both the PYY(1-



Subjects and methodologies  Chapter 4 

63 

 

36) and the PYY(3-36) forms of human PYY; that is, the assay does not distinguish 

between PYY(1-36) and PYY(3-36).  The intra-assay CV was 5.3% and the inter-assay CV 

was 7%, with a detection limit of 10 pg/mL. 

 

For the study described in Chapters 9, plasma PYY was measured by 

radioimmunoassay using an antiserum raised in rabbits (kindly donated by Dr. B Otto, 

Medizinische Klinik, Klinikum Innenstadt, University of Munich, Munich, Germany) 

against human PYY(1-36) (Sigma-Aldrich).  The antiserum showed < 0.001% cross-

reactivity with human pancreatic polypeptide or sulfated CCK-8 and 0.0025% cross-

reactivity with human neuropeptide Y.  Standards (1.6-50 fmol/tube) or samples (200 

µL plasma) were incubated in 200 µl assay buffer (50 mM NaPO4, 10 mM EDTA, 2 

g/L gelatin, 0.1 g/L Na-Azide, pH 7.4) and a 1/12000 dilution of antiserum for 24 hours, 

followed by an incubation with 100 µl of 10000 cpm tracer (NEX3410, Perkin Elmer) 

for 24 hours.  Antibody-bound tracer was separated from free tracer by second antibody 

precipitation, followed by incubation for 2 hours at room temperature and centrifugation 

at 4000 rpm for 20 minutes.  The supernatant was discarded, and the pellets were 

counted in a gamma counter (Brennan et al. 2008).  The intra-assay CV was 6.5% and 

the inter-assay CV was 4.2%, with a detectable limit of 1.5 pmol/L. 

 

4.5.3  Plasma ghrelin 

For the study described in Chapter 8, total plasma ghrelin concentrations (pmol/L) were 

measured by a commercially available radioimmunoassay (Phoenix Pharmaceuticals, 

Mountain View, CA, USA) using 125I-labelled bioactive ghrelin as a tracer and a 

polyclonal antibody raised in rabbits against the C-terminal end of human ghrelin.  No 
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cross-reactivities with any relevant molecules (i.e. secretin, vasoactive intestinal 

peptide, prolactin-releasing-peptide-31, galanin, growth hormone releasing factor, 

neuropeptide Y (NPY), orexin A, orexin B) have been found.  Intra-assay CV was 5.3% 

and inter-assay CV was 13.6%, with a detection limit of 64 pg/mL. 

 

For the study described in Chapter 9, plasma ghrelin concentrations were measured by 

radioimmunoassay with some modifications to the previously published method (Parker 

et al. 2005).  The radiolabel (NEX388) was purchased from Perkin Elmer (Boston, MA, 

USA).  The standard and samples were incubated with the antibody for 3–4 days prior 

to incubating with the radiolabel for a further 24 hours at 4o C.  The intra-assay CV was 

8.5%, the inter-assay CV was 15%, and the detection limit was 40 pg/mL. 

 

4.5.4  Plasma glucagon-like peptide-1 (GLP-1) 

Plasma GLP-1(7-36) amide concentrations were determined in Chapter 6 using an 

antibody supplied by Professor SR Bloom (Hammersmith Hospital, London) which has 

been shown, using chromatography, to measure intact GLP-1(7-36) amide, and it is likely 

that this antibody also binds the degraded form of GLP-1(9-36) amide (Wishart et al. 

1998).  The antibody did not cross-react with glucagon, gastric inhibitory polypeptide, 

or any other gut or pancreatic peptides.  The intra-assay CV was 17% and the inter-

assay CV was 18%, with a detection limit of 1.5 pmol/L. 

 

4.5.5  Plasma glucose-dependent insulinotropic polypeptide 

Plasma GIP concentrations were determined in Chapter 6 using some modification to 

the original method (Wishart et al. 1992).  The standard curve was prepared in buffer 
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rather than extracted charcoal-stripped serum and the radioiodinated label was supplied 

by Perkin Elmer (Boston, Massachusetts, USA).  Both the intra-assay and the inter-

assay CVs were 15%, and the detection limit was 2 pmol/L. 

 

4.5.6  Plasma insulin 

Plasma insulin concentrations (mU/l) were determined in Chapter 6 using ELISA (10-

1113, Mercodia, Uppsala, Sweden).  The intra-assay CV was 2.6%, the inter-assay CV 

was 4.9%, and the detection limit was 1.0 mU/L.  

 

4.5.7  Blood glucose concentrations 

Venous blood glucose concentrations (mmol/L) were determined in Chapter 6, 

immediately by the glucose oxidase method using a portable glucometer (Medisense 

Precision QID; Abbott Laboratories, Bedford, MA).  This technique has a CV between 

2.1 and 5.6%.  The accuracy of this method has been confirmed in our laboratory using 

the hexokinase technique (Horowitz et al. 1991). 

 

4.6  Assessment of appetite perceptions 

Perceptions of hunger, fullness, desire to eat and prospective consumption were 

quantified using a validated VAS questionnaire (Parker et al. 2004b) (see Appendix II) 

(see Chapters 6–9).  The gastrointestinal symptoms, nausea and bloating, were also 

assessed using this questionnaire.  Other perceptions, such as anxiety, happiness and 

drowsiness, were assessed, but not evaluated, to distract the subjects from the main 

purpose of the questionnaire.  Each VAS consisted of a 100-mm horizontal line, where 

0 represented ‘sensation not felt at all’ and 100 represented ‘sensation felt the greatest’.  
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Subjects were asked to place a vertical mark along each horizontal line to indicate the 

strength of the sensation they felt at that particular time point.   

 

4.7  Assessment of dietary intake 

Dietary assessment is used to obtain information on individual dietary intakes.  The 

most commonly used method to quantify acute energy intake following a specific 

treatment, which was a primary outcome in all studies, is ad libitum food intake at a 

buffet meal (see Chapters 6–9) (Feltrin et al. 2004).  For assessment of habitual energy 

intake of individuals, the commonly used methods are food frequency questionnaires 

(see Chapter 6), dietary recalls and diet histories (see Chapter 7) and weighed food 

records in terms of diet diaries (see Chapter 9) (Baghurst and Baghurst 1981).  Food 

frequency questionnaires were used to assess habitual energy intake of individuals over 

a prolonged period (12 months).  Dietary recalls and diet histories were used only to 

estimate recent dietary intake, while weighed food records were used to more precisely 

evaluate short-term dietary intake.  

 

4.7.1  Buffet meal 

Acute energy intake in response to study treatments was assessed in all studies by 

quantifying the amount consumed by a subject at an ad libitum cold, buffet-style meal 

(Feltrin et al. 2004).  The composition of the meal, as well as its energy content (kJ), 

amount (g) and macronutrient content, is detailed in Table 4.1.  The quantities of food 

offered were in excess of what the subject was expected to eat, and subjects were asked 

to consume the meal freely, for up to 30 min. 
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The buffet meal was weighed before and after consumption, to quantify the amount 

eaten (g).  Energy intake (kJ) and macronutrient distribution (%energy from fat, 

carbohydrate and protein) were then calculated using the software programme 

Foodworks (Xyris Software, Version 3.01, Highgate Hill, Queensland, Australia) 

(Brennan et al. 2005). 
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4.7.2  Dietary questionnaire for epidemiological studies 

In the study presented in Chapter 6, a validated dietary questionnaire, developed and 

validated by the Cancer Council, Victoria, was used to characterise eating habits over 

the past 12 months, including habitual energy intake and macronutrient distribution 

(Hodge et al. 2000) (see Appendix III).  It contains questions on the overall frequency 

of fruit and vegetable consumption, and questions on consumption of foods that do not 

fit easily into the frequency format.  The questionnaire also contains three photographs 

of scaled portions for four foods (used to calculate a portion size calibrator) and 

comprises of a food list of 74 items with 10 frequency response options ranging from 

‘Never’ to ‘3 or more times per day’.  The 74 food items are grouped into four 

categories: i) cereal foods, sweets and snacks, ii) dairy products, meats and fish, iii) fruit 

and iv) vegetables.  The questionnaires were analysed by the Cancer Council, Victoria.  

Energy intake (kJ), as well as macronutrient distribution (g and %fat, protein and 

carbohydrate) was quantified.  

 

4.7.3  Diet diaries 

4.7.3.1  Two-day diet recalls 

In the study presented in Chapter 7, recent dietary intake was estimated using a two-day 

dietary recall, during which subjects recalled all foods and beverages consumed the 

previous day and on one weekend day within the previous week (Gibson 1993) (see 

Appendix IV).  To assist in the accurate recall of portion sizes, subjects were provided 

with validated and quantified pictures of food portions for common foods, such as 

cereals, meats, take-away foods, spreads, vegetables, rice, pasta and beverages, that 

were used to calculate the subjects’ energy intake using the weights of the foods 
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provided for each of the portion sizes (University of Otago, Department of Human 

Nutrition, Dunedin, New Zealand) (see Appendix V).   

 

4.7.3.2  Five-day diet diary 

In the study presented in Chapter 9, five-day diet diaries were used to assess the 

habitual diet and determine energy requirements of each subject (see Appendix VII).  

Subjects were instructed to weigh and record all foods and beverages consumed over 

five consecutive days (three week days and two weekend days).  To facilitate this, 

standardised instructions on how to weigh and record all foods and beverages consumed 

over the five days were provided along with digital kitchen scales. 

 

4.7.3.3  Data analysis 

Data collected from the two-day diet recalls and the five-day diet diaries were analysed 

using specialised software (Foodworks® Professional Edition, version 5; Xyris 

Software 1998–2007, Highgate Hill, Queensland, Australia).  Daily energy intake (kJ), 

as well as macronutrient distribution (%fat, protein and carbohydrate) was quantified.  

 

4.8  Dietary restriction 

4.8.1  70% VLCD 

In Chapter 8, to achieve a period of acute energy restriction, subjects were placed on a 

four-day VLCD.  The VLCD involved a 70% reduction in each individual’s energy 

intake, estimated using the Harris Benedict equation and a physical activity factor 

between 1.4–1.5 (indicative of light-to-moderate activity) based on an individual’s self-

reported daily activity (Harris and Benedict 1918).  To aid compliance with the VLCD, 
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subjects were provided with individualised meal plans (Appendix VI), detailing the 

food items and their amount (g) to be consumed at each meal, and the food items 

required for the diet period, including both liquid meal replacements (KicStart, 

Pharmacy Health Solutions Pty Ltd., Frenchs Forest, New South Wales, Australia) and 

standard food items (for example, sliced ham, wholemeal bread, salad items, fruit and 

pre-packaged frozen meals). These were provided to the subjects and ensured a 

‘balanced’ diet complete in micronutrients and protein. Subjects were permitted to 

consume an unlimited quantity of non-caloric beverages, which they were required to 

document (including brand names and quantities), together with all the food consumed, 

throughout the 4 days, in a food diary. Subjects were contacted by phone during day 2 

of the 4-day diet to monitor their progress. 

 

4.8.2  30% energy-restricted diet 

The study presented in Chapter 9 involved a dietary restriction protocol, which was 

designed in collaboration with dieticians from CSIRO, Human Nutrition, Adelaide, 

Australia.  The protocol entailed a 30% reduction of total energy intake, using a 

macronutrient-balanced diet consisting of approximately 50% carbohydrate, 30% fat 

and 20% protein (Luscombe-Marsh et al. 2005).  Subjects were provided with all foods 

and snacks using ready-to-eat meals (Lite n’ Easy®; Ridleyton, South Australia, 

Australia).  Lite n’ Easy® provided for three dietary templates, 1,200, 1,500 and 1,800 

calorie meal plans, which, as part of their overall daily energy intake, also included 375 

ml skim milk to ensure calcium intake in the diet.  In order to match the dietary 

requirements of individual subjects beyond the energy provided by the Lite n’ Easy® 

meal plan, additional energy was provided (for example, fruit and muesli bars).  To 



Subjects and methodologies  Chapter 4 

72 

 

assess dietary compliance, subjects were asked to record any food that was consumed in 

addition to what was provided in a dietary checklist (see Appendix VIII).  Lean 

subjects underwent a four-day period of restriction (to avoid significant weight loss), 

while obese subjects underwent a 12-week period of dietary restriction that would be 

associated with weight loss.  Obese subjects attended fortnightly, individual counselling 

sessions with the dietician to review meal plans and dietary checklists and to record 

body weight. 

 

4.9  Assessment of oral fatty acid detection thresholds 

In the studies presented in Chapter 7 and 9, oral sensitivity to oleic acid (C18:1) was 

determined using a three-alternative forced-choice technique: an established procedure 

to determine taste thresholds (ASTM 2004).  For test sample preparation, C18:1 was 

mixed at varying concentrations (0.02, 0.06, 1, 1.4, 2, 2.8, 3.8, 5, 6.4, 8, 9.8 and 12 mM) 

with long-life non-fat milk (Homebrand, Woolworths, Bella Vista, New South Wales, 

Australia).  To minimise textural cues due to the addition of fatty acid, samples were 

mixed with 5% (w/v) gum acacia (Deltagen, Boronia, Victoria, Australia) and liquid 

paraffin (Faulding Remedies, Virginia, Queensland, Australia) (Chale-Rush et al. 

2007b).  To prevent oxidation of C18:1, samples were mixed with 0.01% w/v EDTA 

(Merck, Darmstadt, Germany).  Samples were homogenised for 30 seconds/100 mL 

solution (Silverson L4RT homogenizer, Longmeadow, Massachusetts, USA) and were 

prepared fresh on the day of testing and served at room temperature.  To prevent 

confounding from non-oral sensory inputs (e.g. smells), tests were conducted with 

subjects wearing nose clips.  All samples were similar in appearance so subjects could 
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not visually distinguish between samples.  The concentrations of fatty acids used were 

not expected to cause irritation (Chale-Rush et al. 2007b). 

 

During testing, subjects were presented with three samples per set: two control samples 

and one ‘odd’ sample containing C18:1.  C18:1 was presented in the samples in 

ascending order of concentration from the lowest (0.02 mM) to the highest (12 mM).  

During each presentation, subjects were asked to identify the odd sample; if they did so 

correctly, they were presented with three more samples, and the C18:1 sample remained 

at the same concentration; if they did not identify the odd sample, they were presented 

with three more samples, and the concentration of the C18:1 sample increased.  Testing 

continued, with the concentration of C18:1 increasing each time the subjects picked 

incorrectly, and ceased once the subject identified the odd sample three consecutive 

times, at a given concentration, and that concentration was defined as the subject’s 

detection threshold. 

 

4.10  Evaluation of gastrointestinal and appetite responses to oral and 

intraduodenal nutrients 

Orally administered nutrients were used to assess gastric emptying, small intestinal 

transit, caecal arrival, gastrointestinal hormones, appetite and energy intake.  

Intraduodenal infusion allowed assessment of gastrointestinal function, appetite and 

energy intake without orosensory and gastric influences such as gastric distension and 

gastric emptying. 
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4.10.1  Oral test meal 

For the study presented in Chapter 6, subjects ingested a liquid meal comprising 500 ml 

(~ 532 kcal) of Ensure® (Abbott Australasia Pty Ltd, Botany, NSW, Australia).  The 

meal was macronutrient balanced, consisting of 15% protein, 60% carbohydrate and 

25% fat with an energy density load of 1 kcal/mL.  The meal was labelled with 20 MBq 

99mTechnetium sulphur colloid to allow scintigraphic evaluation of gastric emptying. 

 

4.10.2  Intraduodenal infusions 

4.10.2.1  Triglyceride emulsion 

Intralipid® (10%, 300 mOsmol/kg, 1.1 kcal/mL, Fresenius Medical Care Australia Pty 

Ltd, Smithfield, NSW, Australia), a commercially available lipid emulsion consisting 

predominantly of long-chain triglycerides extracted from soy bean oil (50 g/500 mL), 

egg phospholipids (1.2 g/500 mL) and glycerol anhydrous (2.25 g/500 mL) was used as 

the nutrient infusion in Chapters 8 and 9.  Intralipid was administered at a rate of 2.86 

kcal/min (2.6 mL/min) for 120 min.  The infusion rate was selected to reflect the 

average rate of gastric emptying in humans (Brener et al. 1983), and has been used 

previously in other studies; hence, there is a body of data on its effects on 

gastrointestinal and appetite in lean individuals (MacIntosh et al. 2001a; Seimon et al. 

2009b).  

 

4.10.2.2  Sodium oleate solution 

The sodium oleate (C18:1) solution, presented in Chapter 7, was prepared by dissolving 

12.9 g of C18:1 with 3 ml 1 M sodium hydroxide (Sigma-Aldrich, St Louis, Missouri, 

USA) in distilled water to a volume of 300 mL (resulting pH: 7.9).  The C18:1 was kept 
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in solution by continuous stirring throughout the study.  The pH of the saline control 

was adjusted to 7.9 by addition of 50 µl 1 M sodium hydroxide solution.  The solutions 

were administered at a rate of 2 ml/min (total volume: 180 ml over 90 min) using a 

volumetric infusion pump (Imed Gemini PC-1, C&A Company, Royse City, TX, USA), 

and C18:1 was delivered at 0.78 kcal/min (2 mL/min) for 90 min (Matzinger et al. 

2000).  The infusion rate was selected on the basis of a previous study in humans, which 

showed significant suppression of energy intake without any adverse effects (Matzinger 

et al. 2000).   

 

4.11  Statistical analysis 

The statistical analysis in each study is described in detail in individual chapters.  Data 

were analysed using commercially available statistical software, SPSS version 17 (SPSS 

Inc, Chicago, Illinois, USA).  Statistical significance was accepted at P < 0.05, and data 

are presented as means ± SEM. 
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Chapter 6: Gastric Emptying, Oro-caecal Transit, Blood 

Glucose, Gut Hormones, Appetite and Energy Intake 

Responses to a Nutrient Liquid Drink in Lean, Overweight 

and Obese Males 

 

 

6.1  Summary 

Signals arising from the gastrointestinal tract contribute to the suppression of appetite 

and energy intake, which are disturbed in obesity.  Although many studies have 

addressed aspects of gastrointestinal function in the obese, many of these have 

substantial limitations, and there is a lack of studies that have evaluated gastric 

emptying and gastrointestinal hormone release in lean, overweight and obese 

individuals as well as previous patterns of nutrient intake concurrently.  Gastric 

emptying is known to be a major determinant of postprandial blood glucose in healthy 

and type 2 diabetes.  We evaluated the hypothesis that in healthy obese males, oral 

ingestion of a nutrient liquid will be associated with accelerated gastric emptying and 

oro-caecal transit, diminished GLP-1 and comparable GIP, secretion, attenuated 

suppression of appetite and energy intake in whom, habitual energy and fat intake will 

be greater, compared with lean and overweight individuals.  We also hypothesised that 

the glycaemic response to the drink would be related to gastric emptying in the obese.  

Twenty lean, 20 overweight and 20 obese subjects were studied once during which time 

gastric emptying, intragastric distribution, oro-caecal transit and gastrointestinal 

hormone release were measured for 5 hours after ingestion of an oral mixed-nutrient 
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drink, Ensure® (500 ml [532 kcal]); energy intake at a buffet lunch was determined 

between t = 300 and 330 min and habitual energy intake was also quantified.  There 

were no differences in gastric emptying, intragastric distribution or oro-caecal transit 

between the lean, overweight and obese groups.  After the drink, blood glucose and 

plasma insulin were greater in the obese (P < 0.05 for both), when compared with both 

the lean and overweight groups; however, there were no differences in plasma GLP-1 or 

GIP concentrations, appetite and energy intake at the buffet meal or habitual energy 

intake between the groups.  In the obese, the magnitude of the rise in blood glucose was 

inversely related to the gastric emptying T50 (r = -0.55, P < 0.55).  This study concludes 

that: i) obesity per se, in the absence of differences in habitual energy intake, has no 

effect on gastric emptying or incretin hormone release; ii) gastric emptying influences 

postprandial blood glucose in the obese.     

 

6.2  Introduction 

Dietary patterns, particularly fat content, have been shown to modify gastrointestinal 

function and thus compromise appetite regulation.  For example, in rats, exposure to a 

high fat diet is associated with attenuation of the suppressive effects of small intestinal 

fat on gastric emptying (Covasa et al. 2000a) and energy intake (Covasa and Ritter 

1999).  Further, although high fat feeding has been reported to increase the CCK 

response to small intestinal oleate (Spannagel et al. 1996), the effects of intraperitoneal 

administration of CCK-8 on gastric emptying (Covasa et al. 2000a) and energy intake 

(Covasa and Ritter 1998; Covasa et al. 2001) in rats are attenuated by high fat feeding, 

indicating that sensitivity to CCK is reduced by an excess dietary fat intake.  A small 

number of short-term studies have investigated the effects of a high fat diet on 
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gastrointestinal function in humans, with inconsistent observations (Cunningham et al. 

1991a; Castiglione et al. 2002; Boyd et al. 2003).  Nonetheless, these studies suggest 

that sensitivity to the effects of fat on gastrointestinal function and energy intake is 

reduced by a high fat diet.  For example, the slowing of gastric emptying by fat 

(Cunningham et al. 1991a), and the stimulatory effects of intraduodenal lipid infusion 

on pyloric pressures (Boyd et al. 2003), have been reported to be attenuated following a 

high fat diet. 

 

There is evidence that human obesity is associated with an increased preference for the 

consumption of fatty foods, when compared with lean individuals, suggesting that fat 

intake is poorly regulated in this group (Mela and Sacchetti 1991; Miller et al. 1990).  

Thus, it is conceivable that gastrointestinal responses to nutrients are diminished in the 

obese; however, evidence is inconclusive and controversial.  For example, gastric 

emptying in obesity has been reported to be similar (Tosetti et al. 1996), faster (French 

et al. 1993) and slower (Maddox et al. 1989) compared with lean humans.  Studies have 

also reported reduced plasma PYY concentrations in response to a meal (le Roux et al. 

2006) in obese compared with lean individuals.  There is evidence that obesity is also 

associated with compromised nutrient sensing, particularly that of fatty acids, in both 

the oral cavity and small intestinal lumen (Stewart et al. 2011a).  Obesity is well 

recognised as a risk factor for a number of disorders, perhaps most importantly type 2 

diabetes (Ford et al. 1997; Resnick et al. 2000).  Gastric emptying is known to be a 

major determinant of postprandial blood glucose in health and type 2 diabetics (Korosi 

et al. 2001; Ma et al. 2011; Schirra et al. 1996; Horowitz et al. 1993; Chaikomin et al. 
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2005; Jones et al. 1995; Vollmer et al. 2008) and relatively more rapid emptying may 

potentially predispose to the development of diabetes (Phillips et al. 1993).   

 

The ‘incretin’ hormones, GLP-1 and GIP, account for the substantially greater incretin 

response to enteral, as opposed to an isoglycaemic, intravenous load (Creutzfeldt 2005) 

and accordingly, play a major role in blood glucose homeostasis.  The ‘incretin-effect’ 

is diminished in type 2 diabetes (Bagger et al. 2011) at least in part because the 

insulinotropic capacity of GIP is markedly diminished (Nauck et al. 1993).  There is 

limited, and inconsistent, information about GLP-1 (Feinle et al. 2002; Ranganath et al. 

1996; Verdich et al. 2001a) and GIP (Elahi et al. 1984; Vilsboll et al. 2003) secretion in 

obesity.  

 

While many studies have addressed specific aspects of gastrointestinal function in the 

obese, many of these have substantial limitations and there is a lack of studies that have 

evaluated changes in gastrointestinal function in lean, overweight and obese individuals 

as well as previous patterns of nutrient intake concurrently.  Accordinly, the aim of this 

study was to evaluate the hypothesis that in healthy obese males, oral ingestion of a 

nutrient liquid will be associated with accelerated gastric emptying and oro-caecal 

transit, diminished GLP-1 and comparable GIP, secretion, and attenuated suppression of 

appetite and energy intake.  We also hypothesised that the glycaemic response to a 

carbohydrate-containing drink would be dependent on the rate of gastric emptying in 

the obese. 
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6.3  Materials and methods 

6.3.1  Subjects 

A total of 60 adult males, including 20 lean (median age (range) 35 (19–60) years, 

median BMI (range) 23.4 (19.3–25) kg/m2), 20 overweight (median age (range) 36 (21–

60) years, median BMI (range) 27.5 (25.8–29.7) kg/m2) and 20 obese (median age 

(range) 37 (22–59) years, median BMI (range) 34.5 (30.7–37.6) kg/m2), were recruited 

according to guidelines described in Chapter 4 (section 4.2).  Only males were included, 

as they may be more sensitive to dietary manipulation than are females (Rolls et al. 

1994) and to avoid any influence of the menstrual cycle (Brennan et al. 2009). 

 

6.3.2  Study protocol 

Each subject was provided with a standardised meal (Beef lasagne, McCain Foods, 

Wendouree, Victoria, Australia), to be consumed on the evening prior to each study at 

2000 h, and were instructed to fast overnight from solids and liquids thereafter before 

attending the laboratory at 0830 h.  Once subjects arrived at the Department of Nuclear 

Medicine and Bone Densitometry, an intravenous cannula was inserted into a forearm 

vein for regular blood sampling.  At t = –15 min, a baseline blood sample was taken and 

a VAS questionnaire, for the measurement of appetite perceptions, as described in 

Chapter 4 (section 4.6), was completed (Parker et al. 2004a).  In order to establish 

anatomical reference points, two markers were taped onto the skin as described in 

Chapter 4 (section 4.4.2).  After a 10 min baseline period (i.e. at t = –5 min), subjects 

ingested the test drink comprising 500 ml (532 kcal) of Ensure® (Abbott Australasia Pty 

Ltd, Botany, NSW, Australia) and labelled with 20 MBq 99mTechnetium sulphur 

colloid, as described in Chapter 4 (section 4.10.1).  At t = 0 min, measurement of gastric 
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emptying commenced, as described in Chapter 4 (section 4.4.2.1).  Radioisotopic 

images, 10 ml blood samples and VAS were obtained at t = 0, 15, 30, 45, 60, 75, 90, 

120, 150, 180, 210, 240, 270 and 300 min.  At t = 300 min, subjects were offered a cold 

buffet-style meal to consume freely for up to 30 min (t = 300–330 min) until 

comfortably full, as described in Chapter 4 (section 4.7.1).  After completion of the 

meal, at t = 330 min, another blood sample was obtained and VAS questionnaire 

completed; subjects were then allowed to leave the laboratory.   

 

6.3.3  Data analysis 

6.3.3.1  Gastric emptying, intragastric distribution and mouth-to-caecum transit 

From the acquired images, gastric emptying, intragastric distribution and oro-caecal 

transit were determined, as described in Chapter 4 (section 4.4.2.1).   

 

6.3.3.2  Blood glucose and plasma GLP-1, GIP and insulin concentrations 

Blood glucose, plasma GLP-1, GIP and insulin were measured on the blood samples, as 

described in Chapter 4 (sections 4.5.4, 4.5.5, 4.5.6 and 4.5.7). 

 

6.3.3.3  Insulin resistance 

The homeostasis model assessment (HOMA) was used to quantify insulin resistance 

(Matthews et al. 1985), as calculated from fasting glucose and insulin concentrations 

using the formula: Insulin resistance (HOMA) = (fasting insulin [mU/L] x fasting 

glucose [mmol/L]/22.5).   
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6.3.3.4  Appetite and energy intake 

Perceptions of hunger and fullness were rated using a validated VAS questionnaire 

(Parker et al. 2004a), as described in Chapter 4 (section 4.6).  Energy intake at the 

buffet meal was assessed, as described in Chapter 4 (section 4.7.1) 

 

6.3.3.5  Habitual energy intake 

Habitual energy intake and macronutrient distribution were quantified using validated 

dietary questionnaires, as described in Chapter 4 (section 4.7.2).  Data from one 

overweight and two obese subjects could not be obtained, as there were errors detected 

in the completed dietary questionnaires from these subjects. 

 

6.3.3.6  Statistical analysis 

All data were analysed using SPSS version 17 (SPSS Inc, Chicago, Illinois, USA).  

Repeated-measures analysis of variance (ANOVA) was used to evaluate total, proximal 

and distal stomach, blood glucose, plasma hormones and insulin, and VAS scores with 

time as within-subject factor and group (lean, overweight and obese) as between-subject 

factor.  AUCs (using the trapezoidal rule) were calculated for blood glucose, plasma 

hormone and insulin concentrations.  One-way ANOVA was used to analyse gastric 

emptying (T50), mouth-to-caecum transit, insulin resistance, AUC for blood glucose, 

plasma hormones and insulin, energy intake (kJ), amount eaten (g) and macronutrient 

distribution (%) from the buffet meal, and habitual energy intake (kJ) and macronutrient 

distribution (g and %) with group as a factor.  Post-hoc comparisons, adjusted for 

multiple comparisons by Bonferroni's correction, were performed where ANOVAs 

revealed significant effects.  Linear regression analysis was used to evaluate 
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relationships between gastric emptying, oro-caecal transit and blood glucose, plasma 

GLP-1, GIP and insulin.  Statistical significance was accepted at P < 0.05.  

 

6.4  Results 

All subjects tolerated the study well, except one lean volunteer who experienced mild 

nausea soon after consumption of the test drink.  The nausea was transient (the subject 

felt better within 30 min and continued with the study) and this subject was, 

accordingly, included.  

 

6.4.1  Gastric emptying, intragastric distribution and oro-caecal transit 

Gastric emptying was non-linear and approximated an overall monoexponential pattern.  

There was no difference in total stomach (see Figure 6.1A) and gastric emptying (T50: 

lean: 85 ± 4; overweight: 77 ± 4; obese: 81 ± 7 min).  Similarly, there was no difference 

in the amount of meal remaining in the proximal (see Figure 6.1B) or distal (see Figure 

6.1C) stomach between the groups.  There was also no difference in oro-caecal transit 

time (lean: 111 ± 11; overweight: 120 ± 15; obese: 86 ± 9 min) between the groups. 

 

6.4.2  Blood glucose and plasma GLP-1, GIP and insulin concentrations 

Blood glucose: There was no difference in baseline glucose concentrations (lean: 5.5 ± 

0.1; overweight: 5.6 ± 0.2; obese: 5.9 ± 0.2 mmol/l) between groups (see Figure 6.2A).  

In all three groups there was a rise in blood glucose (P < 0.001) after the drink and 

blood glucose had returned to baseline by ~ t = 150 min.  There was a significant group 

* time interaction for blood glucose concentrations (P < 0.001), so that blood glucose 
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was greater in the obese, compared with the lean between t = 45 and 90 min (P < 0.05) 

and, compared with the overweight between t = 30 and 45 min and at t = 75 min (P < 

0.05) and tended to be greater at t = 60, 90 and 120 min (all P ≤ 0.08), with no 

difference between the overweight and lean group.  Peak blood glucose was 9.3 ± 0.5 

mmol/L in the obese, 7.8 ± 0.3 mmol/L in the overweight and 8 ± 0.3 mmol/L in the 

lean (P < 0.05)     

 

Plasma GLP-1: There was no difference in baseline GLP-1 concentrations (lean: 21.3 ± 

1.7; overweight: 21.9 ± 1.7; obese: 24.7 ± 2.1 mmol/L) between groups (see Figure 

6.2B).  There was a significant time effect for plasma GLP-1 concentrations (P < 

0.001).  Plasma GLP-1 concentrations increased in all groups promptly following the 

drink.  GLP-1 concentrations increased between t = 15 and 30 min and at t = 60 and 90 

min in lean, between 15 and 90 min in overweight and between t = 15 and 30 min in the 

obese (P < 0.05 for all), with no difference between groups.  In all three groups, plasma 

GLP-1 had reduced baseline by ~ t = 210 min.  

 

Plasma GIP: There was no difference in baseline GIP concentrations (lean: 17.5 ± 1.7; 

overweight: 18.2 ± 1.3; obese: 20.9 ± 2.3 mmol/l) between groups.  There was a 

significant time effect for plasma GIP concentrations (P < 0.001) (see Figure 6.2C).  

Plasma GIP concentrations increased in all groups following the test meal.  GIP 

concentrations increased between t = 15 and 180 min in lean and obese and between 15 

and 120 min in overweight (P < 0.05 for all) with no difference between groups.  At t = 
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300 min there was no difference in plasma GIP concentrations from baseline in all 

groups.   

 

Plasma insulin:  There was a difference in baseline insulin concentrations (lean: 3.7 ± 

0.4; overweight: 4.4 ± 0.5; obese: 10.7 ± 1.5 mmol/l) between groups (P < 0.001), so 

that baseline plasma insulin concentrations were greater in obese, when compared with 

both lean and overweight (P < 0.001 for both).  There was a significant group * time 

interaction for insulin (P < 0.001) (see Figure 6.2D).  Plasma insulin concentrations 

were greater in the obese, when compared with the lean between t = 0 and 300 min (P < 

0.01) and compared with the overweight between t = 0 and 75 min and between t = 180 

and 300 min (P < 0.05), with no difference between the overweight and lean group.  In 

all thress groups plasma insulin had returned to baseline by ~ 180 min.    

 

6.4.3  Insulin resistance  

There were differences in the HOMA (lean: 0.9 ± 0.1; overweight: 1.1 ± 0.1; obese: 2.9 

± 0.5 min), between groups so that HOMA was greater in the obese compared with both 

the lean and overweight (both P < 0.001) with no difference between lean and 

overweight.   

 

6.4.4  Appetite and energy intake 

There was no difference in baseline hunger (lean: 37 ± 7; overweight: 46 ± 8; obese: 38 

± 5 mm) or fullness (lean: 12 ± 3; overweight: 15 ± 5; obese: 11 ± 5 mm), scores 

between groups.  Hunger decreased (P < 0.001) and fullness increased (P < 0.001) after 
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the drink, with no differences between the groups (data not shown).  There was an effect 

of time, but not group, on hunger and fullness (P < 0.001 for both) so that hunger 

increased and fullness decreased progressively in all groups (time effect: P < 0.001).   

 

While there were no differences in energy intake (kJ) or the amount eaten (g) at the 

buffet meal (see Table 6.1), there was a difference on %energy consumed from fat and 

carbohydrate at the buffet meal (P < 0.05 for both) so that %energy from fat was 

slightly greater (P < 0.05) and %energy from carbohydrate was slightly less (P < 0.05), 

in the obese, compared with the lean and overweight group, with no difference between 

the overweight and obese or lean groups (see Table 6.1).  There was no difference in 

%energy from protein consumed at the buffet meal between groups. 

 

6.4.5  Habitual energy intake and macronutrients distribution 

There were no differences in habitual energy intake or macronutrient distribution (g) 

between obese, overweight and lean subjects (see Table 6.2), although there was a trend 

for a difference in %energy from fat (P = 0.058) and carbohydrate (P = 0.06) between 

groups (see Table 6.2).  Obese subjects tended to consume greater %energy from fat (P 

= 0.052) and carbohydrate (P = 0.086) than overweight subjects, with no difference 

between lean and obese or overweight.  There was no difference in %energy from 

protein or between obese, overweight or lean subjects.  

 

6.4.6  Relation between other variables with gastric emptying 

There was no significant relationship between habitual energy intake with the gastric 

emptying T50 in any of the groups.  There was a significant direct relationship between 



Gastric emptying, hormone release and BMI            Chapter 6 

110 

 

the time to peak blood glucose concentrations and T50 with all three groups combined (r 

= 0.73, P < 0.001).  There were inverse relationships between peak blood glucose 

concentrations and T50 in the lean (r = 0.48, P < 0.05) and obese (r = –0.53, P < 0.05), 

but not in the overweight group.  There was a direct relationship between time for blood 

glucose concentrations to peak and T50 (r = 0.73, P < 0.001) and inverse relationships 

between magnitude of the rise in blood glucose at t = 30 (r = –0.55, P < 0.05) and t = 45 

min (r = –0.48, P < 0.05) with T50, in the obese group, but not in the lean or overweight 

group.   

 

There was a significant relationship between magnitude of the rise in GLP-1 

concentrations at t = 30 min and the T50 (r = 0.55, P < 0.05) in the obese, but not in the 

lean or overweight, group.    

 

There was no relationship between magnitude of the rise in GIP concentrations with the 

T50 in any of the groups.    

 

There were a direct relationship between rise in plasma insulin with rise in blood 

glucose at t = 30, 45, 60 and 75 min in the overweight and obese (P < 0.05 for all), but 

not in the lean group. 
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Table 6.1: Energy intake and macronutrient distribution at the buffet meal (t = 300 – 

330 min) following ingestion of 500 ml (532 kcal) of Ensure® test drink in lean, 

overweight and obese subjects 

  Lean Overweight Obese   

Energy intake (kJ) 4717 ± 259 4722 ± 347 5387 ± 328  

Amount eaten (g)  1053 ± 53 1116 ± 75 1105 ± 101  

Fat (g)   41 ± 3 43 ± 4 51 ± 3  

Carbohydrate (g) 127 ± 7 119 ± 8 131 ± 9  

Protein (g) 58 ± 4 61 ± 5 70 ± 4  

Fat (%)   32 ± 1 33 ± 1    36 ± 1*  

Carbohydrate (%) 47 ± 2 44 ± 1    42 ± 3*  

Protein (%) 21 ± 1 22 ± 1   23 ± 2  

Data are means ± SEM (n = 20 lean, 20 overweight and 20 obese). * vs lean, P < 0.05. 
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Table 6.2: Habitual energy and macronutrient distribution in lean, overweight and 

obese subjects, quantified using validated dietary questionnaires 

  Lean Overweight Obese   

Energy intake (kJ) 9627 ± 712 10684 ± 1636 10564 ± 720 

Fat (g)   99 ± 8 109 ± 20 116 ± 8  

Carbohydrate (g) 246 ± 22 260 ± 37 242 ± 19  

Protein (g) 109 ± 7 135 ± 24 133 ± 9  

Fat (%)   37 ± 1 36 ± 2 40 ± 1  

Carbohydrate (%) 42 ± 1 43 ± 2 38 ± 1  

Protein (%) 20 ± 1 21 ± 1 21 ± 1  

Data are means ± SEM (n = 20 lean, 19 overweight and 18 obese).  
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Figure 6.1: Total (A), distal (B) and proximal (C) stomach retention following oral 

ingestion of 500 ml (532 kcal) of Ensure® in lean, overweight and obese 

subjects.  Repeated-measures ANOVA with time as factors was used to 

determine statistical difference.  If ANOVAs revealed significant effects, 

pairwise comparisons were performed.  Data are means ± SEM (n = 20 

lean, 20 overweight and 20 obese). 
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Figure 6.2: Blood glucose (A), plasma GLP-1 (B) GIP (C) and insulin (D) 

concentrations, following oral ingestion of 500 ml (532 kcal) of Ensure® 

in lean, overweight and obese subjects.  Repeated-measures ANOVA 

with time as factors was used to determine statistical difference.  If 

ANOVAs revealed significant effects, pairwise comparisons were 

performed.  Data are means ± SEM (n = 20 lean, 20 overweight and 20 

obese). * vs lean, P < 0.05; # vs overweight P < 0.05. 
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6.5  Discussion 

This study has evauated a number of aspects of gastrointestinal function relevant to 

appetite regulation and glycaemic control in the obese—including gastric emptying, 

oro-caecal transit, gastrointestinal hormone release, appetite and energy intake—

following ingestion of a high nutrient liquid in healthy lean, overweight and obese male 

humans.  We found no differences in gastric emptying, oro-caecal transit, plasma GLP-

1 or GIP, appetite or energy intake between the groups.  Blood glucose and plasma 

insulin concentrations were presumably greater in the obese compared with the lean and 

overweight group, and the postprandial glycaemic response was shown to be related to 

gastric emptying in the obese. 

 

Previous studies on the relationship between gastric emptying and body weight have 

yielded inconsistent observations, with gastric emptying being reported to be 

comparable (French et al. 1993; Zahorska-Markiewicz et al. 1986; Glasbrenner et al. 

1993; Hutson and Wald 1993; Verdich et al. 2000), faster (Tosetti et al. 1996; Gryback 

et al. 1996; Wright et al. 1983; Näslund et al. 1998b) or slower (Maddox et al. 1989; 

Horowitz et al. 1983) in obese, when compared with lean humans.  In most cases, the 

magnitude of reported differences was relatively modest.  These inconsistent results 

may be attributable to, at least in part, differences in meal composition, time of day, 

methodologies used to assess gastric emptying, different criteria used in the selection of 

obese individuals or, perhaps most importantly, other factors that may affect gastric 

emptying, particularly changes in weight or the habitual diet of individual subjects 

(Cunningham et al. 1991a; Cunningham et al. 1991b), which were not quantified in the 

majority of studies.  For example, there is evidence that the effects of fat on 
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gastrointestinal function are attenuated following consumption of a high fat diet so that, 

in healthy males, consumption of a high fat, hyper-caloric diet for 14 days was 

associated with marked acceleration of gastric emptying and mouth-to-caecum transit of 

a high fat solid test meal, when compared with a low fat diet (Cunningham et al. 1991a).  

In our study, there were no differences in habitual fat or energy intake between the lean, 

overweight and obese group; this could well account for the absence of any difference 

in gastric emptying between the groups. 

 

Wright et al. (Wright et al. 1983) reported that gastric emptying of solids was more 

rapid in the obese group than in the non-obese controls, whereas no difference was seen 

in gastric emptying of a low nutrient liquid between the two groups.  The physiological 

mechanisms regulating gastric emptying of liquid meals differ from that of solid meals.  

Gastric emptying of low nutrient liquids is dependent on fundic tone, whereas 

digestable solid gastric emptying is characterised by an initial lag phase, which reflects 

the transit of food from the fundus to the antrum and the time in which solid food is 

reduced to small particles by antral peristalsis.  However, high nutrient liquids and 

semi-solids or solid meals empty from the stomach at comparable rates, after the lag 

phase, which is more prominent for solids (Horowitz and Dent 1991; Collins et al. 

1991), as their emptying is dependent primarily on neural/humoral feedback arising 

from the interaction of nutrients with the small intestine (Lin et al. 1990; Little et al. 

2006b; Meyer et al. 1998).  Hence, our observations are likely to also apply to solid 

meals. 
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We assessed small intestinal transit by caecal arrival of the radioisotopically labelled 

meal, which is known to have limitations.  Nevertheless, there was no suggestion of any 

difference between the groups.  Previous studies have reported that post-prandial GLP-1 

concentrations are reduced in the obese (Näslund et al. 1998b; Ranganath et al. 1996; 

Verdich et al. 2001a; Carr et al. 2010; Lugari et al. 2004), with no differences in GIP 

concentrations between lean and obese (Carr et al. 2010), whereas we found that GLP-1 

and GIP concentrations in lean, overweight and obese subjects were comparable.  GLP-

1 and GIP secretion is highly dependent on the rate of small intestinal carbohydrate 

delivery in healthy (Pilichiewicz et al. 2007a), type 2 diabetic (Ma et al. 2011) and older 

subjects (Vanis et al. 2011). Moreover, in type 2 diabetic and older subjects, at a 

particular glucose load, GLP-1 and GIP concentrations are comparable to that of healthy 

young lean individuals.  A major limitation of the studies referred to above 

(Pilichiewicz et al. 2007a; Ma et al. 2011; Vanis et al. 2011) is that gastric emptying 

was not quantified and our study shows that in obese and overweight subjects, GLP-1 

and GIP secretion is similar to that of lean individuals.  Hence, there is no evidence that 

a diminished incretin hormone response is associated with obesity and the 

predisposition to type 2 diabetes. 

   

Consistent with other studies, blood glucose and plasma insulin concentrations were 

substantially higher in the obese compared with the lean and overweight group 

following oral ingestion and the obese subjects were insulin-resistant as assessed by 

HOMA.  Postprandial blood glucose concentrations are known to be a major 

determinant of gastric emptying, which is affected by elevations of blood glucose within 

the physiological range, such that gastric emptying of both solids and liquids are slower 
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at blood glucose concentrations of 8 mmol/L compared with 4 mmol/L (Schvarcz et al. 

1997).  Hence, it remains possible that gastric emptying would have been relatively 

faster in the obese if they had been studied during euglycaemia.  Our study confirms 

that in the obese, gastric emptying is a determinant of, as well as being determined by, 

the blood glucose concentrations, as is known to be the case in health (Pilichiewicz et 

al. 2007a; Horowitz et al. 1993; O'Donovan et al. 2004) and type 2 diabetes (Jones et al. 

1995; O'Donovan et al. 2004; Pilichiewicz et al. 2003).  We would, accordingly, 

speculate that more obese subjects who have relatively more rapid gastric emptying 

(within the normal range) are at greater risk for post-prandial hypoglycaemia, which 

should be normalised by ‘short-acting’ GLP-1 analogues such as exenatide (Edwards et 

al. 1999).    

 

Surprisingly, we did not observe differences in appetite perceptions and energy intake 

between lean, overweight and obese groups in response to the drink.  It should be 

recognised that in retrospect, the timing of the buffet meal at 5 hours was less than 

optimal given that gastric emptying was complete and glucose, GLP-1 and GIP 

concentrations had returned to baseline; however, there was also no difference in 

habitual energy or macronutrient intake between the groups, which was surprising.  

Accordingly, it would be of interest to study an obese group who did exhibit an 

increased energy and fat intake.  

 

In conclusion, in the absence of differences in habitual energy intake: i) obesity has no 

effect on gastric emptying or incretin hormone release; and ii) gastric emptying is a 

determinant of postprandial blood glucose. 
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Motor, Hormone and Energy Intake Responses to Duodenal 

Fat in Obese Men 
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8.1  Summary 

Previous patterns of energy intake influence gastrointestinal function and appetite, 

probably reflecting changes in small intestinal nutrient-mediated feedback.  Obese 

individuals consume more fat and may be less sensitive to its gastrointestinal and 

appetite-suppressant effects than lean individuals.  To evaluate the hypothesis that in 

obese individuals, the effects of duodenal fat on gastrointestinal motor and hormone 

function, and appetite would be enhanced by a short period on a VLCD.  Eight obese 

males (BMI 34 ± 0.6 kg/m2) were studied on two occasions, before (V1), and 

immediately after (V2), a four-day VLCD.  On both occasions, APD motility, plasma 

CCK, PYY and ghrelin and appetite perceptions were measured during a 120-min 

intraduodenal fat infusion (2.86 kcal/min).  Immediately afterwards, energy intake was 

quantified.  During V2, basal pyloric pressure and the number and amplitude of IPPW 

were greater, while the number of antral and duodenal pressure waves were less, 

compared with V1 (all P < 0.05).  Moreover, during V2, baseline ghrelin was higher, 

and the stimulation of PYY, and suppression of ghrelin, by lipid were greater, with no 

difference in CCK, and hunger and energy intake (kJ; V1: 4378 ± 691, V2: 3634 ± 700) 



Energy restriction, gut function and appetite  Chapter 8 

143 

 

were less (all P < 0.05), compared with V1.  In obese males, the effects of small 

intestinal lipid on gastrointestinal motility and some hormone responses and appetite are 

enhanced after a four-day VLCD. 

 

8.2  Introduction 

The prevalence of obesity has assumed enormous proportions; current projections from 

the WHO indicate that, in 2005, more than 400 million adults were obese worldwide, 

with numbers forecast to rise to 700 million by 2015 (Bray 2003).  Current therapeutic 

interventions for the treatment of obesity are of limited efficacy (Kaplan 2005) and, 

with the exception of bariatric surgery, have largely ignored the pivotal role of the 

gastrointestinal tract in the regulation of appetite (Brennan et al. 2005; Sturm et al. 

2004).   

 

In health, the interaction of nutrients, including fat, with the small intestine has potent 

effects on gastrointestinal function.  When infused at an energy load of 2–3 kcal/min, 

duodenal lipid slows gastric emptying, associated with suppression of antral and 

duodenal pressures waves and the stimulation of phasic and tonic pyloric motility 

(Pilichiewicz et al. 2007b; Cunningham et al. 1991a; Little et al. 2007a), and suppresses 

appetite and subsequent energy intake (Feinle et al. 2003; Feltrin et al. 2007).  The 

effects are mediated, at least in part, by the release of a number of gastrointestinal 

hormones, including CCK, glucagon-like peptide-1 (GLP-1) and PYY, and the 

suppression of ghrelin (Beglinger et al. 2001; Batterham et al. 2002; Schirra et al. 2006; 

Wren et al. 2001b).  Recent evidence suggests that changes in upper gut motility, 

particularly stimulation of the pylorus, may affect energy intake (Seimon et al. 2010). 
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Studies evaluating gastrointestinal function and appetite in the obese have yielded 

inconsistent information.  A recent study in a large cohort found gastric emptying of 

both solids and liquids to be accelerated with increasing body weight (Vazquez Roque 

et al. 2006), while others have reported gastric emptying in the obese to be either similar 

(French et al. 1993) or slower (Maddox et al. 1989), when compared with lean subjects.  

The outcome of gut hormone measurements is also inconsistent, for example, some 

studies have reported lower fasting ghrelin (Vazquez Roque et al. 2006), higher fasting 

(Baranowska et al. 2000) and postprandial (French et al. 1993) plasma CCK, and lower 

postprandial PYY (le Roux et al. 2006), GLP-1 (Verdich et al. 2001a) and ghrelin 

(Cummings et al. 2001), concentrations, while others found no differences in PYY or 

GLP-1 (Vazquez Roque et al. 2006).   

 

There is evidence that previous patterns of energy intake, both in excess and restriction 

and even when sustained for short periods, have the capacity to modify gastrointestinal 

function (Cunningham et al. 1991a; Corvilain et al. 1995; Nguyen et al. 2007), and this 

may be of particular relevance to the inconsistent observations from studies relating to 

gastrointestinal function in the obese given that previous nutrient intake has not been 

quantified.  For example, in healthy subjects a two-week period on a high fat diet 

accelerates gastric emptying of a high fat meal (Cunningham et al. 1991a).  In contrast, 

fasting appears to have the opposite effect, so that following a four-day fast, gastric 

emptying of glucose is slower in both lean and obese subjects (Corvilain et al. 1995).  

The nutrient deprivation of critical illness is associated with delayed gastric emptying 

and increased plasma CCK and PYY (Nguyen et al. 2007), with evidence that increased 
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small intestinal feedback contributes to the slowing of gastric emptying (Chapman et al. 

2005).   

 

We have now evaluated, in obese subjects, the effects of short-term energy restriction 

on antropyloroduodenal motility, plasma CCK, PYY and ghrelin concentrations, and 

appetite and energy intake, in response to administration of intraduodenal lipid.  We 

hypothesised that acute energy restriction would increase the sensitivity of the small 

intestine to lipid, resulting in increased stimulation of pyloric pressures, increased 

stimulation of PYY, but greater suppression of ghrelin, as well as reduced appetite and 

energy intake. 

 

8.3  Methods 

8.3.1  Subjects 

Ten obese males (aged 50 ± 1 (range 45–55) years; BMI 34 ± 0.6 (range 32–36) kg/m2) 

were recruited according to guidelines described in Chapter 4 (section 4.2).  One subject 

failed to adhere to the VLCD prescribed and was excluded from the study, and one 

withdrew for personal reasons; thus, eight subjects completed the study.  Based on data 

derived from a pilot study in four obese subjects (within-subject standard deviation in 

energy intake: 700 kJ), we calculated that a mean difference in energy intake between 

visits of 800 kJ would be detectable with a sample size of eight subjects at 80% power 

and a Bonferroni adjusted significance level of 5%.   
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8.3.2  Study design 

Each subject attended the laboratory on two occasions, once after an overnight fast 

(visit 1, day 1) and again following four days of a VLCD (visit 2, day 6.  On both visits, 

the effects of a 120-min intraduodenal infusion of a lipid emulsion (10% Intralipid, 

Baxter Healthcare, Old Toongabbie, NSW, Australia), infused at 2.86 kcal/min, on APD 

motility, plasma CCK, PYY and ghrelin concentrations, appetite, and energy intake 

were quantified.  

 

8.3.3  Very low calorie diet 

The four-day VLCD involved a 70% reduction of each individual’s energy intake as 

described in Chapter 4 (section 4.8.1). 

 

8.3.4  Study protocol for visits 1 and 2 

On each study day, subjects attended the laboratory at 0830 hours after fasting from 

solid and liquid food from 2200 hours the previous night.  On the morning of each study 

day, subjects were intubated via an anaesthetised nostril, with a 16-channel manometric 

catheter as described in Chapter 4 (section 4.4.1).  An intravenous cannula was inserted 

into a forearm vein for blood sampling.   

 

Once the catheter was positioned correctly, at t = –15 min, a baseline blood sample was 

taken and a validated VAS questionnaire, assessing perceptions of appetite, as described 

in Chapter 4 (section 4.6), administered.  At t = 0 min, intraduodenal infusion of the 

lipid emulsion commenced and was continued for 120 min.  During the infusion, blood 

samples were obtained and VAS completed every 15 min between t = 0–90 min, and 
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again at t = 120 min.  At t = 120 min, subjects were extubated and immediately offered 

a standardised, cold, buffet-style, meal to consume until comfortable full between (t = 

120–150 min) as described in Chapter 4 (section 4.7.1).  A final blood sample was 

collected and VAS completed following the meal (t = 150 min), after which the 

intravenous cannula was removed, and the subject allowed to leave the laboratory. 

 

8.3.5  Measurements 

8.3.5.1  Antropyloroduodenal pressures 

Manometric pressures were digitised and recorded on a computer-based system and 

stored for subsequent analysis.  APD pressures were analysed for i) the number and 

amplitude of pressure waves (PWs) in the antrum and duodenum; ii) basal pyloric 

pressure (pyloric ‘tone’); iii) the number and amplitude of IPPW; and iv) PWS, as 

described in Chapter 4 (section 4.4.1.4). 

 

8.3.5.2  Plasma hormone concentrations 

Blood samples were collected for the measurement of plasma CCK, PYY and ghrelin, 

as described in Chapter 4 (sections 4.5.1, 4.5.2 and 4.5.3).  

 

8.3.5.3  Appetite and energy intake 

Hunger and fullness were assessed using validated VAS, as described in Chapter 4 

(section 4.6).  Energy intake was assessed as described in Chapter 4 (section 4.7.1). 
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8.3.6  Statistical analysis 

Baseline values (‘0’) were calculated as the mean of values obtained at t = –15 and 0 

min for plasma hormone concentrations and VAS, and between t = –15 to 0 min for the 

total number and mean amplitude of antral and duodenal PW, IPPW, basal pyloric 

pressures and total number of PWS.  The number and amplitude of antral and duodenal 

PW were expressed as total, and mean, values, respectively, during the infusion period.  

IPPW and basal pyloric pressure were expressed as mean values of 15 min segments 

between 0 and 120 min (i.e. 0–15, 15–30, … , 105–120 min), and PWS as mean 

numbers of waves travelling over defined distances (i.e. over two (1.5 to < 3 cm), three 

(3 to < 4.5 cm), four (4.5 to < 6 cm), … , 15 (21 to < 22.5 cm) channels).  For IPPW and 

basal pyloric pressures, peak values were also determined by identifying in each 

individual the peak number and amplitude of IPPW as well as peak basal pyloric 

pressure and then calculating mean values.  To evaluate temporal differences in the 

responses during the infusion period, data were divided into two periods, that is, from t 

= 0–60 min and t = 60–120 min.  IPPW, basal pyloric pressures, PWS, plasma 

hormones and VAS were analysed by repeated-measures ANOVA, with time (for PWS, 

distance of propagation) and visit as factors.  Number and amplitude of antral and 

duodenal PW, and energy intake were analysed by one-way ANOVA.  Post-hoc paired 

comparisons, adjusted for multiple comparisons by Bonferroni’s correction, were 

performed when ANOVAs revealed significant effects.  Statistical significance was 

accepted at P < 0.05, and data are presented as means ± SEM. 
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8.4  Results 

All subjects completed the study and tolerated the experimental conditions well.  The 

mean score for eating restraint was 5 ± 0.4 (range 3–7), that is, all were unrestrained 

eaters.  The average 30% daily energy requirement was 3938 ± 63 kJ.  Based on the 

dietary records maintained by the subjects, 100% compliance with the VLCD was 

achieved.  There was no difference in body weight between visit 1 (102.9 ± 2.4 kg) and 

visit 2 (100.8 ± 2.2 kg). 

 

8.4.1  Antropyloroduodenal pressures 

Antral pressures:  There was an effect of treatment on the number (P < 0.05), but not 

the amplitude, of antral PW (see Table 8.1).  The number was much less on visit 2 (by 

~ 69%), compared with visit 1.   

 

Basal pyloric pressures:  During visit 1, basal pyloric pressure increased in response to 

intraduodenal lipid until t = 30 min (time effect: P < 0.05), before decreasing to baseline 

levels by t = 120 min (see Figure 8.1A).  During visit 2, basal pyloric pressure 

increased markedly until t = 45 min (time effect: P < 0.01), after which levels declined.  

Peak basal pyloric pressure was greater on visit 2 (13 ± 2 mmHg), when compared with 

visit 1 (8 ± 2 mmHg) (P < 0.05).  There was an effect of treatment on basal pyloric 

pressure (P < 0.05).  Between t = 0–60 min, basal pyloric pressure was greater during 

visit 2, compared with visit 1 (P < 0.01), while there was no difference between t = 60–

120 min, although mean values were higher during visit 2.   

 



Energy restriction, gut function and appetite  Chapter 8 

150 

 

Isolated pyloric pressures:  The number of IPPW increased in response to lipid until t = 

45 min during visit 1, and until t = 30 min during visit 2 (time effect: P < 0.01 for both), 

and subsequently declined gradually (see Figure 8.1B).  Peak number of IPPW was 

greater on visit 2 (37 ± 3 / 15 min), when compared with visit 1 (28 ± 2 / 15 min) (P < 

0.05).  There was an effect of treatment on the number of IPPW (P < 0.05).  Between t = 

0–60 min, the number of IPPW was greater during visit 2, when compared with visit 1 

(P < 0.05), while there was no difference between t = 60–120 min, although mean 

values were higher during visit 2.  

 

In response to lipid the amplitude of IPPW rose until t = 45 min during visit 1, and until 

t = 30 min during visit 2 (time effect: P < 0.01 for both); the responses then declined 

gradually (see Figure 8.1C).  The peak amplitude of IPPW was greater on visit 2 (63 ± 

7 mmHg), when compared with visit 1 (51 ± 6 mmHg) (P < 0.05).  There was an effect 

of treatment on the amplitude of IPPW (P < 0.01).  Between t = 0–60 min, the 

amplitude of IPPW was higher during visit 2, when compared with visit 1 (P < 0.05), 

while there was no difference between t = 60 and 120 min, although mean values were 

higher during visit 2.   

 

Duodenal pressures:  There was an effect of treatment on the number (P < 0.05), but 

not the amplitude, of duodenal PW (see Table 8.1).  The number was less on visit 2 (by 

~ 36%), when compared with visit 1. 

 

PWSs:  Only PWS that spanned 2–6 channels (1.5–9 cm) were analysed statistically, as 

PWS spanning 7–15 channels were infrequent (no / 120 min: visit 1, 6 ± 1; visit 2, 2 ± 



Energy restriction, gut function and appetite  Chapter 8 

151 

 

1).  There was an effect of treatment on the number of PWS travelling over two (i.e. 1.5 

< 3 cm), three (i.e. 3 < 4.5 cm), four (i.e. 4.5 < 6 cm) and five (i.e. 6 < 7.5 cm) (P < 0.05 

for all), channels, which were substantially less on visit 2 when compared with visit 1 

(see Figure 8.2). 

 

8.4.2  Gastrointestinal hormone concentrations 

Plasma CCK:  There was no difference in CCK concentrations at baseline, or in 

response to lipid, between visit 1 and visit 2 (see Figure 8.3A).  During both visits, 

plasma CCK concentrations increased in response to lipid until t = 30 min (time effect: 

P < 0.001 for both), after which levels decreased and then plateaued.  Immediately after 

the buffet meal (i.e. t = 150 min), plasma CCK concentrations were lower on both visit 

1 and visit 2 (P < 0.05 for both), when compared with pre-meal concentrations (i.e. t = 

120 min), with no difference between visits.   

 

Plasma PYY:  There was no difference in baseline PYY concentrations between visit 1 

and visit 2 (see Figure 8.3B).  There was a treatment-by-time interaction for plasma 

PYY concentrations (P < 0.05).  During both visits, plasma PYY concentrations 

increased in response to lipid across the entire infusion period (time effect: P < 0.01 for 

both).  The magnitude of the rise was greater during visit 2, so that plasma PYY was 

higher between t = 90 and 120 min, when compared with visit 1 (P < 0.05).  

Immediately after the buffet meal, there was no difference in plasma PYY, when 

compared with pre-meal concentrations, during either visit 1 or visit 2.  
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Plasma ghrelin:  There was an effect of treatment on baseline ghrelin concentrations (P 

< 0.001), which were higher on visit 2 when compared with visit 1 (see Figure 8.3C).  

There was a treatment-by-time interaction for plasma ghrelin concentrations (P < 

0.001).  During visit 1, plasma ghrelin decreased, albeit very slightly, between t = 30 

and 120 min, while during visit 2, plasma ghrelin decreased steadily across the entire 

infusion period (time effect: P < 0.05).  The magnitude of the decrease was greater 

during visit 2, so that plasma ghrelin was higher between t = 0–60 min (P < 0.05), when 

compared with visit 1, but there was no difference between visits immediately prior to 

the buffet meal.  Immediately after the buffet meal, there was no difference in plasma 

ghrelin, when compared with pre-meal concentrations, during either visit 1 or visit 2. 

 

8.4.3  Gastrointestinal perceptions 

There was an effect of treatment on baseline scores for hunger (P < 0.001), which were 

higher on visit 2 when compared with visit 1 (see Figure 8.4A).  There was a treatment-

by-time interaction for hunger (P < 0.001).  During visit 1, hunger increased slightly, 

while during visit 2, hunger declined gradually during the entire infusion period (time 

effect: P < 0.05).  Hunger was greater during visit 2 between t = 0–60 min (P < 0.05), 

when compared with visit 1, but there was no difference between visits between t = 75–

120 min.  

 

There were no differences in scores for fullness, bloating (data not shown) or nausea 

(see Figure 8.4B) between visits. 
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8.4.4  Energy intake 

There was an effect of treatment on both the amount eaten (g) and energy intake (kJ) at 

the buffet meal (P < 0.05 for both) (see Table 8.2).  Both were less on visit 2 when 

compared with visit 1, by 8% and 17%, respectively.   
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Table 8.1:  Total number and mean amplitude of antral and duodenal pressure waves 

during 120-min intraduodenal infusion of 10% Intralipid® (2.86 kcal/min) before (visit 

1) and after (visit 2) a four-day VLCD 2.  

  Visit 1  Visit 2 ∆∆∆∆(Visit 2-Visit 1) 

  Antral pressure waves 

      Number  87 ± 29 27 ± 11* –60 ± 23 

     Amplitude (mmHg) 26 ± 2 20 ± 4 –6 ± 4 

   Duodenal pressure waves 

     Number  374 ± 91 238 ± 66* –135 ± 52 

     Amplitude (mmHg)  25 ± 2 25 ± 2 –1 ± 2 

1Data are mean ± SEM (n = 8).  
2One-way ANOVA was used to determine statistical difference.  * P < 0.05 vs visit 1. 
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Table 8.2:  Energy intake at a buffet meal immediately following 120-min 

intraduodenal infusion of 10% Intralipid® (2.86 kcal/min) before (visit 1) and after (visit 

2) a four-day VLCD 2.  

  Visit 1  Visit 2 ∆∆∆∆(Visit 2-Visit 1) 

     Amount eaten (g)  1022 ± 114  943 ± 115* –69 ± 64 

     Energy intake (kJ) 4378 ± 691 3634 ± 700* –744 ± 302 

     Energy (%) 

    Fat  35 ± 2 33 ± 4 –3 ± 3 

    Carbohydrate 44 ± 2 44 ± 5 –1 ± 4 

    Protein  22 ± 2 24 ± 2 2 ± 1 

1Data are mean ± SEM (n = 8).  
2One-way ANOVA was used to determine statistical difference.  * P < 0.05 vs visit 1. 
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Figure 8.1: Basal pyloric pressure (A) and number (B), and amplitude (C), of IPPW 

during 120-min intraduodenal infusion of 10% Intralipid® (2.86 kcal/min) 

before (visit 1) and after (visit 2) a four-day VLCD.  * P < 0.05 vs visit 1.  

Data are mean ± SEM (n = 8).  *Please, note that the data shown in this 

figure refer to means at defined time points, while the peak data reported in 

the text are based on actual peak values in individuals, which did not 

necessarily occur at the same time points across individuals, thus the 

maximum values in the figure do not reflect actual peak values. 
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Figure 8.2: Number of PWS during 120-min intraduodenal infusion of 10% Intralipid® 

(2.86 kcal/min) before (visit 1) and after (visit 2) a four-day VLCD.  * P < 

0.05 vs visit 1.  Data are mean ± SEM (n = 8). 
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Figure 8.3: Plasma CCK (A), PYY (B) and ghrelin (C) during 120-min intraduodenal 

infusion of 10% Intralipid® (2.86 kcal/min) before (visit 1) and after (visit 

2) a four-day VLCD.  * P < 0.05 vs visit 1.  Data are mean ± SEM (n = 8). 
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Figure 8.4: Scores for hunger (A) and nausea (B) during 120-min intraduodenal 

infusion of 10% Intralipid® (2.86 kcal/min) before (visit 1) and after (visit 

2) a four-day VLCD.  * P < 0.05 vs visit 1.  Data are mean ± SEM (n = 

8). 
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8.5  Discussion 

This study evaluated the effects of a four-day VLCD on APD motor, gastrointestinal 

hormone, appetite and energy intake responses to an intraduodenal lipid infusion in 

obese males.  Arguably the most important, and novel, finding of our study is that, 

within the short period of four days, a VLCD increases the ‘sensitivity’ to small 

intestinal fat in obese individuals, associated with enhanced modulation of 

gastrointestinal motor and hormone function and potentiation of the suppression of 

hunger and energy intake. 

 

A number of modifications in gastrointestinal function have been described in the obese 

(French et al. 1993; Baranowska et al. 2000; le Roux et al. 2006; English et al. 2002; 

Vazquez Roque et al. 2006), which may potentially be attributable to gastrointestinal 

adaptation to high nutrient exposure.  Whether such changes are reversible in response 

to energy restriction, has not been investigated in detail, but is conceivable.  That a four-

day fast slowed gastric emptying of glucose in both lean and obese subjects (Corvilain 

et al. 1995), suggests that acute dietary restriction is associated with adaptive changes in 

the mechanisms responsible for the feedback slowing of gastric emptying.  Our data 

relating to gastrointestinal motility support this hypothesis.  Following acute energy 

restriction, the stimulation of tonic and phasic pyloric pressures and the suppression of 

antral and duodenal pressures by small intestinal lipid were markedly greater.  These 

motor events underlie the slowing of gastric emptying induced by small intestinal lipid 

(Heddle et al. 1989), consistent with the reported slowing of gastric emptying following 

a four-day fast (Corvilain et al. 1995).  Moreover, our recent study (Seimon et al. 2010) 
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identified the magnitude of peak pyloric stimulation in response to duodenal nutrients as 

an independent predictor of subsequent energy intake. 

 

PYY and ghrelin, but not CCK, responses were modified following acute dietary 

restriction.  While baseline PYY concentrations were unchanged, its release in response 

to the lipid infusion was increased following the four-day fast.  PYY is released from 

the distal small intestine, indirectly via CCK (Verdich et al. 2000), or directly by the 

interaction of nutrients with PYY-releasing L-cells in the distal small intestine (Aponte 

et al. 1985).  Since CCK concentrations were unchanged, it would suggest that either 

CCK was not involved in enhancing PYY release, or the sensitivity to the actions of 

CCK was enhanced, following the four-day diet.  The difference in PYY concentrations 

between the two study days was evident between 90–120 min, that is, at a time when 

some lipid would almost certainly have reached the distal small intestine.  In this 

context, it is interesting to note that, following the four-day diet, the number of PWS in 

response to lipid was less, suggesting that small intestinal transit, which we did not 

measure, was likely to be slowed, potentially as an effect of elevated PYY (Spiller et al. 

1988).  Interestingly, despite this, PYY release was enhanced, supporting the hypothesis 

that the sensitivity of the small intestine to nutrients was enhanced by the dietary 

intervention.  Plasma ghrelin concentrations are high in the fasting state and suppressed 

following meal ingestion (Cummings et al. 2001) or direct small intestinal lipid infusion 

(Feinle-Bisset et al. 2005), with the latter suggesting that ghrelin suppression arises 

from the small intestine.  In obesity, fasting ghrelin concentrations have been reported 

to be reduced, and postprandial suppression may (English et al. 2002) or may not 

(Cummings et al. 2002) be absent.  In our study, lipid-induced ghrelin suppression prior 
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to the four-day diet was minimal.  In contrast, both fasting ghrelin concentrations and 

the magnitude of suppression during the lipid infusion were greater after the four-diet 

diet, suggesting that even a short period of dietary restriction can modulate ghrelin 

release towards normality.  Not unexpectedly, the higher fasting ghrelin concentrations 

were associated with increased hunger scores, and both fell in parallel during the lipid 

infusion to levels not different from those before the VLCD.  Taken together, it appears 

that of absolute plasma hormone concentrations, only PYY can be implicated in the 

observed reduction in energy intake. 

 

The mechanisms that mediate the gastrointestinal and appetite responses to a VLCD are 

unknown.  Studies in rats have demonstrated that both myenteric neuronal and vagal 

afferent activation, as measured by Fos-like immunoreactivity in the dorsal hindbrain 

and the myenteric plexus, in response to small intestinal oleate, are diminished after a 

period on a high fat diet, compared with an isocaloric low fat diet (Covasa et al. 2000a).  

Further, the high fat diet reduced the expression of Fos-like immunoreactivity in the 

area postrema and the nucleus of the solitary tract in response to exogenous CCK 

(Covasa et al. 2000b), suggesting that, in response to a high fat diet, adaptations occur 

in the transmission processes involved in conveying luminal signals to the brain, 

associated with a reduced sensitivity to small intestinal nutrients.  Thus, it is likely that 

changes in the opposite direction occur in response to dietary restriction. 

 

The focus of our study was to determine whether acute dietary restriction can modify 

gastrointestinal functions associated with energy intake reduction.  If these changes 

were to be sustained over a prolonged period, substantial weight loss would be 
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expected.  However, it is also possible that, during a longer period of energy restriction, 

adaptive mechanisms develop, which aim to preserve energy stores.  For example, 

resting energy expenditure is reduced with weight loss, even after adjustment for loss of 

lean and fat mass (Heilbronn et al. 2006).  Whether adaptive changes in gastrointestinal 

function occur during prolonged weight loss periods accordingly warrants evaluation. 

 

In interpreting our data, it is important to consider the experimental design of the study.  

We administered the lipid emulsion directly into the duodenum, as our primary focus 

was to identify potential changes in small intestinal sensitivity to lipid.  As a result, we 

bypassed potential gustatory and gastric mechanisms and cannot comment on any 

effect(s) on gastric emptying.  These issues should be addressed in subsequent studies.  

Only one dose of intraduodenal lipid, one type of caloric restriction and one period of 

dietary restriction were employed.  Hence, the effects of higher, or lower, lipid loads, 

other macronutrients, and other degrees of energy restriction and duration, are 

uncertain.  The order of the study days was not randomised; however, we have 

demonstrated, that our test meal used to evaluate energy intake, does so reliably when 

administered repeatedly under identical study conditions (Nair et al. 2009), and the 

observed differences in the current study were substantial.  Only male volunteers were 

included to avoid any confounding effects of the menstrual cycle (Brennan et al. 2009) 

and, accordingly, our observations may not be applicable to females, albeit unlikely.  

Finally, our study did not include a control arm to exclude the possibility that the 

observed effects may reflect habituation to the test procedures or a time effect.  

However, this is highly unlikely given that the parameters measured have been shown 

to be highly reproducible in the short term in healthy subjects (Nair et al. 2009), the 
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differences in the responses between study days were substantial and comparable in 

magnitude to the responses observed in our previous studies comparing the effects of 

intraduodenal nutrients with control infusions (Brennan et al. 2007; Riepl et al. 1996; 

Seimon et al. 2009b), and a previous study showed that short-term (four-day) starvation 

in obese subjects had no effect on gastric emptying of saline, while gastric emptying of 

glucose was slowed substantially (Corvilain et al. 1995).  
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Chapter 9: Effects of Acute and Longer-Term Dietary 

Restriction On Antropyloroduodenal Motility, Gut 

Hormones, Appetite and Energy Intake Responses To 

Duodenal Lipid, and on Oral Fat Perception, in Lean and 

Obese Males 

 

 

9.1  Summary 

Short-term dietary restriction enhances gastrointestinal sensitivity to nutrients, and 

thereby, suppresses energy intake.  Whether these acute changes are sustained in the 

longer term is currently unknown.  We aimed to evaluate the hypotheses that: i) acute 

(four days) energy restriction enhances the effects of intraduodenal fat, on 

gastrointestinal function and appetite, in lean and obese subjects, and ii) following 

prolonged (12 weeks) energy restriction, associated with weight loss, these effects of 

acute energy restriction on gastrointestinal function and appetite would be lost in the 

obese.  Twelve obese and 12 lean males participated in the study.  The obese group 

were studied on four occasions, before (visit 1) and after four days (visit 2), four weeks 

(visit 3) and 12 weeks (visit 4) on a 30% energy-restricted diet, while the lean group 

were studied on two occasions, before and after four days on a 30% energy-restricted 

diet.  On all occasions, APD pressures, plasma gastrointestinal hormones and appetite 

were measured during 120-min intraduodenal fat infusion (rate: 2.86 kcal/min).  Energy 

intake was determined immediately afterwards at a buffet lunch.  After acute energy 
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restriction (visit 2) there were no changes in APD motility in either group.  Fasting and 

postprandial plasma CCK concentrations were reduced (both P < 0.05), and fasting and 

postprandial ghrelin increased (both P < 0.05) in lean, but not obese, desire to eat and 

hunger was greater in both groups (both P < 0.05), with no difference in energy intake.  

After prolonged energy restriction, there were no changes in APD motility or hormone 

release, desire to eat and hunger were greater at visit 3, and amount eaten reduced at 

visit 3 and 4, compared to visit 1 (all P < 0.05), with no difference in energy intake.  A 

30% energy-restricted diet diminishes gastrointestinal hormone responses in lean, but 

not obese, which may suggest that obese are less sensitive to this caloric restriction and 

that a greater energy restriction may be necessary in obese to observe changes in 

gastrointestinal function. 

 

9.2  Introduction 

Obesity occurs, in the broadest sense, as a result of energy intake exceeding energy 

expenditure, with the most common cause being the increased availability and 

overconsumption of high fat, energy-dense foods (Mela and Sacchetti 1991; Miller et al. 

1990).  Dietary management remains the most common approach to obesity.  However, 

despite continued adherence to weight loss diets, body weight often stabilises over time, 

or even increases.  This may, at least in part, be due to an adaptive response to reduced 

energy availability.  For example, during dietary restriction, there is a fall in basal 

metabolic rate (Leibel et al. 1995; Elliot et al. 1989), resulting in reduced energy 

requirements and an increase in hunger (Doucet et al. 2003; Anton et al. 2009).   
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Gastrointestinal factors play an important role in the regulation of appetite and acute 

energy intake (Kissileff et al. 1981; Batterham et al. 2002; Seimon et al. 2010).  The 

presence of nutrients in the small intestine has potent effects on gastrointestinal motor 

(Heddle et al. 1988b) and hormonal function (Pilichiewicz et al. 2007b; Little et al. 

2007a), and these, particularly the stimulation of pyloric motility and CCK release, are 

major determinants of the suppression of further energy intake (Seimon et al. 2010).  

There is evidence, albeit inconsistent, that gastrointestinal motor and hormonal 

functions are disturbed in the obese.  For example, studies have reported accelerated 

(Vazquez Roque et al. 2006), normal (Verdich et al. 2000), and delayed (Jackson et al. 

2004) gastric emptying and lower fasting and postprandial PYY and GLP-1 

concentrations (le Roux et al. 2006) in obesity, suggesting reduced sensitivity in obese, 

when compared with lean individuals.  Obese individuals have also been reported to 

have higher dietary energy and fat intakes (Mela and Sacchetti 1991; Miller et al. 1990); 

therefore, it is likely that obese individuals could be ‘desensitised’ to the gastrointestinal 

effects of nutrients, resulting in greater capacity for energy intake.   

 

Previous patterns of energy intake, in excess or restriction, have the capacity to modify 

gastrointestinal function (Cunningham et al. 1991a; Corvilain et al. 1995; Nguyen et al. 

2007; Chapman et al. 2005).  There is evidence that short-term (four days) dietary 

restriction enhances sensitivity to nutrients, which is associated with increased 

gastrointestinal responses and reduced energy intake.  For example, short-term (four 

days) fasting slows gastric emptying of glucose in both lean and obese individuals 

(Corvilain et al. 1995).  In another study, following 70% energy restriction (four-day 

very low calorie diet) an intraduodenal lipid infusion had significantly greater effects on 
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the stimulation of pyloric pressure and PYY, as well as more potent suppression of 

ghrelin, and this was associated with an enhanced suppressive effect of lipid on appetite 

perceptions and energy intake (Brennan et al. 2010).  Taken together, these studies 

suggest that acute caloric restriction enhances sensitivity to the actions of intestinal 

nutrients.  It is currently unknown whether a more moderate and sustainable dietary 

regimen (~ 30% energy restriction) has similar effects on gastrointestinal function and 

energy intake, nor if these effects are sustained over a longer-term period (Sumithran et 

al. 2011).   

 

Given that body weight stabilises following long-term dietary restriction, it is likely 

that, over time, adaptive changes occur in gastrointestinal factors that influence energy 

intake.  For example, while both fasting PYY (Roth et al. 2005), and postprandial GLP-

1 (Verdich et al. 2001a), secretion have been reported to increase following prolonged 

dietary restriction (three to six months) in obese subjects, the levels were less, when 

compared with lean individuals.  Further, both fasting and postprandial ghrelin levels 

are increased by weight loss (Cummings et al. 2002).  These changes could potentially 

reduce dietary compliance as they may lead to increased hunger and contribute to the 

reduction in the effect of dietary restriction on weight loss occurring during long-term 

(~ three months) energy restriction.  However, no studies have evaluated the effects on 

gastrointestinal function over a longer period comprehensively and related these to 

energy intake and weight loss, in obese subjects.   

 

Therefore, the aims of this study were to evaluate the hypotheses that acute energy 

restriction (four days) enhances the effects of duodenal nutrients, on gastrointestinal 
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function and appetite, in lean and obese subjects, while following prolonged energy 

restriction (12 weeks), the effects of energy restriction on gastrointestinal function and 

appetite would be lost in obesity, associated with weight loss. 

 

9.3  Methods 

9.3.1  Subjects 

Twelve healthy lean (median age [range] 44 [35–60] years, median BMI [range] 23 

[20.9–25.7] kg/m2) and 12 obese (median age [range] 49 [24–59] years, median BMI 

[range] 32.6 [30.9–37.6] kg/m2), but otherwise healthy, males were recruited according 

to guidelines described in Chapter 4 (section 4.2).  Only males were included, as they 

have been reported to be more sensitive to dietary manipulation than females (Rolls et 

al. 1994).   

 

9.3.2  Study outline 

The study evaluated the effects of a four-day ‘acute’ (in lean and obese subjects) and a 

12-week ‘prolonged’ (in obese subjects only), 30% energy restriction on gastrointestinal 

motility, hormone release, appetite and energy intake responses to a 120-min 

intraduodenal infusion (2.86 kcal/min) of a long-chain triglyceride emulsion (10% 

Intralipid®, 300 mOsmol/kg, 1.1 kcal/mL, Fresenius Medical Care Australia Pty Ltd, 

Smithfield, NSW, Australia) and on body weight.   
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9.3.3  Determination of energy requirements and diet plans 

To assess habitual diet and determine energy requirements, subjects completed a 

weighed food diary over five consecutive days (three weekdays and two weekend days) 

prior to study commencement as described in Chapter 4 (section 4.7.3.2).   

 

9.3.4  Dietary intervention 

Lean subjects underwent a four-day period of dietary restriction (to avoid significant 

weight loss), while obese subjects underwent a 12-week period of dietary restriction that 

would be associated with weight loss.  Dietary restriction entailed a 30% reduction of 

total energy intake, using a macronutrient-balanced diet as described in Chapter 4 

(section 4.8.2).  

 

9.3.5  Study protocol 

During the dietary intervention period (see Figure 9.1), obese subjects attended the 

laboratory on four occasions, that is, day 0, before starting the diet (visit 1), day 5 (visit 

2), day 29 (visit 3) and day 85 (visit 4), to evaluate the effects of acute (visit 2) and 

prolonged (visits 3 and 4) dietary restriction, while lean subjects attended the laboratory 

on two occasions, that is, on day 0 (visit 1) and day 5 (visit 2), to evaluate the effects of 

acute dietary restriction on gastrointestinal function and energy intake in response to 

duodenal nutrients.  In addition, obese subjects underwent fortnightly counselling 

sessions on days 13, 27, 41, 55 and 69.  Following the 12-week period of dietary 

restriction, obese subjects received standardised, and structured, advice on how to 

continue with a balanced diet, as outlined by Australian Healthy eating guidelines 

(Appendix IX). 
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9.3.6  Study day protocol for visits 1–4 

Subjects were provided with a standardised meal (Beef lasagne, McCain Foods, 

Wendouree, Victoria, Australia), for dinner on the evening prior to each study.  On each 

of the study visits 1–4, subjects attended the laboratory, at 08.30 hours after an 

overnight fast (14 hours from solids and liquids).  A silicone rubber manometry catheter 

incorporating 16 channels (Dentsleeve International Ltd, Ontario, Canada) was inserted 

through an anaesthetised nostril as described in Chapter 4 (section 4.4.1).  An 

intravenous cannula was then inserted into a forearm vein for regular blood sampling. 

 

Once the catheter was positioned correctly, at t = –15 min, a baseline blood sample was 

taken and the subject completed a VAS questionnaire, for the assessment of appetite 

perceptions (Parker et al. 2004b), as described in Chapter 4 (section 4.6).  At t = 0 min, 

duodenal infusion of lipid (rate: 2.86 kcal/min, reflecting the average rate of gastric 

emptying in humans) commenced for 120 min as described in Chapter 4 (section 

4.10.2.1).  During the infusion, 10 ml blood samples were collected, and VAS 

completed, every 15 min for the first 60 min (i.e. 15, 30, 45 and 60 min) and then at t = 

90 and 120 min.  At t = 120 min, the infusion ceased and the subject was extubated and 

offered a cold, buffet-style meal to consume until comfortably full (between t = 120 and 

150 min) as described in Chapter 4 (section 4.7.1).  After ingestion of the meal, at t = 

150 min, another blood sample was taken and VAS completed.  Thereafter, the subject 

was allowed to leave the laboratory. 
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9.3.7  Data analysis 

9.3.7.1  Antropyloroduodenal pressures 

APD pressures were digitised and recorded on a computer-based system, and analysed 

for i) number and amplitude of antral pressure waves (PWs); ii) number and amplitude 

of IPPW; iii) basal pyloric pressure; and iv) number and amplitude of duodenal PW, as 

described in Chapter 4 (section 4.4.1.4). 

 

9.3.7.2  Gastrointestinal hormone concentrations 

Blood samples were collected for the measurement of plasma CCK, PYY and ghrelin, 

as described in Chapter 4 (section 4.5.1, 4.5.2 and 4.5.3).  The results of the PYY 

analysis are not yet available. 

 

9.3.7.3  Appetite, energy intake and habitual dietary intake 

Appetite perceptions, including hunger, fullness and desire to eat, were assessed using a 

validated VAS questionnaire (Parker et al. 2004b), as described in Chapter 4 (section 

4.6).  Energy intake in response to intraduodenal lipid was quantified from the amount 

eaten at the buffet meal, as described in Chapter 4 (section 4.7.1).  Habitual dietary 

intake was assessed using five-day diet diaries, as described in Chapter 4 (section 

4.7.3.2).   

 

9.3.8  Statistical analysis 

All data were analysed using SPSS version 17 (SPSS Inc, Chicago, Illinois, USA).  For 

missing data (for two subjects, data from t = 60 and 75 min after commencement of the 
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lipid infusion) the last measured data value was carried forward.  Baseline values for 

VAS and hormone concentrations were calculated as the means of values at t = –15 min 

and t = 0 min.  Baseline values for basal pyloric pressures and IPPW were obtained 

from the means of values between t = –15 and 0 min.  During the 120-min infusion 

period, antral and duodenal PW were expressed as total numbers and mean amplitudes, 

which were used to calculate the MI (Camilleri and Malagelada 1984), while IPPW 

were expressed as total number and amplitude and basal pyloric pressures were 

expressed as AUCs over the 120-min infusion period.  AUCs were calculated (using the 

trapezoidal rule) amplitude of IPPW and basal pyloric pressures. 

 

Repeated-measures ANOVA were used to evaluate total number and amplitude of 

IPPW, basal pyloric pressures, plasma hormones and VAS scores with time and visit as 

factors.  One-way ANOVA was used to analyse, MI for antral and duodenal pressures, 

energy intake (kJ), amount eaten (g) and macronutrient distribution (%) from the buffet 

meal and body weight and waist circumference.  Post-hoc comparisons, adjusted for 

multiple comparisons by Bonferroni’s correction, were performed where ANOVAs 

revealed significant effects.  Differences between lean and obese groups in number of 

IPPW, basal pyloric pressures, plasma hormones, VAS scores during the acute dietary 

restriction period were analysed using repeated-measured ANOVA with group (lean 

and obese) as between-subject, factors.  MI for antral and duodenal pressures, energy 

intake and macronutrient distribution from the buffet meal between lean and obese 

subjects, were compared using independent samples t-tests.  Statistical significance was 

accepted at P < 0.05. 

 



Acute and prolonged dietary restriction and gut function Chapter 9 

174 

 

9.4  Results 

9.4.1  Habitual energy intake and macronutrient distribution 

There were no differences in reported habitual energy intake or amount (g) of fat or 

carbohydrate consumed between the lean and obese groups.  There was a significant 

difference in the amount (g) of protein consumed (see Table 9.1).  The obese group 

consumed greater amounts of protein when compared with the lean group (P < 0.05).  

There were no differences in the amount (%) of fat, carbohydrate or protein consumed 

between the groups.  

 

9.4.2  Part 1: Effects of acute dietary restriction in the lean and obese 

The lean and obese subjetcs complied with the acute 30% dietary restriction period.  All 

subjects tolerated the acute experimental conditions well. 

 

9.4.2.1  Body weight and waist circumference 

There was a significant effect of visit on body weight in the lean (visit 1: 76 ± 2 kg; visit 

2: 75 ± 2 kg; P < 0.01) and obese (visit 1: 106 ± 4 kg; visit 2: 104 ± 3 kg), group, and 

weight circumference in the obese (visit 1: 114 ± 2 cm; visit 2: 111 ± 2 cm), but not the 

lean (visit 1: 86 ± 2 cm; visit 2: 86 ± 1 cm), group.  

 

9.4.2.2  Antropyloroduodenal pressures 

Antral and duodenal pressures:  There was no effect of visit, or group, on the MI of 

antral or duodenal pressure waves (see Table 9.2). 
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IPPW:  There were no differences in baseline values between visits in the lean (visit 1: 

0.3 ± 0.1; visit 2: 0.5 ± 0.5) or the obese (visit 1: 0 ± 0; visit 2: 0 ± 0), group.  There was 

no effect of visit on total number, or amplitude, of IPPW in either the lean or obese 

group (see Table 9.2).  There was no difference in the total number, or amplitude, of 

IPPW between the lean and obese group on visit 1 or visit 2. 

 

Basal pyloric pressures:  There were no differences in baseline values between visits in 

the lean (visit 1: –0.6 ± 1; visit 2: –1 ± 1.6) or obese (visit 1: 1 ± 3; visit 2: 2 ± 3), group.  

There was a trend for an effect of visit on the AUC of basal pyloric pressures, in the 

lean (P = 0.09), but not the obese (see Table 9.2), group, such that, the AUC of basal 

pyloric pressures tended to be greater on visit 2 compared with visit 1 in the lean group 

(P = 0.09).  There was no difference in the AUC of basal pyloric pressures between the 

lean and obese group at visit 1.  However, on visit 2, AUC of basal pyloric pressures 

was greater in the lean, when compared with the obese group (P < 0.05).    

 

9.4.2.3  Gastrointestinal hormones 

Plasma CCK concentrations:  There was a small, but significant, difference in baseline 

CCK concentrations between visits in the lean (visit 1: 2.3 ± 0.3 pmol/L; visit 2: 1.9 ± 

0.2 pmol/L; P < 0.05), but not the obese (visit 1: 2.9 ± 0.7 pmol/L; visit 2: 2.6 ± 0.8 

pmol/L), group.  There was a visit * time interaction for plasma CCK concentrations in 

the lean group (P < 0.01) (see Figure 9.2A).  Plasma CCK concentrations were lower 

between t = 0 and 120 min on visit 2 compared with visit 1 (P < 0.05).  In the obese 

group, there was an effect of time (P < 0.01), but not visit, for plasma CCK 

concentrations (see Figure 9.2A).  Plasma CCK concentrations increased in response to 
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lipid during all visits, peaking at ~ 30 min, after which time concentrations plateaued.  

There was no difference in CCK concentrations between the lean and obese group on 

visit 1 or visit 2.  

 

Plasma ghrelin concentrations:  There was a significant difference in baseline ghrelin 

concentrations between visits in the lean (visit 1: 2063 ± 221 pg/mL; visit 2: 2317 ± 241 

pg/mL; P < 0.05), but not the obese (visit 1: 1321 ± 242 pg/mL; visit 2: 1254 ± 224 

pg/mL), group.  There was a visit * time interaction for plasma ghrelin concentrations in 

the lean group (P < 0.05) (see Figure 9.2B).  Plasma ghrelin concentrations were 

greater between t = 0 and 30 min and at t = 60 min on visit 2 compared with visit 1 (P < 

0.05).  In the obese group, there was an effect of time (P < 0.01), but not visit, for 

plasma ghrelin concentrations (see Figure 9.2B).  Ghrelin concentrations decreased 

slightly in response to lipid during all visits.  There was a significant difference in 

baseline plasma ghrelin concentrations between visits 1 (P < 0.05) and visits 2 (P < 

0.01) in the lean and obese group.  There was a visit * group interaction for ghrelin 

concentrations (P < 0.05).  Plasma ghrelin was greater during visit 1 and visit 2 in the 

lean group, compared with visit 1 and visit 2 in the obese group (both P < 0.05).  The 

magnitude of ghrelin suppression (i.e. ghrelin at t = 0 min – ghrelin at t = 120 min) was 

greater at visit 2 (P < 0.001) and tended to be greater at visit 1 (P = 0.07), in the lean, 

when compared to the obese group. 

 

9.4.2.4  Appetite perceptions 

Desire to eat:  There was a difference in baseline scores for desire to eat between visits 

in the lean (visit 1: 45 ± 8; visit 2: 64 ± 8), but not the obese (visit 1: 38 ± 6; visit 2: 51 
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± 8), group.  There was a significant effect of visit on desire to eat in the lean and obese 

group (P < 0.05 for both) (see Figure 9.3A).  Desire to eat was greater in both the lean 

and obese group on visit 2 compared with visit 1 (P < 0.05).  There was no difference in 

desire to eat scores between the lean and obese group on visit 1 or visit 2.   

 

Hunger:  There were differences in baseline scores for hunger between visits in the lean 

(visit 1: 34 ± 8; visit 2: 59 ± 7; P < 0.01), but not the obese (visit 1:32 ± 6; visit 2: 44 ± 

8) group.  There was a visit * time interaction for hunger scores in the lean (P < 0.05), 

but not the obese group (see Figure 9.3B).  Hunger was greater on visit 2 between t = 

30 and 60 min (P < 0.05), and tended to be greater at t = 15 min (P = 0.08), when 

compared with visit 1, in the lean group.  There was a trend for an effect of visit on 

hunger in the obese group (P = 0.052), such that hunger tended to be greater on visit 2, 

when compared with visit 1 (P = 0.08).  There was no difference in hunger scores 

between the lean and obese group on visit 1 or visit 2 or in magnitude suppression 

between the lean and obese group on visit 1 or visit 2.  

 

There were no effects of visit, or group, on fullness, nausea or bloating (data not 

shown).  

 

9.4.2.5  Energy and macronutrient intake 

There was no effect of visit on energy intake, amount of food consumed (g), protein or 

fat (g) intake from the buffet meal in lean or obese (see Table 9.3).  There was an effect 

of visit on carbohydrate intake (g) in the obese (P < 0.05), but not the lean group.  

Carbohydrate intake was reduced following the energy restriction, when compared with 
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visit 1, in the obese group.  There was an effect of visit on %energy from carbohydrate 

intake in the lean group (P < 0.05) and a trend in the obese group (P = 0.08), with no 

difference in %fat or %protein intake in either the lean or obese group.  There was no 

effect of visit on energy intake, amount eaten or protein and carbohydrate intake (g or 

%) during the buffet meal between the lean and obese group.  There was a trend for an 

effect of visit for fat (g and %).  Fat intake tended to be greater in the obese group 

during visit 1 (P = 0.07) and visit 2 (P = 0.06), when compared with the lean group.    

 

9.4.3  Part 2: Effects of prolonged dietary restriction in the obese 

The obese subjects complied with the prolonged dietary restriction period (28.8%) 

except for three subjects who had a dietary restriction of 16%, 18% and 20%.  All 

subjects tolerated the prolonged experimental conditions well, except for two obese 

subjects, one who vomited at 75 min after commencement of the lipid infusion during 

visit 4, and one who experienced diarrhoea 60 min after commencement of the lipid 

infusion during visit 3, at which time the infusion was discontinued.   

 

9.4.3.1  Body weight and waist circumference 

There was a significant effect of visit on body weight and waist circumference (P < 

0.001 for both).  Body weight and waist circumference were significantly less on visits 

3 (100 ± 3 kg; 109 ± 2 cm) and 4 (96 ± 3 kg; 103 ± 2 cm), when compared with visit 1 

(106 ± 4 kg; 114 ± 2 cm) (P < 0.01 for all), and less on visit 4, when compared with 

visit 3 (P < 0.01).   
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9.4.3.2  Antropyloroduodenal pressures 

Antral and duodenal pressures:  There was no effect of visit on the MI of antral 

pressure or duodenal waves (see Table 9.2).   

 

IPPW:  There were no differences in baseline values between visits (visit 1: 0 ± 0; visit 

3: 0 ± 0; visit 4: 0 ± 0).  There was no effect of visit on the total number, or amplitude, 

of IPPW (see Table 9.2).     

 

Basal pyloric pressures:  There were no differences in baseline values between visits 

(visit 1: 1 ± 3; visit 3: –0.3 ± 2; visit 4: –2 ± 0.3).  There was a trend for an effect of 

visit on AUC of basal pyloric pressures (P = 0.08) (see Table 9.2).   

 

9.4.3.3  Gastrointestinal hormones 

Plasma CCK concentrations:  There were no differences in baseline concentrations 

between visits (visit 1: 2.9 ± 0.7 pmol/L; visit 3: 2.6 ± 0.6 pmol/L; visit 4: 2.6 ± 0.6 

pmol/L).  There was an effect of time (P < 0.01), but not visit, for plasma CCK 

concentration (see Figure 9.2C).  Plasma CCK concentrations increased in response to 

lipid during all visits, peaking at ~ 30 min, after which time concentrations plateaued.   

 

Plasma ghrelin concentrations:  There were differences in baseline concentrations 

between visits (visit 1: 1321 ± 242 pg/mL; visit 3: 1513 ± 265 pg/mL; visit 4: 1502 ± 

246 pg/mL) (P < 0.05), although pairwise comparisons revealed no significant 

difference between visits.  There was an effect of time (P < 0.01), but not visit, for 
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plasma ghrelin concentration (see Figure 9.2D).  Plasma ghrelin concentrations 

decreased in response to lipid during all visits. 

 

9.4.3.4  Appetite perceptions 

Desire to eat:  There were differences in baseline scores between visits (P < 0.001).  

Baseline desire-to-eat scores were greater at visit 3 (60 ± 8, P < 0.01) and 4 (62 ± 9, P < 

0.05) when compared with visit 1 (38 ± 6), with no differences between visit 3 and visit 

4.  There was a significant effect of visit on scores for desire to eat (P < 0.05) (see 

Figure 9.3C).  There was a trend for desire to eat to be greater at visit 3, when 

compared with visit 1 (P = 0.054) with no differences between visit 1 and visit 4 or 

between visit 3 and visit 4.   

 

Hunger:  There were differences in baseline scores between visits (P < 0.01).  Baseline 

hunger scores were greater at visit 3 (56 ± 9, P < 0.01), when compared with visit 1 (32 

± 6), with no difference between visit 1 and visit 4 (58 ± 11) and visit 3 and visit 4.  

There was a significant effect of visit for hunger scores (P < 0.05), although pairwise 

comparisons revealed no significant differences (see Figure 9.3D). 

 

There were no effects of visit on fullness, nausea or bloating (data not shown).  

 

9.4.3.5  Energy and macronutrient intake 

There was a trend for a significant effect of visit on energy intake (P = 0.06) and protein 

intake (g) (P = 0.06), a significant effect of visit on the amount of food consumed (g) (P 

< 0.01) and % and amount (g) of carbohydrate intake (P < 0.05), with no difference in 
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fat intake (g) between visits during the buffet meal (see Table 9.3).  The amount of food 

consumed was significantly reduced during visit 3 and 4 (for both P < 0.05), when 

compared with visit 1, with no differences between visit 3 and 4.  Carbohydrate intake 

was reduced during visit 4 (P < 0.05) compared with visit 1, with no difference between 

any of the other visits.  There were no differences in %fat or protein between visits.  
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Table 9.1: Habitual energy intake and macronutrient distribution in lean and obese1. 

    LEAN  OBESE  

Energy intake (kJ)  10456 ± 636  10705 ± 460 

Amount eaten (g) 2581 ± 228   2955 ± 185   

Fat (g) 100 ± 7  98 ± 6   

Protein (g) 105 ± 6  123 ± 42   

CHO (g) 267 ± 25  257 ± 16   

Fat (% TEI) 21 ± 1  21 ± 1   

Protein (% TEI) 23 ± 2   26 ± 1               

CHO (% TEI) 56 ± 2  53 ± 2  

1Data are means ± SEM, n = 12 lean and 12 obese subjects.  CHO, carbohydrates; TEI, 

total energy intake.  
2Significantly different from lean, group effect: P<0.05 (repeated-measures ANOVA).   

There were no significant interactions or main effects on energy intake or the amount of 

fat or carbohydrate (g), or the %energy from fat, carbohydrate or protein (repeated-

measures ANOVA).  
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Table 9.2: Antral and duodenal motility indices during 120-min intraduodenal infusion 

of 10% Intralipid (2.86 kcal/min) on day 0 (visit 1), day 5 (visit 2) (lean and obese), day 

29 (visit 3) and day 85 (visit 4) (obese only), on a four-day, for lean, and 12-week, for 

obese, 30% energy-restricted diet1.  

    VISIT 1 VISIT 2 VISIT 3 VISIT 4 

Lean 

Antral MI (mmHg) 6.6 ± 0.5  6.9 ± 0.4 

Duodenal MI (mmHg) 8.0 ± 0.4  8.4 ± 0.3 

Total number IPPW 125 ± 29  179 ± 44 

AUC Amp IPPW (mmHg) 3848 ± 971  5272 ± 1200 

AUC BPP (mmHg) 247 ± 115  453 ± 121 

 

Obese 

 Antral MI (mmHg)  5.7 ± 0.8  7 ± 0.3    6.6 ± 0.4   6.3 ± 0.3 

 Duodenal MI (mmHg)  8.3 ± 0.4   8.6 ± 0.3   8.1 ± 0.2 8.1 ± 0.2 

 Total number IPPW 167 ± 32   149 ± 25   191 ± 26 168 ± 22 

 AUC Amp IPPW (mmHg) 3841 ± 730    5024 ± 804  5553 ± 979      4771 ± 572 

 AUC BPP (mmHg) 204 ± 93    129 ± 1183   230 ± 132  352 ± 91 

1Data are means ± SEM, n = 12 lean and 12 obese subjects.  MI, motility index; AUC, 

area under the curve; BPP, basal pyloric pressures; Amp, amplitude.  

There was no significant effect of visit for antral or duodenal MI, number or amplitude 

or IPPW and basal pyloric pressures (repeated-measures ANOVA).  
3Significantly different from visit 2 lean, group effect: P<0.05 (independent sample t - 

test).   
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Table 9.3: Energy and macronutrient intake from the buffet meal following a 120-min 

intraduodenal infusion of 10% Intralipid (2.86 kcal/min) on day 0 (visit 1), day 5 (visit 

2) (lean and obese), day 29 (visit 3) and day 85 (visit 4) (obese only), on a four-day, for 

lean, and 12-week, for obese, 30% energy-restricted diet1. 

    VISIT 1 VISIT 2 VISIT 3 VISIT 4 

Lean 

Energy intake (kJ)  4370 ± 376  4199 ± 471 

Amount eaten (g) 1073 ± 88  974 ± 124 

Fat (g) 35 ± 4  37 ± 4 

Protein (g) 53 ± 4  55 ± 7 

CHO (g) 122 ± 11  108 ± 13 

Fat (% TEI) 30 ± 1  33 ± 1 

Protein (% TEI) 22 ± 2  22 ± 1 

CHO (% TEI) 48 ± 2  45 ± 22 

 

Obese 

 Energy intake (kJ)  4579 ± 436  4306 ± 459  3854 ± 502  4146 ± 505 

 Amount eaten (g) 1037 ± 109  966 ± 113 798 ± 1072  839 ± 1102 

 Fat (g) 41 ± 5  42 ± 5 36 ± 5  41 ± 5 

 Protein (g) 58 ± 6  55 ± 6 49 ± 6  56 ± 6 

 CHO (g) 119 ± 11  103 ± 13 105 ± 13  95 ± 142 

 Fat (% TEI) 33 ± 1  37 ± 2 35 ± 1  36 ± 2 

 Protein (% TEI) 22 ± 1  22 ± 1       22 ± 2   24 ± 2 

 CHO (% TEI) 45 ± 2  41 ± 3 43 ± 2  39 ± 3 

1Data are means ± SEM, n = 12 lean and 12 obese subjects.  CHO, carbohydrates; TEI, 

total energy intake.  
2Significantly different from visit 1, visit effect: P<0.05 (repeated-measures ANOVA).   



Acute and prolonged dietary restriction and gut function Chapter 9 

185 

 

There were no significant interactions or main effects on energy intake or the amount of 

fat or protein (g), or the %energy from fat, carbohydrate or protein consumed at the 

buffet meal (repeated-measures ANOVA).  
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Figure 9.1: Schematic representation of the study protocol for lean and obese subjects.  

Obese subjects attended the laboratory on four occasions: day 0, before 

starting the diet (visit 1), day 5 (visit 2), day 29 (visit 3) and day 85 (visit 

4).  They also attended the laboratory each fortnight (days 13, 27, 41, 55 

and 69) during the study for a meeting with a dietician to review their diet 

and record their body weight.  Lean subjects attended the laboratory on two 

occasions: day 0 (visit 1), and day 5 (visit 2).  During each study visit the 

effects of acute dietary restriction on GI function and energy intake in 

response to 120-min intraduodenal infusions of 10% Intralipid (2.86 

kcal/min) were evaluated.   
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Figure 9.2:Plasma CCK and ghrelin concentrations during 120-min intraduodenal 

infusions of 10% Intralipid (2.86 kcal/min) on day 0 (visit 1) and day 5 

(visit 2) (A and B), on a four-day (acute), in lean and obese, and on day 1 

(visit 1), day 29 (visit 3) and day 85 (visit 4) (C and D), on a 12-week 

(prolonged), in obese, 30% energy-restricted diet.  * P < 0.05 vs visit 1 in 

lean; # vs visit 1 in obese; § vs visit 2 in obese.  Data are mean ± SEM. (n = 

12 lean and 12 obese).  
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Figure 9.3: Desire to eat and hunger scores during 120-min intraduodenal infusions of 

10% Intralipid (2.86 kcal/min) on day 0 (visit 1) and day 5 (visit 2) (A and 

B), on a four-day (acute), in lean and obese, and on day 0 (visit 1), day 29 

(visit 3) and day 85 (visit 4) (C and D), on a 12-week (prolonged), in obese, 

30% energy-restricted diet.  * P < 0.05 vs visit 1 in lean, # vs visit 1 in 

obese.  Data are mean ± SEM. (n = 12 lean and 12 obese). 
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9.5  Discussion 

This study evaluated the effects of acute (in lean and obese) and prolonged (in obese) 

30% energy restriction on APD motility, gastrointestinal hormone release, appetite and 

energy intake in response to an intraduodenal lipid infusion.  In lean individuals, acute 

energy restriction had no effect on energy intake, although there was a reduced plasma 

CCK response and attenuated suppression of ghrelin during the intraduodenal lipid 

infusion.  In contrast, in the obese group, acute and prolonged energy restriction had no 

effect on gastrointestinal motor or hormonal responses to intraduodenal lipid, although 

the amount of food eaten at the buffet meal was reduced following prolonged energy 

restriction.   

 

We hypothesised that acute 30% energy restriction (four days) would enhance the 

effects of intraduodenal lipid on gastrointestinal function and appetite in lean and obese 

subjects, but that following prolonged 30% energy restriction (12 weeks), associated 

with weight loss, these effects of energy restriction on gastrointestinal function and 

appetite would be lost in the obese.  Prolonged caloric restriction results in marked 

increases in ghrelin (Cummings et al. 2002), rapid reductions in circulating levels of 

leptin (Havel et al. 1996) and energy expenditure (Leibel et al. 1995) and an increase in 

appetite (Keim et al. 1998), which could explain why body weight often stabilises, or 

even increases, despite continued adherence to prescribed weight loss diet (Sjostrom et 

al. 1998).  We had previously demonstrated that following a four-day 70% VLCD, the 

effects of small intestinal lipid on gastrointestinal motility and hormone responses were 

enhanced (Brennan et al. 2010), suggesting that acute caloric restriction increases 

sensitivity to the actions of intestinal nutrients.  However, this was a very low calorie 
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diet, and it was unclear if similar changes in gastrointestinal nutrient sensitivity would 

occur with more moderate and sustainable dietary regimens.  Therefore, we used a 

moderate dietary regimen (30% energy restriction), more realistic of real life, which is 

commonly recommended on the grounds that greater degrees of energy restriction do 

not achieve better long-term weight loss (National Institutes of Health 2002) and may 

result in a greater loss of fat-free mass (Forbes 2000). 

 

In lean, but not obese, subjects, acute energy restriction diminished hormonal responses 

to intraduodenal lipid, suggesting that even a short period of dietary restriction can 

modulate hormone release in this group.  However, this is in contrast to the acute 70% 

energy-restricted diet in obese where hormonal responses were enhanced (Brennan et al. 

2010).  We found fasting and postprandial plasma CCK concentrations to be reduced 

after the dietary restriction period.  This observation is consistent with a study in rats in 

which food deprivation for three days was associated with a rapid decrease in plasma 

CCK concentrations. The reason for this is unclear but duodenal levels of CCK mRNA 

were decreased, suggesting a reduction in the rate of CCK gene transcription 

(Kanayama and Liddle 1991).  In addition, lipid-induced ghrelin suppression was 

reduced after the four day dietary restrcition in the lean group.  There is evidence that 

intravenous administration of CCK has the capacity to suppress plasma ghrelin 

concentrations (Brennan et al. 2007). Since plasma CCK stimulation was reduced 

following acute energy restriction, this may have contributed to the failure of lipid to 

further suppress ghrelin.  Not unexpectedly, the higher fasting ghrelin concentrations 

following the energy restriction period were associated with increased hunger scores.  

However, although fasting hunger was greater in the lean subjects following the dietary 
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restriction, lipid failed to suppress hunger to the same extent following energy 

restriction.  The reduced stimulation of plasma CCK following energy restriction in the 

lean may, at least in part, underlie the increased perception of hunger and desire to eat.  

It is known that gastrointestinal motility and hormone release, particularly the 

stimulation of pyloric pressures and plasma CCK release, are major determinants of 

subsequent energy intake (Seimon et al. 2010).  However, the changes in plasma CCK 

release and the lack of gastrointestinal motor responses may be a reason why changes in 

energy intake at the buffet meal were not observed. 

 

There were no significant changes in gastrointestinal motor or hormonal function in the 

obese group following acute 30% dietary restriction.  This is in contrast to the four-day 

70% VLCD in obese that increased pyloric pressure, plasma PYY and the suppression 

of ghrelin, and reduced appetite perceptions and energy intake in response to 

intraduodenal lipid (Brennan et al. 2010).  Similarly, in another study, gastric emptying 

of a 75 g glucose drink was slower following a four-day fast in both lean and obese 

subjects, when compared with an overnight, 12 hour fast (Corvilain et al. 1995).  This 

may suggest that the moderate 30% energy restriction may not have been sufficient to 

induce changes in gastrointestinal function and subsequent energy intake in this group 

and may suggest that for short term weight loss diets, more severe dietary restrictions 

would be more beneficial in terms of changes in gastrointestinal function and 

subsequent energy intake.  

 

In addition, at baseline, there were no differences in APD motility between the lean and 

obese group, which was inconsistent with a previous study in our laboratory in which 
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the stimulation of pyloric pressures, in response to intraduodenal oleic acid, was 

reduced in overweight or obese, compared with lean, subjects (Stewart et al. 2011a). 

The study by Stewart et al (2011) reported that overweight and obese subjects had 

significantly greater habitual energy intake than lean subjects, whereas in this present 

study, there were no differences in habitual energy intake between the lean and obese 

subjects, which may explain why there were no differences in gastrointestinal motility 

between the groups. Although, it is important to acknowledge that self-reported 

questionnaires may not necessarily reflect dietary intake, habits or behaviour, as they 

may be prone to bias and under-reporting (Gibson 2005).  However, baseline CCK 

concentrations dropped in response to acute dietary restriction in the lean, but not obese, 

which also suggests that the obese may be less sensitive to the dietary restriction 

compared with the lean at least in terms of gastrointestinal hormone responses.   

 

Following prolonged energy restriction, fasting and postprandial ghrelin concentrations 

have been reported to be increased (Cummings et al. 2002; Sumithran et al. 2011) and 

fasting and postprandial plasma CCK concentrations reduced in obese (Sumithran et al. 

2011). In our study, lipid-induced ghrelin suppression and CCK stimulation before and 

after, the dietary restriction was unchanged in the obese. This may have been due to the 

moderate caloric restriction that we used in this study, whereas the above-mentioned 

studies used very low caloric diets.  Surprisingly, despite no changes in any of the 

gastrointestinal motor or hormone responses, the amount eaten at the buffet meal was 

significantly reduced in the obese during the prolonged energy-restricted diet.  It may be 

possible that other hormones including PYY and GLP-1 may have had an effect on this 

suppression. 
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There are some limitations of the study that need to be recognised.  We administered the 

lipid emulsion directly into the duodenum, as our primary focus was to identify 

potential changes in small intestinal sensitivity to lipid.  As a result, we bypassed 

potential gustatory and gastric mechanisms and cannot comment on any effects on 

gastric emptying.  Due to the small sample size in this study, it is possible that some 

findings may have reached statistical significance if a larger sample size was used.  

Only one degree (30%) and one period (12 weeks) of energy restriction were employed; 

therefore, the effects of higher degrees of energy restrictions and more prolonged 

periods remain uncertain.  We did monitor dietary compliance during the study; 

although this is difficult with intervention studies, the significant changes in weight that 

occurred as a result of the dietary restriction suggest that subjects were compliant to 

their prescribed diets.  Self-reported dietary records may be prone to bias and under-

reporting; nevertheless, they are an acceptable method of dietary assessment. 

 

Therefore, in conclusion, a 30% acute energy-restricted diet diminished gastrointestinal 

hormone responses in the lean, while in the obese subjects, acute and prolonged 30% 

energy restriction had no effect on gastrointestinal function.  This may suggest that 

obese are less sensitive to caloric restriction and it may be that greater degrees of energy 

restriction for short term periods may be more beneficial in obese to observe changes in 

gastrointestinal function.  This information may be important when considering weight 

loss interventions. 
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Chapter 10: Conclusion 

 

 

The studies reported in this thesis have evaluated aspects of the complex and 

interrelated oral and gastrointestinal mechanisms involved in the regulation of appetite 

and energy intake in lean and obese individuals.  The three broad areas of research that 

have been investigated in the thesis include: i) the gastrointestinal motor and hormonal 

functions involved in the regulation of energy intake in healthy individuals; ii) the 

effects of oral and intraduodenal nutrients on gastrointestinal motility and hormone 

release, appetite and energy intake in obese compared with lean individuals; and iii) the 

effects of acute and prolonged energy restriction on gastrointestinal function, appetite 

and energy intake. 

 

The study in Chapter 5 was carried out to determine if any gastrointestinal motor or 

hormone functions and appetite were independent determinants of acute energy intake 

in healthy, lean men.  Although there were correlations between energy intake and APD 

pressures, plasma hormone concentrations, and gastrointestinal perceptions, only the 

peak number of IPPW, peak plasma CCK concentration, and area under the curve of 

nausea were identified as independent predictors of energy intake.  The evaluation of 

these variables as determinants of energy intake and their potential as screening tools 

for the appetite-suppressant potency of novel, gut-focused, therapeutic agents in 

prospective studies would be of interest.  
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In Chapter 6, we demonstrated that following oral ingestion of the nutrient liquid drink, 

there were no differences in gastric emptying, intragastric distribution or oro-caecal 

transit between the lean, overweight and obese groups.  After the drink, blood glucose 

and plasma insulin were greater in the obese, when compared with both the lean and 

overweight groups, however, there were no differences in plasma GLP-1 or GIP 

concentrations, appetite and energy intake at the buffet meal or habitual energy intake 

between the groups.  In the obese, the magnitude of the rise in blood glucose was 

inversely related to the gastric emptying.  This study suggests that obesity per se, in the 

absence of differences in habitual energy intake, has no effect on gastric emptying or 

incretin hormone release and that gastric emptying influences postprandial blood 

glucose in the obese.     

 

The study presented in Chapter 7 evaluated the hypothesis that overweight or obese 

subjects would be less sensitive to both oral and intraduodenal oleic acid exposure than 

lean subjects.  The study demonstrated that during a 90-min intraduodenal fatty acid 

(oleic acid [C18:1]) infusion, the number of IPPW was greater than during saline 

infusion, in lean subjects, with no differences between the C18:1 and saline infusions in 

the overweight or obese subjects.  In both groups, C18:1 stimulated plasma CCK and 

PYY and suppressed energy intake compared with saline, with trends for reduced CCK 

and energy intake responses in the overweight or obese subjects.  Oral fatty acid 

detection thresholds for C18:1 was greater in overweight or obese than in lean subjects.  

Overweight or obese subjects had greater energy and fat intakes than did lean subjects.  

There was a direct relation of BMI with C18:1 detection thresholds and inverse relations 

of pyloric pressures with BMI and C18:1 detection thresholds.  The ability to detect 
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C18:1 both orally and within the gastrointestinal tract is compromised in obese men, 

and oral and gastrointestinal responses to C18:1 is related. 

 

The study described in Chapter 8 demonstrated that following a 70% four-day VLCD 

there was a significant increase in basal pyloric pressures and the number and amplitude 

of IPPW, and a decrease in the number of antral and duodenal pressure waves and PWS, 

and the stimulation of PYY and suppression of ghrelin was greater, during a 120-min 

intraduodenal lipid infusion.  In addition, following the four-day diet, hunger and 

prospective consumption scores were lower, and energy intake was reduced, indicating 

that gastrointestinal function, appetite and energy intake in the obese can be modified 

over a short period.    

 

We evaluated the effects of an acute (in lean and obese) and prolonged (in obese only) 

30% energy restriction on gastrointestinal function and appetite in response to an 

intraduodenal lipid infusion in Chapter 9.  In contrast to the previous 70% very low 

calorie diet presented in Chapter 8, there were no differences in gastrointestinal motor 

or hormonal function in the obese following the acute or prolonged 30% dietary 

restriction period, although there was a trend for energy intake to be reduced.  However, 

in lean, there was a decrease in plasma CCK and an increase in ghrelin concentrations 

following the acute period of dietary restriction with no differences in gastrointestinal 

motility or energy intake.  This suggests that obese individuals are less sensitive to the 

presence of small intestinal nutrients compared with lean and that this moderate 30% 

energy restriction was insufficient to observe changes in gastrointestinal function in the 

obese.  
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The studies reported in this thesis provide novel insights relating to the regulation of 

appetite and energy intake by gastrointestinal motor and hormones release and/or 

suppression in healthy lean, overweight and obese subjects.  These observations will 

contribute to advances in knowledge regarding basic appetite physiology.  Further, the 

data presented in this thesis have clinical implications for management of obesity and 

support dietary interventions as potential treatments for obesity. 
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Appendix I: Three-Factor Eating Questionnaire 

 

 
 
Name:   Date: 
 
Read each of the following 36 statements carefully.  If you agree with the statement or 
feel that it is true as applied to you, answer true by circling the (T).  If you disagree with 
the statement, or feel that it is false as applied to you, answer false by circling the (F).  
Be certain to answer all of the questions. 
 
 

 

1. When I smell a freshly baked pizza, I find it very difficult to keep from eating, 
even if I have just    finished a meal. 

(T) (F) 
 

2. I usually eat too much at social occasions, like parties and picnics. 
(T) (F) 

 
3. I am usually so hungry that I eat more than three times a day. 

(T) (F) 
 

4. When I have eaten my quota of calories/fat, I am usually good about not eating 
any more. 

(T) (F) 
 

5. Dieting is so hard for me because I just get too hungry. 
(T) (F) 

 
6. I deliberately take small helpings as a means of controlling my weight. 

(T) (F) 
 

7. Sometimes things just taste so good that I keep on eating even when I am no 
longer hungry. 

(T) (F) 
 

8. Since I am often hungry, I sometimes wish that while I am eating, an expert 
would tell me that I have had enough or that I can have something more to eat. 

(T) (F) 
 

9. When I feel anxious, I find myself eating. 
(T) (F) 

 
10. Life is too short to worry about dieting. 

(T) (F) 
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11. Since my weight goes up and down, I have gone on reducing diets more than 
once. 

(T) (F) 
 

12. I often feel so hungry that I just have to eat something. 
(T) (F) 

 
13. When I am with someone who is overeating, I usually overeat too. 

(T) (F) 
 

14. I have a pretty good idea of the number of calories/grams of fat in common foods. 
(T) (F) 

 
15. Sometimes when I start eating, I just can’t seem to stop. 

(T) (F) 
 

16. It is not difficult for me to leave something on my plate. 
(T) (F) 

 
17. At certain times of the day, I get hungry because I have got used to eating then. 

(T) (F) 
 
18. While on a diet, if I eat food that is not allowed, I consciously eat less for a period 

of time to make up for it. 
(T) (F) 

 
19. Being with someone who is eating often makes me hungry enough to eat also. 

(T) (F) 
 

20. When I feel blue, I often overeat. 
(T) (F) 

 
21. I enjoy eating too much to spoil it by counting calories, counting grams of fat or 

watching my weight. 
(T) (F) 

 
22. When I see a real delicacy, I often get so hungry that I have to eat right away. 

(T) (F) 
 

23. I often stop eating when I am not really full as a conscious means of limiting the 
amount I eat. 

(T) (F) 
 

24. I get so hungry that my stomach often seems like a bottomless pit. 
(T) (F) 
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25. My weight has hardly changed at all in the last ten years. 
(T) (F) 

 
26. I am always hungry, so it is hard for me to stop eating before I finish the food on   

my plate. 
(T) (F) 

 
27. When I feel lonely, I console myself by eating. 

(T) (F) 
 

28. I consciously hold back at meals in order not to gain weight. 
(T) (F) 

 
29. I sometimes get very hungry late in the evening or at night. 

(T) (F) 
 

30. I eat anything I want any time I want. 
(T) (F) 

 
31. Without even thinking about it, I take a long time to eat. 

(T) (F) 
 

32. I count calories/grams of fat as a conscious means of controlling my weight. 
(T) (F) 

 
33. I do not eat some foods because they make me fat. 

(T) (F) 
 

34. I am always hungry enough to eat at any time. 
(T) (F) 

 
35. I pay a great deal of attention to changes in my figure. 

(T) (F) 
 

36. While on a diet, if I eat a food that is not allowed, I often then splurge and eat 
other high calorie foods. 

(T) (F) 
 
 
Each question in this section is followed by a number of options.  After reading each 
question carefully, choose one option which most applies to you, and circle the 
appropriate answer. 
 
 
37. How often are you dieting in a conscious effort to control your weight? 
 1    2  3   4 
           rarely       sometimes          usually          always 
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38. Would a weight fluctuation of 3 kg affect the way you live your life? 
 1    2  3   4 
 not at all slightly       moderately     very much 

 
39. How often do you feel hungry? 
 1    2  3   4 
 only at        sometimes       often             almost 
 meal times      between       between          always 
          meals            meals   
 
40. Do your feelings of guilt about overeating help you to control your food intake? 
 1    2  3   4 
    never              rarely           often            always 
 
41. How difficult would it be for you to stop eating halfway through dinner and not 

eat for the next four hours? 
 1    2  3   4 
  easy              slightly      moderately         very 
  difficult         difficult        difficult         difficult 
 
42. How conscious are you of what you are eating? 
 1    2  3   4 
 not at all       slightly      moderately     extremely 
 
43. How frequently do you avoid ‘buying large’ on tempting foods? 
 1    2  3   4 
 almost           seldom         usually           almost 
   never                          always 
 
44. How likely are you to shop for low calorie or low fat foods? 
 1    2  3   4 
 unlikely         slightly      moderately        very 
                      likely            likely            likely 
 
45. Do you eat sensibly in front of others and splurge alone? 
 1    2  3   4 
  never             rarely            often            always 
 
46. How likely are you to consciously eat slowly in order to cut down on how much 

you eat? 
 1    2  3   4 
 unlikely         slightly      moderately        very 
                        likely          likely              likely 
 
47. How frequently do you skip dessert because you are no longer hungry 
 1    2  3   4 
 almost seldom          at least           almost 
   never          once a week    every day 
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48. How likely are you to consciously eat less than you want? 
 1    2  3   4 
 unlikely         slightly     moderately         very 
               likely           likely             likely 
49. Do you go on eating binges even though you are not hungry? 
 1    2  3   4 
  never              rarely        sometimes       at least 
                                                 once a week 
 
 
50. To what extent does this statement describe your eating behaviour? 
 ‘I start dieting in the morning, but because of any number of things that happen 

during the day, by evening I have given up and eat what I want, promising myself 
to start dieting again tomorrow.’ 

 1    2  3   4 
 not like       little like      pretty good     describes 
   me       me           description          me  
                                         of me           perfectly 
 
51. On a scale of 1 to 6, where 1 means no restraint in eating (eat whatever you want, 

whenever you want it) and 6 means total restraint (constantly limiting food intake 
and never ‘giving in’), what number would you give yourself? 
1      eat whatever you want, whenever you want it 

 2       usually eat whatever you want, whenever you want it 
 3      often eat whatever you want, whenever you want it 
 4      often limit food intake, but often ‘give in’ 
 5      usually limit food intake, rarely ‘give in’ 
 6      constantly limit food intake, never ‘give in’ 
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Appendix II: Visual Analogue Scale Questionnaire 

 

 
Name (Initials): Visit: Time: 
 
Please indicate how you are feeling at this moment by placing a vertical mark at the 
appropriate point on each scale below.  Furthest LEFT means you do not feel the 
sensation in question, furthest RIGHT means you feel it very much.  Please, mark all 
scales. 
 
I feel nauseated      
 
 
I feel drow  
 
 
I feel bloated    
 
 
I feel anxiou   
 
 
I feel hungry      
 
 
I feel full     
 
 
I feel happy   
 
 
I feel energetic      
 
 
How strong is your desire to eat? 
 
     
 
 
 
I feel comfortable 
 
 
 
How much food do you think you could eat? 
  
A large amount 
None 
Very strong 
Non existent 
Very much 
Not at all 
Very much 
Not at all 
 
Very much 
  
Not at all 
Very much 
Not at all 
Very much 
Not at all 
  
Very much 
s  
Not at all 
 
Very much 
 
Not at all 
  
Very much 
sy  
Not at all 
Very much 
Not at all 
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Appendix III: Dietary Questionnaire for Epidemiological 

Studies 
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Appendix V: Quantified Food Portion Pictures 
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PORTION QUANTITIES 
 
Peas & broccoli 
A: 37 g  
B: 63 g  
C: 87 g 
 
Vegetable combo 
A: 72 g 
B: 127 g 
C: 208 g 
 
Rice 
A: 108 g 
B: 144 g 
C: 216 g 
 
Spaghetti 
A: 100 g 
B: 145 g 
C: 224 g 
 
Chicken 
A: Drumstick, cooked weight with skin 58 g, without skin 49 g 
B: Boneless breast, cooked weight with skin 192 g, without skin 176 g 
C: Thigh, cooked weight with skin, 119g, without skin 95 g 
D: Breast on bone, cooked weight with skin 230 g, without skin, 200 g 
E: Maryland, cooked weight with skin 177 g, without skin, 144 g 
 
Stew 
A 162 g 
B: 256 g 
C: 351 g 
 
Meat 
A: 36 g + 31 g gravy 
B: 72 g + 63 g gravy 
C: 108 g + 84 g gravy 
 
Hot chips 
A: 75 g 
B: 150 g 
C: 170 g 
D: 300 g 
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Containers 
Coffee 215 ml 
Drink can 355 ml 
Coke cups 390 ml, 610 ml, 715 ml 
Milkshake 710 ml 
Black 230 ml 
White base 315 ml, lid 315 ml, total 630 ml 
Cream, base 850 ml, lid 100 ml, total 950 ml 
Clear base 1000 ml, lid 550 ml, total 1550 ml 
 
Muffins 
A: 62 g 
B: 160 g 
C: 185 g 
 
Chocolate 
Family block total, 350 g, row 33.6 g, piece, 4.2 g 
King block, total 250 g, row 25.2 g, piece 4.2 g 
Nestlé block, total 200 g, row 32.5 g, piece 4.7 g 
Hershey block, total 40 g, row 9.6 g, piece 3.2 g 
Chunky bar 50 g 
 
Spoon volumes 
Teaspoon, flat 4 ml, rounded 6 ml. heaped 14 ml 
Dessert spoon, flat 7 ml, rounded 15 ml, heaped 20 ml 
Table spoon, flat 14 ml, rounded 30 ml, heaped 60 ml 
 
Peanut butter 
A: 3 g 
B: 6 g 
C: 10 g 
 
Jam/marmalade/honey 
A: 4 g 
B: 13 g 
C: 23 g 
 
Vegemite/marmite 
A: 2 g 
B: 3.5 g 
C: 6 g 
 
Margarine/butter 
A: 3.5 g 
B: 6 g 
C: 9.9 g 
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Cornflakes 
A: 30 g 
B: 45 g 
C: 60 g 
 
Muesli 
A: 50 g 
B: 75 g 
C: 100g 
 
 
Volume of sphere = 4/3 πr3 
 

Area of circle = πr2 
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