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[1]1 This paper evaluates the use of field data on the spatial variability of snow water
equivalent (SWE) to guide the design of distributed snow models. An extensive reanalysis
of results from previous field studies in different snow environments around the world is
presented, followed by an analysis of field data on spatial variability of snow collected in
the headwaters of the Jollie River basin, a rugged mountain catchment in the Southern Alps
of New Zealand. In addition, area-averaged simulations of SWE based on different types of
spatial discretization are evaluated. Spatial variability of SWE is shaped by a range of
different processes that occur across a hierarchy of spatial scales. Spatial variability at the
watershed-scale is shaped by variability in near-surface meteorological fields (e.g.,
elevation gradients in temperature) and, provided suitable meteorological data is available,
can be explicitly resolved by spatial interpolation/extrapolation. On the other hand, spatial
variability of SWE at the hillslope-scale is governed by processes such as drifting,
sloughing of snow off steep slopes, trapping of snow by shrubs, and the nonuniform
unloading of snow by the forest canopy, which are more difficult to resolve explicitly.
Subgrid probability distributions are often capable of representing the aggregate-impact of
unresolved processes at the hillslope-scale, though they may not adequately capture the
effects of elevation gradients. While the best modeling strategy is case-specific, the analysis
in this paper provides guidance on both the suitability of several common snow modeling
approaches and on the choice of parameter values in subgrid probability distributions.

Citation: Clark, M. P., J. Hendrikx, A. G. Slater, D. Kavetski, B. Anderson, N. J. Cullen, T. Kerr, E. Orn Hreinsson, and R. A. Woods
(2011), Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review, Water Resour. Res.,

47, W07539, doi:10.1029/201 1WR010745.

1. Introduction

[2] Effectively representing the spatial variability of
snow water equivalent (SWE) in hydrologic and land-sur-
face models is critical in order to reliably simulate the ba-
sin-average snowmelt, as well as the energy and mass
exchanges between the land and atmosphere [ Liston, 1999].
This is because the spatial variability in snow accumulation
and ablation processes controls the nonuniform disappear-
ance of snow across the landscape. The nonuniform disap-
pearance of snow is important from a hydrologic modeling
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perspective because it controls the magnitude, timing and
duration of basin-average snow melt [Lundquist and Det-
tinger, 2004]. The nonuniform disappearance of snow is
also important from a land-surface modeling perspective,
as the presence/absence of snow and the patchiness of the
snow cover strongly influence the radiative and turbulent
heat fluxes between the land and atmosphere [e.g., Cess et
al., 1991; Liston, 1995; Essery, 1997]. The importance of
this modeling challenge is matched by its difficulty, as the
spatial variability in SWE is shaped by a range of different
processes that occur across a hierarchy of spatial scales
(e.g., the spatial variability in snow accumulation in alpine
areas associated with preferential deposition of snow in
microscale topographic depressions or in the lee of a ridge;
the spatial variability in snow accumulation in forests asso-
ciated with preferential deposition around fallen logs and
spatial variability in interception and unloading of snow
from the forest canopy; and the spatial variability in melt
energy associated with local advection of energy across
patchy snow covers and spatial variability in radiation load-
ing and air temperature).

[3] Due to data limitations and computational con-
straints, spatial variability is typically handled in models by
explicitly resolving only a few select levels in the hierarchy
of spatial scales [Kumar, 2011]. Consider, for example, the
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simulations of the transport and preferential deposition of
snow over an alpine ridge performed by Lehning et al.
[2008] and Mott and Lehning [2010], where the limited
spatial extent of the model domain restricts analysis to
processes at the hillslope scale. As another example, con-
sider the representations of SWE developed by Luce et al.
[1999] and Liston [2004], where probability distributions
are used to parameterize the processes that occur below the
resolved model scale. Since many different modeling strat-
egies are possible, it is important to carefully consider their
suitability in light of the available field data on the spatial
variability of snow depth and SWE.

[4] The objective of this paper is to provide guidance to
represent the spatial variability of SWE in hydrologic and
land-surface models across a hierarchy of spatial scales.
We pursue this objective by following three primary steps:
(1) reanalyze results from previous studies on spatial vari-
ability in snow depth and SWE; (2) summarize a range of
different approaches for multiscale representation of SWE;
and (3) analyze the multiscale spatial variability in snow
depth, as collected in a field campaign in the New Zealand
mountains, and investigate the suitability of alternative
modeling approaches.

2. Reanalysis of Results From Previous Studies
2.1.

[s] Table 1 summarizes the methods used in previous
studies on the spatial variability in SWE, including a listing
of the spacing, extent and support of the measurements,
Figure 1 illustrates the locations of each of these studies.
As defined by Bldoschl and Sivapalan [1995] and Bloschl
[1999], “spacing” refers to the distance between samples,
“extent” refers to the overall coverage of the data, and
“support” refers to the area represented by each sample.
The previous work summarized in Table 1 is organized
with respect to the classification of snow environments pre-
sented by Liston [2004].

[6] Table 1 demonstrates that previous studies differ sub-
stantially in terms of the support, spacing, and extent of the
measurements.

[7]1 1. The support in most studies is close to 0 (e.g., a
single point measurement with a probe at each measure-
ment location). Some studies do have larger support. For
example, Elder et al. [1991] and Balk and Elder [2000]
averaged measurements from the desired point as well as
points 4 m away in the four cardinal directions, while the
support can be viewed as 5 m, the distinction between spac-
ing and support in this case is somewhat blurred. Sampling
from radar [Bruland et al., 2001; Marchand and Killingt-
veit, 2005] and terrestrial and airborne LiDAR [Deems
et al., 2006; Griinewald et al., 2010] has larger support as
radar measurements effectively average observations over
the swath path of the radar, and LiDAR measurements
effectively average over the cell size of the LIDAR.

[8] 2. The spacing between measurements is as small as
1.0-2.5 m for the radar and LiDAR studies [Bruland et al.,
2001; Marchand and Killingtveit, 2005; Deems et al.,
2006; Trujillo et al., 2007; Griinewald et al., 2010]. For
manual snow measurements, spacing varies from a mini-
mum of 5 m [Erxleben et al., 2002; McCartney et al.,
2006] to a maximum of 50 m [Balk and Elder, 2000; Wins-
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tral et al., 2002; Erickson et al., 2005]. These larger spac-
ings may actually be longer than the distance where the
spatial correlation of snow depth is perceptible (i.e., longer
than the correlation length scale), which can complicate the
interpretation of the results.

[o] 3. The extent of measurements is quite variable,
ranging from transects across a single snow drift [ Greene et
al., 1999; Sturm et al., 2001a], to intensive snow surveys in
small basins such as the 0.26 km? Upper Sheep Creek
catchment in Idaho, USA [Luce et al., 1998, 1999], and the
0.32 km? Izas experimental catchment in the Spanish Pyre-
nees [Anderton et al., 2004], to extensive surveys over
larger regions, such as the radar survey in the 849 km? Aur-
sunden basin in Norway [Marchand and Killingtveit,
2005]. The elevation range is negligible for studies con-
ducted in flat areas [e.g., Lapen and Martz, 1996; Shook
and Gray, 1996; Faria et al., 2000] but is considerable in
some of the studies conducted in mountainous terrain; for
example, measurements taken by Elder et al. [1988]
spanned 1351 vertical meters. Importantly, some studies in
mountainous regions take measurements over only a lim-
ited elevation range, for example, measurements taken by
Anderton et al. [2004] spanned only 215 vertical meters,
thus limiting the extent to which accumulation and melt
processes can be associated with variability in elevation.

[10] Clearly, the sampling design impacts on the results
and hence complicates comparisons across different studies
[see Skoien and Bloschl, 2006]. For example, since spatial
variability generally increases with spatial scale [Shook
and Gray, 1996; Kutchment and Gelfan, 2001], studies
with limited spatial extent may underestimate the natural
variability. Similarly, studies with large spacing between
measurement points may not reveal the small-scale spatial
correlation structures [Balk and Elder, 2000; Winstral
et al., 2002; Erickson et al., 2005]. Nevertheless, in spite
of the methodological differences, and the differences in
relief/vegetation/climate, it is still possible to generalize
some results from previous studies.

2.2. Dominant Processes

2.2.1. Controls by Drifting

[11] Many previous studies in nonforested environments
suggest that drifting is the dominant process that affects
spatial variability of snow depth. Here we define drifting to
include preferential deposition of snow in sheltered areas
during storms, as well as redistribution of snow by the
wind from exposed to sheltered areas [e.g., Lehning et al.,
2008]. Drifting can be observed at multiple spatial scales,
ranging from the micro scale (e.g., preferential deposition
in topographic depressions) to the hillslope scale (e.g., pref-
erential deposition in the lee of a ridge), to the watershed
scale (e.g., preferential deposition on sheltered aspects).

[12] In a relatively flat area on the Canadian prairies
(Kernen Research Farm near Saskatoon, Saskatchewan),
Shook and Gray [1996] calculated the standard deviation of
snow depth at sampling distances ranging from 1 m to
1 km and showed that the standard deviation within distan-
ces of ~30 m was just as large as the standard deviation at
larger spatial scales. The principal feature at scales less
than 30 m is snow dunes, which are formed by scour and
redeposition of snow by wind. In another study on the Ca-
nadian prairies, Lapen and Martz [1996] produced maps of
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snow depth that suggest statistical homogeneity at spatial
Y scales greater than 100 m. Lapen and Martz explored rela-
0 = tionships between spatial variability of snow depth and ter-
E B rain attributes, and showed that snow depth is related to the
§ gg terrain attributes that define sheltering by topographic
s g obstacles. These results imply that drifting is a critical pro-
§° 2 cess in the Canadian Prairie environment.
R [13] Drifting is the dominant process identified in studies
3 E conducted in small mountain catchments (<0.5 km?) with
- g limited elevation range (<250 m) and limited forest cover.
s, Greene et al. [1999] took measurements in an East-West
g2 . = transect across a ridge line and measured elevated snow
2 i depths in drift less than 100 m wide. Luce et al. [1998,
1999] demonstrated for the Upper Sheep Creek in Idaho
(area = 0.26 km?, elevation range = 200 m; Table 1) that
‘gng = - representation of snow drifting in models was essential in
e o 3 order to simulate the observed spatial pattern of SWE.
0 Anderton et al. [2004] compared snow depth patterns with
o topographic indices in the Izas experimental catchment
£_18 ;3: 2 (area = 0.32 km?, elevation range = 215 m), and demon-
§§ = = M strated that variability in snow depth is negatively corre-
g s lated with terrain exposure (i.e., positively correlated with
8 sheltering). Anderton et al.’s regression tree models show
g’g - _Lé ,;D that exposure indices explain most of the spatial variability
(%‘v § § in srl;ow depthl(see lal[szoo‘z)h;] earlierl lworl;on slljleltering indiI;
= ces by Winstal et al. as well as the subsequent wor
g by Dadic et al. [2010] and M. Schirmer et al. (Persistence
882 & % in intra-annual snow depth distribution: 1. Measurements
E g i) a 2 and topographic control, submitted to Water Resources
Zwn |0 g Research, 2011). More recently, Mott et al. [2011] illus-
. g g trated that topographically modified wind fields and snow
2 E 5, S g depth exhibited a 51m11ar sca!mg pattern, .empha.s121n.g the
SE E5s ° g importance of wind in shaping the spatial variability of
2o Z£% |3 = snow depth. In related studies, Schirmer et al. (submitted
< | 3 ‘% '; E § El manuscript, 2011) and M. Schirmer and M. Lehning (Per-
£]12E S55.|8 = sistence in intra-annual snow depth distribution: 2. Fractal
= é g5 5 E g % = g analysis of snow dept development, subrmtted to Water
25 2= 525 |S ) Resources Research, 2011) documented spatial and seasonal
2 5 = :§ > & =) changes in scaling behavior of snow depth in which break
% §§ % §§§ g = 5y distances were shown to depend on the underlying rough-
g=Pg=>81J E, BE ness of the terrain. An interesting result from the Schirmer
s 2 gE g5 and Lehning (submitted manuscript, 2011) study is that the
S g 8CE % = é = scale break was shown to progressively increase throughout
§ N ) cE 28 g: S the accumulation season as smaller scale terrain features
5 S 3 E Cg é Ee E g were buried by snow. In these small mountain catchments
o § = 3 g "g E 222455 the spatial. sgale .of driftjng processes was 1es§ than 50 m.
3 S % E = E %Né i 5% [14] Drifting is also important in the Arctic tundra. Sturm
27K S N,\‘ié g 2973 . et al. [2001a] made drift measurements over multiple years
g 5EZ2SY 22258 in the lee of a bluff in the headwaters of the Toolik River,
g ES888fs2g Alaska, and documented snow depth in the drifts to be
o El 5 sg ¢ ECEEF 0 between 3000 and 4000 mm in all years, with a drift width
s| 2 E°  [33TEilie ically less than 25 m. Such large depths of snow in th
gz 2% S 2282282 typically less than 25 m. Such large depths of snow in the
é" = z E S8§830 g8 drift are remarkable given that the winter (September—May)
® £9 5 = i_@ E1gEE precipitation in this region is typically between 100 and
_ z Zz cEESZSE ST 150 mm. Sturm and Liston [2003] took detailed measure-
"q'g = ;2 E % I g ig a8 z § 3 ments of snow on paired sites on lakes and land throughout
g < a 02 2 2R the Alaskan coastal plain and found snow depth to be much
§ Elae. . E “ § EX Zﬁf% § g more variable on lakes than on land. They demonstrated that
=~ S| Eg E& 252 2 £ 3 B ég an initial irregular pattern of snow cover and lake ice is per-
= E e 23 5E £ SBEESE petuated by higher wind speed over the bare ice and lower
=| &2 § E= g EZEEDEZPG wind speed over the snow cover, leading to the growth of
= p > snow dunes with characteristic lengths of 6 m.
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Figure 1.

[15] Drifting is also important on sea ice. Sturm et al.
[1998] demonstrated substantial spatial variability of snow
depth on the west Antarctic pack ice, where depth on a sin-
gle ice floe could vary almost as much as snow depth
between different floes (the spatial distribution of snow
depth was negatively skewed, with the standard deviation
typically half the mean). Transects of snow depth across
isolated pressure ridges revealed shallower depths on the
ridge crest but deeper drifts of snow on both sides of the
ridge; drifts of snow were typically confined to narrow
strips 10-20 m wide. The addition of snow increased the
topographic relief by accentuating larger-scale features
such as pressure ridges but smoothed out the higher fre-
quency surface roughness of ice by filling small depres-
sions. In studies of snow depth on sea ice in the Canadian
Arctic, lacozza and Barber [1998] demonstrated substantial
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differences in the spatial distribution depending on ice
type, with correlation length scales much larger for first-
year sea ice than multiyear sea ice and rubble ice. While
there was substantial variability within different ice types,
much of this within-type variability could be explained by
wind events and topographic structures, emphasizing the
importance of drifting. In a subsequent study of the spatial
variability of snow depth on sea ice in the Arctic Ocean,
Sturm et al. [2002] documented similar spatial patterns to
the earlier Antarctic study, with lower snow depth on ridge
crests and drifts extending 15 to 25 m from the ridge crest
in both directions. The spatial distribution of snow depth
was also negatively skewed, with standard deviation
approximately 60% of the mean.

[16] Drifting can be linked to the roughness of the terrain
at multiple spatial scales. Fitzharris, [1977] carried out a
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study of snow accumulation in traps at a range of scales on
the block mountain terrain of Central Otago, New Zealand.
His analysis included water stored behind (1) alpine vege-
tation; (2) tors; (3) breaks of slope; and (4) incipient cir-
ques at fault scarps. Fitzharris, [1977] demonstrated that
water stored behind vegetation was substantially larger
than other storages, although once the snow depth exceeds
the height of vegetation the trapping efficiency of vegeta-
tion is reduced to 0. In a later study, Harrison [1986]
assessed controls of drifting in the Fraser catchment, Central
Otago, New Zealand. He demonstrated that during milder
winters, snow cover is irregular and the influence of microto-
pography is more pronounced. At larger spatial scales, as-
pect was important in controlling snow depth and snow
water equivalent with over twice as much snow on sheltered
slopes compared to those that were exposed. Weir [1979]
diagnosed the topographic influences on snow accumulation
at Mount Hutt, New Zealand. He showed that drifting had a
large impact on SWE at spatial scales less than 1 m (drift
deposits downwind of tussock) and at spatial scales of
approximately 10 m (drift deposits in the lee of a ridge or in
a gully). He also suggested that variability in SWE is related
to aspect, to the extent that aspect defines sheltering from
the prevailing winds.

2.2.2. Controls by Vegetation

[17] The impacts of vegetation on variability of snow
depth are important in forest and shrub environments where
the depth of snow is less than the height of the vegetation.
An important distinguishing feature of spatial variability of
snow depth in coniferous forests is the bowl-shaped depres-
sions (tree wells) that from around the base of trees [Woo
and Steer, 1986; Sturm, 1992; Hardy et al., 1997; Faria
et al., 2000]. Tree wells form primarily because the
branches intercept snow and restrict the amount of snow
that can fall in the vicinity of the tree trunk; the snow inter-
cepted by the upper crown cascades down through the
branches with a tendency to move outward as it moves
down [Sturm, 1992]. While the radius of tree wells depends
on the size of the tree, tree well radii are typically less than
5 m [Woo and Steer, 1986; Sturm, 1992; Hardy, 1997,
Faria et al., 2000]. Spatial variability of snow depth in co-
niferous forests is also evident at the stand scale, as the
interception and subsequent sublimation of snow from the
forest canopy typically results in reduced snow accumula-
tion under the forest canopy compared to open clearings
[Murray and Buttle, 2003].

[18] An important control on the spatial variability of
snow in forests is the interplay between accumulation and
melt processes (e.g., see the recent review by Varhola et al.
[2010]). At the stand scale, the reduced snow accumulation
in forests is often offset by reduced melt, associated with
both reductions in solar radiation caused by canopy shading
and reductions in the sensible heat flux associated with can-
opy sheltering and attendant reductions in wind speed [ Hardy
et al., 1997; Link and Marks, 1999a, 1999b; Sicart et al.,
2004 ; Marks et al., 2008]. Veatch et al. [2009] demonstrated
that the reduced melt under forest canopies can actually have
a stronger impact than the sublimation losses from the forest
canopy, meaning that snow depth is highest in stands with
moderate canopy density. At finer spatial scales within a
stand the competing effects of reduced accumulation and
reduced melt may not apply. In the Canadian boreal forest,
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Faria et al. [2000] demonstrated that the lower premelt SWE
near trunks had higher melt rates; they suggested that this
negative correlation was due to a lower albedo near trunks
because of greater leaf-litter concentration and energy advec-
tion from exposed plants. The spatial scale of snow depth
variability in forests is often less than 40 m and is related to
the size and spacing of trees [Faria et al., 2000; Pomeroy
et al.,2002; Jost et al., 2007 ; Trujillo et al., 2007].

[19] In Arctic tundra environments shrubs influence the
spatial variability of snow depth through trapping wind-
blown snow [Sturm et al., 2001; Essery and Pomeroy,
2004a; McCartney et al., 2006; Pomeroy et al., 2006].
McCartney et al. [2006] demonstrated that snow accumula-
tion is highest in areas with tall shrubs, because tall shrubs
create preferential areas for deposition of wind-blown
snow. Shrubs also create preferential (albeit complex) pat-
terns of ablation. Pomeroy et al. [2006] documented the
complexities of snowmelt energetics in shrub tundra environ-
ments, showing that once shrubs were exposed they provided
some shading of the snow surface, but that downward long-
wave radiation from the shrub canopy often exceeded the
effect of attenuated shortwave transmission through the can-
opy. On the whole, Pomeroy et al. [2006] demonstrated that
melt in shrub tundra environments was larger than melt in
sparse tundra environments. The spatial scale of snow depth
variability in the tundra is quite erratic and related to the dis-
tribution of vegetation types [Essery and Pomeroy, 2004a].

[20] The controls of exposure and vegetation often occur
simultaneously. A set of studies in the midelevation Colo-
rado mountains that use data collected during the NASA
Cold Land Processes Experiment (CLPX) show that spatial
variability of snow depth is almost as large at spatial scales
of ~50 m than at larger spatial scales [Erxleben et al.,
2002; Deems et al., 2006; Trujillo et al., 2007]. Trujillo
et al. [2007] demonstrated that in densely forested areas the
scale of variability of snow depth was similar to the scale
of variability of vegetation and suggested that interception
of snow by the forest canopy is the dominant process
affecting spatial variability of snow depth in forests. 7ru-
jillo et al. [2007] also demonstrated that in forest areas that
are interspersed with open meadows the scale of variability
of snow depth is larger than the scale of variability of vege-
tation. They suggested that scouring and redeposition of
snow by wind leads to the formation of snow drifts and
drifting is the dominant process affecting variability of
snow depth in open areas. The CLPX snow depth data was
collected over relatively homogenous areas [Cline et al.,
2009], so the limited variability at spatial scales greater
than ~50 m is to some extent expected.

2.2.3. Controls by Freezing Levels and Melt Energy

[21] Controls on the spatial variability of snow at larger
spatial scales have been investigated in a number of differ-
ent rugged mountain environments [Elder et al., 1998;
Balk and Elder, 2000; Winstral et al., 2002 ; Erikson et al.,
2005; Griinewald et al., 2010]. Elder et al. [1998] used the
variables of elevation, slope, and radiation loading in a
regression tree model to predict spatial variability in SWE
in the Blackcap basin, California (basin area = 92.8 km?
and elevation range = 1351 m). Results were quite success-
ful, with up to 65% of total variance explained for a 25
node model. Elder et al. [1988] demonstrate that slope
angle plays a lesser role in explaining spatial variability in
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snow depth than the variables elevation and radiation load-
ing, which suggests that variability in freezing levels and
radiative melt are the primary control on the spatial vari-
ability in SWE in this mountainous catchment.

[22] The oblique aerial photographs of snow cover pre-
sented by Bldschl et al. [1991a, 1991b] and Bloschl and
Kirnbauer [1992] show strong relationships between snow
cover and elevation and between snow cover and slope
angle at spatial scales of ~500 m. They indicate that the
relationships with elevation occur because of vertical vari-
ability in freezing levels and melt energy, whereas the rela-
tionships with slope angle occur because of sloughing and
avalanching [Bléschl and Kirnbauer, 1992]. Bloschl [1999]
constructed spatial variograms from these data, which
show a large amount of variability is at spatial scales less
than ~100 m. Some of this smaller-scale variability is
likely related to the slope angle, attributed to the processes
of sloughing and avalanching [Bléschl and Kirnbauer,
1992], and some of this smaller-scale variability is attrib-
uted to processes of wind drift as maps of terrain curvature
indicated a tendency for less snow on ridges and more
snow in gullies [Bloschl and Kirnbauer, 1992].

[23] Machguth et al. [2006] measured a strong elevation
influence on snow depth on the lower part of the Findel Gla-
cier in Switzerland which they attributed to variations in
melt energy. However, on the upper part of the Findel and
nearby Adler Glacier, accumulation was found to be much
more variable and was attributed to wind redistribution.

[24] Several studies have demonstrated that the statistical
models that rely on large-scale explanatory variables such
as elevation and radiation loading can be improved through
analysis of data at smaller spatial scales [Balk and Elder,
2000; Winstral et al., 2002; Erickson et al., 2005]. For
example, Winstral et al. [2002] demonstrate improvement
in their statistical model by adding wind drifting parame-
ters. The additional model complexity represents processes
that are dominant at spatial scales less than ~100 m,
emphasizing multiscale variability in snow depth.

2.2.4. Controls at Multiple Spatial Scales

[25] A small number of studies present data on the vari-
ability of SWE at multiple spatial scales. Marchand and
Killingveit [2005] examined radar data on snow depth vari-
ability in Aursunden (midsouth Norway) both within and
between 30 m x 30 m grid cells. They show that the stand-
ard deviation in snow depth is slightly larger within grid
cells than between grid cells. Attempts to use multiple lin-
ear regression models to predict between-grid variance
were relatively ineffective (explained variance ranged
between 5.6% and 48.6%), although elevation emerged as
an important predictor in most regression models. March-
and and Killingveit’s results emphasize variability at multi-
ple spatial scales but provide few clues on the dominant
processes that cause the variability at smaller spatial scales.

[26] Watson et al. [2006] used a stratified sampling
scheme to study the variability in SWE in different land-
scape types in Yellowstone National Park, northwest
Wyoming, USA. They decomposed spatial variability into
a systematic component that could be predicted using cova-
riates that are measureable at larger space-time scales (ele-
vation, vegetation, radiation loading, time), and a random
component that may be related to factors such as microto-
pography, fallen logs, distance from hollows around tree
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trunks, and small-scale wind effects. Measurements were
taken in a triangular pattern at multiple spatial scales (1, 9,
100, 250, and 700 m). Watson et al. [2006] showed random
effects were greatest at spatial scales less than 100 m. They
also showed that variability associated with differences in
elevation were approximately 3 times greater than the vari-
ability associated with random effects, but variability asso-
ciated with differences in vegetation and radiation loading
were approximately 3 times smaller than the variability
associated with random effects.

[27] Jost et al. [2007] averaged SWE across 60 m X
60 m perpendicular transects, and then used the variables
elevation, aspect, and forest cover to predict mean SWE at
different transects throughout the basin. The coefficient of
variation in SWE within transects ranged from 0.1 to 0.5
(depending on forest cover and the year of measurement;
variability was smaller in clear-cuts), but, once this spatial
variability is averaged out, regression models predicted
over 80% of the variance in mean SWE. These results
again emphasize that the variability in snow depth at differ-
ent spatial scales is controlled by different processes.

2.3. Synopsis

[28] The subsequent discussion refers to four spatial
scales, loosely defined as follows: (1) Point scale, which
defines variability at scales less than 5 m associated with
effects such as the roughness of the surface and the presence
of an individual tree or shrub; (2) Hillslope scale, which
defines variability at scales 1-100 m associated with effects
such as topographic breaks and avalanching; (3) Watershed
scale, which defines variability at scales 100-10,000 m asso-
ciated with effects such as elevation and aspect; and (4) Re-
gional scale, which defines variability at length scales
ranging from 10 to 1000 km associated with effects such as
horizontal precipitation gradients across a large mountain
range. Regional-scale variability is not assessed in this pa-
per, as we implicitly assume that regional scale variability
will be explicitly resolved by distributed hydrologic and
land-surface models. We do note, however, that heterogene-
ity at smaller spatial scales can impact the functional
response of a watershed at larger spatial scales [e.g., see
Lundquist and Dettinger, 2005 ; Lundquist et al., 2005].

[29] Note that many snow processes will not fit neatly
into any single scale category. For example, preferential
deposition of snow is evident at the micro scale (in topo-
graphic depressions), at the hillslope scale (in the lee of a
ridge), and at the watershed scale (sheltered aspects).
Nevertheless, these general definitions can help organize
results from previous studies.

[30] The dominant processes controlling variability in
snow depth depend on the landscape and vegetation. Scour
and redeposition of snow by wind is important in the Prai-
ries and alpine areas [e.g., Shook and Gray, 1996; Lapen
and Martz, 1996 ; Mott et al., 2011; Schirmer et al., submit-
ted manuscript, 2011], interception and sublimation of snow
by the forest canopy (and spatial variability of radiative
fluxes within the forest canopy) is important in the boreal
forest [e.g., Pomeroy et al., 2002], and trapping of snow by
shrubs is important in the sub-Arctic tundra [e.g., McCart-
ney et al., 2006]. In mountain environments many processes
act simultaneously to cause variability in snow depth: the
dominant processes at the hillslope-scale are drifting [ Weir,
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1979; Harrison, 1986; Luce et al., 1998; Winstral et al.,
2002; Anderton et al., 2004 ; Erickson et al., 2005 ; Trujillo
et al., 2007; Fitzharris, 1977], sloughing and avalanching
[Elder et al., 1991; Bloschl and Kirnbauer, 1992], and,
where trees are present, interception and sublimation of
snow by the forest canopy and spatial variability of radiative
fluxes within the forest canopy [7rwjillo et al., 2007]. The
dominant processes at the watershed scale in mountainous
environments are variability in freezing levels and melt
energy [Elder et al., 1991; Bloschl and Kirnbauer, 1992;
Elder et al., 1998 ; Watson et al., 2006].

[31] A subset of previous studies report summary statis-
tics on the spatial variability of snow depth (or water equiv-
alent). Figure 2 illustrates that the spatial variability in
different regions is generally consistent with the estimates
presented by Liston [2004]. The major exceptions to this
generalization is that Liston et al. [2004] estimate lower
spatial variability for the midlatitude nonmountainous for-
est, and higher spatial variability for the midlatitude moun-
tainous forest. These differences are likely due to the
sampling design (Table 1), in which studies in nonmountai-
nous forest included open areas as well as forest, and the
studies in mountainous forest generally covered only lim-
ited elevation range or report the spatial variability for sub-
areas of the experimental domain. It is likely that the
spatial variance in mountainous areas is actually higher
than that presented in Figure 2 because steep slopes were
under-sampled [e.g., Balk and Elder, 2000; Erickson et al.,
2005]. The outliers in Figure 2 include the studies of
Elder et al. [1991], Murray and Buttle [2003] and Watson
et al. [2006], who reported larger coefficient of variation
values for very shallow snow depths at the end of the
melt season. These results emphasize that the spatial vari-
ability in snow accumulation has a pronounced impact on
area-averaged fluxes as the melt season progresses, lead-
ing to the development of patchy snow covers and slower
area-average melt rates. Taken together, the synthesis of
statistics in Figure 2 provides a useful guide to parameter-
ize the spatial variability in SWE that is not resolved at
the model scale.

[32] Table 2 summarizes the different process controls
on snow depth variability gleaned from previous studies.
The spatial separation of processes is quite blurred. For
example, sloughing and avalanching can be viewed as
processes that dominate at the hillslope scale (narrow ava-
lanche paths), but sloughing and avalanching can have a
vertical scale of thousands of meters. Conversely, spatial
variations in melt energy can be viewed as important at
the watershed scale, but variations in radiation loading
associated with aspect can occur on spatial scales less than
100 m. Nevertheless, it appears that the processes that
dominate at the hillslope scale (HO00 m) are different
from the processes that dominate at the watershed scale
(100-10,000 m).

3. Model Representations of Subgrid Variability
in SWE
3.1. Subgrid Probability Distributions

[33] Parametric probability distributions can be used to

represent the effects of spatial variability in SWE at the
subgrid scale [Luce et al., 1999; Liston, 2004 ; Essery and
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Pomeroy, 2004b]. For example, Liston [2004] used a log-
normal probability distribution

! 1 [In(S) — A]?
f(S)_SgTﬂeXp{_E{T} }7 (1)
with
A= Inu) — 3¢ )
¢ =In(1+Cr?), (3)

where S is SWE, and A and ( are distribution parameters
related to the mean (1) and coefficient of variation (CV) of
premelt SWE.

[34] Luce et al. [1999] and Liston [2004] assume that
melt is spatially uniform over the grid cell, which means
that the fractional snow covered area (F) and grid-average
SWE (S) can be computed as

F:/ﬂmm (4)
5 / (S — D) (S)dS, (5)

Dy

where D,, is the total melt since the beginning of the snow
season.

[35] In this representation the mean of the premelt SWE
distribution (w) is taken as the sum of all accumulation
events over the season. Implementing this method requires
introducing two ancillary arrays that store the total snow
accumulation (u) and the total snow melt (D,,). Equations
(4) and (5) can be solved analytically (see derivations in
the work of Liston [2004]), thus saving the substantial com-
putational cost of numerical integration.

[36] Figure 3 illustrates the reduction in fractional snow
covered area (F) with increasing melt depth (D,,), and the
corresponding relationships between F and normalized
SWE (S/p), for different CV parameters. Note that Figure
3a is identical to Figure 6a in the work of Liston [2004]. As
shown in Figure 3a the larger CV parameters have the
intended impact of reducing snow covered area at the start
of the melt season (because of more areas of shallow snow
that melt quickly) and increasing snow covered area at the
end of the melt season (because of pockets of deep snow
that persist well into summer). The appealing feature of
using probability distributions to represent subgrid variabil-
ity in SWE is that the parameters of the distribution (i.e.,
the CV parameter) can be estimated directly from observ-
able data collected in field experiments such as those sum-
marized in Figure 2.

[37] The assumption of spatially uniform melt is how-
ever questionable [Luce and Tarboton, 2004; Essery and
Pomeroy, 2004b; Pomeroy et al., 2004, 2008]. To illustrate
the impact of this assumption we perform similar simula-
tion experiments to those presented by Essery and Pomeroy
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Table 2. Processes That Cause Spatial Variability in Snow Depth

Process Predictors Spatial Scale (m) References

Variability in microtopography - 1 Watson et al. [2006]

Snow interception/sublimation from distance from trunk; 10 Faria et al. [2000]; Pomeroy et al. [2002]
the forest canopy spacing of trees; leaf area

index
Trapping of snow by tall shrubs vegetation type changeable Essery and Pomeroy [2004a]; McCartney et al.
[2006]; Pomeroy et al. [2006]

Preferential deposition of snow in sheltering indices 10-100 Shook and Gray [1996]; Lapen and Martz [1996];
sheltered areas and scouring and Luce et al. [1998]; Winstral et al. [2002]; Ander-
redeposition of snow by wind ton et al. [2004]; Erickson et al. [2005]; Trujillo

et al. [2007]
Sloughing and avalanching slope 10-1000? Elder et al. [1991]; Bloschl and Kirnbauer [1992]
Variability in freezing levels elevation 100-1000° Bloschl and Kirnbauer [1992]; Elder et al. [1998];

Balk and Elder [2000]; Winstral et al. [2002];
Marchand and Killingtveit [2005]; Watson et al.

[2006]
Variability in melt energy elevation; slope; aspect; 50-1000 Elder et al. [1991]; Luce et al. [1998]; Balk and El-
radiation loading der [2000]; Watson et al. [2006]

The horizontal scale associated with sloughing and avalanching is often much smaller than the vertical scale.
"The horizontal scale associated with variability in freezing levels is often much larger than the vertical scale.

[2004b] and Pomeroy et al. [2008]. Here an initial lognor- tion of 5 mm d~'; and (3) melt has larger spatial variabili-
mal premelt snow distribution (1 =1 m and CV = 0.5) is ty with standard deviation of 10 mm d~'. In scenarios 2
subjected to constant melt of 10 mm d ' for 100 d). Three and 3 the spatial variability of melt is consistent over
scenarios are tested: (1) melt is spatially uniform; (2) time, and melt values less than 0 were taken to be 0. The
melt has moderate spatial variability, with standard devia- simulation results (Figure 4) illustrate that spatially

0.2

snow covered area (—)

0.0 .

0.5 1.0 1.5 2.0 2.5 3.0
melt depth / pre—melt SWE (-)

o
o

0.8

0.6

0.4

0.2

snow covered area (-)

0.0 2 1 1 1
0.0 0.2 0.4 0.6 0.8
grid—average SWE / pre—melt SWE (—)

o

Figure 3. Behavior of subgrid SWE representations using probability distributions for the case of uni-
form melt, showing (a) the reduction of snow covered area with increasing melt depth, and (b) the func-
tional relationship between SWE and snow covered area. Results are shown for different coefficient of
variability parameters (see text for further details).

12 of 23



W07539

CLARK ET AL.: REPRESENTING SPATIAL VARIABILITY OF SWE IN MODELS

W07539

1.0

0.8

0.6

0.4

0.2

snow covered area (—)

0.0 s !

O et =
T et =

O et =

T

0 mm/day
5 mm/day
10 mm/day  —emmemee

©
o

0.5 1.0

1.5

&
e}

melt depth / pre—melt SWE (—)

0.8

0.6

0.4

0.2

snow covered area (—)

0.0

0.2 0.4

0.6 0.8

o

grid—average SWE / pre—melt SWE (—)

Figure 4. Behavior of subgrid SWE representations using probability distributions for the case of non-
uniform melt, showing (a) the reduction of snow covered area with increasing melt depth, and (b) the
functional relationship between SWE and snow covered area. Results are shown for the case where the

coefficient of variability parameter is specified as 0.5.

variable melt has a similar impact on snow covered areca
to increased variability in premelt SWE. Essery and Pom-
eroy [2004b] demonstrate that these impacts are further
accentuated in cases where the spatial variability in accu-
mulation and melt are negatively correlated; a negative
correlation between accumulation and melt means that
melt rates for areas of shallow snow are larger than melt
rates over areas of deep snow (i.e., areas of deeper snow
melt more slowly).

3.2. Depletion Curves

[38] An alternative method used to represent the impacts
of subgrid variability in SWE is to assume a relationship
between SWE and snow covered area: the snow cover
depletion curve. These depletion curves can have different
functional forms; for example, see the comparison of dif-
ferent fractional snow covered area representations in Fig-
ure 2 of Liston [2004]. However, a problem with most
depletion curves methods is that their parameters are not
directly computable from observed data and hence are
much harder to estimate.

[39] Consider the depletion curves used by Yang et al.
[1997] and Niu and Yang [2007], given by

F:mmc&ﬂ), (6)

a

where F is the fractional snow covered area, §depth is the
grid-average snow depth (as opposed to SWE), and a is a
parameter with the same dimensions as Sgepm [see also Ess-
ery and Pomeroy, 2004b]. Yang et al. [1997] define a based
on the aerodynamic roughness of the surface z,

a=25z2, (7
where i indexes the surface type (e.g., bare soil or grass),

while Niu and Yang [2007] define a based on the roughness
of the surface and snow density,

i [ Psno

a 2.526<pnew) ,
where pg,o and pnew are the prognostic snow density and
the density of fresh snow, respectively, and m is a melting
factor that is adjustable depending on the spatial scale (the
intent is that m should increase with spatial scale). Figure 5
illustrates the snow cover fraction representation of Niu
and Yang [2007]; it shows that complete coverage of snow
can occur with less than 10 cm of snow depth when snow
density is low (e.g., 100 kg m ™, typical of fresh snow),
and larger fractions of snow free ground occur when snow
density is higher (e.g., 400 kg m >, typical of a melting
snowpack).

(®)
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Figure 5. The subgrid SWE representation of Niu and Yang [2007], illustrated for different snow den-

sity values. The case where snow density is specified as 100 kg m 2 is identical to the subgrid SWE rep-

resentation used by Yang et al. [1997].

[40] Despite the apparent physical basis of equations
(6)—(8), depletion curves of this type contain nonobservable
constants. For example, Yang et al. [1997] multiply surface
roughness by 2.5, and Niu and Yang use an adjustable
“melting factor” (m = 1.6). They are also further modified
using heuristic arguments. For example, Roesch et al.
[2001] argued that the Yang et al. [1997] parameterization
is only valid over flat nonvegetated areas, and introduced
an empirical modification for nonforested mountainous
areas: the decrease in snow cover fraction with increasing
subgrid variance in elevation is represented by multiplying
the subgrid variance in elevation by a factor of 0.15. Simi-
larly, Essery and Pomeroy [2004b] replace the dependence
on surface roughness used by Yang et al. [1997] with a de-
pendence on the standard deviation of premelt SWE but
introduce empirical constants to match the depletion curves
produced by subgrid probability distributions.

[41] These arguments suggest that subgrid probability
distributions are a more appealing approach for most appli-
cations, because the only parameter required is the CV pa-
rameter (which can be estimated directly from data
collected in field experiments such as those summarized in
Figure 2). Note also that snow covered area can be esti-
mated from the probability distribution using computation-
ally efficient analytical approaches.

4. Importance of Adequately Parameterizing
Spatial Variability Below the Resolved Model
Scale: A Case Study From a Mountain Catchment
in the Southern Alps, New Zealand

[42] The paper now shifts to examine the multiscale spa-
tial variability in snow depth, as collected in a field cam-
paign in the New Zealand mountains, in order to investigate
the suitability of alternative modeling approaches.

4.1.

[43] Data on the spatial variability of snow depth was
collected in the upper Jollie Catchment, in the central
Southern Alps of New Zealand (Figure 6). The study area
is approximately 30 km? in area with a minimum elevation
of 1067 m and maximum elevation of 2726 m. Slope angles

Field Campaign

range from 0° to 62°, with a mean slope angle for the catch-
ment of 33° (as derived from a 30 m Digital Elevation
Model). The area is made up of two main valley systems,
the Jollie and the Pinnacle, which are both oriented approx-
imately NE-SW (Figure 6). The study area is covered in
tussocks and various low lying alpine plants and mosses at
lower elevation (below 1400 m) and is mainly bare rock
and talus at high elevations. The catchment is in the rain
shadow of the New Zealand Southern Alps, and precipita-
tion totals in the Pinnacle Stream have been measured at
~2000 mm yr~'. The Jollie River is a tributary of the Tas-
man River, which flows into Lake Pukaki, one of New Zea-
land’s major hydro electricity generation lakes. Snow in
New Zealand can be characterized as being maritime in na-
ture [Sturm et al., 1995 ; Owens et al., 2004].

[44] Data was collected by eight separate groups on the
20 September 2007. This date is representative of condi-
tions near the end of the accumulation season. The field
campaign used helicopters to deploy groups throughout the
upper Jollie catchment. Four groups were positioned on
ridgelines, while four more teams were positioned in the
two valleys. Each group collected snow depth and density
data along specified transects. Using a standard avalanche
probe, five snow depths were taken within a 0.5 m x 0.5 m
area at each location. Sets of snow depth observations
(locations) were taken every 10 m along the contour to cre-
ate a transect. Each group started a different transect every
100-200 vertical meters (Figure 6). In total, 2035 snow
depth measurements (5 measurements at 407 locations)
were made over 26 transects. In some cases field personnel
were unable to probe to the base of the snowpack; in these
cases the snow depth was recorded as the maximum depth
measured (the maximum length of the probe plus the depth
of any snow excavated). At least one observation of snow
density was made in each transect. Density was measured
using either the Mt. Rose (“Federal”) Snow Sampler, or by
excavating a snow pit and taking snow density measure-
ments every 0.1 m with depth using a tube sampler and a
scale. Each snow depth and snow density measurement
location was recorded using a GPS, with accuracy of 5-10
m at most measurement points. In cases of inaccurate GPS
readings locations were adjusted based on knowledge of
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Figure 6. Map of the upper Jollie Catchment showing the location of the 26 transects (black dots). The
labels for each transect corresponds to those in Figure 2 and Table 2. Elevations are shaded in 500 m ele-
vation bands and are also shown with contour lines with 50 m intervals. The inset map shows the loca-
tion of the study area, and uses the same shading to show elevation ranges throughout New Zealand.

the location of the transect, the position of the point within
the transect (e.g., the Sth point on the true-left of the cen-
ter of the transect), and the spacing of measurements.
Additional metadata was recorded on surface characteris-
tics, for example, if measurements were taken within ava-
lanche debris.

[45] This measurement strategy provides data on the var-
iability in snow depth at three distinct spatial scales: the
point scale (<1 m), as described by the five measurements
at each measurement location; the hillslope scale (1-100
m), as described by the variability within each transect;
and the watershed scale (100-10,000 m), as described by
the variability between all transects.

[46] The analysis in this paper focuses on spatial vari-
ability in snow depth (rather than SWE). This is done partly
because of the small number of snow density measure-
ments, and partly because snow density did not vary much
between transects [see also Grinewald et al., 2010; Sturm
et al., 2010]. Snow density was approximately 400 kg m >

in most locations and was relatively uniform with depth
(exceptions were in avalanche debris, where snow density
was quite difficult to measure).

4.2. Multiscale Variability in Snow Depth

[47] Table 3 presents the results of all snow depth trans-
ects. Results show that the probability distribution of snow
depth is positively skewed in most transects. This result is
consistent with observations in previous studies [e.g., Shook
and Gray, 1996; Faria et al., 2000; Marchand and Killingt-
veit, 2005] and modeling approaches [Luce et al., 1999;
Liston, 2004]. Note, however, that most measurements were
on slopes less than 40° (Figure 6); given that sloughing and
avalanching cause shallow snow on steep slopes, the true
probability distribution of snow depth for the basin as a whole
is likely to be more positively skewed (and with a higher
coefficient of variability) than what is reported in Table 3.

[48] Figure 7 illustrates variograms of snow depth both
for (1) all measurement pairs (Figure 7a) and (2) for the
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Group/Transect Location Elevation (m) Mean SD Coefficient Variation Skewness
Al Pinnacle (Madonna) 1554 0.70 0.40 0.57 0.42
A2 Pinnacle (Madonna) 1811 0.94 0.55 0.58 0.37
A3 Pinnacle (Madonna) 2044 1.16 0.84 0.73 0.68
A4 Pinnacle (Madonna) 2155 2.10 0.23 0.11 —0.95
B3 Pinnacle (Monk) 2190 2.87 0.15 0.05 —0.50
B4 Pinnacle (Monk) 2303 2.88 1.06 0.37 —0.43
C2 Pinnacle (Abbey Pass) 2091 1.67 0.47 0.28 0.81
C3 Pinnacle (Abbey Pass) 2202 2.10 1.15 0.55 0.36
C4 Pinnacle (Abbey Pass) 2311 2.28 0.85 0.37 —0.61
D2 Pinnacle (valley) 1391 0.28 0.28 0.99 1.16
D3 Pinnacle (valley) 1611 0.76 0.58 0.76 0.99
D4 Pinnacle (valley) 1937 0.93 0.35 0.37 —0.24
E2 Pinnacle (valley) 1508 0.70 0.43 0.61 1.30
E3 Pinnacle (valley) 1704 1.07 0.70 0.65 0.58
E4 Pinnacle (valley) 1846 1.17 0.72 0.61 0.40
Fl1 Jollie (upper) 1783 1.74 0.92 0.53 0.27
F2 Jollie (upper) 1914 2.00 0.84 0.42 0.17
F3 Jollie (upper) 2048 1.30 0.61 0.47 0.54
F4 Jollie (upper) 2233 1.34 0.79 0.59 1.09
Gl Jollie (east) 1419 0.33 0.21 0.62 0.70
G2 Jollie (east) 1638 0.98 0.77 0.78 0.82
G3 Jollie (east) 1719 0.89 0.22 0.25 1.19
G4 Jollie (east) 1819 0.94 0.41 0.43 0.53
H1 Jollie (valley) 1499 0.47 0.21 0.45 0.68
H2 Jollie (valley) 1616 1.05 0.30 0.28 0.77
H3 Jollie (valley) 1704 1.00 0.37 0.37 0.26

restricted case that only considers measurement pairs
within each transect (Figure 7b). The semivariance () at a
given spatial scale is computed as

208) = 3,05 2 b)), ©)

where x; and x; are all snow depth values at a given lag
distance A4, and »n is the number of data points at a given
distance #.

[49] To construct the variogram we ranked all data pairs
in terms of distance, and identified a set of distance catego-
ries, each with the same number of data pairs (n = 498 for
all data pairs, and n = 259 for the restricted case that only
considers measurement pairs within each transect). For
each category, we computed the semivariance and the
mean of the distances in that category.

2.0 05 All data

1.5}

Semi—variance (m?)
o

10 100 1000
Lag (m)

10000

[s0] Figure 7 illustrates some interesting characteristics
in the variability in snow depth. When all distance pairs are
considered, the variance increases with spatial scale (Figure
7a). The spatial variance is largest at horizontal scales of
~3000 m, as it is this scale where elevation differences are
maximized (see Figure 6). However, when restricting atten-
tion to distance pairs within each transect (i.e., filtering out
the effects of elevation), the data suggests that the spatial
variability is dominant at horizontal scales of 50-100 m.

[s1] Figure 8 illustrates the relationship between eleva-
tion and variability in snow depth between transects. While
there is a clear relationship between snow depth and eleva-
tion, several outliers are apparent. At least in some cases,
these outliers can be explained by local conditions. For
example, (1) Group F’s transect at 1913 m (F2) was imme-
diately below a cliff band, and snow depth was significantly
higher in this region due to the effects of sloughing and
avalanching; (2) the high snow depths recorded by group B

0.5 b) Iljota within eachltransect
E 0.4 O @0
[
© 0.3 O O 1
8 OO
o
i 0.2 O
S
» 0.1 ;

0.0 . .

10 100
Lag (m)

Figure 7. Spatial variograms of depth, showing (a) all possible data pairs and (b) only data pairs within

the same transect.
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Figure 8. Relationship between elevation and transect-average snow depth in the Jollie River basin.
The codes refer to different transects (see Table 2 for more details). Note that the symbols A2 and G4

overlap.

were located on Monk Glacier and may reflect locally high
areas of snow accumulation in the lee of the prevailing
westerly winds; and (3) some transects have only a small
number of measurements, e.g., transect F1 was relatively
short and dominated by deep snow drifts on the valley side.
Note also that the relationship between elevation and tran-
sect-average snow depth deteriorates at higher elevations,
especially for elevation ranges less than ~200 m. A likely
explanation for the relationship between elevation and
snow depth is that large-scale spatial variability in freezing
levels and melt energy control large-scale spatial variability
in snow depth.

4.3. Synopsis

[s2] The field data illustrates multiscale spatial vari-
ability in snow depth, with spatial variability shaped by a
range of different processes that occur across a hierarchy
of spatial scales. The clear impacts of elevation on spatial
variability of depth are associated with spatial variability
in freezing levels and melt energy. Such variability can
be represented directly in a spatially distributed model
through spatial interpolation of the model forcing data.
The spatial variability at scales less than 100 m is associ-
ated with preferential snow deposition in small hollows
and in the lee of obstacles such as boulders and ridges,
scouring of snow off exposed areas and redeposition of
snow in sheltered areas, sloughing of snow off steep
slopes, and avalanching. These processes are difficult to
model directly, and therefore, the suggestion of statistical
homogeneity in Figure 7 is important because it supports
the use of probability distributions to approximate the ag-
gregate impact of snow processes operating below the
resolved model scale of ~100 m.

[53] The multiscale variability in snow depth identified
here is dependent on both the experimental design (e.g., we
sampled snow depths over a sufficiently large elevation
range such that the elevation relationship is discernable),
and the landscape and climate (e.g., elevation is an impor-
tant control because temperatures are close to the freezing
point during winter, and the steep terrain has a large impact
on variability at the hillslope scale). We stress that the con-
clusions have been drawn from analysis at a single valley
and, moreover, represent a snapshot of spatial variability in
snow depth on one day. Moreover, the end-of-winter snow
survey biases results toward emphasizing the spatial vari-
ability of snow depth caused by accumulation processes,
although midwinter melt is also important, especially at
lower elevations. Further measurements throughout the
melt season are needed to better understand the spatial vari-
ability caused by melt processes (e.g., controls by radiation
loading associated with differences in aspect). In spite of
these limitations, the spatial variability documented in the
Jollie is consistent with results from many previous studies,
and provides a useful case study to evaluate the design of
distributed snow models.

5.
5.1.

[s4] The impact of model scale is assessed using a suite
of sensitivity experiments with a relatively simple energy
balance snow model, applied to the Pinnacle Stream sub-
catchment (12.5 km?). The snow model used is similar in
structure to that described by Tarboton and Luce [1996]
and is forced with interpolated climate data produced
using the methods described in the work of Tuit et al
[2006], adjusted to match the elevation and aspect of each

Model Sensitivity Experiments
Model Configurations
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model element. The spatial variability of the snow accu-
mulation is generated in an idealized fashion that is
intended to represent the observed spatial variability but
not the observed location of shallow and deep snow. The
sensitivity experiments are designed to illustrate how dif-
ferent process representations and modeling scales affect
model outputs.

[s55] The following model configurations are trialed
(see Table 4 for details on the spatial adjustment of forc-
ing data):

[s6] 1. Explicit resolution of watershed-scale variability.
Watershed-scale variability is resolved by disaggregating
the catchment into smaller grid cells or elevation bands,
and using different snow model inputs (e.g., solar radiation,
temperature) for each grid cell or elevation band. Two spa-
tial setups were tested: (1) vertical discretization, where
the Pinnacle Stream subcatchment is disaggregated into
elevation bands (a single elevation band is included in this
case, which represents a spatially lumped representation);
and (2) areal discretization, where the Pinnacle Stream sub-
catchment is disaggregated to 5 x 5, 10 x 10, 50 x 50, and
100 x 100 m grids.

[57] For the case of elevation bands the temperature
inputs to the model are extrapolated to each grid cell or ele-
vation band using the lapse rate of 5 K km™' (which is
appropriate for the high humidity environment [Norton,
1985]), and for the case of grid cells temperature is
adjusted in an identical manner as for elevation bands but
also the solar radiation inputs to the model are adjusted
based on the solar incidence angle (Table 4). Specific hu-
midity, wind speed, and incoming longwave radiation were
held spatially constant for all model experiments. Such spa-
tial disaggregation accounts for watershed-scale variability
associated with spatial differences in freezing levels and
melt energy.

[s8] 2. Explicit resolution of hillslope-scale variability.
Hillslope-scale variability is simulated using spatially cor-
related redistribution multipliers [Luce et al, 1998],
applied to the 5 m x 5 m grid. In this approach snow accu-
mulation is reduced over areas with low multipliers and
increased in areas with high multipliers. While Luce et al.
[1998] define multipliers based on gridded observations,
we were unable to sample snow over a regular grid, and
multipliers must be defined statistically using spatially cor-
related random numbers. The use of random numbers
means that although the overall spatial variability is similar
to our observations, the exact location of deep snow drifts
is random. The spatial correlation function used in the ran-
dom number generator was defined as

e(d) = co eXp(—%), (10)

Table 4. Adjustment of Model Inputs for Each Model Configuration
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where c(d) is the correlation at a specified distance d (m), ¢
is the small-scale correlation (the “nugget”), and ¢, is the
correlation length scale (m), which, to be consistent with
results presented in Figure 7, are specified as ¢y = 0.75 and
Clen = 50 m. The spatially correlated fields were generated
using the method described by Clark and Slater [2006].
The redistribution multipliers for the 10 x 10, 50 x 50 and
100 x 100 m grids were obtained by spatially averaging the
multipliers from the 5 m x 5 m grid.

[s9] 3. Implicit representation of unresolved variability.
The spatial variability within a model element is simulated
using the parameterization of Luce et al. [1999] and Liston
[2004], where subgrid variability due to accumulation proc-
esses is modeled using a two-parameter probability distribu-
tion, where the mean of the distribution is equal to the total
snow accumulation and the coefficient of variation is a
model parameter that must be specified (here the coefficient
of variation parameter is set at 1.0). This probability distribu-
tion describes the aggregate impact of processes below the
model element size. As noted in section 4, both Luce et al.
[1999] and Liston [2004] assume that snow melt is uniform
throughout the model element. This means that shallow
areas of snow melt first, resulting in a reduction of snow cov-
erage over the model element and corresponding reductions
in snowmelt-runoff for the model element as a whole.

5.2. Model Results

[60] Figure 9 illustrates the SWE simulations for each of
the model configurations. Several features are immediately
apparent:

[61] 1. Explicitly resolving watershed-scale variability
using elevation bands has a pronounced impact on the rate
of snow melt; as expected, the basin average melt rate (av-
erage of all elevation bands) is much lower than the melt
rate at the mean basin elevation, especially toward the end
of the season when snow is only present at higher eleva-
tions. This emphasizes the increasing influence of snow
covered area on basin average melt as the melt season pro-
gresses, and suggests that the spatially lumped simulations
inadequately represent the nonlinear relationships between
snow melt and elevation. Similar sensitivities are demon-
strated by Lundquist and Dettinger [2004].

[62] 2. Explicitly resolving watershed-scale variability
using grid cells explicitly accounts for the spatial variabili-
ty in solar loading, and hence results in minor differences
in snow melt when compared to the spatial discretization
using elevation bands (Figure 9b). Larger differences
between simulations of SWE using grid cells versus eleva-
tion bands may occur if we used different experimental con-
figurations, e.g., if we generated spatially variable wind
fields to account for spatial differences in turbulent heat
fluxes, or if we included the effects of terrain shading on
incoming shortwave radiation. The gridded simulations on

Model Configuration Precipitation

Solar Radiation Temperature

Spatially lumped

Elevation bands

Horizontal grid (no redistribution)
Horizontal grid (redistribution)

spatially constant
spatially constant
spatially constant

use redistribution multipliers

adjust based on solar incidence angle
adjust based on solar incidence angle

spatially constant
spatially constant

spatially constant
extrapolate using lapse rate of 5° km
extrapolate using lapse rate of 5° km ™
extrapolate using lapse rate of 5° km ™'

-1
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Figure 9. Seasonal evolution of SWE for different model configurations, showing (a) SWE in each
individual elevation band compared with the basin-average SWE (averaged across all elevation bands)
and SWE from the spatially lumped representation; (b) basin-average SWE computed using 100-m ele-
vation bands, compared with SWE computed using 100 m and 5 m horizontal grids; (c) basin-average
SWE computed using a 5 m horizontal grid and homogenous accumulation, compared with basin-aver-
age SWE at different grid resolutions with heterogeneous accumulation; and (d) basin-average SWE
both with and without vertical discretization (lumped simulations versus 100 m elevation bands), com-
pared with basin-average SWE both with and without subgrid SWE representations. Note that Figure 9a

has a different vertical scale.

the 5 and 100 m resolutions are indistinguishable, because
the model configurations at finer spatial scales do not ex-
plicitly include any additional small-scale processes and the
spatial discretization errors appear small at this resolution.
[63] 3. Explicitly resolving the impact of hillslope-scale
variability (e.g., as associated with nonhomogenous precip-
itation distribution, drifting, sloughing, and avalanching),

substantially increases the duration of snow in the model
(Figure 9c), especially at 10 and 5 m resolutions where the
hillslope-scale variability has not been averaged out.

[64] 4. Parameterizing subgrid processes using probabil-
ity distributions increases the duration of snow in the model
(Figure 9d). However, implicitly resolving subgrid variabil-
ity in the lumped simulations does not simulate the
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persistence of snow at high elevations, and hence results in
much earlier melt out than the spatially explicit simulations
(Figure 9d). It is, of course, possible to extend the duration
of the snow season in lumped model configurations by
increasing the coefficient of variability parameter (see Fig-
ures 3 and 4), but the general applicability of this approach
is questionable for basins with large elevation gradients
because of the thresholds associated with snow accumulation
and melt are difficult to resolve with continuous probability
distributions. The use of the subgrid probability distributions
in conjunction with elevation bands increases the duration of
snow in the model in a similar manner to the spatially
explicit simulations with redistribution multipliers on a 5 m
x 5 m grid (compare Figure 9d with Figure 9c).

[65] Section 5.3 discusses the implications of these
results for model design.

5.3. Definition of the Model Scale

[66] Ideally, snow model simulations should be produced
at the spatial scale where hillslope-scale processes are
clearly distinguishable from watershed-scale processes. If
the spatial scale of discrete model elements is too small,
then some hillslope-scale processes will need to be explic-
itly represented in the model; if the spatial scale of the
model is too large, then some watershed-scale processes
will need to be implicitly resolved by the model. For exam-
ple, as shown in Figure 9, it may be a poor choice to pro-
duce model simulations for a 50 m x 50 m grid, as the
processes at the hillslope scale will have to be both explic-
itly resolved by the model and represented as a continuous
function.

[67] Variability in snow depth is caused by a mix of mul-
tiple processes with different relative importance at differ-
ent spatial scales [see also Seyfried and Wilcox, 1995].
Results from this investigation show there is substantial
variability at spatial scales less than 100 m (e.g., Figure 7).
Similar results are evident in previous studies [e.g., Shook
and Gray, 1996; Lapen and Martz, 1996 ; Luce et al., 1998,
1999; Erxleben et al., 2002; Winstral et al., 2002 ; Erick-
son et al., 2005; Deems et al., 2006; Trujillo et al., 2007;
Lehning et al., 2008 ; Dadic et al., 2010; Mott et al., 2011;
Schirmer et al., submitted manuscript, 2011]. Results from
this study also show that elevation alone is a poor predictor
for snow depth at elevation intervals less than 200 m (e.g.,
Figure 8), providing further evidence of the importance of
hillslope-scale processes. Similar results are also evident in
previous studies; for example, the measurements in the
work of Anderton et al. [2004] span an elevation range of
only 215 m, and elevation did not emerge as a predictor of
snow depth. However, spatial differences in freezing levels
and melt energy do dominate over other processes at spatial
scales greater than ~200 m, as evident in the strong rela-
tionship between elevation and snow depth that is obtained
when the hillslope-scale variability has been “averaged
out” (Figure 8). Again, this result is evident in previous
studies [e.g., Bloschl and Kirnbauer, 1992; Elder et al.,
1998; Watson et al., 2006].

[68] A noteworthy result from this study is that an
extremely fine horizontal grid (e.g., 5 m x 5 m) is neces-
sary to explicitly resolve variability at the hillslope scale.
This imposes a substantial computational burden. These
results are consistent with the model simulations of prefer-
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ential deposition and snow transport presented by Mott and
Lehning [2010], where they demonstrated that a 5 m grid
increment is necessary to reproduce the smaller-scale depo-
sition features such as dunes and cornices that are shaped
by snow transport processes. In spite of these new model-
ing capabilities, Mott et al. [2011] demonstrated through
scaling analysis that a 5 m grid increment is still insuffi-
cient to resolve the full range of spatial scales associated
with drifting processes; indeed, other processes such as
sloughing of snow of steep slopes may be difficult to simu-
late directly. Moreover, in other snow environments (e.g.,
shrub and forest) explicitly resolving processes such as
trapping of snow by shrubs and the nonuniform unloading
of snow by the forest canopy is a very difficult proposition.
[69] Subgrid probability distributions produce effective
simulations of the aggregate impact of hillslope-scale proc-
esses, and this is a viable alternative for many applications.
The sensitivity experiments demonstrate that while subgrid
probability distributions are effective at the hillslope scale,
they may not adequately represent the spatial variability
across large elevation gradients. In regions of complex ter-
rain snow accumulation and melt processes are dominated
by sharp thresholds that are difficult to resolve with contin-
uous probability distributions. Moreover, the relationship
between snow melt and elevation does not support the
assumption of uniform melt over a model element. In such
cases, it may be more appropriate to resolve spatial vari-
ability at the watershed scale through spatial discretization
of the model domain into smaller computational elements.

6. Summary

[70] This paper uses field data on the spatial variability
of SWE to guide the design of distributed snow models.
Model design strategies are gleaned from a reanalysis of
results from previous field studies, from analysis of field
data on spatial variability of snow collected in a rugged
mountain catchment in the Southern Alps, New Zealand,
and from model sensitivity experiments.

[71] In most environments, variability in snow depth is
caused by a mix of different processes that occur at differ-
ent spatial scales. Variability in snow depth depends on the
landscape and vegetation; scour and redeposition of snow
by wind is important in the prairies, interception, and subli-
mation of snow by the forest canopy (and spatial variability
of radiative fluxes within the forest canopy) is important in
the boreal forest, and trapping of snow by shrubs is impor-
tant in the sub-Arctic tundra. In mountain environments
many processes act simultaneously to cause variability in
snow depth. The dominant processes at the hillslope-scale
(HO0 m) are preferential deposition in sheltered areas,
scour and redeposition of snow by wind, sloughing and
avalanching, and, where trees are present, interception and
sublimation of snow by the forest canopy and spatial vari-
ability of radiative fluxes within the forest canopy. In mari-
time mountain environments the spatial variability in end-
of-winter snow accumulation at the watershed scale (100—
10,000 m) is additionally dictated by the spatial variability
in freezing levels and melt energy.

[72] Analysis of field data from the Jollie catchment in
the New Zealand Southern Alps shows that spatial variabil-
ity has different properties across multiple spatial scales.
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Spatial variability is quite pronounced at spatial scales less
than ~100 m. When these hillslope-scale variations are
averaged out, there is a strong relationship between eleva-
tion and snow depth, suggesting that large-scale spatial
variability in freezing levels and melt energy control water-
shed-scale spatial variability in SWE. A key modeling chal-
lenge is to adequately represent spatial variability across
this hierarchy of spatial scales.

[73] The model sensitivity experiments provide some
guidance for model design. Explicitly resolving hillslope-
scale variability in simulation models requires an extremely
fine horizontal grid, and hence large computational resour-
ces. However, subgrid probability distributions produce
effective simulations of the aggregate impact of hillslope-
scale processes, and this is a viable alternative for many
applications. The sensitivity experiments also demonstrate
that while subgrid probability distributions are effective at
the hillslope scale, they may not adequately represent the
spatial variability across large elevation gradients. In such
cases, it may be more appropriate to resolve spatial vari-
ability at the watershed scale through spatial discretization
of the model domain into smaller computational elements.

[74] Our guidance for model design must be viewed in
context of the incredible diversity of modeling applications.
The design of a model depends first and foremost on the
purpose of the modeling exercise but also on the data that
is available, computational resources, and the type of envi-
ronment where the model is applied. It is therefore difficult
if not impossible to prescribe a generic spatial configura-
tion for snow models, and that is not our intent. We rather
hope that the synthesis of data on the spatial variability of
snow in different environments, along with demonstration
of different ways of accounting for spatial variability in
models, will help other investigators design a modeling
strategy that is suitable for their specific applications.
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