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Impact of temporal data resolution on parameter inference and model
identification in conceptual hydrological modeling: Insights from an
experimental catchment

Dmitri Kavetski,1 Fabrizio Fenicia,2,3 and Martyn P. Clark4

Received 7 May 2010; revised 12 October 2010; accepted 3 November 2010; published 10 May 2011.

[1] This study presents quantitative and qualitative insights into the time scale
dependencies of hydrological parameters, predictions and their uncertainties, and examines
the impact of the time resolution of the calibration data on the identifiable system
complexity. Data from an experimental basin (Weierbach, Luxembourg) is used to analyze
four conceptual models of varying complexity, over time scales of 30 min to 3 days, using
several combinations of numerical implementations and inference equations. Large spurious
time scale trends arise in the parameter estimates when unreliable time-stepping
approximations are employed and/or when the heteroscedasticity of the model residual
errors is ignored. Conversely, the use of robust numerics and more adequate (albeit still
clearly imperfect) likelihood functions markedly stabilizes and, in many cases, reduces the
time scale dependencies and improves the identifiability of increasingly complex model
structures. Parameters describing slow flow remained essentially constant over the range of
subhourly to daily scales considered here, while parameters describing quick flow
converged toward increasingly precise and stable estimates as the data resolution
approached the characteristic time scale of these faster processes. These results are
consistent with theoretical expectations based on numerical error analysis and data-
averaging considerations. Additional diagnostics confirmed the improved ability of the
more complex models to reproduce distinct signatures in the observed data. More broadly,
this study provides insights into the information content of hydrological data and, by
advocating careful attention to robust numericostatistical analysis and stringent process-
oriented diagnostics, furthers the utilization of dense-resolution data and experimental
insights to advance hypothesis-based hydrological modeling at the catchment scale.

Citation: Kavetski, D., F. Fenicia, and M. P. Clark (2011), Impact of temporal data resolution on parameter inference and model

identification in conceptual hydrological modeling: Insights from an experimental catchment, Water Resour. Res., 47, W05501,

doi:10.1029/2010WR009525.

1. Introduction
1.1. Data and Model Uncertainties in Hydrology:
Time Scale Effects

[2] A major issue in hydrological and broader environ-
mental modeling is the uncertainty in the observed data, in
particular, the effects of sparse data sampling and averag-
ing to temporal and spatial scales that may well exceed
those of many hydrological dynamics of interest [e.g.,
Blöschl and Sivapalan, 1995]. For example, many rainfall-
runoff models are calibrated and applied on daily steps,

with rainfall averaged from sparse rain gauges and stream-
flow subject to random and systematic measurement errors
[e.g., Brath et al., 2004; Thyer et al., 2009]. Consequently,
the research and operational focus across all fields of envi-
ronmental studies is increasingly shifting away from point
estimation and toward probabilistic inference, which recog-
nizes these data and model uncertainties [e.g., Beven and
Binley, 1992; Kuczera et al., 2006; Reichert and Mieleit-
ner, 2009; Cressie et al., 2009]. Currently, the statistical
and computational complexity of inverse estimation of
nonlinear models, especially when describing uncertainties
using sampling methods such as Markov chain Monte
Carlo (MCMC) schemes [e.g., Kuczera and Parent, 1998;
Vrugt et al., 2008], may favor computationally fast concep-
tual models, which in many situations can capture key
hydrological dynamics given only limited data.

[3] The time and space resolution of the calibration data
has a significant impact on model estimation and predic-
tion. Even if the governing model equations are formulated
in continuous time state-space form [e.g., Clark et al., 2008],
practical implementations generally operate in discrete time,
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producing predictions at a series of discrete time steps [Liu
and Gupta, 2007] (see also Young and Garnier [2006] for a
discussion of the effects of continuous versus discrete time
implementations). In most cases, the temporal resolution is
fixed by the data collection procedure (e.g., daily or hourly
readings of rain and stream gauges) and controls the time
step of the hydrological model. In principle, the resolution
of the forcing versus response time series can differ, though
in practice, it is usually the same. In addition, an increasing
number of hydrological models use adaptive substepping
within the outer ‘‘data resolution’’ time steps (see Clark
and Kavetski [2010] for a review).

[4] A number of studies have explored the time scale
dependencies of hydrological model parameters. For exam-
ple, Finnerty et al. [1997] applied the Sacramento model
over a range of time steps and concluded that its parameters
are inherently tied to the calibration time scale. Analogous
conclusions were reached by other authors [e.g., Schaake
et al., 1996; Tang et al., 2007; Cho et al., 2009]. In a
recent case study based on the IHACRES model, Little-
wood and Croke [2008] demonstrated a strong time scale
dependency of model parameters and provided a methodol-
ogy to relate parameter values to the modeling time step.
Similarly, Wang et al. [2009] also found linear and nonlin-
ear time scale dependencies in hydrological parameter esti-
mates and analyzed them in the context of average rainfall
intensities at different time scales.

[5] Despite these insights, the impact of data resolution
and modeling time step on the inference of catchment
structure, model parameters, and, more generally, catch-
ment behavior remains poorly understood. While a general
consensus exists that model parameters, simulation results,
and process representations are inherently and strongly
time scale dependent [e.g., Duan et al., 2006; Merz et al.,
2009], there is insufficient quantitative understanding of
the precise underlying causes and their mathematical repre-
sentation and physical interpretation and a lack of concep-
tually sound and practically robust strategies to handle
them. In the absence of an adequate mathematical frame-
work explaining and predicting these dependencies and
encompassing both conceptual and physically based mod-
els of different degrees of complexity, current treatments
of parameter scaling are largely heuristic and empirical
[Littlewood and Croke, 2008; Wang et al., 2009]. Similarly,
while it has been shown that increasingly complex models
can be inferred from higher-resolution data [Atkinson et al.,
2002; Farmer et al., 2003], the quantitative and qualitative
understanding of the processes revealed by high-resolution
data remains limited, especially at subdaily time scales
[Kirchner et al., 2004].

[6] A robust quantitative understanding of the (likely
multiple) causes of time scale dependency of model param-
eters is critical for the advancement of several areas of hy-
drology, both in process understanding and in operational
predictions. In particular, the aim of model identification
and parameter estimation is not only obtaining suitable
model performance (e.g., in a statistical sense), but, perhaps
more importantly, gaining physically meaningful, interpret-
able, and transferable insights [e.g., Gupta et al., 2008;
Bárdossy and Singh, 2008]. The dependence of model pa-
rameters on factors such as time step size and calibration
period obscures the physical interpretation of calibrated

model structures, limits our ability to elucidate their con-
nections to catchment attributes, and precludes their region-
alization to ungauged catchments [Wagener and Wheater,
2006]. These challenges are among those at the forefront of
contemporary hydrology and broader environmental scien-
ces [e.g., Sivapalan et al., 2003b].

1.2. Interplay Between Data Resolution and Statistical
and Numerical Artifacts

[7] Considering their close relationship to the time
approximation scheme, time scale dependencies of hydro-
logical models may be highly susceptible to numerical and
statistical artifacts [Kavetski et al., 2003]. These issues are
directly relevant to ongoing hydrological research and
practice and hence form a key focus of this study.

[8] The general importance of adequate error models for
reliable estimation and prediction is well known (e.g., see
Box and Tiao [1992] for general theory; in hydrological
calibration we can point to illustrations and discussions by
Sorooshian and Dracup [1980], Beven and Binley [1992],
Thyer et al. [2009], and Schoups and Vrugt [2010]). For
example, Thyer et al. [2009] empirically illustrated that the
consistency of parameter estimates in a rainfall-runoff model
depends strongly on the adequacy of the hypothesized error
models describing the uncertainties in the catchment-
averaged rainfall and streamflow. In particular, ignoring rain-
fall uncertainty can introduce spurious and confounding
dependence of inferred parameters on the rain gauge location
and calibration period [see Kavetski et al., 2002b].

[9] On another front, the importance of robust numerical
design for meaningful estimation and prediction has emerged
as a key finding in a series of studies, both in hydrology [e.g.,
Clark and Kavetski, 2010, and references therein] and in the
broader environmental modeling discipline (e.g., see Baker
[1995], Miller et al. [1998], and Kavetski et al. [2002a] for
vadose zone modeling using Richards equation). It is increas-
ingly apparent that models’ predictions, and hence objective
functions, are severely deformed by spurious artifacts when
unreliable numerical implementations are used or when the
model’s constitutive relationships are exceedingly discon-
tinuous [Kavetski et al., 2006a]. These weaknesses have sig-
nificant implications for sensitivity analysis, parameter
estimation and interpretation, and operational prediction
[Kavetski and Clark, 2010]. Several robust numerical
approaches (unconditionally stable implicit integration and/
or adaptive substepping) and model design recommenda-
tions (e.g., using smooth constitutive functions linking
model storages and fluxes) were proposed to address these
problems. In this paper, we exploit the numerical under-
standing gained in previous computationally oriented stud-
ies [e.g., Kavetski et al., 2003; Clark and Kavetski, 2010] to
support more robust process-oriented insights into the
effects of environmental data resolution on parameter esti-
mation and model identification of catchment-scale hydro-
logical systems.

1.3. Toward a More Process-Oriented Hypothesis
Testing in Hydrology

[10] Hydrological modeling is a multifaceted challenge,
particularly in scientific contexts where a key objective is
to improve the fidelity of the process conceptualizations.
In addition to an adequate overall model structure that
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represents the dominant hydrological processes, this also
requires the parameters to take physically meaningful val-
ues [e.g., Wagener and Wheater, 2006; Bárdossy and
Singh, 2008] and, ideally, for the model state variables to
represent, at least approximately, the intended internal
catchment dynamics [e.g., Kuczera and Franks, 2002]. Yet,
especially when using generic ‘‘off-the-shelf’’ residual
error models (objective functions) and little auxiliary prior
knowledge, purely statistical methodologies, including tra-
ditional regression and related heuristic modifications, are
often insufficiently discriminatory to identify physically re-
alistic models. This is especially apparent when gauged
against the process understanding gleaned from experimental
catchments [e.g., Seibert and McDonnell, 2002; Tromp-van
Meerveld and McDonnell, 2006a; Vaché and McDonnell,
2006].

[11] The ‘‘diagnostic’’ approach to hydrological model
evaluation seeks to address these challenges using multiple
‘‘hydrological signatures’’ [Gupta et al., 2008], which elu-
cidate aspects of system behavior that may not be immedi-
ately apparent from the response time series alone. For
example, Yilmaz et al. [2008] use the slope of the flow du-
ration curve to infer model parameters that describe the
vertical percolation of soil moisture. As such, diagnostics
are a form of more incisive hypothesis testing, going
beyond merely fitting the aggregate system response [e.g.,
Kuczera and Franks, 2002]. If applied to independently
scrutinize and improve individual constituent hypotheses,
they can also alleviate the identifiability problems that tra-
ditionally plague catchment-scale hydrology (the ‘‘model
equifinality’’ problem in the language of Beven [2006]).

[12] Another important aspect of hypothesis testing in
hydrology concerns the complexity of the identifiable mod-
els [e.g., Jakeman and Hornberger, 1993; Schoups et al.,
2008]. For example, in the data-based mechanistic (DBM)
framework, models are constructed using linear transfer
functions, with (possibly state-dependent) parameters esti-
mated using instrumental variables techniques [e.g., Young,
1998, 2003]. In more traditional conceptual hydrology, the
‘‘top-down’’ strategy begins with a simple model and incre-
ments its complexity until some indicator(s) of model per-
formance are judged to be adequate [e.g., Sivapalan et al.,
2003a]. In the absence of strong independent physical
insights, the supported complexity of a model is inti-
mately linked to the information content extracted from
the calibration data. Therefore, understanding the inter-
plays between data resolution, objective functions, and
numerical approximation errors is of major significance
for hypothesis testing.

1.4. Aims and Scope
[13] This work aims to use experimental data and pro-

cess understanding to obtain deeper and more robust quan-
titative and qualitative insights into the time scale
dependencies of hydrological parameters and their uncer-
tainties. The focus is on both the origins and the impacts of
time scale dependencies on both statistical and process-ori-
ented hypothesis testing in catchment-scale hydrology. Our
objective is to advance previous work on time scale
dependencies [e.g., Littlewood and Croke, 2008; Wang et
al., 2009] by exploring structural complexity issues using a
flexible model framework [Fenicia et al., 2008], by illus-

trating the impacts of the numerical model implementation
and the objective function used in the inference, and by
investigating the behavior of parameter and streamflow dis-
tributions rather than point estimates. Importantly, we
make a direct link between the quantitative mathematical
analysis and process-oriented qualitative field insights
available in this experimental catchment. We also examine
the stability of the validation performance with respect
to the resolution of the calibration data, diagnose the ability
of the inferred models to reproduce hydrological signatures
[Gupta et al., 2008], and make inroads into understanding
subhourly resolution effects. The implications of the find-
ings for the community quest for stronger scrutiny of
hydrological model hypotheses and the overall aim of more
scientifically defensible and operationally reliable models
are also discussed.

[14] The generality of the findings is further strengthened
by interpreting the empirical results from a theoretical per-
spective of numerical error analysis and data-averaging
considerations. An important emphasis of this presentation
is on the key distinction between the time scale dependence
of the governing model equations versus the time scale
dependencies of their practical (numerical) implementa-
tions. Since insufficient attention to numerical aspects can
create harmful numerical trends and artifacts, this distinc-
tion is of markedly underrated significance for meaningful
advances in hydrological science and operations [e.g.,
Kavetski and Clark, 2010].

[15] In order to provide insights relevant to a wide audi-
ence of hydrologists, we focus on common calibration
methods and time-stepping schemes. Assessments over
large numbers of catchments [e.g., Perrin et al., 2001;
Merz et al., 2009] are beyond our scope and will be pursued
separately. Analysis of rainfall errors [e.g., Kavetski et al.,
2002b; Vrugt et al., 2008; Götzinger and Bárdossy, 2008],
more sophisticated structural error models [e.g., Reichert
and Mieleitner, 2009; Bulygina and Gupta, 2009; Renard
et al., 2010; Doherty and Welter, 2010], and extensions to
distributed models [e.g., Ivanov et al., 2004; Immerzeel
and Droogers, 2008] are deferred given their high data
requirements and computational costs at the short time
scales examined in this work.

[16] The paper is organized as follows. The study area is
described in section 2, the hydrological models in section 3
(including the numerical algorithms in section 3.3), and the
model analysis methods in section 4. The methodology is
outlined in section 5, followed by empirical experiments
presented in section 6. The findings are discussed in section
7 (including a theoretical interpretation and discussion of
limitations). The discussion and conclusion summarize the
key insights and outline our views on the current limita-
tions facing conceptual catchment-scale modeling and on
future research directions.

2. Experimental Catchment
[17] The study area for this investigation is the 0.47 km2

Weierbach catchment in the Grand Duchy of Luxembourg.
It has a history of experimental work that is providing both
high-resolution rainfall-runoff-evapotranspiration time se-
ries and also valuable process-oriented insights into its geo-
morphology and dominant hydrological dynamics [e.g.,
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van den Bos et al., 2006b; Pfister et al., 2006; Martinez-
Carreras et al., 2010]. The Weierbach is largely forested
(85%), with some agriculture on its plateaus (15%); its ele-
vations range from 422 to 512 m above sea level. The hill-
slope soils are shallow because of continuous erosion,
though deeper soils are present on the uphill plateaus. A
well-developed weathered zone exists at the soil-bedrock
interface and acts as a water store. The lithology is predom-
inantly schistose, which is generally impermeable. This
results in a relative absence of flow during dry periods
because there is no significant bedrock aquifer storage. The
ephemeral nature of uphill sources also suggests a limited
storage depth. However, while largely impeding deep per-
colation, the schists are fractured in a preferential direction
and, when saturated, form a complex flow network inter-
spersed with local storage in the rock cracks.

[18] The Weierbach catchment is well suited for demon-
strating and analyzing the time scale dependencies of
model parameters and structures in a nontrivial and rela-
tively general way. Despite its small size, the catchment
has complex hydrologic dynamics, characterized by thresh-
olds and delays operating over a spectrum of time scales. In
particular, its streamflow response to a rainfall event in the
wet (winter) season is often characterized by two distinct
peaks with markedly different time scales [van den Bos
et al., 2006b]. The initial response is near concomitant with
the rainfall event and, unless masked by rainfall variability,
appears as a spiky first peak in the hydrograph. It has been
attributed to rainfall over the near-stream riparian zone,
which in the Weierbach catchment comprises rock outcrops
and is generally saturated over most of the year. The
delayed response generally takes the form of a broader sec-
ond peak that reaches its maximum at a lag of approxi-
mately 48 h. It appears to be sustained by water flows at the
soil-bedrock interface [van den Bos et al., 2006b]. It can be
hypothesized that this delay arises from a cascade of water
reservoirs in cracks formed by the irregular bedrock topog-
raphy. Chemical analyses have suggested that water flows
during the two peaks have distinct chemical compositions
and are likely to originate in different catchment compart-
ments [Pfister et al., 2006] (also see Clark et al. [2009] for
similar experimental work on the Panola catchment).

[19] The delayed response of the catchment varies
strongly depending on catchment wetness. This effect has
been attributed to the connectivity of flow pathways [Hopp
and McDonnell, 2009], which according to recent field
investigations in this catchment, varies significantly across
the seasons. The delayed runoff contributions are less evi-
dent during dry periods, when rainfall water remains
trapped in the bedrock depressions and is lost through tran-
spiration. During the wet season, interconnected saturated
zones develop at the soil-bedrock interface and increase the
areal fraction of the catchment contributing to runoff via
saturation – excess flow mechanisms. The Weierbach catch-
ment, including its spatial variability and hydrogeological
complexity, remains the subject of ongoing field investiga-
tions [e.g., van den Bos et al., 2006b; Martinez-Carreras
et al., 2010].

[20] Long-term annual average precipitation and dis-
charge are about 900 and 480 mm, respectively. Discharge
is measured at a 90� V notch weir. A single rain gauge
about 3 km outside of the catchment was used. Potential

evaporation was estimated using the Hamon equation
[Hamon and Belt, 1973]. All time series were available at a
30 min resolution or shorter. This study uses 3 years of data
in the period from 1 July 2005 to 1 July 2008. The first 2
years were used for calibration, and the final 1 year period
was used for evaluation (‘‘validation’’).

3. Hydrological Models
3.1. Overall Model Architecture and Governing
Equations

[21] The multiple conceptual model structures analyzed
in this study are obtained from the flexible model frame-
work SUPERFLEX, which generalizes the original FLEX
model of Fenicia et al. [2008]. In the SUPERFLEX frame-
work, a complete model hypothesis is constructed by com-
bining and configuring a number of generic components
that approximate different mechanistic aspects of catch-
ment dynamics, including partition, storage, release, and
transmission of water [Wagener et al., 2007]. In this study,
reservoirs are used to represent storage and release of
water, and transfer functions are used to represent the trans-
mission and delay of flows. Each component is character-
ized by selected constitutive functions (e.g., relating fluxes
to storages) and associated parameters. Multiple compo-
nents are assembled according to a hypothesized connectiv-
ity using junction elements.

[22] Reservoir water balance dynamics are represented
using a set of ordinary differential equations (ODEs):

dS tð Þ=dt ¼ gs S tð Þ;X tð Þjh½ � ; ð1aÞ

Q tð Þ ¼ gQ S tð Þ;X tð Þjh½ � ; ð1bÞ

where S(t) are conceptual storage values at time t, X(t) is
the (time-dependent) forcing (here rainfall P and potential
evapotranspiration Ep), and Q(t) is the streamflow response.
In equation (1), g( ) are the input-output fluxes connecting
the model components, and h are the model parameters
(see Clark et al. [2008] for the development of conceptual
hydrological models in state-space form).

3.2. Specific Model Hypotheses Under Consideration
[23] In this study, we examine four models of increasing

structural complexity (Figure 1 and Table 1). Their under-
lying hypotheses were selected on the basis of qualitative
insights from previous field studies in the Weierbach
catchment. This section summarizes the key qualitative
features of these models ; the equations are detailed in
Tables 2 and 3.

[24] 1. The simplest structure (M1) is characterized by
two reservoirs and five parameters. It includes an unsaturated
soil reservoir (UR) and a fast-reacting reservoir (FR). UR
represents the saturation–excess runoff response of this
catchment (see section 2). Precipitation Pt is separated into a
fast component Qq routed through FR and a slow component
routed through UR. Actual evaporation is proportional to the
potential evaporation, with a smoothing function used for
near-zero storage values. The unsaturated store UR is drained
by the flux Qu, which is linearly related to the storage Su. The
fast reservoir FR is linear. The streamflow is obtained by
combining Qu with the output flux Qf from FR.
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[25] 2. The structure M2 differs from M1 by including a
transfer function, which accounts for delays in the rainfall-
runoff routing. The flux Qq is convolved with a triangular
transfer function, and the resulting flux Pfl is routed through
the fast reservoir. The model has six parameters.

[26] 3. The structure M3 further generalizes M2 by mak-
ing FR nonlinear. It has seven parameters.

[27] 4. The most complex structure (M4) differs from
M3 by including a riparian zone reservoir (RR), which con-
ceptualizes the contribution of the impervious zone of the
catchment. The precipitation Pt is split into a component Pu

that reaches UR and a component Pr that is routed through
the (linear) reservoir RR. The streamflow is then obtained
by combining Qf, Qu, and the output flux Qr from RR. Con-
figuration M4 is characterized by nine parameters.

[28] While fairly simple relative to physically based dis-
tributed models [e.g., Ivanov et al., 2004], the model
hypotheses M1 –M4 are generally representative of opera-
tional forecasting models, such as GR4J [Berthet et al.,
2009], and of the conceptual models used in major hydro-
logical investigations [e.g., Duan et al., 2006].

3.3. Numerical Implementation of Model Hypotheses
[29] To prevent mathematical solution aspects from

obscuring the comparison of physical process representa-
tions, the implementations of model hypotheses must be
treated, and reported, separately from their conceptual de-
velopment [Kavetski et al., 2003] (see Clark et al. [2008]
for a practical illustration).

[30] Since analytical solutions of ODE (1) do not exist
for most flux formulations g( ), numerical approximations
must be employed (e.g., see Butcher [2008] for numerical
ODE theory and Clark and Kavetski [2010] for a discussion
in hydrological contexts). In this study, we use the explicit
and implicit Euler time-stepping schemes, applied over
fixed discrete steps �t ¼ tnþ1 � tn, where the subscript n
indexes the time step. For a better correspondence with
rainfall and runoff measurement systems (which usually
report accumulated totals), the hydrological models are
forced with data Xn!nþ1 obtained by averaging X(t) over
each data resolution step.

[31] The explicit Euler method (EE) evolves the approxi-
mation using the flux at the beginning of each time step,

Figure 1. Schematic representation of the conceptual hydrological hypotheses M1 –M4 analyzed in
this study. The states and fluxes are in black, with associated parameters in red. The flexibility in select-
ing model structures within SUPERFLEX and similar modular frameworks [e.g., Clark et al., 2008] is
exploited here for systematic hypothesis testing with respect to data resolution, process representation,
and numerical approximations.

Table 1. Components and Parameters of Model Structures M1 – M4a

Model Components Parameters

Structure Npar RR UR FR LF M Ce Su,max (mm) � Tf (h) Kr (1/h) Kf (mm1�� / h) � Rmax (mm/h)

M1 5 - H H - - H H H - - H - H
M2 6 - H H H - H H H H - H - H
M3 7 - H H H - H H H H - H H H
M4 9 H H H H H H H H H H H H H

aNpar is the number of parameters. RR, UR, FR, and LF denote the riparian, unsaturated, and fast reservoirs and the transfer function, respectively. An
H indicates that a component or parameter is included in a structure, and a dash indicates that it is not included.
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S EEð Þ
nþ1 ¼ Sn þ�tg Sn;Xn!nþ1

� �
: ð2Þ

[32] It remains widely used in hydrological applications
because of its algorithmic simplicity and computational
speed. However, explicit integration is conditionally stable,
with instabilities developing in the EE scheme when
�t > 2 eigmax @g=@Sj j�1, where eigmax zj j denotes the
largest-magnitude eigenvalue of matrix z. The explicit
Euler scheme is therefore highly unreliable unless numeri-
cal error control is used [e.g., Kahaner et al., 1989]. Here
the EE scheme is implemented without error control but
with a trivial check on the drainage fluxes to avoid negative
storages as a result of ‘‘overdraining’’ the store in a single
step. This avoids outright instabilities but is very ad hoc; it
corresponds closely to common implementations of many
current conceptual hydrological models (see Clark and
Kavetski [2010] for a review). In this study, it is used only
to illustrate the interplay between time scale effects and nu-
merical implementations commonly encountered in con-
ceptual hydrological modeling. Note that other heuristic
approaches to time step size selection are possible, e.g.,
based on the estimated concentration time of a storm event
(used in some engineering applications [Maniak, 1997]).

[33] In contrast, the implicit Euler method (IE), which
uses the flux at the end of the time step,

S IEð Þ
nþ1 ¼ Sn þ�tg

�
S IEð Þ

nþ1;Xn!nþ1
�

ð3Þ

is unconditionally stable [e.g., Kahaner et al., 1989].
Hence, despite requiring potentially expensive iterative sol-
utions (e.g., using the Newton-Raphson root solver [see
Clark and Kavetski, 2010]), the implicit Euler scheme is
generally robust even for large step sizes. It is widely used
in standard engineering software, e.g., the MODFLOW
package for groundwater simulations, the ECLIPSE tool in
the petroleum industry, and geotechnical consolidation
codes [e.g., see Clark and Kavetski, 2010, and references
therein].

[34] Importantly, when implemented using fixed steps
and a tight Newton-Raphson tolerance, the implicit Euler
solution is smooth with respect to its forcing and parame-
ters (note the distinction between the temporal error toler-
ance � of an (explicit or implicit) substepping algorithm
versus the iteration tolerance �NR of the Newton-Raphson
root solver for an implicit scheme) [Clark and Kavetski,
2010]. This results in a smooth objective function of the
hydrological model, facilitates calibration, and leads to
more stable prediction.

[35] Verifications against adaptive ODE solutions with
tight error tolerances were undertaken for several model
configurations and data resolutions. However, the use of
strict near-exact solutions in this study was limited given
the high cost of dense substepping for the large number
of computationally demanding inference setups, while
adaptive substepping with coarse tolerances was not used
because of the roughness of the resulting objective func-
tions complicating parameter analyses [Kavetski and
Clark, 2010]. Therefore, the IE scheme in this work was
not error controlled, which is an undeniable limitation that
is elaborated on in sections 7.4.2 and 7.6. We also note
that previous studies, including a broad evaluation over 6
distinct models and 13 basins with diverse hydroclimatic
and physical properties, have suggested that even when
applied with daily steps, the numerical errors of conceptual
rainfall-runoff models approximated using the fixed step
IE method were well below errors because of inaccurate
forcing data and model structural defects [Clark and
Kavetski, 2010].

4. Model Evaluation Methods
4.1. Bayesian Inference Formulations

[36] The hydrological parameters are inferred given
observed rainfall-runoff data

�eP;eQ� using Bayes’ equation:

pðh;NjeP;eQÞ ¼ pðeQjeP; h;NÞpðh;NÞ ; ð4Þ

where pðh;NjeP;eQÞ is the posterior distribution of the pa-
rameters h of the hydrological model and the parameters N
of the residual error model, pðeQjeP; h;NÞ is the likelihood
function, and p h;Nð Þ is the prior. The tilde indicates quanti-
ties that are observed and hence subject to sampling and
measurement uncertainties. In the absence of additional
knowledge, we used noninformative priors for h and N
[Box and Tiao, 1992].

[37] This study considers two commonly used inference
schemes based on distinct assumptions describing the resid-
ual errors � (the discrepancy between observed and simu-
lated responses). The first approach is the standard least

Table 3. Constitutive Relationships of the Models Used in the
Experimentsa

Constitutive Relationships M1 M2 M3 M4

Su ¼ Su=Su;max H H H H

Qq ¼ Pu
1þe��=2ð Þ e��Su�1

� �
1þe

�� Su�1=2ð Þ
h i

e���1ð Þ
H H H H

Eu ¼ CeEpfe Su
� �

H H H H

fe Su
� �

¼ 1þ með Þ Su

Suþme
H H H H

Pfl ¼ (Pf * hf) (t) - H H H

hf ¼
t=T2

f ; t < Tf

0; t > Tf

�
- H H H

Qu ¼ RmaxSu H H H H
Qf ¼ kfSf H H - -
Qf ¼ kf S�f - - H H
Qr ¼ krSr - - - H

aThe operator * in the equation for Pfl denotes the convolution. The con-
stant e ¼ 2.718 denotes the natural logarithm base. The H and dash indi-
cate presence and absence, respectively.

Table 2. Water Balance Equations of the Models Used in the
Experimentsa

Water Balance Equations M1 M2 M3 M4

Pt ¼ Pu þ Pr - - - H
Pt ¼ Pu H H H -
dSu
dt ¼ Pu � Qq � Qu � Eu H H H H

dSr
dt ¼ Pr � Qr H H H H

dSf

dt ¼ Pfl � Qf - H H H
dSf

dt ¼ Pf � Qf H - - -
Qt ¼ Qr þ Qf þ Qu - - - H
Qt ¼ Qf þ Qu H H H -

aThe H and dash indicate presence and absence, respectively.
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squares (SLS) scheme, which assumes Gaussian residuals
with zero mean and constant standard deviation (i.e., homo-
scedastic). The second approach is the weighted least squares
(WLS) scheme, which also assumes zero-mean Gaussian
errors but allows for heteroscedasticity. Here we hypothesize
that the standard deviation of individual residuals increases
linearly with the corresponding streamflows [e.g., Thyer
et al., 2009].

[38] The likelihood functions for SLS and WLS are as
follows:

pðeQjeP; h;NÞ ¼ �
Nt

n¼1
N ½�nðeP; h; eQnÞj0; �2

n� ; ð5Þ

SLS �n ¼ �;

WLS �n ¼ aþ beQn;
ð6Þ

where N(xjm,s2) is the probability density function of a
Gaussian deviate x with mean m and variance s2, Nt is the
number of observations, and �n is the standard deviation of
the nth residual error �n ¼ eQn � QnðeP hÞj . In the case of
SLS, N contains the (unknown) standard deviation of the
residuals, � (mm/h); in the case of WLS, N comprises the
(unknown) parameters a (mm/h) and b (dimensionless)
controlling the heteroscedasticity of residual errors.

[39] Given the probability models (5) and (6), the total
uncertainty in the predicted streamflow comprises the exog-
enous (‘‘residual’’) error term (here, additive Gaussian
noise with variance given by equation (6)) and also the
effects of the posterior uncertainty in the model parameters.
A notable omission from the inference equations (5) and
(6) is a specialized treatment of data and structural uncer-
tainties, e.g., in the catchment-averaged rainfall forcing. At
best, these uncertainties are crudely lumped within the ex-
ogenous error term [Renard et al., 2010]. While a more ro-
bust treatment of input and structural uncertainties is a
major goal in hydrological modeling (e.g., as pursued by
Beven and Binley [1992], Kavetski et al. [2002b, 2006b],
Bulygina and Gupta [2009], Reichert and Mieleitner
[2009], and Vrugt et al. [2005, 2008]), its generally large
data analysis and computational requirements make it cur-
rently infeasible for the significant number of experiments
required in this study, including those with multiple models
and high-resolution (down to 30 min) calibration data. This
limitation, its implications, and future remedies are dis-
cussed in section 7.6.

4.2. Analysis of Posterior Distributions
[40] The posterior distributions of parameters and

streamflow predictive were explored using the MCMC
sampling strategy described by Thyer et al. [2009] with a
total of 40,000 model runs (five parallel chains). During the
first 2000 samples, the jump distribution was tuned one pa-
rameter at a time. During the next 2000 samples, the jump
distribution was tuned by scaling its entire covariance ma-
trix. The jump distribution was then fixed, and 35,000 sam-
ples were collected. The first 25,000 samples were
discarded as burn-in [Gelman et al., 2004], and the final
10,000 ‘‘production’’ samples were used to analyze and
report the parameter distributions.

[41] The stationarity of the MCMC chains was evaluated
using the Gelman-Rubin statistic [Gelman et al., 2004].
Given the vulnerability of common convergence diagnos-
tics to the entrapment of MCMC chains on local optima of
the target distribution, randomly seeded multistart quasi-
Newton optimization analyses of the Bayesian posteriors
were carried out to explore their macroscale multimodality
structure [Kavetski and Clark, 2010]. Their termination
points were used as starting seeds for the MCMC chains,
further guarding against false convergence.

[42] Given a focus on experimental data analysis using
comparatively simple models and inference schemes, a
more thorough development, exposition, and discussion of
MCMC sampling techniques is beyond our scope here.

4.3. Hydrologically Oriented Model Diagnostics
[43] We consider two different diagnostic measures to

scrutinize the inferred hydrological models: (1) the tradi-
tional flow duration curve for evaluating the overall stream-
flow distributions [Linsley et al., 1949; Dingman, 1994;
Wagener and Wheater, 2006] and (2) a diagnostic for eluci-
dating the rainfall-runoff cross-correlation characteristics
that may not be apparent solely from inspecting the time se-
ries. These analyses focus more directly on the key hydro-
logical variables and signatures of interest and extend more
traditional statistical diagnostics, such as evaluations of the
marginal Gaussianity and autocorrelation of residuals (e.g.,
see Box and Tiao [1992] for general theory and Thyer et al.
[2009] for an illustration in rainfall-runoff hydrology).

[44] The flow duration (FD) curves are constructed as
the marginal distributions of streamflow. The lower, flatter
sections of the FD curve generally correspond to base flow,
whereas the higher, steeper sections generally correspond
to quick flow. As discussed in the hydrological literature
[e.g., Wagener and Wheater, 2006], FD curves provide use-
ful qualitative insights into the catchment behavior. For
example, steeper FD curves indicate higher variability in
the streamflow, which in addition to climatic factors such
as rainfall variability, is also tied to storage characteristics
arising from geomorphology, topography, vegetation, land
use, etc. [e.g., Linsley et al., 1949]. Hence, FD curve analy-
sis diagnoses not only the fidelity of a model’s representa-
tion of base flow and quick-flow processes but also,
indirectly, its correspondence to the physical catchment
attributes listed in the previous sentence.

[45] The FD curve, being a marginal distribution diagnos-
tic, suppresses timing (‘‘frequency’’) information. Since
time resolution (sampling frequency) aspects are a key
focus of this study, we examine the cross-correlation pattern
between streamflow and lagged rainfall, contrasting results
for low- versus high-frequency components (corresponding,
loosely, to the distinct components of the ‘‘double-peak’’
response; see section 2). The low-pass-filtered data are
obtained using Gaussian kernel smoothing of the time se-
ries, while high-pass-filtered data are obtained as the differ-
ence between the raw data and the low-pass filter. At the
expense of foregoing distributional information (which,
instead, can be seen in the FD curves), rainfall-streamflow
cross-correlation diagnostics highlight timing aspects of the
streamflow response with respect to the rainfall input. In
particular, the seasonality of the streamflow dynamics of the
Weierbach catchment becomes more clearly visible.
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[46] We also stress that evaluating the ability of the mod-
els to reproduce the double-peak streamflow signature is in
itself a diagnostic technique. Given the experimental evi-
dence that the streamflow dynamics in the Weierbach
catchment are controlled by differences in the time scales
of the riparian versus subsurface flow paths [van den Bos et
al., 2006b], this signature is used to scrutinize the physical
realism of the conceptual models.

5. Methodology
[47] Model calibration was based on the 26 month period

from 1 July 2005 to 31 August 2007, with the first 2 months
used for a warm-up. Model validation was based on the
1 year period from 1 September 2007 to 31 August 2008.
The issue of unknown initial conditions in validation, which
is tangential to the focus of our experiments, was minimized
by using the preceding calibration period as a warm-up. To
further reduce potential biases, we used exactly the same ini-
tialization setup in all model runs: reservoirs with finite stor-
age were initialized to 20% of their capacity, while other
stores were initialized as empty. Identical initialization
means that any differences in the results are due solely to the
only factors that were varied as part of the research objec-
tives: data resolution, model complexity, time-stepping
approximation, and the residual error model for calibration.
Empirical analysis further suggested that the sensitivity of
the results to the initial conditions was low.

[48] The parameters of the four hypothesized model
structures were inferred from calibration data with eight
different time resolutions ranging from 30 min to 3 days. In
these experiments, the total observation period was fixed,
and only the temporal resolution of the time series data was
varied. We stress that the fine-scale data were obtained
directly from the rainfall-runoff observation network,
rather than estimated by subscale disaggregation of coarser
measurements [e.g., Kandel et al., 2005].

5.1. Parameter Uncertainty Analysis
[49] The posterior distributions of the parameter esti-

mates and streamflow predictions were examined, both in
calibration and validation, with respect to (1) the resolution
of the calibration data, (2) the numerical implementation of
the hydrological model hypothesis, and (3) the likelihood
function used in the inference.

[50] Since the calibration period is fixed, increasing the
data resolution results in a larger number of observations
being used in the inference. Strictly speaking, this affects
both the accuracy and precision of the forcing response
time series (e.g., aggregation over smaller scales leads to
less averaging of measurement errors and may result in
larger data uncertainty), as well as the characteristics of
both data and model errors (e.g., stronger autocorrelation at
finer time scales). However, in the absence of reliable prior
understanding of either data or model errors, we simply use
the SLS and WLS methods with unknown residual error
model parameters. Since these inference methods are
widely used in hydrological research and practice, illustrat-
ing and understanding their behavior is important for ensur-
ing a better and broader recognition of their limitations and
how these limitations are likely to affect previous, current,
and future scientific and operational applications (see sec-

tion 7.6 and Renard et al. [2010] for further analysis and
discussion).

[51] In the SLS and WLS schemes, an increase in the
number of observations Nt leads to a reduction of uncer-
tainty in the inferred parameters (though not in the response
predictions; see section 4.1). Asymptotically,

sdev �jNt½ � / 1
. ffiffiffiffiffi

Nt

p
; ð7Þ

where sdev �jNt½ � is the posterior standard deviation of pa-
rameter � given Nt observations. This behavior is a property
of most statistical inferences [e.g., Box and Tiao, 1992].
However, while highly germane in the broader context of
parameter estimation [e.g., Mantovan and Todini, 2006;
Beven et al., 2008; Stedinger et al., 2008], these effects are
tangential to this work, which focuses on the impact of data
resolution rather than data length. We refer the interested
reader to Brath et al. [2004] and Merz et al. [2009] for a
thorough empirical exploration of the effects of calibration
data length given a fixed resolution.

[52] Instead, our primary interest here is on how some
processes, e.g., quick flow, that are obscured by the data
averaging inherent at coarse time scales are gradually
revealed (or ‘‘disclosed,’’ in the language of Kirchner et al.
[2004]) as the resolution of the calibration data is refined.
In order to more clearly present how uncovering these
finer-scale dynamics impacts on posterior uncertainty, we
‘‘standardize’’ all parameter uncertainty intervals by divid-
ing the width around their means by factors of

ffiffiffiffiffiffiffiffiffiffi
Ndays

p �ffiffiffiffiffi
Nt
p

. This scaling allows an examination of whether refin-
ing the data resolution improves the parameter precision
beyond the reduction expected in SLS and WLS merely
from an increased number of observations. For conven-
ience and ease of visualization, the term

ffiffiffiffiffiffiffiffiffiffi
Ndays

p
is included

to scale all intervals relative to the uncertainties obtained
for daily data.

[53] We considered several alternative approaches for
isolating these aspects. For example, varying the data
length and its resolution could keep Nt constant yet would
change the calibration period and potentially bias the
results by including additional storm events into the
coarser-resolution experiments. While other ‘‘effective
sample size’’ concepts could be employed [e.g., Brillinger,
1989; Hamed and Rao, 1998], these formulas depend on
subjectively defined statistical parameters and would make
it difficult to maintain a methodological consistency across
the experiments, which spanned four models and eight dif-
ferent time resolutions. In addition, they correspond to
modified SLS and WLS schemes, whereas our interest here
is on common inference setups.

[54] Finally, the issue of effective sample size is closely
related to the autocorrelation in the response time series and
the model residuals. For example, hydrograph recessions are
generally highly autocorrelated, and hence, increasing the
number of recession observations may add little information
to the inference. These effects are outlined in section 6.1.2,
though a detailed quantitative analysis, based on incorporat-
ing autocorrelation into the error models and the likelihood
functions, is deferred to a separate study.

[55] In addition to the primary focus of this study on ex-
perimental data insights, section 7.3 briefly outlines a
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mathematical context for interpreting the empirical find-
ings. This will be elaborated in a separate investigation.

5.2. Analysis Over a Range of Model Complexities
[56] The topic of model identification and structural

complexity appropriate for hydrological modeling at a
range of time scales is explored by evaluating the model
performance, both in calibration and validation, as a func-
tion of calibration data resolution and model complexity.
The latter is assessed in terms of both the total number and
connectivity of model components and the parametric com-
plexity of the constitutive (flux) functions.

[57] In the empirical assessments, we build up the opti-
mal combination of modeling and calibration decisions by
first considering the impact of the numerical scheme and
then examining the influence of the likelihood function.
This approach is used because the numerical implementation
of a model is a ‘‘lower-level’’ decision than the selection
of a likelihood function for its calibration. In particular,
the objective function is generally application specific (it
depends on the data uncertainty, model performance require-
ments, etc.), whereas, once selected, the numerical imple-
mentation of a model would not normally be altered except
perhaps in special circumstances (e.g., to boost computa-
tional speed at the expense of accuracy in some time-critical
context).

6. Empirical Findings Using Experimental
Catchment Data
6.1. Time Scale Trends in Inferred Parameter
Distributions

[58] This section explores the time scale dependencies of
parameter distributions inferred using various combinations
of likelihood functions and time-stepping schemes. The pa-
rameter distributions of all hydrological models are shown
in Figures 2 and 3 and are presented as a function of the
calibration data resolution.
6.1.1. Impact of Numerical Approximation

[59] The SLS results for models solved using the IE and
EE schemes are shown in Figures 2 and 3. In general, the
EE approximation introduces markedly stronger time scale
dependencies. For example, parameter �, which controls
the nonlinearity of the saturated area with respect to stor-
age, exhibits an increasing trend as �t increases when the
EE scheme is used but has stable values for the IE scheme.
Similarly, parameter Rmax sharply decreases as �t
increases for the EE scheme but remains fairly stable for IE
solutions. Worrisomely, the contrasts between the time
scale trends in EE versus IE approximations are particu-
larly pronounced for the more complex model hypotheses
M3 and M4, which as will be seen in section 6.2, appear to
provide a better and more physically interpretable overall
representation of the catchment dynamics. Unlike the
unconditionally stable IE scheme, the numerical stability of
the EE scheme is very sensitive to flux nonlinearities : the
strong time scale sensitivity of parameter � in models
implemented using the fixed step EE scheme is therefore
unsurprising.
6.1.2. Impact of Likelihood Function

[60] Figures 2 and 3 also show that WLS generally pro-
vides more stable parameter estimates than SLS. This held

across the full range of time scales explored in this study.
For example, while Kf exhibits significant trends when esti-
mated using SLS, it has fairly stable values when inferred
using WLS. In general, most model parameters have stable
values when WLS is used, even for quite coarse time reso-
lutions. In other cases, such as the delay parameter Tf of the
transfer function, there remained time scale dependencies
at coarse calibration data resolutions, but they disappear
with finer resolution. The parameter stabilization occurs for
data resolutions that are finer than the time scale of their
corresponding processes: beyond this point, additional re-
solution does not contribute new information, and the pa-
rameter estimates remain constant. For example, the
estimates of Tf largely stabilize for �t � 6 h, suggesting
that the dynamics of this catchment are subdaily.
6.1.3. Uncertainty Estimation

[61] Figures 2 and 3 also show how parameter uncer-
tainty varies across time scales. As discussed in section
5.1, the effects of the asymptotic reduction in uncertainty
with the number of observations are avoided by standardiz-
ing the uncertainty limits. This helps isolate the effects of
data resolution, which are of central interest here.

[62] For most parameters, as the data resolution was
refined, there was little uncertainty reduction beyond that
expected from asymptotic arguments. This was the case for
both SLS and WLS. However, some important exceptions
are noted, e.g., the quick-flow parameter Kf in model M4,
the uncertainty of which varied significantly before stabi-
lizing for �t � 12 h. Hence, uncertainty reduction effects
depend on the time scale of the process.

[63] Our primary interest here is on how some processes,
e.g., quick flow, are obscured by data averaging at coarse
time scales but are gradually ‘‘revealed’’ as the resolution
of the calibration data is refined. In particular, this is the
case for parameter Kr, which controls the ‘‘quick reaction’’
of the model. It is largely nonidentifiable when �t � 6 h
but converges to fairly stable values when �t � 1 h. This,
in itself, is indicative of the time scale of the process (sec-
tion 6.3). The effect of data resolution on quick-flow proc-
esses in the context of model prediction (as opposed to
parameter estimation and structure identification) is elabo-
rated in sections 6.3 and 7.2.

6.2. Time Scale Trends in Supported Hydrological
Model Complexity

[64] We now consider the impact of calibration data re-
solution on the trade-offs between model complexity and
predictive performance.
6.2.1. How Do Complex Models Behave With Respect
to Data Resolution?

[65] It has been suggested that the ‘‘appropriate’’ model
complexity generally increases as the temporal resolution
of the data is refined [Atkinson et al., 2002], implying a
higher information content in high-resolution data. Our
results suggest that this intuitive hypothesis remains valid
at subdaily scales. For example, parameters related to RR
(M and Kr in M4), which simulates the catchment’s quick
response to rainfall, become progressively better identified
as the data resolution is refined (Figure 3), thus supporting
additional model complexity.

[66] Conversely, Figure 3 also shows that progressive
averaging of the calibration data reduces the identifiability
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Figure 2. Inferred distributions of parameters common to model structures M1 –M4. Box and whiskers
denote the 50% and 95% quantiles, respectively. The uncertainty intervals are ‘‘standardized’’ by a factor
of

ffiffiffiffiffiffiffiffiffiffi
Ndays

p � ffiffiffiffiffi
Nt
p

in order to partially remove the effects arising from the different number of observations
and to use the results obtained with daily resolution as the basis for the comparison (see section 5.1). It
can be seen that the fixed step explicit Euler time-stepping scheme and standard least squares (SLS) in-
ference tend to introduce markedly strong time scale dependencies in many parameters, especially for
fast-scale (‘‘quick-flow’’) processes.
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of quick-flow parameters. This is particularly pronounced
in this catchment, which responds quickly to precipitation
falling on the near-stream impervious areas. The resulting
hydrograph peak has a subhourly characteristic scale and
disappears shortly after the rainfall event. The averaging of
observed data above hourly scales smears this feature of
the catchment response, making the quick-flow components
of the model apparently ‘‘redundant.’’

[67] Validation performance may decrease with increas-
ing model complexity if the model is overconditioned, i.e.,
with complex models using their degrees of freedom to fit
data errors and noise and then performing poorly or unsta-
bly in prediction or extrapolation [e.g., Mitchell, 1997;
Kingston et al., 2008]. This was not observed in our experi-
ments: provided a robust numerical approximation of the
conceptual model was used, the relative ranking of per-
formances during calibration and validation remained
remarkably constant (Figure 4). This suggests that even the

more complex models examined here are parsimonious
with respect to the calibration data. Several previous stud-
ies have also suggested that physically motivated models
are less prone to ‘‘overfitting’’ than purely data-driven
models [e.g., Dawdy, 1983; Schoups et al., 2008].

[68] Finally, note the effect of model structure on the time
scale dependencies of the parameters. For example, exceed-
ingly simple models may display strong time scale trends for
parameters that compensate for gross structural errors. This
can be seen for parameter Kf , which when fitted using SLS,
is highly scale dependent in simple models (e.g., in hypothe-
sis M1, which lacks a routing store), but becomes fairly sta-
ble in more complex models. The scale dependencies of the
residual error parameters may also differ depending on the
complexity of the hydrological model: e.g., parameters a
and b fitted as part of WLS are highly scale dependent in the
simplistic hypothesis M1 but become progressively more
stable in more complex model structures (Figure 2).

Figure 3. Inferred distributions of parameters specific to model structures M1 –M4. Box and whiskers
denote the 50% and 95% quantiles, respectively. Note that parameter Kf in structures M3 and M4 is dis-
tinct from Kf in M1 and M2 because it parameterizes a nonlinear reservoir (Table 3). The uncertainty
intervals are ‘‘standardized’’ by a factor of

ffiffiffiffiffiffiffiffiffiffi
Ndays

p � ffiffiffiffiffi
Nt
p

in order to partially remove the effects arising
from the different number of observations and to use the results obtained with daily resolution as the ba-
sis for the comparison (see section 5.1). It can be seen that the fixed step explicit Euler time-stepping
scheme and SLS inference tend to introduce markedly strong time scale dependencies in many parame-
ters, especially for fast-scale (quick-flow) processes.
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6.2.2. Numerical Approximation Effects
[69] Consider Figure 4, which contrasts the model per-

formance, quantified using the Nash-Sutcliffe criterion in
calibration versus validation, as a function of model com-
plexity and calibration data resolution. In Figure 4 the IE
versus EE approximations of the model equations cali-
brated using SLS and WLS are also contrasted.

[70] In terms of calibrated performance, EE-based mod-
els often have similar performance as IE-based models.
Moreover, when calibrating the simplest model M1 at near-
hourly resolutions, the EE approximation often has smaller
overall errors than the IE approximation. For this specific
model-data combination, this can be explained by the dif-

ferences in the way the fluxes are approximated by these
numerical techniques. While the IE scheme synchronizes
all fluxes with the storage at the end point of the step, the
EE scheme evaluates all the outflows before the inflows are
added to the stores. This introduces a delay into the
response dynamics, which turns out to be beneficial for
model M1 because it lacks an explicit routing component.
However, this is a delicate and unreliable interaction: when
the routing component is included (configurations M2–
M4), the implicit method outperforms the explicit approxi-
mation. More generally, we strongly oppose attempting to
use numerical artifacts to compensate for structural weak-
nesses in the model [see Kavetski and Clark, 2010].

Figure 4. Effect of data resolution on hypothesis testing (including calibration and validation) of the
models implemented using the explicit Euler (EE) and implicit Euler (IE) schemes. The runoff errors are
quantified using the Nash-Sutcliffe (NS) index, and the results shown are therefore for the SLS inference
(which maximizes the NS criterion). Faced with 10% swings in behavior when evaluating the model
over a range of time scales in validation, a hydrologist relying on fixed step EE approximations as part
of their hypothesis testing may be tempted to conclude that model structures M3 and M4 are overpara-
meterized. Yet it is precisely these hypotheses that perform consistently best when implemented using
numerically robust techniques. They are also the most realistic when judged against process understand-
ing available in this experimental basin.
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[71] A broader inspection shows that the predictive per-
formances of the IE scheme in calibration and validation is
much more stable than for the EE scheme. For example, at a
1 h resolution, the Nash-Sutcliffe performance of configura-
tion M4 implemented using the EE scheme dropped by 5%,
whereas for the IE implementation the deterioration was
only 1%. Notably, this was the best performing model con-
figuration, which was also favored on physical grounds
because it includes the fast reservoir to represent the fast
schistose response of the Weierbach catchment (sections 2
and 6.3). More generally, at near-daily scales, the deteriora-
tion of IE-based models was around 0.0%–1.6% for all
hypotheses, worsening slightly (to 1.8%–2.0%) for valida-
tion on hourly and subhourly scales (which represents a par-
ticularly stringent test of predictive ability for a lumped
conceptual model). Conversely, the degradation of the EE
method in validation periods was largest at near-daily scales
(e.g., see the 10% drop in performance of models M3 and
M4 when switching from 24 h resolution to 12 h data).

[72] These inconsistencies are concerning, especially in a
small experimental catchment where data uncertainty and
structural errors are likely to be lower than in larger basins
(e.g., Figure 3.7 of Linsley and Kohler [1958] indicates
smaller rainfall errors over smaller areas, likely because of
lower overall variability of the rain field). In an empirical
investigation over 12 Model Parameter Estimation Experi-
ment (MOPEX) basins [Duan et al., 2006], Kavetski and
Clark [2010] report a comparable or stronger degradation for
models based on fixed step explicit time-stepping algorithms.
Especially in the absence of independent information about
data and structural errors, a modeler unaware of numerical
errors could readily begin misattributing such deficiencies to
poor model conceptualization, input data errors, etc.

[73] Similar results were obtained across most time scales
and model complexities considered in our experiments. For
example, models implemented using the EE scheme suf-
fered, on average, a 50% larger degradation in predictive per-
formance than those implemented using the IE scheme, as
measured using Euclidean norms of the differences between
the calibration and validation Nash-Sutcliffe performance.

6.3. Data Resolution and Model Complexity
[74] The hydrographs of models M1 and M4 calibrated

at 1 and 24 h resolution are shown in Figure 5. Figure 5, in
particular, the zoom plots in Figures 5h –5j, illustrates how
high-frequency quick-flow processes are obscured by the
smearing of the forcing and response data, which is inevita-
ble when averaging over larger time scales [see also
Ostrowski et al., 2010]. As various features of hyetographs
and hydrographs are smeared by data averaging, the model
components intended for their representation become pro-
gressively nonidentifiable. For example, this may explain
the high uncertainty in parameter Kr shown in Figure 3.

[75] While relatively coarse calibration data resolution
could, perhaps, be tolerable in slowly responding catch-
ments, any basin idiosyncrasies are liable to be obscured.
This loss of physical realism can be detected using model
diagnostics [Gupta et al., 2008]. For example, the high-
resolution streamflow data in Figure 5e shows that at short
time scales the wet season response of the Weierbach
catchment is characterized by a double peak (see section 2

for current experimental insights). Only the most complex
configuration, M4, is able to even qualitatively capture this
behavior because of the inclusion of a riparian submodel.
However, deficiencies are still evident : the shape of the
second peak is poorly captured, perhaps because of inaccu-
rate antecedent conditions and/or remaining structural
errors in slow-flow components.

[76] Also note that as seen in Figure 5, the second peak
disappears in the summer season, when the saturated area
of the catchment is reduced because of drier conditions
[Pfister et al., 2002]. All models are able to reproduce this
seasonality behavior using the unsaturated store, which par-
titions precipitation into fast and slow components.

6.4. Model Diagnostics Based on Flow Duration
Curves

[77] Flow duration curves diagnose a model’s ability to
represent the overall streamflow distribution [e.g., Yilmaz
et al., 2008]. Analysis of the flow duration curves in valida-
tion, shown in Figure 6, suggests the following:

[78] 1. The observed flow duration curves for hourly and
daily data are quite similar, though the averaging of high-
intensity, short-duration storm events does reduce the max-
imum streamflow values in the daily resolution data (when
compared to hourly resolution data). The overall similar-
ities arise because by its very construction, the flow dura-
tion curve is a purely distributional signature that discards
all timing information (this particularly affects high-resolu-
tion data). Moreover, since high flows are rare in this catch-
ment (e.g., the inset plots in Figure 6 show that flows
exceeding 0.5 mm/h occur with a frequency of less than
0.5%), the flow duration curve necessarily focuses attention
on low flows, when daily and hourly flows are fairly similar.

[79] 2. Overall, once calibrated, model structure appears
to make little difference on the ability of the models to repro-
duce the observed FD curve. While structure M4 matches
the flow duration curve better than M1 (consistent with the
overall better performance of the M4 model) for a given
objective function, the improvement in fit is less than when
switching objective functions (see below). These findings are
relatively unsurprising: the key challenge in the Weierbach
catchment is reproducing the timing signatures and the sea-
sonal dynamics, rather than flow volume distributions. For
this, a different set of diagnostics is needed (section 6.5).

[80] 3. SLS-calibrated models fail to adequately represent
base flow processes, while the linear heteroscedasticity
assumption in the WLS inference, though forcing a better
representation of low flows, is too lax for high flows (for
which SLS-based models do better, though arguably, for the
wrong reasons). This behavior is well known: absolute error
criteria emphasize fitting high flows, whereas relative error
criteria (or log transformations) emphasize fitting low flows
[e.g., Schaefli and Gupta, 2007]. At least from general con-
siderations, we expect the heteroscedastic model to be more
realistic [e.g., Sorooshian, 1981]. However, what is missing
here is the extension of the likelihood function to account for
the autocorrelation of residual errors [e.g., Sorooshian and
Dracup, 1980; Schoups and Vrugt, 2010], which is likely to
increase strongly when fitting to high-resolution data.

[81] 4. Quite remarkably, at least for the case of high
flows predicted using structure M1, changing the time-step-
ping scheme makes almost as much difference as changing
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the objective function. While the impact of objective func-
tions on model identification is well known in conceptual
hydrology, numerical approximation errors have tradition-
ally been seldom, if ever, analyzed and reported during
model development and hypothesis testing.

6.5. Model Diagnostics Based on Timing Analysis
[82] The cross-correlation diagnostics shown in Figure 7

evaluate the ability of the models to reproduce fast- and
slow-scale timing dynamics, contrasting results obtained
with hourly versus daily resolution. Similar to the FD
curves, the cross-correlation diagnostics are applied to the
validation period to provide more stringent scrutiny.

[83] Consider the analysis of hourly data (Figures 7a–7d).
Although all models performed well for the slow-scale dy-
namics (consistently with the FD curve diagnostic), adequate
representation of fast dynamics requires the explicit inclusion
of a riparian zone reservoir. For example, structure M1,
which lacks a routing component, performs badly overall and
tends to produce the fast response too quickly during winter

(Figure 7b). The addition of a routing component in struc-
tures M2 and M3 reproduces the delayed flow behavior (Fig-
ure 7a and, to a lesser extent, Figure 7c) and improves the fit
of the fast response in winter (Figure 7b) but fails to capture
the fast-scale dynamics in the summer season (Figure 7d).
Only structure M4, which includes an additional reservoir
specifically intended to represent riparian zone, qualitatively
reproduces the lag correlation signatures of the observed data
for both wet and dry and both slow- and fast-scale responses.
We do note that although the slow-scale dynamics are repro-
duced well during summer in the calibration period (not
shown), the slow-scale summer dynamics, although weak
(Figure 5f), are underestimated in validation (Figure 7c).
Also note that the cross correlations at high lags in Figures 7b
and 7d are noisy and unlikely to be physically meaningful.

[84] Yet process component identifiability is strongly time
scale dependent. This can be seen by comparing Figures 7a–
7d with Figures 7e–7h. The use of lower-resolution daily
data (Figures 7e–7h) notably degrades the capability for inci-
sive hypothesis testing. Structure M1 still performs badly

Figure 6. Flow duration curves over the validation period for selected model structures and time reso-
lutions. Red and green lines contrast the results of standard least squares (SLS) versus weighted least
squares (WLS) inferences, and solid and dashed lines contrast models solved using the implicit Euler
(IE) and explicit Euler (EE) approximations. In the Weierbach catchment, model structure appears to
make little difference on the flow duration curves, likely because the main modeling challenge lies in
reproducing the timing of the storms, rather than their overall volumes. However, numericostatistical
effects are still strong: SLS-calibrated models fail to adequately represent base flow processes, while the
linear heteroscedasticity assumption in the WLS inference appears to overestimate the errors in the high
flows. It can also be seen that at least for the case of high flows predicted using structure M1, changing
the time-stepping scheme makes almost as much difference as changing the objective function.
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(because the routing time in this catchments appears to exceed
the daily scale), but the other three structures perform simi-
larly, with structure M4 not offering any worthwhile improve-
ment in any of the daily signature aspects (compare, for
example, Figures 7d and 7h). The riparian zone representation
is simply not identifiable from daily data: its very signature
for small lags below 10 h has been erased by data averaging.

[85] Finally, the fairly modest values of the cross corre-
lations (0.4–0.6) suggest that the response complexity of
this basin is only partially captured by a linear correlation
analysis. The analysis can be obscured by temporal vari-
ability and errors in the rainfall and streamflow time series,
variability in antecedent conditions, saturation threshold
dynamics, nonlinearities in base flow behavior, etc. These
issues impose limitations on what can be learned by purely
statistical analysis and highlight the critical need for inde-
pendent experimental insights.

7. Discussion
7.1. Parameter Inference: Spurious Trends Versus
Genuine Scale Dependencies

[86] Strong time scale dependencies of hydrological model
parameters are not a secret. Many previous studies have

shown that model parameters are tied to the time scale and
data length at which they are calibrated [Blöschl and Sivapa-
lan, 1995; Schaake et al., 1996; Littlewood and Croke,
2008; Merz et al., 2009], pointing out that this confounds
adequate selection and identification of the governing model
equations and hampers the physical interpretation of model
parameters. In turn, this undermines more ambitious hydro-
logical undertakings, such as parameter regionalization and
prediction in ungauged basins [Littlewood and Croke, 2008].

[87] This paper yields several practical insights into the
origins and behavior of time scale trends. In particular, it
illustrates the ease with which spurious time scale depend-
encies arise from nonrobust numerical design of the hydro-
logical model and/or poor selection of the likelihood
function in calibration. More generally, the complex inter-
play between data resolution, model complexity, numerical
approximations, and parameter inference (including uncer-
tainty estimation) is evident from the empirical analyses
[see also Kavetski and Clark, 2010].

[88] In models implemented using unreliable approxima-
tions, such as the fixed step explicit Euler scheme, scale
dependencies will often be dominated by confounding nu-
merical artifacts. On the other hand, numerically robust
models [e.g., Vaché and McDonnell, 2006; Clark et al.,

Figure 7. Rainfall-runoff cross-correlation diagnostics for evaluating the ability of the models to repro-
duce low- and high-frequency signatures in the streamflow response. The application to the validation
period is shown, with stratification into wet (winter) and dry (summer) seasons. Only the most complex
hypothesis, M4, which directly includes a riparian zone representation, is able to approximate the pat-
tern, although not the precise numerical values, of the fast-response dynamics (isolated using a high-pass
filter). Averaging the data to the daily scale smears the data signature, rendering the fast-scale riparian
zone processes nonidentifiable. Note the comparatively poor representation of the lagged response in
summer (dry season), when it is generally weak.
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2008] may still have time scale dependencies because of
the uncovering of finer-scale process dynamics by higher-
resolution data (section 6.2). Finally, models employing
heuristic time-stepping (e.g., the Sacramento model [Bur-
nash, 1995], which uses operator splitting with substep-
ping) could experience a mixture of effects, depending on
the catchment, the calibration and design data, and the spe-
cifics of the numerical implementation.

[89] Our results also consolidate the findings of previous
theoretical and empirical work that demonstrated the impor-
tance of a careful selection of error models in calibration
[e.g., Box and Tiao, 1992; Thyer et al., 2009]. In particular,
ignoring the heteroscedasticity of residuals not only leads to
poor prediction limits but also appears to make the inference
more sensitive to the resolution of the forcing data. Con-
versely, the heteroscedasticity underlying WLS not only pro-
vides more intuitively meaningful uncertainty bands, but
through a (still very incomplete) reduction in statistical arti-
facts due to a misspecified likelihood function, can also
facilitate the translation of the increased information inher-
ent in high-resolution data into hydrological models capable
of improved representation of finer-scale catchment dynam-
ics. Importantly, more complicated model configurations
become better identified, which was not always the case
when SLS was employed (Figures 2–4).

[90] Genuine time scale dependencies of the hypothe-
sized governing equations may yield useful physical
insights into process representation, especially with respect
to correlations scales and threshold identification [e.g.,
Western et al., 2005; Tromp-van Meerveld and McDonnell,
2006a], and characteristic mixing scales of internal catch-
ment flows [e.g., Fenicia et al., 2010] and, with additional
analysis [Littlewood and Croke, 2008], may improve opera-
tional reliability. Conversely, numerical artifacts corrupt
these dependencies, confounding any attempts at physical
interpretation of the inferred model structure and causing
erroneous and/or misleading predictions (see also the illus-
trations of Kavetski and Clark [2010]).

[91] While the results of the numerical experiments in
section 6 are of interest and the reduction in time scale
dependencies is encouraging, significant further analysis is
warranted. Section 7.6 elaborates on major current limita-
tions and reviews several of the possible strategies for over-
coming them in future studies.

7.2. Hydrological Processes Revealed: The
Information Content of High-Resolution Data

[92] A comparison of the parameter distributions of dif-
ferent models illustrates that in some cases, simpler models
have lower parameter uncertainty than more complex mod-
els (Rmax in M1 versus M2), whereas in other cases the con-
verse was true (e.g., parameter Su,max has a higher
uncertainty in M1 than in the more complex models).
Importantly, this variability is heavily influenced by the
data resolution, which sets the time scale of the model.

[93] The time scale at which parameters become identifi-
able depends on the time scale of the processes they repre-
sent, i.e., on their ‘‘functionality.’’ In particular, parameters
related to slow processes such as base flow do not require
such high-resolution data, and Figures 2 and 3 show that
these parameters stabilize for time scales much larger than
quick-flow parameters (unless numerical or statistical arti-

facts are present). Indeed, when calibrating base flow com-
ponents to high-resolution data, the autocorrelation in the
model residuals should be accounted for to avoid overcon-
ditioning the parameter estimates. On the other hand,
meaningful identification of fine-scale quick-flow parame-
ters requires higher-resolution data; otherwise, parameter
inference is not very stable with respect to the time scale of
application (Figures 2 and 3). As these processes are much
‘‘noisier’’ than base flow and generally tend to follow rain-
fall forcing patterns, autocorrelation effects may play a
lesser role in their identification.

[94] These observations are logical and broadly consistent
with previous empirical work on the relationship between
data and parameter identifiability. For example, the results
of a case study based on moving window calibration [Wage-
ner et al., 2003] indicate that capacity parameters of larger
stores are sensitive to volume errors over longer time periods
(e.g., total evaporation depends on the storage in the unsatu-
rated zone), while time constants of faster-scale processes
(e.g., vertical drainage) are sensitive over much shorter peri-
ods. As such, model parameters are sensitive over the time
scales at which their respective processes are defined.

[95] The consistency of parameters across model struc-
tures, and the degree of consistency with respect to the re-
solution of the data, is also of interest. In general, given the
high degree of conceptualization in current hydrological
models, calibration often forces parameters to take unreal-
istic values to compensate for missing processes, for defi-
ciencies in representing included processes, and for rainfall
errors [e.g., Clark and Vrugt, 2006; Beven, 2006; Kavetski
et al., 2006b]. This is clearly undesirable because it implies
that model components, or worse, the entire model, become
infidelious to the processes they are intended to represent.

[96] In this study, we explore parameter consistencies
with respect to the calibration data resolution. In some cases,
when a model is calibrated to low-resolution data, its param-
eters may be able to compensate for missing components.
Yet this can lead to either (1) increased uncertainty if a para-
meterized component is able to smoothly vary between rep-
resenting different processes or (2) reduced uncertainty if the
model component and associated parameter(s) discontinu-
ously switch to represent a totally different process (this can
also lead to multimodality). For example, this may explain
changes in parameter Rmax in model M2 (Figure 2).

[97] Similarly, when the model complexity exceeds the
information content of the data (e.g., M4 calibrated to
coarse-resolution data), parameter identifiability is generally
poor (the classic ‘‘overparameterization’’ problem [e.g.,
Dawdy, 1983], which is often, though not always, detectable
[e.g., Renard et al., 2010]). Yet when the complexity of the
model allows it to achieve seemingly very good fits to the
data by mimicking spurious features (in particular, sampling
and measurement errors), the inference scheme can also spu-
riously underestimate parameter uncertainty (e.g., echoing the
concerns of Beven [2006], Stedinger et al. [2008], Reichert
and Mieleitner [2009], and Thyer et al. [2009] in the (differ-
ent) context of poorly selected likelihood functions).

[98] A key issue is that these parametric effects can ex-
hibit strong interplays with the data resolution. For example,
as fine-scale catchment features are revealed, the ability of
simple models to represent increasingly complex response
dynamics is reduced, and this will lead to case-specific
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interactions between response features favored by the cali-
bration (to the exclusion of other response dynamics), model
components used to simulate them, parameter values, etc.
Such interactions will also depend on the objective function:
for example, the standard Nash-Sutcliffe measure will favor
the fitting of the larger peaks during storm events, while log
transformation of responses will emphasize low flows during
hydrograph recessions (see Schaefli and Gupta [2007] for a
more general discussion of benchmarking against specific
solution features). As coarse data averaging smears high-fre-
quency features of the rainfall-runoff dynamics, it will affect
parameter inference and structure identification.

7.3. A Short Theoretical Exploration of Time Scale
Dependencies

[99] While the main focus of this paper is on experimen-
tal data analysis, its findings can be put on a more rigorous
theoretical footing, which is briefly outlined next.
7.3.1. Trends Arising From Numerical Discretization
Errors

[100] Numerical discretization errors arising when
approximating ODEs such as (1) are quite well understood
[e.g., Butcher, 2008]. In general, the numerical error e of
an ODE approximation XX is a Taylor power series in �t,

e XXð Þ
n ¼ S tnð Þ � S XXð Þ

n ¼
X1
k¼1

ck�tk ; ð8Þ

where S(tn) is the exact solution of the ODE. In equation
(8), the coefficients c depend on the nonlinearity of the so-
lution, and a jth-order method has cj�1 ¼ 0. For example,
the global error of the explicit Euler approximation (2) is

e EEð Þ
n ¼ S tnð Þ � S EEð Þ

n / �t
d2S
dt2
þ O �t2 d3S

dt3

� �
þ ::: ; ð9Þ

where the derivative terms represent averages over the
entire approximation period.

[101] The influence of numerical stability is also critical :
if we define an error amplification factor � ¼ e XXð Þ

nþ1 =e XXð Þ
n ,

an unstable scheme has � > 1, and the errors accumulate
uncontrollably.

[102] The spurious numerical trends in parameter esti-
mates reported in this paper are a consequence of such time
discretization errors. Several observations can be made on
the basis of error analysis (8) and (9).

[103] 1. The direct dependence of numerical errors on the
time step size �t necessarily implies a dependence of
model predictions, and hence calibrated parameter esti-
mates, on �t [Kavetski et al., 2003].

[104] 2. While for first-order approximations (such as the
EE and IE schemes) the numerical errors are asymptoti-
cally linear with respect to �t, the behavior for larger step
sizes can be highly nonlinear because of higher-order terms
in equation (8). In the absence of error-controlled substep-
ping, it is difficult to guarantee that the approximation is
operating in its asymptotic region, and this may explain the
variety of linear and nonlinear trends reported in the hydro-
logical modeling literature [e.g., Littlewood and Croke,
2008; Wang et al., 2009].

[105] 3. While a fixed step, unconditionally stable
approximation such as the IE scheme cannot be guaranteed

to be free of numerical errors, the behavior of a fixed step,
conditionally stable method such as the EE scheme is par-
ticularly fragile : even episodic numerical instabilities will
significantly aggravate any time scale dependencies.
7.3.2. Trends Arising From Temporal and Spatial
Averaging of the Data

[106] Although exact solutions and numerically accurate
adaptive approximations (which reduce �t until the error
e XXð Þ

n is below a user-prescribed tolerance �) will be free of
spurious numerical time scale trends, they still remain sub-
ject to genuine data-averaging time scale effects (and to
data sampling and measurement errors).

[107] In particular, the very act of averaging the rainfall forc-
ing over a time step �t introduces ‘‘smearing’’ errors into the
forcing data, which necessarily translates into �t-dependent
errors in the model predictions and calibrated parameters. In
calibration, similar smearing effects will arise with respect to
the observed streamflow that is being fitted. The smearing
affects both rainfall and runoff data and can be seen in Figure
5 [see also Ostrowski et al., 2010]. Smearing effects will
impact particularly strongly on the identification of fast proc-
esses. This can be seen for quick-flow parameters Tf and Kr

in Figure 3: the step-size-dependent smearing of fast-scale
forcing and response features creates time scale dependencies
that are unrelated to numerical solution errors and hence can-
not be removed even using exact analytical solutions. Con-
versely, slow (recession) processes will be less affected by
such averaging. These observations emphasize the interplay
between data resolution, identifiability, and the time scale at
which parameters and associated processes operate.

[108] More generally, data-averaging and sparse-sam-
pling time scale effects are inherent to any model forced
with (and/or calibrated to) averaged data, whether the
model is based on conceptual or physical principles [e.g.,
Clark et al., 2008], or transfer functions [e.g., Young and
Garnier, 2006], whether it is formulated in discrete or con-
tinuous time and regardless of the inference method. In par-
ticular, although previous publications have suggested that
continuous time models have time-scale-invariant parame-
ters [e.g., Young and Garnier, 2006; Littlewood and Croke,
2008], this holds only in the theoretical context of calibrat-
ing to continuous time forcing response data. As soon as
averaging errors are present in the data, dynamics below
this averaging scale are smeared and no longer identifiable.
Unless an accurate subsampling scale interpolation is used
for both the forcing and response time series (which, essen-
tially, requires prior knowledge of the very dynamics the
modeler is trying to explore), the inferred model parameters
and structures can become time scale dependent.

[109] Analogous arguments apply with respect to using
spatially averaged data. Perhaps more generally, since spa-
tiotemporal averaging errors are tied to the very way a
lumped model is constructed and applied, they could also
be viewed as a type of model structural error (e.g., see the
discussion by Kuczera et al. [2006]).

7.4. Implications for Calibration and Model Analysis
7.4.1. A Comment on Empirical Strategies for
Relating Parameters to Time Step Size

[110] As part of an analysis of time scale dependencies
of conceptual hydrological model parameters, Littlewood
and Croke [2008] and Wang et al. [2009] derived empirical
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relations between parameter values and time step size.
Such relationships could be useful, for example, when
regionalizing parameter values or when determining the
limiting parameter values corresponding to a continuous
time version of the original discrete time model.

[111] We note that these relationships are specific to the
model structure for which they are obtained (and hence may
be affected by model modifications, such as including addi-
tional components and process representations). They are
also conditioned on the forcing response data and the likeli-
hood function used in their estimation and will also include
numerical approximation effects. Hence, while the overall
time scaling may, indeed, be linear or otherwise correctly
determined from empirical analysis, its specific quantifica-
tion will generally be problem dependent. Therefore, the use
of such relationships in extrapolating the model to different
hydrological data resolution, especially in different catch-
ments, must be approached with caution. They should not be
viewed as a panacea from spurious numerical and statistical
artifacts and are likely to be meaningful only when com-
bined with properly formulated and inferred governing equa-
tions solved using robust numerical techniques.
7.4.2. Adopting the ‘‘Right’’ Numerics

[112] The time scale analyses in this paper lend particular
urgency to the problem of robust numerical model design
in conceptual hydrological modeling [e.g., Kavetski et al.,
2003; Clark and Kavetski, 2010]. The fixed step explicit
methods, which remain frequently used in hydrological
research and operations, significantly exacerbate any time
scale dependencies of the governing equations. In many
cases, given the propensity for instabilities and erratic
behavior of fixed step explicit approximations, the time
scale ‘‘dependencies’’ of models using these fragile time-
stepping schemes are nothing but spurious numerical arti-
facts (Figures 2 and 3).

[113] Note that Figure 4 also shows cases where the trun-
cation error of the explicit Euler scheme fortuitously
improves the model performance for certain combinations of
model complexity and data resolution. While superficially
beneficial, we emphatically recommend against such ‘‘good
results for the wrong reasons’’ (echoing analogous concerns
of Kirchner [2006] in the context of confounding model com-
ponent interaction in process representation). In particular,
virtually regardless of the data resolution, a modeler using
the fixed step EE approximation will be unable to confidently
distinguish between a genuinely good performance of the
model equations versus a fortuitous and fragile compensation
of model errors by numerical artifacts. Similarly, poor and/or
inconsistent performance, at virtually any time scale, could
be attributed either to conceptualization errors and poorly
defined constitutive functions or to numerical errors. Using
uncontrollable numerical errors to compensate for structural
errors of the model conceptualization is imprudent, resulting,
as this study shows, in spurious time step trends, loss of pre-
dictive performance, and other problems (see Kavetski and
Clark [2010, 2011] for a further showcasing of Pandora’s
box of numerical artifacts in conceptual hydrology).

[114] Instead, these problems should be addressed using
adaptive substepping with error control or, at a minimum,
using unconditionally stable methods. In particular, the
lack of spurious time scale trends in the parameter distribu-
tions of models implemented using the IE scheme and its

enviably stable performance in validation are further evi-
dence of its robustness for conceptual hydrologic modeling
[Kavetski and Clark, 2010].
7.4.3. Toward ‘‘Better’’ Objective Functions and
Diagnostic Measures

[115] This study also suggests that the objective function
not only defines the optimized parameters and their entire
distributions but, importantly, also controls their time scale
dependencies. In Bayesian analysis, the posterior distribu-
tion (objective function) is a consequence of the hypothe-
sized error models. Given their demonstrable impact on
inference and prediction, these hypotheses can, and should,
be carefully checked a posteriori [e.g., Box and Tiao, 1992;
see also Laio and Tamea, 2007; Thyer et al., 2009; Renard
et al., 2010]. This study shows that objective (likelihood)
functions that do not adequately describe the error structure
are not only poorly suited for estimating posterior parame-
ter distributions (e.g., as discussed by Stedinger et al.
[2008]) but can also obscure and/or alter the time depend-
ence characteristics of the model, hampering the interpreta-
tion of model parameters and structure and providing
potentially erroneous predictions for streamflow and other
quantities of interest. In conjunction with insufficient data
resolution, deficiencies in the likelihood function also
affect the types of processes that are captured in the
inferred model (e.g., Figure 6).

[116] A key challenge in hydrological model identifica-
tion is that adequate error models are difficult to construct,
and until recently, there were no conceptually robust and
computationally tractable frameworks for actually utilizing
them. In cases where structural errors dominate data uncer-
tainties, the error models underlying the likelihood (objec-
tive) function as well as any associated (Bayesian) priors
must reflect not only data uncertainty but, more impor-
tantly, structural errors. This requires the likelihood func-
tion to provide a probabilistic description of (epistemic)
uncertainties arising from the limited knowledge of the sys-
tem and is clearly one of the harder challenges facing any
probabilistic inference method [e.g., Beven, 2008; Buly-
gina and Gupta, 2009; Renard et al., 2010]. A particular
challenge is to adequately reflect the autocorrelated nature
of these errors [e.g., see Sorooshian and Dracup, 1980;
Kavetski et al., 2002b; Beven, 2008; Reichert and Mieleit-
ner, 2009] (also see the short exposé on structural errors by
Doherty and Welter [2010]), which is expected to be partic-
ularly strong when working with high-resolution data. Yet
we are also optimistic regarding progress in several distinct
directions [e.g., Kavetski et al., 2006b; Kuczera et al.,
2006; Vrugt et al., 2008; Reichert and Mieleitner, 2009;
Bulygina and Gupta, 2009; Kirchner, 2009; Renard et al.,
2010; Schoups and Vrugt, 2010].

[117] Useful insights into the physical fidelity of concep-
tual models can also be obtained from diagnostic
approaches [e.g., Gupta et al., 1998, 2008] and from sensi-
tivity analysis [e.g., van Werkhoven et al., 2008; Spear and
Hornberger, 1980], including the popular GLUE methodol-
ogy [Beven and Binley, 1992]. Although, strictly speaking,
these methods do not support quantitative uncertainty esti-
mation (e.g., see the robust critique of attempting to give
subjectively defined goodness-of-fit measures quantitative
probabilistic meaning by Stedinger et al. [2008, paragraphs
5 and 6]), they can provide useful qualitative guidance for
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model selection [e.g., Yilmaz et al., 2008; Rupp et al.,
2008; Krueger et al., 2010]. What then becomes important
is that the selected performance criteria provide strong dis-
criminatory power (e.g., rainfall-runoff cross-correlation
diagnostics can be much more incisive than the Nash-
Sutcliffe index; see the broader critique by Schaefli and
Gupta [2007]).

[118] This study also highlights that the resolution of the
data governs what signatures are preserved and hence could
be represented in the models. For example, analysis of the
observed at daily time scale shows only the slow-scale
lagged response, with the signature of the faster-scale first
peak erased by data averaging. Hence, depending on the re-
solution of the observed data, a timing-oriented diagnostic
can be sharp and incisive (hourly data, Figures 7a –7d) or
blunt and noninformative (daily data, Figures 7e– 7h).

7.5. Broader Implications for Hypothesis Testing in
Hydrological Sciences

[119] Meaningful hypothesis testing hinges on the infor-
mation content present in and extracted from the available
data [e.g., Jakeman and Hornberger, 1993; Gupta et al.,
1998; Schoups et al., 2008; Gupta et al., 2008] and must
also rigorously account for data uncertainties if structural
hypothesis errors are to be ‘‘isolated’’ and analyzed, at least
in a distributional sense [e.g., Renard et al., 2010]. The
influence of data resolution on hypothesis testing is there-
fore a topic of evident significance. Our findings illustrate
not only the ability of higher-resolution data to reveal
increasingly finer-scale hydrological processes but also the
feasibility of their mathematical representation within com-
paratively simple conceptual models (necessarily subject to
the key caveats in the next paragraph and the limitations in
section 7.6). More generally, the findings regarding the
consistency of parameter estimation and model identifica-
tion across different time scales also highlight the impor-
tance of appropriate selection of the resolution of the
supporting data in the context of pursuing and scrutinizing
‘‘unified’’ theories and models of hydrology at the catch-
ment scale [e.g., Sivapalan, 2005; McDonnell et al., 2007;
Troch et al., 2009].

[120] However, because of the apparent numerical fragil-
ity of the current implementation of many conceptual
hydrological models (e.g., see the critique by Clark and
Kavetski [2010], and references therein), harmful and con-
founding interactions between data resolution, objective
functions, and numerical approximation errors can no lon-
ger continue to be largely ignored by the conceptual hydro-
logical community. They pose a clear practical concern in
the context of meaningful hypothesis development and
testing and require proper attention [Kavetski and Clark,
2010, 2011].

[121] For example, the consistency of the calibration and
validation performances is often used when evaluating sup-
ported model complexity, with inconsistent performance in
predictive (‘‘validation’’) applications generally viewed as
a symptom of overfitting [e.g., Jakeman and Hornberger,
1993; Kingston et al., 2008; Schoups et al., 2008]. Yet
these inconsistencies could well be numerical (fixed step
explicit time stepping) and/or statistical (inadequate objec-
tive function) artifacts. For example, Figure 5 shows arti-
facts dependent on the time scale of the system, while

Kavetski and Clark [2010] show artifacts dependent on the
calibration period and catchment. Hence, reliance on sim-
plistic model implementation and analysis techniques can
easily result in spurious mathematical artifacts dictating
conclusions of physically oriented hypothesis testing and
complexity assessment.

[122] Since this study utilized least squares regression,
similar behavior is expected for calibration methods based
on modifications of similar objective functions. For exam-
ple, subjectively rescaling Nash-Sutcliffe or other sums-of-
squares criteria (e.g., as attempted in GLUE applications to
heuristically mimic the effects of unaccounted data and
structural errors using inflated parameter uncertainty [e.g.,
Franks et al., 1998; Blasone et al., 2008]) may not remove
inconsistent behavior with respect to the data resolution
(and length), though it could simply shroud it in additional
parameter uncertainty and introduce new errors by omitting
residual terms. Indeed, even a likelihood function correctly
describing data uncertainty would lead to a poor inference,
unless it also included a representation of numerical errors
as if they were structural errors of the model hypothesis!

[123] Our findings reinforce the critical need to use more
robust and accurate numerical and statistical techniques in
hydrology and, logically, to use stringent diagnostic tests to
identify and improve deficient components, be they model
structures, numerical approximations, or likelihood func-
tions. Despite the challenges of pursuing this rigorously, we
are optimistic regarding progress in the distinct directions of
robust model formulation [e.g., Kavetski et al., 2003; Clark
et al., 2008; Clark and Kavetski, 2010; Schoups et al.,
2010], the development and application of increasingly real-
istic likelihood functions [e.g., Kavetski et al., 2006b; Ste-
dinger et al., 2008; Reichert and Mieleitner, 2009; Renard
et al., 2010; Schoups and Vrugt, 2010], stringent process-
oriented diagnostics [e.g., Gupta et al., 2008; Yilmaz et al.,
2008; Clark et al., 2011], and experimental insights [e.g.,
Seibert and McDonnell, 2002; Weiler and McDonnell,
2004; Western et al., 2004; Vaché and McDonnell, 2006].
When exploited as part of systematic multimodel analyses
and hypothesis testing [e.g., Clark et al., 2008], we believe
that pursuing these advances offers promising prospects for
developing more scientifically defensible, and operationally
reliable, hydrological models.

7.6. Current Limitations and a View to the Future
[124] Several methodological compromises were made in

the empirical case study, chiefly because of currently
severe data analysis and computational limitations when
modeling at short (down to subhourly) time scales, but also
to maintain a clearer focus on methods commonly used by
hydrological scientists and practitioners.
7.6.1. Simplistic Specification of the Likelihood
Function

[125] The case studies reported here do not distinguish
between data (rainfall and streamflow) and structural uncer-
tainties [e.g., Kavetski et al., 2002b; Vrugt et al., 2008;
Reichert and Mieleitner, 2009]. At best, these are imper-
fectly lumped into residual errors, which in SLS and WLS
represent a crude mixture of all sources of uncertainty.
Hence, we did not attempt to a priori constrain the parame-
ters of the residual error model, e.g., using streamflow rat-
ing curve analysis [Thyer et al., 2009]. Poor treatment of
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data and structural errors reduces the robustness of the in-
ference, e.g., resulting in (probabilistic) streamflow predic-
tions and parameter estimates that are unduly dependent on
the specific realization of data errors in the calibration pe-
riod (e.g., as illustrated by Thyer et al. [2009]; see also
Renard et al. [2010]). In the context of parameter estimation,
failing to reliably account for input errors and residual auto-
correlations (usually) results in underestimated posterior pa-
rameter uncertainties [e.g., Beven and Young, 2003; Thyer
et al., 2009; Schoups and Vrugt, 2010]. Moreover, the distri-
butional adequacy of the streamflow predictions will gener-
ally be poor [e.g., Thyer et al., 2009; Renard et al., 2010].
However, note that predictive uncertainty will not necessar-
ily be ‘‘uniformly’’ underestimated. For example, a homosce-
dastic residual error model (SLS) will tend to underestimate
the uncertainty during high flows and overestimate it during
low flows (Figure 5). A poorly specified heteroscedastic error
model (e.g., WLS with equation (6b)) will also fail to pro-
duce reliable prediction limits (e.g., as shown by Thyer et al.
[2009]).

[126] The limitations of traditional regression are well
known and represent a consequence of a poor specification
of the likelihood function in equations (5) and (6), rather
than any purported deficiency of the Bayesian methodology
itself (a point stressed by many authors [e.g., Kavetski
et al., 2002b; Reichert and Mieleitner, 2009; Stedinger
et al., 2008]). Indeed, the additional spurious time scale
dependencies suggested in the empirical studies of this paper
could themselves be viewed as a manifestation of the mis-
specified likelihoods. It is difficult to see how could such
deficiencies be overcome merely by subjective, unverified
alterations of the objective function and/or heuristic sam-
pling procedures, let alone those that violate basic axioms of
probability theory (as seemingly advocated, for example, by
Beven et al. [2008] and the GLUE references therein).

[127] Instead, even with an inexact model of the system
dynamics, the Bayesian method can produce statistically
reliable inference and prediction, but only provided statisti-
cally reliable characterizations of the observational and
structural errors are specified [e.g., Renard et al., 2010]. By
no means an easy challenge, estimating data error models
requires a careful analysis of the observational system, yet
progress in this direction has been apparent for nearly a
decade (e.g., see the work of Willems [2001] and Villarini
et al. [2008] on rainfall sampling errors). More interest-
ingly, the results of Renard et al. [2010] indicate that to the
extent that the data error models are reliable and precise,
Bayesian inference can proceed even with vague priors on
the structural errors. In other words, given a set of data
error models, a Bayesian scheme can achieve ‘‘closure’’ of
total errors by inferring the structural uncertainty [Renard
et al., 2009; see also Kuczera et al., 2010b]. A key restric-
tion is that the distributional reliability of this closure
depends on the distributional reliability of the data error
models and on the flexibility of the (possibly very vague)
structural error model. With respect to the latter challenge,
exploration of structural errors using flexible model frame-
works and experimental insights is of interest [e.g., Clark
et al., 2008; Fenicia et al., 2008; Clark et al., 2011]. We
also note useful advances in Bayesian (probabilistic) char-
acterization of the (epistemic) uncertainties in the system
structure (e.g., using stochastic parameters [Kuczera et al.,

2006; Reichert and Mieleitner, 2009] or, more generally,
using nonparametric techniques [Bulygina and Gupta,
2009]). Other promising methods include quantile regres-
sion [e.g., Koenker, 2005], more flexible residual error mod-
els [e.g., Schoups and Vrugt, 2010], and inductive methods
[e.g., Young and Ratto, 2009]. We anticipate that direct, ro-
bust, and conceptually appealing ways to confront the appa-
rent impasse currently surrounding hydrological calibration
require not just ‘‘changing the question’’ [Sivapalan, 2009]
but exploiting a fusion of these technical advances with ex-
perimental basin insights [e.g., Seibert and McDonnell,
2002; Tromp-van Meerveld and McDonnell, 2006b; van
den Bos et al., 2006a] and a stringent posterior scrutiny that
combines statistical [e.g., Laio and Tamea, 2007; Thyer
et al., 2009] and process-oriented [e.g., Gupta et al., 2008;
Yilmaz et al., 2008; Clark et al., 2011] diagnostics.

[128] A final current limitation is computational : while
input- and/or structural-error-sensitive Bayesian technolo-
gies can increasingly (and still imperfectly) be applied in
specific case studies [e.g., Kavetski et al., 2006b; Vrugt et
al., 2008; Thyer et al., 2009; Reichert and Mieleitner,
2009], they remain expensive for large-scale experiments
such as those undertaken in this study. Perhaps optimisti-
cally, we view this as a lesser challenge than the error
model specification tasks: more efficient optimization and
sampling algorithms, including multimethod approaches
[Vrugt and Robinson, 2007] and limited memory MCMC
strategies [Kuczera et al., 2010a], are being rapidly devel-
oped and refined and are increasingly benefitting from par-
allel computing facilities.
7.6.2. Relatively Basic Numerical Time-Stepping
Techniques

[129] We note the absence of sufficient experiments with
high-order numerical approximations and near-exact solu-
tions in our empirical evaluations. This was partially due to
limiting the scope of this paper to time-stepping schemes
commonly used in conceptual hydrological modeling (see
Clark and Kavetski [2010] for a recent review) but was
also motivated by the nontrivial practical issue of juggling
numerical accuracy and solution smoothness (section 3.3),
especially in the context of maintaining methodological
consistency across the multitude of runs and experiments in
this study. Hence, for pragmatic reasons, we relied upon
the unconditional stability of the implicit Euler approxima-
tion and exploited its smoothness to speed up calibration
without imposing a truncation error tolerance (see Kavetski
et al. [2003] and Kavetski and Clark [2010] for further
discussion). Since computationally demanding practical nu-
merical work does require carefully considered accuracy-
cost tradeoffs [e.g., Gill et al., 1981], a separate study
should focus on state-of-the-art variable order – variable
step algorithms [e.g., Butcher, 2008] vis-à-vis fixed step
implicit approximations, in the specific context of concep-
tual hydrological modeling with uncertain averaged data.
7.6.3. Focus on Lumped Conceptual Models and a
Single Catchment

[130] Finally, largely for reasons of space and to main-
tain a (relatively) compact presentation, we limited the
scope of the empirical evaluations in this study to four
lumped conceptual models and a single experimental catch-
ment. Of particular interest is the extension of the analysis
to multiple catchments [Merz et al., 2009] and spatially
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distributed hydrological models [Ivanov et al., 2004;
Immerzeel and Droogers, 2008], whose promise of better
representation of catchment and forcing heterogeneities has
often been hampered by overparameterizations and, conse-
quently, poor identifiability if given only exceedingly
aggregated data [e.g., Beven, 1993] and potentially weak
identification techniques. Such analysis may highlight even
more prominently the nontrivial interplay between physical
realism and statistical identifiability, forcing and structural
errors, inference data requirements and practical predictive
ability under a variety of temporal and spatial scales, and,
finally, practical tradeoffs between numerical accuracy and
computational complexity.

8. Conclusions
[131] This study investigated the interplay between data

resolution versus parameter inference and model structure
identification in conceptual hydrological modeling, with a
dual focus on (1) practical computation using simple numeri-
cal approximations of conceptualized catchment-scale dy-
namics, calibrated using common likelihood functions, and
(2) the ability of calibrated models to represent important
qualitative and quantitative aspects of hydrological behavior
that may not be captured in simplistic statistical calibration
approaches. Recent progress notwithstanding, these issues
remain quite poorly understood, both empirically and mathe-
matically, especially in the context of probabilistic model
estimation, uncertainty analysis, and predictive application.

[132] The empirical analysis was carried out using four
conceptual rainfall-runoff models of varying complexity,
applied to the experimental Weierbach catchment (Luxem-
bourg) over time scales ranging from 30 min to 3 days. Its
schist geology makes it an interesting, and challenging,
case study, as higher data resolution reveals finer-scale dy-
namics, such as double-peaked hydrographs representing
delayed catchment response, and forces the models to
reproduce these features. The availability of experimental
insights in this catchment leads to a hydrological process-
oriented perspective that complements the statistical identi-
fication analyses reported in this paper.

[133] The empirical analysis highlighted the subtle influ-
ence of seemingly unrelated aspects of model implementa-
tion and calibration on model identification, interpretation,
and predictive use. The following have been shown:

[134] 1. Conditionally stable and otherwise erratic time-
stepping schemes introduce spurious time scale trends into
the inferred hydrological model parameters and model
structures. Although still seemingly underestimated by sec-
tions of the hydrological community, this finding should
not be surprising given the veritable numerical daemons
unearthed in recent work [e.g., Clark and Kavetski, 2010;
Kavetski and Clark, 2010] and also given a flock of earlier
harbingers [e.g., Michel et al., 2003; Kavetski et al., 2003].

[135] 2. Simplistic likelihood functions can also intro-
duce spurious time scale artifacts into the inference. This
ties well with previous work on parameter consistency in
the context of statistical identification of conceptual hydro-
logical models [e.g., Kavetski et al., 2002b; Clark and
Vrugt, 2006; Stedinger et al., 2008; Thyer et al., 2009;
Schoups and Vrugt, 2010].

[136] From a more process-oriented perspective, the fol-
lowing conclusions can be drawn.

[137] 1. When robust numerical implementations and
heteroscedastic (albeit still exceedingly crude) residual
error models are used, the inferred parameter distributions
stabilized considerably. Parameters describing slow dy-
namics remained largely invariant over the time scales of
consideration, whereas parameters describing fast dynam-
ics converged toward increasingly precise and stable esti-
mates as the data resolution was refined and approached the
characteristic time scale of these processes. The improved
model and parameter behavior is expected to help process-
oriented interpretation [e.g., Seibert and McDonnell, 2002;
Birkel et al., 2010] and regionalization [e.g., Kling and
Gupta, 2009; Bai et al., 2009] of model parameters and
structures.

[138] 2. While using temporally and spatially averaged
forcing response data necessarily introduces (nonnumeri-
cal) process time scale dependencies, provided robust nu-
merical and statistical techniques are employed, the
unveiling of finer-scale features of the forcing response
data by higher-resolution sampling supported the identifica-
tion of a larger number of parameters and components, in
particular, quick-flow dynamics, within increasingly com-
plex model structures. Since this can be interpreted as a
more stable and realistic behavior of inferred model param-
eters supporting more physical meaningful modeling, this
is a strong argument in favor of collecting high-resolution
hydrological data for the purpose of hypothesis testing and
model development.

[139] We stress that the numerical maladies illustrated in
this work are naturally avoided by using robust solutions of
the hypothesized model equations. In hydrology, this is
generally already the case with most physically based mod-
els [e.g., Ivanov et al., 2004]. As eloquently affirmed by a
colleague, ‘‘facing the numerical conundrum squarely in
the face has been a hallmark of subsurface flow and trans-
port modeling since the very advent of the computer era’’
(S. P. Neuman, personal communication, 2010). Although
numerical robustness in itself guarantees neither scientific
nor operational adequacy, it is an essential precondition for
meaningfully pursuing these objectives. We hence reiterate
an earlier call (outlined by Kavetski and Clark [2011]) to
the conceptual hydrological community (and any other
field of environmental modeling or science that is tempted
to disregard robust mathematics, perhaps on the pretext of
‘‘the models are simplistic anyway’’) that a laissez-faire
attitude toward numericostatistical errors is scientifically
indefensible, and that this has been recognized, or is being
recognized, in most other branches of hydrology and sci-
ence (as can be seen by consulting the vast field of both
popular and specialized books and journals on mathemati-
cal modeling, of which our reference list is but a small
sample).

[140] From a broader perspective of the hypothesis-based
approach to hydrological science [e.g., Kuczera and Franks,
2002], this study provides insights into the information con-
tent of data and, through robust numerical and statistical
techniques, furthers the utilization of high-resolution data
from experimental catchments to advance our understand-
ing of catchment-scale dynamics. When selected on the ba-
sis of experimental insights, implemented using robust
numerical techniques, and tested using a spectrum of statis-
tical and process-oriented diagnostics, the more complex
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model structures supported by the higher-resolution data
provided better overall performance both in terms of aggre-
gate measures of model performance (here goodness of fit
of streamflow predictions) and in terms of reproducing im-
portant qualitative signatures in the data. Importantly, con-
sistent results were obtained both across multiple time
scales and across calibration-validation periods. While em-
pirical evidence is still limited, theoretical arguments sup-
port the generality of these encouraging findings.
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