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Abstract 

This paper presents a theoretical and finite element (FE) investigation of the scattering 

characteristics of the fundamental anti-symmetric (A0) Lamb wave at delaminations in a 

quasi-isotropic (QI) composite laminate. Analytical models based on the Mindlin plate theory 

and Born approximation are presented to predict the A0 Lamb wave scattering at a 

delamination, which is modelled as an inhomogeneity, in an equivalent isotropic model of the 

QI composite laminate. The results are compared with FE predictions, in which the 

delamination is modelled as a volume split. The equivalent isotropic model and QI composite 

laminate are used to investigate the feasibility of the common theoretical approach of 

modelling the delamination as the inhomogeneity. A good correlation is observed between the 

theoretical solutions and FE results in the forward scattering amplitudes, but there exists a 

larger discrepancy in the backward scattering amplitudes. The FE results also show that the 
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fibre direction of the outer laminae has a pronounced influence on the forward and backward 

scattering amplitudes, which is not predicted by the analytical models. 

 

1 Introduction 

The development of structural health monitoring (SHM) techniques has received significant 

attention in the last decade [1–4]. Different techniques [5–8] have been developed to ensure the 

safety and reduce maintenance costs of structures. Guided waves (GWs) have demonstrated 

great potential for damage detection in a wide range of structural elements, including beams [9], 

pipes [10], metallic plates [11], and, more recently, composite laminates [12–15].  

The successful development of GW-based damage detection techniques requires an 

understanding of GW propagation and scattering characteristics at defects. GWs in plate-like 

structures are called Lamb waves. In the literature different analytical models have been 

developed to predict and investigate characteristics of Lamb waves scattering at different types 

of defects. 

Three-dimensional (3D) prediction plays an important role in these studies. Norris and 

Vemula [16] and Vemula and Norris [17], for example, presented analytical models for flexural 

wave scattering by a cylindrical defect using Kirchhoff and Mindlin plate theory, respectively. 

McKeon and Hinders [18] addressed the problem of fundamental symmetric mode (S0) Lamb 

wave scattering at a circular through hole using the Kane-Mindlin plate theory. Diligent et al. 

[19] investigated the interaction of the low-frequency S0 Lamb wave with a circular through 

hole using FE, analytical and experimental approaches. Diligent et al.’s [19] analytical model 

was based on Kirchhoff plate theory and the mode superposition method. The study 

specifically focused on the reflected S0 Lamb wave and the laterally scattered fundamental 

shear horizontal mode (SH0) Lamb wave.  

Grahn [20] then extended the S0 Lamb wave scattering model for a circular blind hole by 

including the mode coupling effect. Cegla et al. [21] presented an analytical model to predict 

the mode coupling effect of Lamb waves scattering at a circular blind hole. The S0 and SH0 

Lamb waves were modelled using Poisson plate theory, while the A0 Lamb wave was modelled 
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using Mindlin plate theory. Analytical solutions in all of these studies have been limited to 

simple defect geometries, such as cylindrical or elliptical shapes, and only isotropic materials 

were considered. 

In the last decade, the use of fibre-reinforced composite laminates has significantly 

increased in different engineering industries, such as civil, maritime, automotive and aerospace, 

due to their light weight and high specific stiffness characteristics. Analytical models of Lamb 

wave scattering at defects, however, do not exist for composite laminates because of their 

anisotropic elastic properties. Hence most studies involving Lamb waves in composites rely on 

FE simulations, and only few investigations have considered 3D Lamb wave scattering 

characteristics at defects in composite laminates [22-24].  

 

1.1 Three-dimensional finite element simulation of Lamb wave scattering in composite 

laminates 

Recently Veidt and Ng [23] investigated the A0 Lamb wave scattering characteristics at circular 

through holes in composite laminates with different stacking sequences. An experimentally 

verified FE model was used in the study. The scattering directivity patterns (SDPs) proved 

quite different for QI composite laminates that have the same number of laminae but different 

stacking sequences. The 3D A0 Lamb wave scattering characteristics at delaminations were 

also studied by Ng and Veidt [24]. The study provided an improved physical insight into the 

scattering phenomena at the delaminations. However, the experimental verification only 

focused on a limited number of defect diameter to the incident wave wavelength ratios ( R ). 

One of the objectives of the current study is to provide a comprehensive verification of the 

3D FE model for a range of R  values. Following earlier investigations [13,15,22–25], the A0 

Lamb wave is the focus in this study because of its sensitivity to small defects due to its shorter 

wavelength compared to S0 and SH0 Lamb waves at the same excitation frequency. 

 

1.2 Lamb wave diffraction tomography and composite laminates 

QI composite laminates have commonly been used in the engineering industries because of 



Page 4 of 29 
 

their capacity to handle multi-axial loads and undefined load paths. They are suitable for 

conservative industrial design because some elastic properties of QI composite laminates 

approximate the equivalent isotropic properties in engineering materials. Applications of QI 

composite laminates include composite mirrors of telescopes [26], aircraft structures [27] and 

spacecraft structures [28], etc. However, they have not yet been able to be assessed for defects 

using Lamb wave diffraction tomography, an assessment method which has been proved 

attractive in the context of SHM as it not only determines the existence and the location of the 

defect, but can also achieve the defect characterisation. Current development in this method is 

limited to isotropic materials [29–32]. Those Lamb based techniques, which have been 

developed for locating damages in QI composite laminates, are based on equivalent isotropic 

assumption [12,14,33]. However, the extension of Lamb wave diffraction tomography to 

characterisation of damages in QI composite laminates requires a scattering model that is able 

to predict Lamb wave scattering characteristics.  

In work related to this goal, Wang and Rose [34] modelled a delamination as an 

inhomogeneity with a reduced bending rigidity over the delamination region. At the 

delamination region the laminate is separated into an upper and a lower sub-laminate in which 

the waveguide is divided into two individual sub-waveguides resulting a reduction of the 

bending rigidity and this will be discussed in detail in Section 3.2. The study showed that the 

inhomogeneity can predict reflected and transmitted waves from the delamination. However, 

the study focused on a one-dimensional waveguide only. In composite laminates, the scattering 

of Lamb waves at delaminations is a more complicated phenomenon. It is an open question 

whether the inhomogeneity in the equivalent isotropic model can be used to predict the Lamb 

wave scattering characteristics at delaminations in QI composite laminates.  

Therefore the other objective of the current study is to assess the accuracy of the 

equivalent isotropic model in predicting the scattering characteristics of the A0 Lamb wave at 

delaminations in QI composite laminates. The analytical prediction and Born approximation, 

which are fundamental to Lamb wave diffraction tomography of the equivalent isotropic model 

are compared with the experimentally verified FE simulations of the QI composite laminate. 



Page 5 of 29 
 

The paper is organised as follows. The 3D FE simulation is described in Section 2. The 

analytical solutions and Born approximation of the equivalent isotropic model for the A0 Lamb 

wave scattering at a cylindrical inhomogeneity are presented in Sections 3 and 4, respectively. 

The results of the scattering characteristics at defects are discussed in Section 5. Finally, 

conclusions are drawn in Section 6. 

 

2 Three-dimensional finite element simulation 

The 3D explicit FE method was employed to simulate the A0 Lamb wave propagation and 

scattering at defects in this study. The program ANSYS was used to generate the geometry and 

perform the meshing of FE models. An aluminium plate, a QI composite laminate and the 

corresponding equivalent isotropic model 180 × 180 × 1.6 mm3 in dimension were modelled 

using the FE method. Eight-noded 3D reduced integration solid brick elements with hourglass 

control and three degree-of-freedom at each node were used to model these panels. 

The aluminium plate was modelled using eight solid brick elements through the thickness 

of the plate. The QI composite laminate was made by unidirectional carbon/epoxy prepreg 

laminae with different fibre orientations. Each lamina was modelled using solid brick elements 

with homogeneous and orthotropic material assumptions. A small stiffness-weighted damping, 

which is around 0.012%, was used to simulate the damping effect of the QI composite laminate. 

The value of the damping ratio was estimated based on the experimental measurements, which 

was found to be the best to simulate the damping effect for Lamb wave propagation in 

composite laminates. The FE model of the QI composite laminate has been experimentally 

verified to be able to accurately predict the A0 Lamb wave propagation and scattering at 

through holes [23] and delaminations [24], respectively.  

The equivalent isotropic model was modelled following the same approach as the 

aluminium plate, in which the eight solid brick elements were used throughout the thickness of 

the plate. The excitation signal was a 140 kHz narrowband six-cycle sinusoidal tone burst pulse 

modulated by a Hanning window. The A0 Lamb wave was generated by applying out-of-plane 

displacement to surface nodes covered by a 5 mm diameter half circle transducer as shown in 
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Fig 1. The transducer was assumed to be located at r= 90 mm and   = 180°. r  and   are 

the radial and azimuthal coordinates of a polar coordinate system with the origin at the centre 

of the defect zone as shown in Fig 1.  

The wavelengths of the A0 Lamb wave propagating at  = 0° and 140 kHz in the 

aluminium plate, the QI composite laminate and the equivalent isotropic model are 9.69 mm, 

7.93 mm and 8.22 mm, respectively. Measurements of the A0 Lamb were ensured by 

monitoring the out-of-plane displacement of nodes located at the mid-thickness ( z = 0 mm as 

shown in Fig 1) of the plate, as the S0 and SH0 Lamb waves have zero out-of-plane 

displacement at the mid-thickness location. 36 nodes were monitored at r  = 40 mm and 

0 360     with 10° step increments at the circular monitoring nodes as shown in Fig 1. 

The distance r  = 40 mm is many incident wave wavelengths away from the excitation, hence 

the generated evanescent waves could be ignored. 

The study involved conducting two simulations, one for the panel without a defect and one 

for a panel with a defect. The scattered A0 Lamb waves were obtained from 36 monitoring 

locations by calculating the difference between the signal from the intact and the signal from 

the damaged panel. The SDP was then obtained by calculating the maximum absolute 

amplitude of the scattered A0 Lamb waves. All the scattered A0 Lamb waves were normalised 

by the maximum absolute amplitude of the incident A0 Lamb wave at the centre of the defect 

zone.  

FE meshing was well controlled to ensure all elements had very similar sizes. Control is 

important, since it has been demonstrated that meshing is an issue in studying wave scattering 

problems, especially for weak scatterers [19], as large variations in element sizes can cause 

wave scattering and beam steering. The FE models of the intact and damaged panel had 

identical mesh to ensure all scattered waves were induced by the defect only. Solid elements 

with x – y  plane dimensions around 0.4 × 0.4 mm2 were used for all FE models. This ensured 

that at least 17 nodes existed per wavelength, which had previously proved sufficient to predict 

the A0 Lamb wave propagation and scattering at defects in composite laminates accurately 

[23–24]. All FE simulations were solved by the explicit FE code LS-DYNA. 
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Circular through holes and delaminations with different diameters were considered in this 

study. The predicted A0 scattered Lamb waves were compared with the results obtained from 

the analytical model and Born approximation. The through holes were created by removing the 

FE elements as shown in Fig 2a. The delaminations were modelled by separating the FE nodes 

across the delamination surface by a small distance [24]. The cross section of the delamination 

region in the FE model is shown in Fig 2b. 

 

3 Analytical model based on Mindlin plate theory 

3.1 Basic equations for Lamb waves 

According to the Mindlin plate theory [35], the displacement components ( xu , yu  and zu ) of 

flexural motions can be expressed in Cartesian coordinates as  

      , , , , , , , ,x x y y zu z x y t u z x y t u w x y t       (1) 

where x  and y  are the rotation components and w  is the deflection component. The 

equations of motion, with plate thickness h  and density  , in vector notation [36] are 

  21

2
D Gh w I

             
 

ψ ψ ψ ψ m  (2) 

  2Gh w hw q       ψ   (3) 

where [ , ]T
x y ψ . [ , ]T

x ym mm  is a vector containing the area density of external 

bending moments and q  is the area density of external vertical force. 2 2/ t  ψ ψ  and t  

denotes time. 2/ (1 )D EI    is the plate bending stiffness with Young’s modulus E  and 

Poisson’s ratio  . 3 /12I h  is the moment of inertia. G  is the shear modulus and 

/ 12   is the shear correction factor for accurate representation of the low frequency 

behaviour [37]. Vemula and Norris [17] showed that the general solutions of harmonic motion 

in the absence of loads are in the form 

  Re , e i tw W x y      (4) 

       , Re , e , Re , ei t i t
x y x yx y x y              (5) 

and 
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      1 2, , , , , ,W x y t W x y t W x y t   (6) 

         1 1 2 2, , , , , , , ,zx y t W x y t W x y t V x y t       e  (7) 

where   is the angular frequency and 1i    is the imaginary unit. 1  and 2  are the 

frequency dependent coefficients. ze  is the unit vector in the z  direction. The displacement 

potentials 1W , 2W  and V  in Equations (6) and (7) satisfy the Helmholtz equations [17] 

  2 2 0, 1, 2j jk W j     (8) 

  2 2
3 0k V    (9) 

The wavenumbers 1k , 2k  and 3k  can be determined as follows 

    22 2 2 4 2 21 1
, 1, 2

2 4j p b f p bk k k k k k j       (10) 

 
2 2

2 2 1 2
3 2

p

k k
k

k
  (11) 

where 

 
 

1
2 2 4

2

1
, ,b p f

h
k k k

G E D

    


  
    

 
 (12) 

Once the wavenumbers 1k  and 2k  are obtained, the j  in Equation (7) can be 

determined by 2 21j b jk k     for 1, 2j  . For the frequency below the first cut-off 

frequency /c Gh I   , 1k  is a real wavenumber representing the flexural wave. 2k  and 

3k  are purely imaginary and represent evanescent waves. In polar coordinates, the deflection 

potential of an incident wave propagating in the positive x  direction at frequency   can be 

expressed as [38] 

 
       1

0

, cosi n
n n

n

W r i J k r n 




   (13) 

where the superscript ( )i  represents the parameters pertaining to the incident wave. 0 1   

and 2n   for 1n  . ( )nJ   is the n -th order Bessel function of the first kind. 
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3.2 Wave scattering at a cylindrical inhomogeneity 

Following the wave function expansion method [17–18,20,38], the solutions for displacement 

potentials 1W , 2W  and V  of the scattered wave, which are due to the incident wave [in 

Equation (13)] scattering at a cylindrical inhomogeneity with radius a , can be expressed in 

terms of Bessel and Hankel functions in polar coordinates. The scattered wave at r a  and 

the wave inside the cylindrical inhomogeneity at r a  are thus of the form [17,38] 

 
     1 1 2 2

0

coss
n n n n

n

W A H k r A H k r n




     (14) 

 
       1 1 1 1 2 2 2 2 3 3

0

coss
r n n n n n n

n

n
A k H k r A k H k r A H k r n

r
   





      
  (15) 

 
       1 1 1 2 2 2 3 3 3

0

sins
n n n n n n

n

n n
A H k r A H k r A k H k r n

r r   




      
  (16) 

and 

    * * * * *
1 1 2 2

0

cosn n n n
n

W A J k r A J k r n




     (17) 

      * * * * * * * * * * *
1 1 1 1 2 2 2 2 3 3

0

cosr n n n n n n
n

n
A k J k r A k J k r A J k r n

r
   





      
  (18) 

      * * * * * * * * * *
1 1 1 2 2 2 3 3 3

0

sinn n n n n n
n

n n
A J k r A J k r A k J k r n

r r   




      
  (19) 

where ( )nH   represents the n -th order Hankel function of the first kind. The superscript 

asterisk indicates the variables related to the wave transmitted into the cylindrical 

inhomogeneity. *
1k , *

2k , *
3k , *

1  and *
2  are calculated based on the geometric or material 

properties, which depend on the type of defect inside the cylindrical inhomogeneity. 1nA , 2nA , 

3nA , *
1nA , *

2nA  and *
3nA  are unknown expansion coefficients to be calculated from the 

continuity conditions of displacements, shear forces and bending moments at the boundary 

between two regions ( r a ) as shown below [38]. 

            * * *, ,i s i s i s
r r rW W W               (20) 

            * * *, ,i s i s i s
r r r r r rM M M M M M Q Q Q         (21) 

where rM , M  and rQ  are the bending moments and shear force, respectively. They can be 

obtained by 
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   1
, 1

2
r r

r r

D
M D M

r r r r r
  


     
 

                             
 (22) 

 2
r r

w
Q Gh

r
     

 (23) 

Using the boundary conditions as shown in Equations (20) and (21), a system of equations, for 

every n  value, can be obtained for the six unknown expansion coefficients [17] 

 
*

**

n nnn n
n

n nn n

i
     

    
    

A TL L

A PR R
  (24) 

The expressions for the vectors and matrices in Equation (24) are given in the Appendix. 

In this study the cylindrical inhomogeneity is used to represent a circular through hole and 

delamination, respectively. The through hole boundary is characterised by traction free surfaces. 

It only involves the shear forces and bending moments boundary conditions in Equation (21). 

Equation (24) can thus reduce to 

 n
n n n ni R A P   (25) 

As shown in Fig 3, the delamination can be represented by reducing the value of the plate 

bending stiffness at the inhomogeneity region [34,38]. At the delamination region the 

composite laminate is split into an upper and a lower sub-laminate with thickness uh  and lh . 

As the laminate is separated into two sub-laminate at the delamination region in which the 

waveguide is divided into two individual sub-waveguides, the bending rigidity at the 

delamination region can be calculated by * 3 3 2( ) /12(1 )u lD E h h    . The scattered wave is 

obtained once the expansion coefficients are determined. 

 

4 Born approximation 

Unlike the analytical model shown in Section 3, the Born approximation is also applicable to 

defects with complex shapes. In the literature most of the Lamb wave diffraction tomography 

methods for damage characterisation have thus employed the Born approximation [31–32]. In 

the current study, the Born approximation was used to approximate the scattered A0 Lamb 

wave amplitude and is compared with the analytical and experimentally verified FE predictions. 



Page 11 of 29 
 

The plate properties of the inhomogeneity region can be expressed in term of those 

corresponding to the region outside the inhomogeneity as [38] 

  *
11D D     (26) 

  2 * 2
21Gh Gh     (27) 

  *
31I I     (28) 

  *
41h h     (29) 

where l  for 1, 2,3, 4l   are nonzero within the region of inhomogeneity but vanish out of it. 

These four plate properties can be used to represent different types of defects. For example, the 

variation in h  and I  represents the corrosion thinning in metallic plates and the 

delamination in composite laminates, respectively. Using the Born approximation, the scattered 

A0 Lamb wave at frequency   can be approximated [38] as 

 

          
     

2 2
1 3 , 2 , 3 3

2 2
2 , 33, 4 33 d d

s i i i iB

i i

W W D g Gh W I g

Gh W g h g

      

  

       

       

       

  


  (30) 

where the comma indicates differentiation over subscripts [ ,  ] = 1, 2. ( , ) represents an 

arbitrary point within the inhomogeneity region.   is the plate theory strain. 31g , 32g  and 

33g  are Green’s functions [36] 

 
     0 1 0 1 0 1

31 32 33
1

' ' '
, ,

H k r H k r H k r
g g g

x y
  


 

  
 

 (31) 

where 2 2
1 2/ 4 ( )i D k k    and  22' ( )r x y     . Using the far-field asymptotic 

approximation of the Hankel function, the scattered wave by the cylindrical inhomogeneity at 

frequency   can be represented by 

      1
4

4

11

2
, e

i k r
B

l l
l

W r T P
k r



   


  
 



   (32) 

where 

    2 2 2
1 1 1 cos sinP k D         (33) 
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

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   2
3 1 cosP I      (35) 

  
2

4 2
1 1

h
P

k

 


  (36) 

  
 1 1

1

2 2cos
2

2 2cos

J k a
T k a


 







 (37) 

 

5 Results and discussions 

In this section, the results of the analytical model, Born approximation and FE simulations are 

compared and discussed in a series of case studies. In Section 5.1, the use of the aluminium 

plate with a circular through hole to assess the accuracy of the FE simulations is described. The 

success of the FE simulations in predicting the scattered A0 Lamb wave is assessed by 

comparing the results of the simulations with the analytical model described in Section 3.2. 

Sections 5.2 and 5.3 compare the results of the analytical, approximated (based on Born 

approximation) and experimentally verified FE predictions for delaminations in the equivalent 

isotropic model and QI composite laminate, respectively. 

 

5.1 Through holes in the aluminium plate 

As noted in Section 1, an analytical model of A0 Lamb wave scattering at delaminations in 

composite laminates does not exist. Therefore, an analytical model of A0 Lamb wave scattering 

at through holes is used to verify the numerical accuracy of the FE simulations conducted as 

part of this research. The analysis provided a comprehensive verification of the FE model, 

which was experimentally verified in previous studies [23–24] for a limited number R  

values. 

The material properties of the aluminium are shown in Table 1. The A0 Lamb waves 
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scattered by through holes are calculated using the analytical model and the FE simulations. 

Without loss of generality, a range of R  values is considered. The SDP was compared with 

the analytical and FE results for through holes with R  equals 0.82, 1.03 and 1.23, as shown in 

Figs 4a, 4b and 4c, respectively. The solid lines are calculated from the analytical model as 

described in Section 3. Results of the FE simulations are indicated by circles for 0 360     

with 10° step increments.  

It should be noted that all SDPs in this paper are normalised by the maximum absolute 

amplitude of the incident wave at the centre of the defect zone (as shown in Fig 1) in the intact 

panel. Very good agreement is found between these two sets of results, which proves the 

accuracy of the FE simulations. Fig 4 shows that the forward and backward scattered A0 Lamb 

waves have similar amplitudes. However, the forward scattering waves tend to have a larger 

amplitude for increasing R . Fig 5 shows the normalised amplitudes of the forward (  = 0°) 

and backward (  = 180°) scattered A0 Lamb waves for a range of R  values. The amplitudes 

of the forward and backward scattering increase with similar slope and magnitude for R  

smaller than 0.45, after which the backward scattering amplitudes increase with a lower rate 

and slight variation. Fig 5 shows the accuracy of the FE simulations for a range of R  values. 

 

5.2 Delaminations in the equivalent isotropic model of the quasi-isotropic composite 

laminate 

This section compares the analytical, approximated and FE results of the A0 Lamb wave 

scattering at delaminations in the equivalent isotropic model, which is an approximation to the 

[45/-45/0/90]S QI composite laminate. In this section the FE results are used as a reference to 

study the suitability of representing the delamination by the inhomogeneity in the analytical 

model and Born approximation.  

The delamination diameters considered in this study are comparable to or less than the 

incident wavelength. This size range is found to be practical in composite laminates [23]. For 

this damage size multiple internal reflections within the damage area [39], which are not 

considered in the analytical models, are expected to have only a minimal effect on the FE 
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results. The QI composite laminate is made of eight Cycom® 970/T300 unidirectional 

carbon/epoxy prepreg laminae. The thickness of each prepreg lamina is 0.2 mm and the 

material properties are shown in Table 2. The elastic properties of the equivalent isotropic 

model are calculated based on the classical laminated plate theory [40] and are shown in Table 

3. Density and thickness of the equivalent isotropic model are assumed to be 1517 kg/m3 and 

1.6 mm, respectively, which are the same as the QI composite laminate. Young’s modulus 49.3 

GPa, shear modulus 3.52 GPa and Poisson’s ratio 0.32 are used in the analytical model and 

Born approximation. The equivalent isotropic elastic properties shown in Table 3 are used in 

the FE simulations. 

Figs 6a and 6b show the A0 phase and group velocity dispersion curves at  = 0°. The 

solid lines are calculated using the analytical model with the equivalent isotropic material 

properties of the QI composite laminate. The circles and crosses indicate the results obtained 

by the FE simulations and experimental measurements of the QI composite laminates, 

respectively. The experimental results of the phase and group velocity dispersion curve were 

reported in [23–24] and they are also included in Figs 6a and 6b. It was proved that the A0 

phase and group velocities are not sensitive to the fibre orientation in the QI composite 

laminate [41]. Very good agreement was obtained in all three sets of results, thus validating the 

approximation of the phase and group velocity in QI composite laminate at low frequencies by 

the equivalent isotropic model. 

Figs 7a, 7b and 7c show the SDP of the A0 Lamb wave at delaminations, with R  equal to 

0.85, 1.09 and 1.46, respectively. It is assumed that the delaminations are located at 

mid-thickness (between fourth and fifth lamina) of the [45/-45/0/90]S QI composite laminate, 

in which * 0.25D D . The analytical, approximated and FE results are indicated by solid lines, 

dashed lines and circles, respectively. It should be noted that the SDP of the forward and 

backward scattering amplitudes are displayed with two different scales in each figure.  

Very good agreement is observed between analytical and FE results in the forward 

scattering amplitudes but there is a larger discrepancy in the backward scattering amplitudes. 

As the reduced bending stiffness at the delamination is only 25% of the intact region, it is 
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beyond the scope of the Born approximation, in which the defect is assumed to be a weak 

inhomogeneity. For the forward scattering amplitudes, the Born approximation still has a good 

estimation of the shape of the SDP, but it underestimates the forward scattering amplitudes in 

all three cases.  

Without loss of generality, Fig 8 shows the forward scattering amplitudes at   = 0°, 20° 

and 40° for a range of R  values. Solid lines, dashed lines and circles represent the analytical, 

approximated and FE results of the equivalent isotropic plate, respectively. The FE results of 

the QI composite laminate, which are indicated by crosses, are also included in Fig 8 but the 

results will only be discussed in Section 5.3. Good agreement is observed between analytical 

and FE results of the equivalent isotropic model, especially at   = 0°, in which these two sets 

of results are almost identical.  

Overall the Born approximation underestimates the forward scattering amplitudes but it 

well predicts the trend of the forward scattering amplitude. Fig 9 shows the backward 

scattering amplitudes at   = 180°, 200° and 220°. Compared to Fig 8, Fig 9 demonstrates that 

the backward scattering amplitudes oscillate more rapidly with R  than the forward scattering 

amplitudes. The analytical, approximated and FE results of the backward scattering amplitudes 

have different oscillation patterns. The analytical results have a shape of a sine function 

ramping upward. The approximated results oscillate between zero and maximum values and 

have increasing sine function behaviour. The FE results increase with variations. However, the 

overall trends of all three sets of results increase with R . Comparing the predictions of the 

forward and backward scattering amplitudes, the inhomogeneity model well represents the 

delamination in the forward scattering amplitudes, but there is a larger discrepancy in the 

backward scattering amplitudes. A similar phenomenon was also shown in [34] for 

delaminations in composite beams. A possible reason causing the discrepancy between the 

analytical and FE results is the analytical model does not take into account the multiple internal 

reflections within the delamination region. This is indicated in Fig 9 in which there is a good 

agreement between the results of the analytical (solid line) and FE model (circles) for R  

smaller than 0.3. However, the discrepancy between the analytical and FE results increases for   
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R  larger than 0.3 as the effect of multiple reflections within the delamination region becomes 

more pronounced. 

 

5.3 Delaminations in the quasi-isotropic composite laminate 

It has been reported that the fibre orientation has an influence on the low frequency A0 Lamb 

wave SDP at defects in composite laminates [23]. This section investigates the use of the 

equivalent isotropic model to approximate the A0 Lamb wave SDP at delaminations in the QI 

composite laminate. Analytical modelling and Born approximation are used to calculate the 

scattered wave amplitudes in the equivalent isotropic model. The FE simulations, in which 

each lamina of the QI composite laminate is modelled by a layer of solid elements with an 

orientation according to the fibre direction, are treated as the reference model. Figs 10a, 10b 

and 10c show the SDP of the delaminations located at mid-thickness in the QI composite 

laminate. In each of these figures, the analytical, approximated and FE results are calculated for 

the same delamination size. However, the wavelengths of the incident A0 Lamb wave are 

different in the equivalent isotropic model (8.22 mm) and QI composite laminate (7.93 mm). 

EIR  and QIR  are thus used to represent the delamination diameter to incident wave 

wavelength ratio for the equivalent isotropic model and QI composite laminate in Fig 10, 

respectively.  

Agreement between the analytical, approximated and FE results is not as good as in the 

case of isotropic model. The main reason is that the analytical and approximated results of the 

equivalent isotropic model do not include the influence of the fibre orientations on the 

scattering amplitudes in the QI composite laminate. However, fairly good agreement of the 

forward and backward scattering amplitudes and patterns is still obtained in all three sets of 

results, especially between the analytical and FE results. 

A further investigation of the forward and backward scattering amplitudes was carried out 

for a range of delamination diameter to wavelength ratios and the results are shown in Figs 8 

and 9, respectively. The FE results of the QI composite laminate are indicated by crosses. The 

trends of the forward and backward scattering amplitudes are very similar to those in the FE 
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results of the equivalent isotropic model. However, there is a discrepancy in the scattering 

amplitudes of these two sets of FE results.  

As shown in Figs 8c and 9c, there is a larger discrepancy in the scattering amplitudes 

between these two sets of FE results at   = 40° and 220° compared to   = 0° and 20°, and 

  = 180° and 200° in Figs 8a and 8b, and Figs 9a and 9b, respectively. This is mainly due to 

the influence of the fibre orientations in the QI composite laminate. It should be noted that   

= 40° and 220° are approximately aligned with the fibre direction of outer laminae of the 

[45/-45/0/90]S QI composite laminate. Generally, the FE results of the composite laminates 

have larger magnitude in these   directions for forward and backward scattering amplitudes. 

This is consistent with the phenomenon reported in [23] in which the outer lamina has larger 

influence in the scattering amplitudes.  

Comparing to the results of the equivalent isotropic model as discussed in Section 5.2, 

similar discrepancies between the analytical and approximated results of the equivalent 

isotropic model, and the FE results of the QI composite laminate are observed in the forward 

and backward scatter amplitude at   = 0° and 20°, and at   = 180° and 200° but larger 

discrepancies are obtained for   = 40° and 220°. Overall the equivalent inhomogeneity model 

is a reasonable approximation for the scattering behaviour at delaminations in the QI composite 

laminate, especially the trend of the amplitudes for increasing delamination diameter to 

wavelength ratios and the shape of the scattering patterns. 

The A0 Lamb wave SDPs of the delaminations located between the third and forth lamina 

of the QI composite laminate are also shown in Fig 11. Cylindrical inhomogeneities with 

reduced bending stiffness * 0.30D D  are used in the analytical model and Born 

approximation. The inhomogeneities behave closer to weak scatterers than those assuming the 

delaminations located at mid-thickness of the composite laminate. However, mode conversion 

occurs as the delaminations are asymmetrically located in the QI composite laminate. The FE 

simulations include the mode conversion effect in the SDP predictions but the analytical model 

and Born approximation do not account for this effect. This is a current limitation of the Lamb 

wave diffraction tomography [31–32], in which only a single wave mode is considered in the 
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image reconstruction of defects.  

As shown in Fig 11, the backward scattering amplitudes and patterns are not well predicted 

by the analytical and approximated results. However, good agreement of the forward scattering 

patterns is still observed between the analytical, approximated and FE results. It is expected 

that the analytical and approximated results have worse predictions in the scattering amplitudes 

if the delaminations are moved further away from the mid-thickness of the QI composite 

laminate. The results reveal that the mode conversion effect needs to be accounted in Lamb 

wave based imaging algorithms [13,42], especially for Lamb wave diffraction tomography 

[31–32], if the delamination is located far away from the mid-thickness of the composite 

laminates. 

 

6 Conclusions 

An investigation of the A0 Lamb wave scattering at delaminations in the equivalent isotropic 

mode and QI composite laminate has been presented in this paper. Analytical solutions of the 

A0 Lamb wave scattering at through holes in the aluminium plate have been used to provide a 

comprehensive verification of the accuracy of the FE simulations for a range of R  values. 

The analytical model based on the Mindlin plate theory using wave function expansion and 

Born approximation, and FE results have been discussed and compared to investigate the 

feasibility of the common theoretical approach of modelling the delamination as the 

inhomogeneity.  

Overall, the inhomogeneity well represents the delamination in the forward scattering 

amplitudes but there is a larger discrepancy in the backward scattering amplitudes. Comparing 

to the results of the equivalent isotropic model, similar discrepancies have been observed 

between the analytical models using wave function expansion and Born approximation results 

of the equivalent isotropic model, and the FE results of the QI composite laminate. 

For the delaminations in the equivalent isotropic model, very good agreement has been 

observed between the analytical model using wave function expansion and FE results in the 

forward scattering amplitudes. Although the Born approximation underestimates the forward 
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scattering amplitudes, it well estimates the trend of the amplitude for increasing R  and the 

shape of the SDP in the forward scattering. For the backward scattering, the trends of all three 

sets of results increase with R  but with different oscillation patterns.  

The fibre direction of the outer laminae has a significant influence on the scattering 

amplitudes in the QI composite laminate. Although the analytical models using wave function 

expansion and Born approximation do not account for this effect, the A0 scattered Lamb wave 

is still reasonably approximated, especially for the trend of the amplitudes for increasing 

delamination diameter to wavelength ratios and the shape of the scattering patterns. The study 

has also highlighted the importance of accounting the mode conversion effect in the Lamb 

wave diffraction tomography. Current investigations are focusing on extending the Born 

approximation for transversely isotropic materials to improve the results of scattering 

amplitudes for QI composite laminates. 
 

 

 

Appendix A. Matrices and vectors in the analytical model 

The matrices and vectors in Equation Error! Reference source not found. are shown as 

below. 
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Tables 

 

Table 1.Material properties of the aluminium 

E  
(GPa) 

G  
(GPa)

v  
  

(kg/m3) 

68.9 26 0.33 2700 

 

 

Table 2. Material properties of the Cycom® 970/T300 prepreg unidirectional carbon/epoxy lamina [24] 

11E  
(GPa) 

22E  
(GPa) 

33E  
(GPa) 

12G  
(GPa) 

13G  
(GPa) 

23G  
(GPa) 

12  13  23  
  

(kg/m3) 

128.75 8.35 8.35 4.47 4.47 2.90 0.33 0.33 0.44 1517 

 

 

Table 3. Equivalent isotropic elastic properties of the [45/-45/0/90]S QI composite laminate 

11E  
(GPa) 

22E  
(GPa) 

33E  
(GPa) 

12G  
(GPa) 

13G  
(GPa) 

23G  
(GPa) 

12  13  23  

49.30 49.30 9.92 18.78 3.52 3.52 0.31 0.32 0.32 
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Figures 

 

Fig 1. Schematic diagram of the configuration in the FE simulations 

 

 

Fig 2. Cross section at (a) a through hole and (b) a delamination in the FE simulations 

 

 

Fig 3. Delamination represented by an inhomogeneity in the analytical model 

 

 

Fig 4. Analytical (solid lines) and FE simulation (circles) results for SDP of through holes with 

R= (a) 0.82, (b) 1.03 and (c) 1.23 in the aluminium plate 
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Fig 5. Analytical (solid lines) and FE (circles) results for the normalised forward and backward 

scattered wave amplitudes as a function of R  in the aluminium plate 

 

 

Fig 6. (a) Phase and (b) group velocity dispersion curves of the equivalent isotropic model 

calculated by analytical model (solid lines) and the QI composite laminate obtained from FE 

simulations (circles) and experimental measurements (crosses) 

 

 

Fig 7. Analytical (solid lines), approximated (dashed lines) and FE (circles) results for SDP of 

delaminations with R  = (a) 0.85, (b) 1.09 and (c) 1.46 and located at mid-thickness of the 

equivalent isotropic model 
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Fig 8. Analytical (solid lines), approximated (dashed lines) and FE equivalent isotropic model 

(circles) and QI composite laminate model (crosses) results of normalised forward scattered 

wave amplitudes at   = (a) 0°, (b) 20° and (c) 40° as a function of R  for delaminations 

located at mid-thickness of the equivalent isotropic model, crosses are FE results of the QI 

composite laminate 

 

 
Fig 9. Analytical (solid lines), approximated (dashed lines) and FE equivalent isotropic model 

(circles) and QI composite laminate model (crosses) results of normalised backward scattered 

wave amplitudes at   = (a) 180°, (b) 200° and (c) 220° as a function of R  for delaminations 

located at mid-thickness of the equivalent isotropic model, circles are FE results of the QI 

composite laminate 
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Fig 10. Analytical (solid lines) and approximated (dashed lines) results for SDP of 

delaminations located at mid-thickness of the equivalent isotropic model, circles are FE results 

of the QI composite laminate 

 

 

Fig 11. Analytical (solid lines) and approximated (dashed lines) results for SDP of 

delaminations located between 3rd and 4th lamina in the equivalent isotropic model, circles are 

FE results of the QI composite laminate 
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