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The Nambu–Jona-Lasinio jet model is extended to accommodate hadronization of a transversely

polarized quark in order to explore the Collins effect within a multihadron emission framework. This is

accomplished by calculating the polarized quark spin flip probabilities after a pseudoscalar hadron

emission and the elementary Collins functions. The model is then used to calculate the number densities

of the hadrons produced in the polarized quark’s decay chain. The full Collins fragmentation function is

extracted from the sine modulation of the polarized number densities with respect to the polar angle

between the initial quark’s spin and hadron’s transverse momentum. Two cases are studied here. First, a

toy model for elementary Collins function is used to study the features of the transversely polarized quark-

jet model. Second, a full model calculation of transverse momentum dependent pion and kaon Collins

functions is presented. The remarkable feature of our model is that the 1=2moments of the favored Collins

fragmentation functions are positive and peak at large values of z but decrease and oscillate at small values

of z. The 1=2 moments of the unfavored Collins functions have comparable magnitude and opposite sign

to the favored functions, vanish at large z and peak at small values of z. This feature is observed for both

the toy model and full calculation and can therefore be attributed to the quark-jet picture of hadronization.

Moreover, the transverse momentum dependencies of the model Collins functions differ significantly from

the Gaussian form widely used in the empirical parametrizations. Finally, a naı̈ve interpretation of the

Schäfer-Teryaev sum rule is proven not to hold in our model, where the transverse momentum

conservation is explicitly enforced. This is attributed to the sizable average transverse momentum of

the remnant quark that needs to be accounted for to satisfy the transverse momentum sum-rule.

DOI: 10.1103/PhysRevD.86.034025 PACS numbers: 13.87.Fh, 13.60.Le, 13.60.Hb, 12.39.Ki

I. INTRODUCTION

Deep inelastic scattering has been a powerful tool with
which to explore the structure of hadrons. Particularly,
experiments using the semi-inclusive deep inelastic scat-
tering (SIDIS) have advanced our understanding of the
underlying partonic structure of nucleon in momentum
space, allowing access to both the longitudinal and trans-
verse momentum distribution of quarks and gluons. Using
polarized probes and/or targets has allowed us to extend
these explorations to the spin dependence of the parton
distributions. In particular, the naively time-reversal odd
Sivers distribution function has been measured to be non-
zero [1–3]. The SIDIS cross sections, both polarized and
unpolarized, are a convolution of parton distribution func-
tions with elementary parton-probe scattering amplitudes
calculable using perturbative QCD and parton fragmenta-
tion functions [4]. The complete tree-level expressions at
leading order have been written in Ref. [5]. Thus our
detailed understanding of nucleon structure from SIDIS
is hinged on our knowledge of fragmentation functions.
Moreover, the naive T-odd distributions are convoluted
with T-odd fragmentation functions, notably the Collins

fragmentation function H?
1 . The first direct measurements

of the Collins mechanism have been performed by the
Belle Collaboration using hadron pair production in
eþe� collisions [6,7].
There has been a vast amount of work done to cal-

culate the Collins function within theoretical models.
Most notably, the first calculation of a nonvanishing
Collins function for pion production within a quark spec-
tator model, using the interference of one-pion-loop am-
plitudes with the tree-level amplitude, was performed in
Refs. [8,9]. The resulting Collins fragmentation function
appears to be too small to describe the experimental data as
shown in Ref. [10], where the contributions from initial
quark rescattering were largely canceled by the quark-pion
vertex loop corrections. Later, a similar mechanism was
used to calculate the Collins function, through inter-
ference of the gluon rescattering and gauge-link correction
amplitudes interference with the tree-level amplitude
Refs. [10–12]. The resulting Collins functions are in gen-
erally good agreement with the data, but this approach
lacks the ability to produce the unfavored fragmentation
functions, including Collins functions. The experimental
results from HERMES, COMPASS and JLab are strongly
suggesting that the unfavored Collins functions have a
similar size and an opposite sign to that of the favored
ones [1,3,13,14].
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The NJL-jet model of Refs. [15–18] has been used to
calculate the quark fragmentation function within the
quark-jet hadronization picture of Field and Feynman
[19], using the elementary quark-hadron splitting functions
calculated within the effective quark model of Nambu and
Jona-Lasinio (NJL) [20]. The advantage of the model is
that it has no free parameters adjusted to fragmentation
data and it naturally describes the unfavored fragmentation
functions. The use of Monte Carlo (MC) methods in
Refs. [17,18] allows for inclusion of hadronic resonances
and their decays as well as the transverse momentum
dependence of both parton distribution and fragmentation
functions. The model was also used to calculate the diha-
dron fragmentation functions and their evolution in
Refs. [21,22]. Here we propose to extend the NJL-jet
model by including the spin of the fragmenting quark to
calculate the Collins function, both favored and unfavored.

Here we consider the fragmentation of the transversely
polarized quark, as depicted schematically in Fig. 1. The
goal is to calculate the T-odd Collins fragmentation func-
tion using the NJL-jet Monte Carlo method of Ref. [18].
Following the ‘‘Trento convention’’ [23], the fragmenta-
tion function of the transversely polarized quark q to
unpolarized hadron h carrying the light-cone momentum
fraction z and transverse momentum P? with respect to
quark’s momentum k can be expressed as a sum of two
terms

Dh=q" ðz; P2
?; ’Þ ¼ Dh=q

1 ðz; P2
?Þ

þH?h=q
1 ðz; P2

?Þ
ðk̂� P?Þ � Sq

zmh

; (1)

where k̂ and Sq are the momentum and the spin vector of

the fragmenting quark, mh is the mass of the produced

hadron. The unpolarized fragmentation function is denoted

as Dh=q
1 ðz; P2

?Þ and H?h=q
1 ðz; P2

?Þ is the so-called Collins

function. The spin dependent geometric factor multiplying
the Collins function in Eq. (1) can be expressed in terms
of the polar angle ’ of the vector P using the 3-vector
components, yielding for the polarized fragmentation
function

Dh=q" ðz;P2
?;’Þ¼Dh=q

1 ðz;P2
?Þ

�H?h=q
1 ðz;P2

?Þ
P?Sq
zmh

sinð’Þ: (2)

The measure for the above number density is given as

dNh=q" ðz;P?Þ ¼ Dh=q" ðz; P2
?; ’Þdzd2P?

¼
�
Dh=q

1 ðz; P2
?Þ �H?h=q

1 ðz; P2
?Þ

� P?Sq sinð’Þ
zmh

�
dz

dP2
?

2
d’: (3)

Integrating over the azimuthal angle ’ we recover the
expression for the number density of the unpolarized quark

dNh=q" ðz; P2
?Þ �

Z 2�

0
d’Nh=q" ðz; P2

?; ’Þ

¼ �Dh=q
1 ðz; P2

?ÞdzdP2
? ¼ dNh=qðz; P2

?Þ:
(4)

On the other hand, if we perform an integration over P2
?,

we arrive at an expression that allows us to extract the 1=2

moment of the Collins function H?ð1=2Þ
1ðh=qÞ ðzÞ

dNh=q" ðz; ’Þ � Dh=q" ðz; ’Þdzd’

�
Z 1

0
dP2

?Nh=q" ðz; P2
?; ’Þ

¼ 1

2�
½Dh=q

1 ðzÞ � 2H?ð1=2Þ
1ðh=qÞ ðzÞSq sinð’Þ�dzd’;

(5)

where

Dh=q
1 ðzÞ � �

Z 1

0
dP2

?D
h=q
1 ðz; P2

?Þ; (6)

H?ð1=2Þ
1ðh=qÞ ðzÞ � �

Z 1

0
dP2

?
P?
2zmh

H?h=q
1 ðz; P2

?Þ: (7)

At last, integrating over both P2
? and ’ in Eq. (3) we

arrive at the integrated number density

dNh=q" ðzÞ �
Z 1

0
dP2

?
Z 2�

0
d’Nh=q" ðz; P2

?; ’Þ

¼ Dh=q
1 ðzÞdz: (8)

Our strategy here is to use the NJL-jet model to cal-
culate the number densities Nh=q" ðz; P2

?; ’Þ and use the

FIG. 1 (color online). Illustration of the three-dimensional
kinematics of transversely polarized quark fragmentation. The
fragmenting quark’s momentum k defines the z axis with its
transverse polarization spin vector Sq along x axis. The emitted

hadron has momentum Pwith the transverse component P? with
respect to the z axis. The polar angle of hadron’s momentum P
with respect to the zx plane is denoted by ’.
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dependence on the azimuthal angle ’ in Eq. (3) to extract

both Dh=q
1 ðz; P2

?Þ and H?h=q
1 ðz; P2

?Þ, where the former can

be compared with our earlier results in Ref. [18] as a cross-
check. To achieve this goal, we first expand the NJL-jet
model and the associated Monte Carlo framework to ac-
commodate the transverse spin of the fragmenting quark in
Sec. II. In Sec. III, we calculate the elementary unpolarized
and Collins fragmentation functions, needed as an input to
the NJL-jet model. In Sec. IV, we present the results for a
simple toy model used as elementary Collins function to
demonstrate the distinctive features of the model. In Sec. V,
we discuss the full model results and present the conclu-
sions and some final remarks in Sec. VI.

II. NJL-JET WITH TRANSVERSELY
POLARIZED QUARK

The NJL-jet model employs the quark-jet mechanism to
describe the hadronization process. Here we use the model
to describe the fragmentation of the transversely polarized
quarks to unpolarized hadrons, schematically depicted
in Fig. 2.

An important intricacy arises from the need to keep track
of the transverse spin of the quark in the jet as it emits
hadrons. We first examine the elementary process where a
transversely polarized quark emits a single hadron, and we
calculate the probability of the final quark’s spin being
parallel or antiparallel to the original quark’s spin direc-
tion. In this work we only consider the emissions of
pseudoscalar mesons. Further, we make a first order ap-
proximation by including in the calculations of the quark
spin flip probabilities the elementary hadron emissions
only via the tree-level diagram depicted in Fig. 4, thus
neglecting any T-odd effects. The T-odd effects are con-
sidered here to be small relative to the included unpolar-
ized term, though essential for generating the elementary
Collins function. This approximation can be easily im-
proved on in the future by also including in the quark
spin flip calculation the relevant diagrams that generate
the elementary Collins function, such as that discussed
in Sec. III B.

We use the kinematics depicted in Fig. 1, with the
fragmenting quark’s momentum defining the z axis. We
denote the remnant quark as Q with momentum and spin
vectors l and SQ. We use the Dirac spinors of [24,25] to

describe the wave functions of transversely polarized
quarks

U� � 1ffiffiffi
2

p ½UðþzÞ þ �Uð�zÞ�; (9)

where � ¼ �1 are the eigenvalues of the spin projection
onto the x axis and Uð�zÞ are the Lepage-Brodsky spinors

in helicity basis [26]. Note that we have a plus sign in front
of the second term with �, as there is a sign error in the
corresponding expressions of [24]. The spinorsU� are both

solutions of the Dirac equation and the eigenstates of the
Lorentz-covariant spin operator: the Pauli-Lubanski vector

W� � � 1

2
�����S

��k�; (10)

S�� � {

4
½��; ���; (11)

where ����� is the Levi-Civita tensor with convention

�0123 ¼ þ1. It is easy to check explicitly that

W1U� ¼ �
m

2
U�; (12)

ð6k�mÞU� ¼ 0: (13)

The normalization of the spinors is

�U �ðk;mÞU�0 ðk;mÞ ¼ 	�;�02m: (14)

Then the fragmenting quark’s spinor is �in ¼ U1ðk;M1Þ,
while the remnant quark’s spinor can be described as
a superposition of states with spin polarization parallel
and antiparallel to the x axis: �out ¼ a1U1ðl;M2Þ þ
a�1U�1ðl;M2Þ. Then the relative probabilities of the quark
spin flip and nonflip are determined by j ��out�

5�inj2. The
spinor matrix elements are given by

j �U�0 ðl;M2Þ�5U�ðk;M1Þj2 ¼ 	�;�0
l2x

1� z
þ 	�;��0

� l2y þ ðM2 � ð1� zÞM1Þ2
1� z

;

(15)

and hence the spin nonflip and spin flip probabilities are
proportional to

ja1j2 � l2x; ja�1j2 � l2y þ ðM2 � ð1� zÞM1Þ2: (16)

We note, however, that the spinors U�ðk;mÞ become

the eigenstates of W1 only if the momentum k has no
transverse components: kx ¼ ky ¼ 0. Though the final

state quark necessarily has a transverse momentum

FIG. 2 (color online). NJL-jet model including transverse
momentum and quark polarization transfer. Here the orange
double-lined arrows schematically indicate the spin direction
of the quark in the decay chain.
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l? � ðlx; lyÞ ¼ �p?, required by the momentum conser-

vation in the transverse plane, it is assumed to be small
compared to the light-cone momentum. Thus, in each
hadron emission step, we assume the fragmenting quark
being in an eigenstate U�, and sample the spin flip prob-

abilities according to (16). It will be discussed in Secs. IV
and V that the results for the Collins function simulations
converge rapidly with the number of the hadron emissions
in the region of z * 0:02, similar to the case of the unpo-
larized fragmentation function that was examined in
Ref. [17]. Thus the failure of this approximation after
many hadron emissions, when the light-cone momentum
of the quark becomes small and comparable to the trans-
verse component, affects the results only at extremely
small values of z and can be neglected.

Using the probabilities of the quark spin flip of Eq. (16)
and the elementary polarized number densities, to be cal-
culated in the next section, we perform a Monte Carlo
simulation within the NJL-jet framework to calculate the
average multiplicities of the produced pseudoscalar me-
sons (pions and kaons), Nh=q" , as functions of light-cone

momentum fraction z, transverse momentum square P2
?,

and polar angle ’, in the coordinate system defined by
the initial quark momentum and spin polarization.
Schematically, the elementary hadron emission process is
depicted in Fig. 3, where the vectors k and k0 denote the
3-momentum of an arbitrary quark in the cascade chain
before and after hadron emission with transverse compo-
nents k? and k0?, respectively. The emitted hadron’s mo-

mentum is labeled by ph, where its transverse component
with respect to k and the z axis is denoted by p? and P?,

respectively. P? is obtained using the relation P?¼p?þ
zk?. The recoil transverse momentum of the final quark,
k0?, is calculated from momentum conservation in the

transverse plane, namely,

k? ¼ P? þ k0?: (17)

In each hadron emission step we randomly sample the
type, the relative light-cone momentum fraction z and
transverse momentum and polar angle ’ (relative to the
spin vector of the fragmenting quark) for the produced
hadron according to the relevant elementary number den-
sity. We recover and record these quantities in the initial
quark’s frame, as well as sample the spin direction of the
final quark according to (16). Then we can extract the
number densities corresponding to Eq. (3) in the usual
way [17,18]

Dh=q" ðz; P2
?; ’Þ�z

�P2
?

2
�’ ¼ hNh

q" ðz; zþ �z;P2
?; P

2
? þ �P2;’;’þ �’Þi

�
P

NSims
Nh

q" ðz; zþ�z; P2
?; P

2
? þ �P2

?;’;’þ �’Þ
NSims

; (18)

where Nh
q" is the number of the hadrons h produced by the quark q that have momentum components laying within the

regions specified in its arguments and NSims is the number of quark decay chain simulations performed.

III. ELEMENTARY FRAGMENTATIONS

The quark fragmentation functions are defined using the quark-quark correlators [4,11,27]

�ðz;P?Þ ¼
X
X

Z d
�d2�T
4zð2�Þ3 e{k�
h0jUT½1T; �T ;�1��U�½�1�; 
�; �T�c ð
Þjh; Xi

� hh; Xj �c ð0ÞU�½0�;�1�; 0T�UT½0T;1T ;�1��j0ij
þ¼0; (19)

where c is the quark wave function, andUð�;TÞ represents
the gauge links along the minus and transverse directions
in light-cone coordinates. The details of the gauge link
structure can be found in Ref. [27].

In this section we aim to calculate the elementary un-
polarized and Collins fragmentation functions (or splitting

functions), corresponding to only a single hadron emission
truncation of the relation (19). We use the framework of
the NJL effective chiral quark model for this purpose.
The corresponding unpolarized splitting functions have
been calculated in Refs. [15–17], where the model parame-
ters were also fixed. In the next subsection we briefly

FIG. 3 (color online). Quark elementary fragmentation kine-
matics, for an arbitrary hadron emission in the cascade chain.
The z axis is defined by the direction of the 3-momentum of the
original parent quark.
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summarize their results and refer the reader to the original
articles for the details. For the Collins splitting functions,
we adopt the gauge link coupling mechanism to the final
quark of Refs. [10–12], but use the NJL model formalism
and parameters.

A. Unpolarized splitting function

The unpolarized fragmentation function, Dh=q
1 ðz;P?Þ, is

defined as a trace of the quark-quark correlator

D1ðz; P2
?Þ ¼ Tr½�½z; P?��þ�=2: (20)

The single hadron emission cut diagram for a quark q, to
emit a meson h, carrying light-cone momentum fraction z,
and transverse momentum p?, is depicted in Fig. 4. In the
frame where the fragmenting quark has zero transverse
momentum, but a nonzero transverse momentum compo-
nent �p?=z with respect to the direction of the produced
hadron [15,28], the unregularized elementary transverse-
momentum-dependent (TMD) fragmentation functions to
pseudoscalar mesons are given by

dh=q1 ðz;p2
?Þ

¼ Ch
q

16�3
g2hqQz

p2
? þ ½ðz� 1ÞM1 þM2�2

½p2
? þ zðz� 1ÞM2

1 þ zM2
2 þ ð1� zÞm2

h�2
;

(21)

where M1 and M2 denote the masses of fragmenting and
remnant quarks. Quark flavor is also indicated by the sub-
scripts q and Q, where a meson of type h has the quark
flavor structure h ¼ q �Q and mh denotes the meson mass.
The corresponding isospin factor and quark-meson cou-
pling constant are labeled by Ch

q and ghqQ, respectively,

and have been determined within the NJL model [16,18].
In the model, the transverse momentum integrated frag-

mentation of Eqs. (6) and (7) (as well as the quark-hadron
couplings, etc.) require an introduction of a regularization
scheme. In this work, the integrals with two particles in the
loop with masses �1 and �2, carrying light-cone momen-
tum fractions x and 1� x, respectively, are regularized
using the modified Lepage-Brodsky transverse momentum
cutoff functions, as described in [17]

G12ðp2
?Þ �

1

½1þ ðM2
12=�

2
12Þ2�2

; (22)

where M2
12 is their invariant mass squared. In the

frame where the total transverse momentum is zero,

M2
12 ¼ ð�2

1 þ p2
?Þ=xþ ð�2

2 þ p2
?Þ=ð1� xÞ. The cutoff,

�12, is determined by

M2
12 � �2

12 � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þ�2
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þ�2
2

q
Þ2; (23)

where �3 is the 3-momentum cutoff, that is fixed in the
usual way by reproducing the experimental pion decay
constant. We use a light constituent quark mass M ¼
0:4 GeV, for which the corresponding 3-momentum cutoff
is �3 ¼ 0:77 GeV. The strange constituent quark mass of
Ms ¼ 0:59 GeV is obtained by reproducing the experi-
mental kaon mass. The model values for the quark-meson
coupling constants are determined from the residue at the
pole in the quark-antiquark tmatrix to be g�qQ ¼ 4:24 and

gKqQ ¼ 4:52.

B. Elementary Collins function

The Collins function is defined via the trace of the
quark-quark correlator

�ijT kTj
mh

H?
1 ðz;P2

?Þ¼Tr½�ðz;P?Þ{�i��5�; (24)

where mh is the mass of the produced hadron, �12T ¼
��21T ¼ 1, and �11T ¼ �22T ¼ 0.
It was shown explicitly, that the simple tree-level ap-

proximation for the correlator, used to calculate the unpo-
larized quark splitting function, yields a zero result for the
Collins function [8,10]. Thus, here we generate the model
Collins function through the interference between the tree-
level hadron emission amplitude and the one with a gauge-
link interaction with the final state quark via single gluon
exchange, as described in Ref. [11]. Note, that we omit the
gluon-quark rescattering and gluon loop correction to the
quark-hadron vertex, as those nearly cancel each other.
Also, we note that the amplitudes written in the spectator
formalism coincide with those in NJL, except for the
different quark-hadron coupling constant, the remnant
‘‘spectator’’ being treated as a quark in NJL and the loop
integral regularization scheme employed in the NJL-jet.
Thus we can simply use the results from Ref. [11] with just
a few modifications. The relevant diagram for the NJL-jet
model is depicted in Fig. 5.
The result for the elementary Collins function is

~H?
1 ðz; p2

?Þ ¼ � 2�s

ð2�Þ4 CF

Cm
q

2
g2mqQ

mh

1� z

1

k2 �M2
1

z

2p2
?

� f�I34g½ð2z� 1ÞM1 þM2�
þ I2g½2zM1ðk2 �M2

1 þm2
hð1� 2=zÞÞ

þ ðM2 �M1Þðð2z� 1Þk2 �m2
h

þM2
2 � 2zM1ðM1 þM2ÞÞ�g; (25)

where �s is the strong coupling constant, CF ¼ 4=3 is the
cubic Casimir invariant of the color SUð3Þ group and
the initial quark’s total momentum squared, k2, can be

FIG. 4 (color online). Feynman diagram describing the
elementary quark to hadron fragmentation functions.
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expressed as k2 ¼ p2
?=ðzð1� zÞÞ þM2

2=ð1� zÞ þm2
h=z.

Since only the imaginary part of the amplitudes con-
tribute to the above expression, the loop integrals for
those can be calculated without the need for explicit
regularization

I2g¼ �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðM2;mhÞ

p ln

2
4k2þM2

2�m2
h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðM2;mhÞ

p
k2þM2

2�m2
hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðM2;mhÞ

p
3
5;

I34g¼�ln

� ffiffiffiffiffi
k2

p
ð1�zÞ
M2

�
;

�ðm1;m2Þ¼ðk2�ðm1þm2Þ2Þðk2�ðm1�m2Þ2Þ: (26)

Then the elementary polarized fragmentation function is
given as

dh=q" ðz;p2
?;’Þ ¼ dh=q1 ðz;p2

?Þ� ~H?h=q
1 ðz;p2

?Þ
p?Sq
zmh

sinð’Þ;
(27)

where we use the multiplicative regulator of Eq. (22) for
integrals over p2

?. The only remaining parameter is the

strong coupling in Eq. (25). We consider it as a model
parameter, that we fix to the largest value of �s ¼ 0:444,
that still allows for the positivity bound to be satisfied,
namely dh=q" 	 0. At the next-to-leading order, this value

corresponds to a typical hadronic scale of Q2 ¼ 1 GeV2,
which is much higher than the one typically used as the
NJL-jet model scale, namely Q2

0 ¼ 0:2 GeV2. Such a

discrepancy between the scales for the unpolarized and
Collins functions is rooted in the model for the Collins
function employed here, which would violate the positiv-
ity bound if calculated at the typical model scale. A
similar issue was encountered in the original work of
Ref. [11], where the value of �s ¼ 0:2 was chosen,
much smaller than that for the scale of their model set
at Q2 ¼ 0:4 GeV2. A completely consistent determina-
tion of a single scale for the polarized fragmentation
function must involve the QCD evolution of both the
TMD unpolarized and Collins functions. This is not pos-
sible at present, because the evolution equation for the
Collins function is unknown.

Within the NJL-jet model, the elementary splitting
functions are renormalized such that quark’s total
probability of emitting a hadron in each step is one:

P
h

R
dzdp2

?=2d’d̂h=q" ðz; p2
?; ’Þ ¼ 1, the sum is over all

hadrons the quark of given flavor can emit directly. These
renormalized splittings will be used in the next two sec-
tions as input to the Monte Carlo simulations of the quark-
jet hadronization process. The integrated renormalized
elementary fragmentation functions for the full model
calculations of Sec. V are depicted in Fig. 6.

IV. THE QUARK-JET EFFECTS ON COLLINS
FUNCTION USING ATOY MODEL

In this section we employ a toy model for the elementary
Collins function to explore the general features of the
NJL-jet model extended to transversely polarized quark
fragmentation, as described in Sec. II. In this toy model we

assume that � ~H?h=q
1 ðz; p2

?Þ p?Sq
mhz

¼ 0:1dh=q1 ðz; p2
?Þ. Thus

for the elementary number density we simply have

d
ðtoyÞ
h=q" ðz; p2

?Þ ¼ dh=q1 ðz; p2
?Þð1þ 0:1 sin’Þ; (28)

where dh=q1 ðz; p2
?Þ is given by Eq. (21).

For the toy model, we perform the MC simulations with
only light quarks in the quark-jet and pions in the final
state, for simplicity. We perform several high-statistics

FIG. 5 (color online). Cut diagram describing the elementary
quark to hadron Collins fragmentation functions.

u +

u K+

s K-

d 1

0

0.2

0.4

0.6

0.8

1.0

1.2

z
0 0.2 0.4 0.6 0.8 1.0

z
0 0.2 0.4 0.6 0.8 1.0

(a)

u +

u K+

s K-

2 
h

 (
1/

2)
1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

FIG. 6 (color online). Elementary renormalized unpolarized
fragmentation function d̂1 (a) and Collins function 1=2 moment

2Ĥ?ð1=2Þ
1 (b) used in the full model calculations of Sec. V.
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simulations, where the number of produced hadrons in
each decay chain, NLinks, is fixed to a particular value.
We use the relation (18) to extract the polarized number
density Dh=q" ðz; P2

?; ’Þ from the numbers of produced

hadrons in intervals of the variables z, P2
? and ’. For

simplicity, in this section we will only consider the results
for the P2

?-integrated polarized quark fragmentation

D�þ=u" ðz; ’Þ that can be obtained from Dh=q" ðz; P2
?; ’Þ

using the relation in Eq. (5). Next, to extract the unpolar-
ized and the 1=2 moment of the Collins functions D1ðzÞ
and H?ð1=2Þ

1 ðzÞ, we perform a minimum-�2 fit to

Dh=q" ðz; ’Þ using a form Fðc0; c1Þ � c0 þ c1 sinð’Þ for

fixed values of z. This fitting method allows us to better
account for the statistical fluctuations in the MC results
when extracting the Collins function. Notably, the fits
describe the produced functions very well, yielding �2

over the number of degrees of freedom always in the
vicinity of 1. A sample of such extraction for u ! �0

fragmentation is shown in Fig. 7, for simulations with
NLinks ¼ 6. The histograms (blue dots) show the polarized
number density D�þ=u" ðz; ’Þ for two values of z as a

function of the azimuthal angle ’. The minimum-�2 fits
with a functional form Dh=q" ¼ c0 þ c1 sinð’Þ (red lines)

are also depicted.

Then, usingD1ðzÞ ¼ 2�c0 and�2SqH
?ð1=2Þ
1 ðzÞ ¼ 2�c1

[see Eq. (5)], we plot the resulting fragmentation functions
for u quark and NLinks ¼ 6 as a function of z in Fig. 8,
setting, for example, Sq ¼ �1. The plots in Fig. 8(a) depict
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FIG. 7 (color online). The histograms (blue dots) for polarized
number density D�0=u" ðz; ’Þ for two values of z as a function of

the azimuthal angle ’ from NJL-jet framework using a toy
model with a fixed number of hadrons emitted in each decay
chain NLinks ¼ 6. The minimum-�2 fits with a functional form
Dh=q" ¼ c0 þ c1 sinð’Þ (red lines) are also depicted.
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FIG. 8 (color online). Fitted values for unpolarized fragmen-
tation function D1 (a) and twice the Collins function 1=2 mo-

ment 2H?ð1=2Þ
1 (b) and their ratio (c) for �0, �þ and �� versus z,

produced by u quark from quark-jet framework using a toy
model. The error bars show the uncertainties from the statistics
and fits, and are only visible for the unfavored ratio at large
values of z.
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the extracted, integrated fragmentation functions, which
are in agreement with the results of the direct MC calcu-
lations in our previous work [16–18].

The results for the 1=2 moment of the Collins function,

2H?ð1=2Þ
1 , depicted in Fig. 8(b), exhibit very interesting

features: both functions for u ! �þ and u ! �0, though
peak at values of z� 0:6, decrease and u ! �0 changes
the sign for small values of z. The unfavored function
u ! ��, generated solely by multihadron emission, has
opposite sign and peak value at small z of comparable size
to that of the favored ones at large z. A similar picture is

found for the ratio 2H?ð1=2Þ
1 =D1, depicted in Fig. 8(c),

where notably the results for �0 are below those for �þ,
while these ratios for the corresponding elementary func-
tions coincide.

To better understand the results for the u ! �þ and u !
�� Collins functions, in Fig. 9 we depict the results for

NLinks equal to 1, 2 and 6. The plots for 2H
?ð1=2Þ
1 in Fig. 9(a)

show that the functions change very little for NLinks > 2 in
the high z region. That is, the bulk of the model effects for

z * 0:2 can be described with just two hadron emissions.
We verified numerically with lower statistics runs that the
further increase in NLinks > 6 affects the functions only at
extremely low values of z, below the numerical discretiza-
tion size of �z ¼ 0:01 used in this study. A naı̈ve inter-
pretation for the results is that the remnant quark has larger
probability to have its spin antiparallel to that of the split-
ting quark, see Eq. (16), and typically has a small fraction
of the initial light-cone momentum. Then in the emission
step of the second hadron that affects the low z region and
generates the unfavored function, the angle’ in the Collins
term in Eq. (27) in most cases will acquire an additional �
phase, yielding the results in Fig. 9. This picture repeats
for further hadron emissions, creating ‘‘destructive inter-
ference’’ in the small-z region, decreasing the Collins

functions. The ratio 2H?ð1=2Þ
1 =D1, depicted in Fig. 9(b),

also exhibits the contrast in the low-z behavior of the
unpolarized and Collins functions: while D1ðzÞ grows
roughly as 1=z, the Collins function oscillates to 0. It is
worth mentioning that, for NLinks ¼ 1, the fitted value of
the ratio in u ! �þ equals the one set in the toy model as
input to the MC.

V. COLLINS FUNCTION FOR PIONS AND KAONS

In this section we present the results of the full MC
simulations with light and strange fragmenting quarks as
well as pions and kaons as the produced hadrons. The
elementary splitting functions were taken from Eq. (27)
and the simulations were done for values of NLinks equal
to 1, 2 and 6. Again, it was checked with lower statistics
runs that the solutions are indistinguishable for NLinks > 6
with the number of discretization points for z, P2

? and ’

used here.

A. P2
? integrated results

We first present the results for the P2
?-integrated Collins

function, skipping the results for the unpolarized functions,
D1ðzÞ, as they have been studied in detail in our previous
work.

The results for 2H?ð1=2Þ
1 and the ratio 2H?ð1=2Þ

1 =D1 for

the hadrons produced by a u quark are shown in Figs. 10

and 11, respectively. The fitted values for 2H?ð1=2Þ
1 for

pions show similar features to those from the toy model:
the favored functions, positive and peaking at z� 0:65,
decrease and some change sign at lower values of z,
oscillating around zero as z ! 0. The unfavored function,
u ! ��, is mostly negative and peaking at z� 0:2, with a
peak value about one-third of that for u ! �þ. The results
for kaons are similar to the those for pions, with the
exception of u ! Kþ. This is a favored fragmentation,
but the peak value of the unfavored function u ! K� is
only slightly less of that for the favored fragmentation.
Also, since in our model charge and isospin symmetries are
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FIG. 9 (color online). Fitted values for 2H?ð1=2Þ
1 (a) and the

ratio 2H?ð1=2Þ
1 =D1 (b) for �þ and �� versus z, produced by u

quark from quark-jet framework using a toy model for increasing
values of NL � NLinks.

MATEVOSYAN, THOMAS, AND BENTZ PHYSICAL REVIEW D 86, 034025 (2012)

034025-8



exact, the results for u ! �K0 coincide with the ones for
u ! K� and are omitted.

Similar results for the s quark are shown in Fig. 12. The

fitted values for 2H?ð1=2Þ
1 for pions and unfavored kaon

channels peak at value of z ’ 0:1with values much smaller
than those for the favored channels of K� and �K0, which
have a very broad peak and do not become negative at any
value of z.

The dependence on NLinks can be seen in Fig. 13. Again,
as for the toy model, we notice that the results change very
little for z > 0:2 for NLinks 	 2. The increase in NLinks

affects the functions at decreasingly smaller values of z.

B. TMD of Collins function

In this section we present the full results for the TMD
Collins function. As the z dependence has been studied in
detail in the previous sections, here we will only show the
P2
? dependence of the Collins function for several fixed

values of z. We noticed that the polar angle dependencies
of the polarized number densities are not very accurately
described by just the sine modulation term corresponding
to the Collins term for some values of z and P2

?. In our

calculations with NLinks ¼ 6, we found that a fourth order
polynomial in sinð’Þ

Dh=q" ðz; P2
?; ’Þ ¼

X4
n¼0

cnðz; P2
?Þsinn’ (29)

is sufficient to achieve fits for all slices with fixed z, P2
?

with �2 per degree of freedom in the vicinity of 1. Here we
identify c0 with the unpolarized and c1 with the Collins
term of Eq. (2). The higher powers of the sinð’Þ in the
polarized quark fragmentation functions are induced by the
multiple hadron emissions. A toy model analysis showed
that there are two sources for these effects: the remnant
quark transverse momentum distribution modulation from
the recoil in the elementary hadron emissions, and an
additional modulation of the same quark distribution due
to the ’ dependence of the quark spin flip probabilities.
The detailed description and explanation of these addi-
tional terms are presented in our forthcoming publications
[29,30], where we show that these effects are a genuine
feature of the quark-jet model and do not depend on the
particular form of the elementary polarized fragmentation
function.
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FIG. 10 (color online). Fitted values for 2H?ð1=2Þ
1 for pions (a)

and kaons (b), produced by u quark for NLinks ¼ 6.
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FIG. 11 (color online). The ratio of the fitted values,
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1 =D1, for pions (a) and kaons (b), produced by u quark

for NLinks ¼ 6.
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The plots in Figs. 14–16 depict the results for unpolar-
ized, Collins fragmentation functions and their ratios,
respectively, for pions produced by an initial u quark
with two fixed values of z equal to 0.7 and 0.1. For

z ¼ 0:7, the results are mostly affected by a single hadron
emission, thus the P2

? dependence of the Collins function

is somewhat similar to one of the unpolarized fragmenta-
tions (which, in turn are reasonably well described via
Gaussian function for small values of P2

? at a fixed z, see

[18]), but peak at a small nonzero value of P2
?. The results

are quite different for z ¼ 0:1, where the unpolarized
functions for all the pions are roughly equal, while the
Collins function for all the pions have similar shapes but
differ in magnitude, decreasing to a negative value and
peaking at P2

? � 0:1 GeV2, then start to increase and

become positive for small values of P2
?. Thus, it follows

from our model that while the transverse momentum de-
pendence of the unpolarized fragmentation functions can
be to a good approximation described by a Gaussian func-
tion with z-dependent width, the Collins functions have
much different shapes.
The plots in Figs. 17–19 depict the analogous results, but

for kaons produced by an initial u quark. The results are
similar to those for the pions, except for the magnitudes of
the unpolarized and Collins functions being smaller.
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FIG. 13 (color online). Fitted values for 2H?ð1=2Þ
1 for Kþ and

K� versus z, produced by u for increasing values of NL �
NLinks.

+

K +

K -

s h

2 
H

 (
1/

2)
1

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

z
0 0.2 0.4 0.6 0.8 1.0

(a)

+

K+

K-

s h

2 
H

 (
1/

2)
1

 / 
D

1

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

z
0 0.2 0.4 0.6 0.8 1.0

(b)

FIG. 12 (color online). Fitted values for 2H?ð1=2Þ
1 (a) and

2H?ð1=2Þ
1 =D1 (b), for hadrons produced by s quark for

NLinks ¼ 6.
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FIG. 14 (color online). The unpolarized fragmentation func-
tion vs P2

? for pions produced by a u quark with z ¼ 0:7 (a) and

z ¼ 0:1 (b) for NLinks ¼ 6.
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The plots in Figs. 20–22 depict the results for unpolar-
ized, Collins fragmentation functions and their ratios re-
spectively for pions and kaons produced by an initial s
quark with two fixed values of z equal to 0.7 and 0.1. In our
model the isospin symmetry is considered to be exact, thus
the calculated values for all the pions are equal to each
other, thus only �þ is depicted. Similarly, the results for
the kaons that can be transformed to each other by an
isospin rotation coincide and are omitted as well. The
results are similar to those for the u quark, except for the
strong dominance of the favored fragmentation functions
at z ¼ 0:7. At z ¼ 0:1, where multiple hadron emission
contributions dominate, the unfavored fragmentation func-
tions become larger than the favored ones, in particular for
the production of pions.

C. The Schäfer-Teryaev sum rule

The Schäfer-Teryaev sum rule was originally proposed
in Ref. [31], where the authors used the simple arguments
of the transverse momentum conservation in the hadroni-
zation process to derive

STq �
X
h

Z 1

0
dzH?ð1Þ

1;ðh=qÞðzÞ ¼ 0; (30)

where the first moment of the Collins function is defined as

H?ð1Þ
1;ðh=qÞðzÞ � �

Z 1

0
dP2

?
P2
?

2zmh

H?h=q
1 ðz; P2

?Þ: (31)

Later, in Ref. [32], it was proven explicitly using the
quark correlator functions, along with the quark to hadron
Collins function moments that the quark-to-quark Collins
functions should also be included for the sum rule to be
satisfied

X
h

Z
dzH?ð1Þ

1;ðh=qÞðzÞ þ
X
Q

Z
dz2H?ð1Þ

1;ðQ=qÞðzÞ ¼ 0: (32)

Our model results both for the toy model and the full
calculation, show that the naive Schäfer-Teryaev sum rule
cannot be satisfied, even though the transverse momentum
conservation is explicitly satisfied in our simulations. For
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FIG. 15 (color online). The Collins fragmentation function vs
P2
? for pions produced by a u quark with z ¼ 0:7 (a) and z ¼ 0:1

(b) for NLinks ¼ 6.
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FIG. 16 (color online). The ratio of Collins fragmentation
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produced by a u quark with z ¼ 0:7 (a) and z ¼ 0:1 (b) for
NLinks ¼ 6.
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example, the sum of the terms in Eq. (30) for u quark is
STu ¼ 0:07, while for s quark STs ¼ 0:21.

A simple explanation for this is that with multiple had-
ron emissions the quark quickly loses almost all of its
initial light-cone momentum, but gains a nonzero average
transverse momentum from the recoil of the emitted had-
rons. This can be easily seen from the fact that the solutions
of unpolarized integrated fragmentation functions, D1ðzÞ,
change only in the extremely small region of z, after only a
few hadron emissions, as described in Ref. [17]. On the
other hand, the average transverse momentum of the emit-
ted hadrons tends to level off at a certain nonzero value as
z ! 0, as shown in Fig. 14 of [18], hinting at a similar
value for the average transverse momentum of the remnant
quark. In the NJL-jet model we assume that the remnant
quark hadronizes with the slow, colored fragments of the
initial struck hadron in SIDIS, or the remnant of the
antiquark in eþe� reactions, with the product unobserved
because of the small values of remaining z it carries. Thus,
while the effects of the remnant quark after multiple
hadron emissions can be neglected when considering the

longitudinal momentum sum rules for the unpolarized
fragmentations, they are essential for the transverse
momentum sum rule for the Collins function, as shown
in [32].

VI. CONCLUSIONS

In this article we calculated the Collins fragmentation
function in the NJL-jet model. This was accomplished by
extending the model to include the transverse polarization
of the fragmenting quarks and calculating the probability
of the quark spin flip at each hadron emission. Then, we
extended our Monte Carlo framework to accommodate for
the spin of the quarks in the jet, and polar angle of the
produced hadrons’ transverse momenta with respect to the
direction of the initial quark’s spin. The polar-angle de-
pendent elementary polarized fragmentations functions,
that are a sum of elementary unpolarized and Collins
functions, were used as inputs for the MC simulations.
Here the unpolarized function was taken as the one used
earlier in NJL-jet model, while the Collins function was
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FIG. 17 (color online). The unpolarized fragmentation func-
tion vs P2

? for kaons produced by a u quark with z ¼ 0:7 (a) and
z ¼ 0:1 (b) for NLinks ¼ 6.
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FIG. 18 (color online). The Collins fragmentation function vs
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? for kaons produced by a u quark with z ¼ 0:7 (a) and z ¼ 0:1

(b) for NLinks ¼ 6.
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taken from calculations within the spectator model of [11],
with the parameters and regularization of transverse mo-
mentum integrals of the NJL-jet model. Using this input,
we calculated the corresponding number densities for the
produced hadrons in MC simulations, where we fixed the
number of the produced hadrons in each quark-jet (NLinks).
Then, we used the form of the polar angle dependence of
the full number densities of Eq. (3) to separate the unpo-
larized and the Collins functions.

Results for two scenarios were presented. First, we
showed the results for P2

? integrated case using a toy

model, where we assumed the form of the elementary
Collins term to be that of the unpolarized one times 0.1.
Also, the simulations were performed with only light
quarks and pions for simplicity. The results for the solu-

tions of H?ð1=2Þ
1 ðzÞ showed that a nonzero unfavored

Collins function can be generated in our model, with a
sign opposite to that of the favored one. Also, both the
unfavored and favored Collins functions oscillate for the
lower values of z. Second, we presented the results with

the full model calculations of both unpolarized and Collins
functions with light and strange quarks, as well as pions
and kaons. The resulting full solutions of the 1=2 moment
of the Collins functions exhibit features similar to the ones
from the toy model. Interestingly, for the solutions for
the kaons produced by a u quark, the magnitudes of the
unfavored solutions were only slightly smaller than the
favored ones.
Finally, we studied the P2

? dependence of the Collins

function for several fixed values of z. Here we noticed that
the multiple hadron emissions produce modulations of the
polarized number densities, which contain several powers
of sinð’Þ. These higher order modulations are a genuine
feature of the quark-jet hadronization mechanism and do
not depend on the particular forms for the elementary
fragmentation functions nor are they artifacts of our
Monte Carlo simulations. A detailed study, which will
be presented in our forthcoming publications [29,30],
show that this effect can be completely described by
the azimuthal modulation of the transverse momentum
distribution of the remnant quark in each elementary
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FIG. 19 (color online). The ratio of Collins fragmentation
function to unpolarized fragmentation function vs P2

? for kaons

produced by a u quark with z ¼ 0:7 (a) and z ¼ 0:1 (b) for
NLinks ¼ 6.
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FIG. 20 (color online). The unpolarized fragmentation func-
tion vs P2

? for pions and kaons produced by a s quark with z ¼
0:7 (a) and z ¼ 0:1 (b) for NLinks ¼ 6.
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fragmentation process and to the azimuthal modulations
arising from the quark spin flip probability. The fitting
functions for obtaining the unpolarized and Collins func-
tions, described in Sec. IV, were modified using Eq. (29) to
account for this effect, which shows up only in the unin-
tegrated TMD fragmentation functions. Our results show
that the Gaussian function cannot be used to reliably model
the Collins functions in any regions of z.

We also investigated the Schäfer-Teryaev sum rule for
our results, and found that the naı̈ve sum rule of Ref. [31]
cannot be satisfied with our solutions, even though the
transverse momentum conservation is explicitly enforced
in our MC framework. The omission of the remnant quark
transverse momentum is the key here, as it was proven
explicitly from the definition of the Collins function in
Ref. [32] that the sum rule holds if the quark-to-quark
Collins functions are also accounted for. We argued that
the remnant quark in the hadronization process after sev-
eral hadron emissions, though carrying a minuscule frac-
tion of the initial quark’s light-cone momentum, acquires a
significant transverse momentum on average, thus needs to

be included in this sum rule that manifests the transverse
momentum conservation in the hadronization process.
Our results for Collins functions have some distinctive

features that were approximately observed in the experi-
ment: the similar size and the opposite sign for the 1=2
moments of favored and unfavored ones. At this stage,
however, a direct comparison with the experimental data
is not possible because we did not perform the QCD
evolution on our results, as these equations for the
Collins function are not yet known. The recent work on
the evolution of TMD distribution and fragmentation func-
tions of Ref. [33] pave the way for this, and we plan to
implement the QCD evolution of Collins functions in our
forthcoming work as the relevant formalism is developed.
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FIG. 21 (color online). The Collins fragmentation function vs
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function to unpolarized fragmentation vs P2
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