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Ian C. Cloët1,2 and Gerald A. Miller1

1Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
2The Special Research Centre for the Subatomic Structure of Matter, School of Chemistry and Physics University of Adelaide,

Adelaide SA 5005, Australia
(Received 30 April 2012; published 18 July 2012)

We propose a model of the nucleon in which quark-diquark configurations immersed in a pion cloud are treated
in a manner consistent with Poincaré invariance. With suitably chosen parameters, the computations employing
this model reproduce the measured electromagnetic form factors and the quark-spin contribution to the total
nucleon angular momentum.
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I. INTRODUCTION

The nucleon is the lightest baryon and its mass dominates
the nucleus, which is the heart of the atom. Quantum
chromodynamics tells us that the nucleon is a complex system
composed of three valence quarks and an undefined number
of quark-antiquark pairs and gluons. Deep inelastic scattering
measurements have demonstrated that the sum of the spins of
the quarks do not add up to the total angular momentum of the
nucleon [1]. This puzzle has been the subject of a tremendous
amount of experimental and theoretical investigation. Another
probe of the structure of the nucleon is elastic electron-
nucleon scattering. Measurements made at Jefferson Lab have
shown that the proton form factor ratio, GEp(Q2)/GMp(Q2),
decreases as the value of Q2 is increased above about 1 GeV2.
This important discovery renewed interest in the structure of
the nucleon.

The present paper is devoted to answering a simple ques-
tion: can a model of the nucleon which consists of three valence
quarks and a pion cloud, constrained by Poincaré invariance,
describe the existing data for elastic electromagnetic form
factors, while properly accounting for the small fraction of
the proton total angular momentum carried by the quarks.
Recent work indicates that the successful construction of such
a model should be possible [2], provided the model quark wave
functions have suitable properties.

The challenge of understanding nucleon elastic form factors
has been taken up by many; for example, see the reviews
[3] and Ref. [4]. Here, we follow only one particular line
of reasoning. The light-front model of Ref. [5], with three
constituent quarks, was used to predict the fall of the ratio
GEp(Q2)/GMp(Q2). The effects of the pion cloud were later
included [6,7], and this led to a reasonably accurate description
of all four electromagnetic form factors. However, the quarks
in the bare nucleon carry about 75% of the total angular
momentum of the nucleon, which is too large to reproduce the
measured value of approximately 30%. Furthermore, the com-
puted ratio GEp(Q2)/GMp(Q2) falls a little too rapidly with in-
creasing values of Q2, and the results were not completely con-
sistent with the detailed flavor decomposition of the empirical
form factors [8]. This earlier work on the proton form factors
was carried out with a very simple three-quark wave function.
In the present work we use a more sophisticated wave function,

consisting of a quark-scalar-diquark term and a quark-axial-
vector-diquark term, with two invariant forms for each term.

The plan of the paper is as follows: Sec. II is devoted to
a complete description of the model, including the light-front
wave function (LFWF) and the addition of the pion cloud,
along with the formalism necessary to compute observable
quantities. The parameters of the model are discussed in
Sec. III, where they are varied to describe the existing data
for nucleon electromagnetic form factors. The choice of
parameters completes the definition of the model. The model
is tested in Sec. IV by computing the quark contribution to
the nucleon spin, and Sec. V is reserved for a summary and
discussion.

II. COVARIANT LIGHT-FRONT MODEL FOR NUCLEON

The basic model is that the valence quarks, represented by
quark-diquark combinations with the quantum numbers of the
nucleon, are immersed in a cloud of pions. The motivation
for this idea is obvious. We know that the nucleon is made
of quarks and that there is a long-range interaction between
nucleons mediated by the exchange of a single pion. However,
a pion emitted by a nucleon can be absorbed by the same
nucleon, so each nucleon has a pion cloud. The low mass of
the pion is the reason for singling it out as the only meson to be
treated separately as a cloud [9]. As we shall see, including the
pion cloud leads to a significant reduction in the fraction of the
nucleons total angular momentum carried by the quark spin,
and this is consistent with previous findings [2,10]. We use the
light-front representation of the nucleon wave function [11] to
guarantee that the observable quantities have the appropriate
properties under Lorentz transformations. The remainder of
this section details how this is done.

In general, the light-front wave function (LFWF) of a
hadron with spin projection Jz = ± 1

2 is represented by the

function �
Jz

λ1,...,λn
(xi, k⊥i) [11], where

ki = (k+
i , k−

i , k⊥i) =
(

xip
+,

k2
⊥i + m2

i

xip+ , k⊥i

)
, (1)

specifies the four-momentum of each constituent and λi

specifies its light-front helicity in the z direction. The
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light-front momentum fractions xi = k+
i /p+ are all positive

and satisfy
∑

i xi = 1. The scalar parts of the LFWF are
functions of the Lorentz invariant quantities xi and the invariant
mass squared M2

0 , given by

M2
0 =

n∑
i

k2
⊥i + m2

i

xi

=
(∑

i

ki

)2

, (2)

where mi is the mass of each nucleon constituent.
For a nucleon that consists of two constituents, in our case

a quark and a diquark, the nucleon Fock state can be expressed
as

|p+, p⊥ = 0, λ〉 =
∫

dxd2k⊥
16π3

√
x (1 − x)

×
∑
λq ,λa

�λ
λqλa

(x, k⊥) |xp+, k⊥, λq, λa〉,

(3)

where �λ
λqλa

(x, k⊥) is the LFWF that describes the interaction
of a quark and a diquark to form a nucleon. We have chosen a
frame where the transverse momentum of the nucleon is zero,
and the helicities of the quark and diquark states are labeled
by λq and λa , respectively. The two particle Fock-state ket in
Eq. (3) is defined by

|xp+, k⊥, λq, λa〉 ≡ |k+
1 = xp+, k+

2 = (1 − x) p+,

k1⊥ = k⊥, k2⊥ = −k⊥; λq, λa〉. (4)

In this work we make the quark-diquark approximation for
the LFWF of the nucleon, where we include both scalar and
axial-vector diquark correlations. The LFWF then takes the
form

�λ
λqλa

(k, p)

= ūq(k, λq)

[
ϕs

1 + M/ω

ω · p
ϕs

2

]
u (p, λ)

+ ūq(k, λq)ε∗
ν (q, λa) γ νγ5

[
ϕa

1 + M/ω

ω · p
ϕa

2

]
u (p, λ) ,

(5)

where the first term represents correlations in the quark–scalar-
diquark channel and the second quark–axial-vector-diquark
correlations. The variables k, q, p are, respectively, the quark,
diquark and nucleon momentum, where p = k + q and M is
the nucleon mass. The quark and nucleon spinors are repre-
sented by uq(k, λq) and u(p, λ), respectively, and εμ(q, λa)
is the usual spin-one polarization vector, representing the
spin-one axial-vector diquark. The interaction of the quark
with the diquark, in each diquark channel, is encapsulated by
two scalar functions; namely, ϕ1 and ϕ2. We choose the ϕ1 and
ϕ2 scalar functions to have the form

ϕ1 = 1(
M2

0 + β2
)γ , ϕ2 = c

(M0 − M)

2M
ϕ1. (6)

This choice is motivated by the success of earlier work
described in Ref. [12].

The wave function given in Eq. (5) is defined at the light-
front plane ω · x = σ , where ω is a light-like vector. For a
stationary state we can consider a fixed lightcone time and

set σ = 0. The usual choice for the quantization direction is
ω = (1, 0, 0,−1), so the nucleon wave function becomes

�λ
λqλa

(k, p)

= φλ
λq

(k, p) + φλ
λqλa

(k, p)

= ūq(k, λq)

[
ϕs

1 + M

p+ γ +ϕs
2

]
u (p, λ)

+ ūq (k, λq)ε∗
ν (q, λa) γ νγ5

[
ϕa

1 + M

p+ γ +ϕa
2

]
u (p, λ) ,

(7)

where φλ
λq

(k, p) represents the quark–scalar-diquark compo-

nent and φλ
λqλa

(k, p) represents the quark–axial-vector-diquark
component of the nucleon LFWF. The above wave function
contains only the spin couplings; therefore, to fully define the
model we also need the flavor couplings. The flavor wave
function of the proton is given by

|p〉 = 1√
2
|uS〉 + 1√

6
|uT0〉 − 1√

3
|dT1〉, (8)

where S is the flavor singlet state and T the flavor triplet and
therefore we obtain a symmetric spin-flavor wave function.
The antisymmetrization inherent in the model is represented
by Eq. (8), where any one of the three quarks can be the u, u, d

of the three terms in that equation.

A. Bare nucleon form factors

For on-shell initial and final nucleon states, the Dirac and
Pauli electromagnetic form factors of the nucleon are defined
via the matrix element decomposition

〈p′, λ′|Jμ
em|p, λ〉

= ū(p′, λ′)
[
γ μF1(Q2) + iσμνqν

2M
F2(Q2)

]
u (p, λ) , (9)

where M is the nucleon mass and Q2 = −q2, where q is the
four-momentum transfer. We choose to work in the Drell-Yan-
West frame, where the light-front momentum decompositions
of the relevant four-vectors are

q = (q+, q−, q⊥) =
(

0,
Q2

p+ , q⊥

)
, (10)

p = (p+, p−, p⊥) =
(

p+,
M2

p+ , 0⊥

)
, (11)

so that q2 = −2p · q = −q2
⊥ = −Q2. With this choice the

Dirac and Pauli from factors are identified with the helicity-
conserving and helicity-flip matrix elements of the plus-
component of the electromagnetic current; that is,

F1(Q2) = 1

2p+ 〈p′,↑ |J+
em|p,↑〉

= 1

2p+ 〈p′,↓ |J+
em|p,↓〉, (12)

F2(Q2) = −2M

(q1 − iq2)

1

2p+ 〈p′,↑ |J+
em|p,↓〉

= 2M

(q1 + iq2)

1

2p+ 〈p′,↓ |J+
em|p,↑〉. (13)
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To determined the nucleon form factors we must therefore
compute the above matrix elements of the J+ component of
the electromagnetic current.

Using Eq. (3) and the matrix element definitions of the
nucleon form factors given in Eqs. (12) and (13), it is clear
that the nucleon form factors are given by

F1(Q2) =
∫

dxd2k⊥√
x (1 − x)

×
∑

λq ,λa=+,−
�

↑∗
λq ,λa

(x, k′
⊥)�↑

λq ,λa
(x, k⊥) , (14)

F2(Q2) = 2M

q1 + iq2

∫
dxd2k⊥√
x (1 − x)

×
∑

λq ,λa=+,−
�

↓∗
λq ,λa

(x, k′
⊥)�↑

λq ,λa
(x, k⊥). (15)

The helicity components of the LFWFs for scalar and axial-
vector diquarks are defined via

ψλ
λq

(x, k⊥) = 1√
x (1 − x)

φλ
λq

(k, p) , (16)

ψλ
λqλa

(x, k⊥) = 1√
x (1 − x)

φλ
λqλa

(k, p) , (17)

and for convenience we define the scalar functions

f s
1 (Q2) =

∫
dxd2k⊥

16π3

∑
λq=+,−

ψ
↑∗
λq

(x, k′
⊥)ψ↑

λq
(x, k⊥), (18)

f a
1 (Q2) =

∫
dxd2k⊥

16π3

∑
λq ,λa=+,−

ψ
↑∗
λq ,λa

(x, k′
⊥)ψ↑

λq ,λa
(x, k⊥),

(19)

f s
2 (Q2) = 2M

q1+iq2

∫
dxd2k⊥

16π3

∑
λq=+,−

ψ
↓∗
λq

(x, k′
⊥)ψ↑

λq
(x, k⊥),

(20)

f a
2 (Q2) = 2M

q1 + iq2

∫
dxd2k⊥

16π3

×
∑

λq ,λa=+,−
ψ

↓∗
λq ,λa

(x, k′
⊥)ψ↑

λq ,λa
(x, k⊥). (21)

Using the flavor wave function given in Eq. (8), the quark
flavor contributions to the bare (without pion cloud) proton
Dirac form factor are therefore given by

F
(0),u
1p (Q2) = 3

2euf
s
1 (Q2) + 1

2euf
a
1 (Q2), (22)

F
(0),d
1p (Q2) = edf

a
1 (Q2), (23)

where eu and ed are the quark charges and analogous
expressions hold for the quark flavor contributions to the
Pauli form factors, with f s

1 → f s
2 and f a

1 → f a
2 . The scalar

functions f s
1 (Q2) and f a

1 (Q2) are subject to the normalizations
f s

1 (0) = 1 = f a
1 (0), which guarantees the correct quark and

hence nucleon charges. Using charge symmetry we obtain the

following results for the bare nucleon Dirac form factors:

F
(0)
1p (Q2) = 3

2euf
s
1 (Q2) + 1

2 (eu + 2ed ) f a
1 (Q2)

= f s
1 (Q2), (24)

F
(0)
1n (Q2) = 3

2edf
s
1 (Q2) + 1

2 (ed + 2eu) f a
1 (Q2)

= − 1
2f s

1 (Q2) + 1
2f a

1 (Q2), (25)

where again analogous expressions hold for the Pauli form
factors, with f s

1 → f s
2 and f a

1 → f a
2 .

Using the LFWF given in Eq. (7) and the definition given
in Eq. (16), the explicit form of the scalar diquark helicity
components of the LFWFs are

√
(1 − x)ψ↑

+ (x, k⊥) =
(
M + m

x

)
ϕs

1 + 2Mϕs
2, (26)

√
(1 − x)ψ↑

− (x, k⊥) = − 1

x
(k1 + ik2)ϕs

1, (27)

√
(1 − x)ψ↓

+ (x, k⊥) = 1

x
(k1 − ik2)ϕs

1, (28)√
(1 − x)ψ↓

− (x, k⊥) =
(
M + m

x

)
ϕs

1 + 2Mϕs
2. (29)

Similarly, using Eq. (7) and the definition given in Eq. (17),
the helicity components of the LFWFs for axial-vector diquark
are

√
(1 − x)ψ↑

++ (x, k⊥) =
√

2(k1 − ik2)

x (1 − x)
ϕa

1 , (30)

√
(1 − x)ψ↑

−+ (x, k⊥) =
√

2

(
M + m

x

)
ϕa

1 + 2
√

2Mϕa
2 ,

(31)√
(1 − x)ψ↑

+− (x, k⊥) = −
√

2(k1 + ik2)

1 − x
ϕa

1 , (32)√
(1 − x)ψ↑

−− (x, k⊥) = 0, (33)

and

√
(1 − x)ψ↓

++ (x, k⊥) = 0, (34)√
(1 − x)ψ↓

−+ (x, k⊥) = −
√

2(k1 − ik2)

1 − x
ϕa

1 , (35)

√
(1 − x)ψ↓

+− (x, k⊥) = −
√

2

(
M + m

x

)
ϕa

1 − 2
√

2Mϕa
2 ,

(36)√
(1 − x)ψ↓

−− (x, k⊥) =
√

2(k1 + ik2)

x (1 − x)
ϕa

1 . (37)

Using these results it is then straightforward to obtain
expressions for the scalar functions defined in Eqs. (18)–(21);
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namely,

f s
1 (Q2) = 1

16π3

∫
dxd2k⊥

x2 (1 − x)

{[
k2

⊥ + (xM + m)2 − 1

4
(1 − x)2 Q2

]
ϕs

1ϕ
s
1
′

+ 2xM (xM + m)
(
ϕs

1ϕ
s
2
′ + ϕs

1
′ϕs

2

) + 4x2M2ϕs
2ϕ

s
2
′
}
, (38)

f a
1 (Q2) = 1

8π3

∫
dxd2k⊥

x2 (1 − x)

{
1 + x2

(1 − x)2

[
k2

⊥ − 1

4
(1 − x)2 Q2

]
ϕa

1 ϕa
1

′ + (xM + m)2 ϕa
1 ϕa

1
′

+ 2xM (xM + m)
(
ϕa

1 ϕa
2

′ + ϕa
1

′ϕa
2

) + 4x2M2ϕa
2 ϕa

2
′
}
, (39)

f s
2 (Q2) = M

8π3

∫
dxd2k⊥
x2(1 − x)

[
(1 − x)(xM + m)ϕs

1
′ϕs

1 − 2xM
k⊥ · q⊥

Q2

(
ϕs

1ϕ
s
2
′ − ϕs

2ϕ
s
1
′) + x (1 − x) M

(
ϕs

1ϕ
s
2
′ + ϕs

2ϕ
s
1
′) ]

, (40)

f a
2 (Q2) = − M

4π3

∫
dxd2k⊥
x(1 − x)2

[
(1 − x)(xM + m)ϕa

1
′ϕa

1 − 2xM
k⊥ · q⊥

Q2

(
ϕa

1 ϕa
2

′ −ϕa
2 ϕa

1
′) + x(1 − x)M

(
ϕa

1 ϕa
2

′ + ϕa
2 ϕa

1
′) ]

,

(41)

where the prime refers to the final state wave functions. The
invariant masses are then given by

M2
0 =

(�k⊥ ∓ 1
2 (1 − x) �q⊥

)2 + m2

x

+
(�k⊥ ∓ 1

2 (1 − x) �q⊥
)2 + M2

D

1 − x
, (42)

where MD is the diquark mass, being either a scalar or axial-
vector diquark, and the minus sign is for the initial state and
plus sign the final state. Recall that M is the nucleon mass and
m the constituent quark mass.

B. Nucleon form factors with pion cloud

The pion-cloud component of our model for the nucleon is
introduced via a single pion loop around our bare nucleon, as
illustrated in Fig. 1 for the nucleon electromagnetic current.
The first diagram represents the photon coupling to the bare
nucleon, multiplied by ZNπ , which represents the probability
that the nucleon is in a configuration without a pion cloud.
The second diagram in Fig. 1 represents the photon coupling
to the bare nucleon with a pion in the air; the photon coupling

p p′

μ

q

ZNπ × +
p p′

μ

q
+

p p′

μ

q

FIG. 1. (Color online) Nucleon form factor diagrams, including
the pion cloud. The multiplicative factor ZNπ represents the proba-
bility that the nucleon is in a configuration without a pion cloud. In
the second diagram the photon couples to the bare nucleon and in the
third diagram it couples to the pion.

is given by

�μ(p′, p) = 1

2
(1 + τ3)

[
γ μF

(0)
1p (Q2) + iσμνqν

2M
F

(0)
2p (Q2)

]

+ 1

2
(1 − τ3)

[
γ μF

(0)
1n (Q2)+ iσμνqν

2M
F

(0)
2n (Q2)

]
,

(43)

where F
(0)
1p (Q2), F

(0)
2p (Q2), etc. are the bare nucleon form

factors discussed in Sec. II A. The contribution of this second
diagram to observable quantities is usually small. Finally, the
third diagram in Fig. 1 represents the photon coupling to the
pion in the loop, with a pion electromagnetic vertex given by

�
μ

ij (p′, p) = ε3ji(p
′ + p)μFπ (Q2), (44)

where the pion form factor has the form Fπ (Q2) = [1 +
Q2/�2

π ]−1 and we choose the standard value of �2
π =

0.5 GeV2.
The complete expressions for the proton and neutron Dirac

and Pauli form factors are then

F1p = ZNπF
(0)
1p + (

1
2F

(0)
1p + F

(0)
1n

)
F

(N),vec
1N

+ (
1
2F

(0)
2p + F

(0)
2n

)
F

(N),ten
1N + F

(π)
1N , (45)

F1n(Q2) = ZNπF
(0)
1n + (

F
(0)
1p + 1

2F
(0)
1n

)
F

(N),vec
1N

+ (
F

(0)
2p + 1

2F
(0)
2n

)
F

(N),ten
1N (Q2) − F

(π)
1N , (46)

F2p(Q2) = ZNπF
(0)
2p + (

1
2F

(0)
1p + F

(0)
1n

)
F

(N),vec
2N

+ (
1
2F

(0)
2p + F

(0)
2n

)
F

(N),ten
2N + F

(π)
2N , (47)

F2n(Q2) = ZNπF
(0)
2n + (

F
(0)
1p + 1

2F
(0)
1n

)
F

(N),vec
2N

+ (
F

(0)
2p + 1

2F
(0)
2n

)
F

(N),ten
2N − F

(π)
2N , (48)

where the Q2 dependence of the various form factors has
been omitted for clarity. The form factors F

(N),vec
1N (Q2) and
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F
(N),vec
2N (Q2) result from the second diagram in Fig. 1 where the

photon couples to the bare nucleon with a γ μ, while the form
factors F

(N),ten
1N (Q2) and F

(N),ten
2N (Q2) arise from the iσμνqν

coupling to the bare nucleon in the same diagram. Recall
F

(0)
1p , F

(0)
1n , etc. are the bare nucleon form factors discussed

in Sec. II A.
For the form factors arising from the pion loop in the second

diagram of Fig. 1, we find [7]

F
(N),vec
1N (Q2) = g2

πN

∫ 1

0
dx

∫
d2k⊥

2 (2π )3 FπN (�2
+, x)FπN (�2

−, x)

× x
[
k2

⊥ + x2M2 − 1
4x2Q2

]
D+ (k⊥) D− (k⊥)

, (49)

F
(N),vec
2N (Q2) = −2g2

πNM2
∫ 1

0
dx

∫
d2k⊥

2 (2π )3

×FπN (�2
+, x)FπN (�2

−, x)
x3

D+ (k⊥) D− (k⊥)
,

(50)

and

F
(N),ten
1N (Q2) = −g2

πN

1

2

∫ 1

0
dx

∫
d2k⊥

2 (2π )3

×FπN (�2
+, x)FπN (�2

−, x)
x3Q2

D+ (k⊥) D− (k⊥)
,

(51)

F
(N),ten
2N (Q2) = −g2

πN

∫ 1

0
dx

∫
d2k⊥

2 (2π )3 FπN (�2
+, x)FπN (�2

−, x)

× x
[
x2M2 − 1

4x2Q2 + k2
x − k2

y

]
D+ (k⊥) D− (k⊥)

, (52)

where we take gπN = 13.5, �± ≡ k⊥ ± 1
2xq⊥, and

D± (k⊥) = (
k⊥ ± 1

2xq⊥
)2 + x2M2 + (1 − x)m2

π , (53)

with mπ being the pion mass. The pion-nucleon form factor
that enters diagrams two and three in Fig. 1 is taken to be

FπN (�2
⊥, x) = e−[�2

⊥+x2M2+(1−x)m2
π ]/[2x(1−x)�2], (54)

where � is a parameter that encapsulates the nonpointlike
nature of the pion-nucleon vertex and will be determined
in Sec. III. The form of FπN is chosen so as to maintain
charge and momentum conservation [13]. An improvement
was suggested in [14], but this has not yet been applied to
calculating electromagnetic form factors.

The form factors arising from the pion loop in the third
diagram of Fig. 1 are given by [7]

F
(π)
1N = g2

πNFπ (Q2)
∫ 1

0
dx

∫
d2k⊥
(2π )3

FπN (k2
+, x)FπN (k2

−, x)

× x
[
k2

⊥ − 1
4 (1 − x)2 Q2 + x2M2

]
D+ (k⊥) D− (k⊥)

, (55)

F
(π)
2N = 2g2

πNM2Fπ (Q2)
∫ 1

0
dx

∫
d2k⊥
(2π )3 FπN (k2

+, x)

×FπN (k2
−, x)

x2 (1 − x)

D+ (k⊥) D− (k⊥)
, (56)

where we have defined

k± ≡ k⊥ ± 1
2 (1 − x) q⊥. (57)

We note that the present version provides a minimal
treatment of the pion cloud. Effects of the intermediate �

and terms involving a γN → πN direct coupling are not
included. Both of these terms involve distances smaller than
those of the terms we do include, which dominate in the
chiral limit. Therefore, we shall assume that such effects are
subsumed within the parameters of the model. We shall see
that achieving the present modest goal of reproducing form
factors, while remaining consistent with the small fraction of
the nucleon total angular momentum carried by the quarks
spin is possible without including terms additional to those of
the above equations.

III. RESULTS FOR NUCLEON FORM FACTORS AND
THEIR FLAVOR DEPENDENCE

The parameters of the model are as follows: the quark,
scalar diquark, and axial-vector diquark masses, labeled by m,
Ms , and Ma , respectively; the three parameters cs , βs , and γs

[see Eq. (6)] that specify the quark–scalar-diquark component
of the nucleons LFWF and the analogous three parameters
ca , βa , and γa which encapsulates the quark–axial-vector-
diquark component of the nucleons LFWF. Finally, there is
the parameter � which enters Eq. (54) and describes the
high momentum transfer fall off of the pion-nucleon vertex
function. Therefore, in total the model has ten parameters and
these are chosen to minimize χ2 as defined by

χ2 ≡ 1

4nq

∑
Q2

[∣∣F1p − F
exp
1p

∣∣∣∣F exp
1p

∣∣ +
∣∣F2p − F

exp
2p

∣∣∣∣F exp
2p

∣∣
+

∣∣F1n − F
exp
1n

∣∣∣∣F exp
1n

∣∣ +
∣∣F2n − F

exp
2n

∣∣∣∣F exp
2n

∣∣
]
, (58)

where F1p, etc, are the form factors from the model, given in
Eqs. (45)–(48), and for the empirical form factors (namely,
F

exp
1p , etc.), we take the results from Ref. [15]. For the sum

in Eq. (58) we take nq values of Q2 chosen uniformly on
the domain Q2 ∈ [0, 10] GeV2 and Table I gives the resulting
model parameters for nq = 11. In this fit the resulting mass of
the axial-vector diquark (namely, Ma = 167 MeV) does not
seem to be realistic. Such a small value could be the result of
a surprisingly strong binding forces in that system. However,
the small value may be masking the limitations of the spatial
wave functions induced by using the specific forms of Eq. (6).
The resulting values of the nucleon magnetic moments are
also shown in the table and are in good agreement with the
experimental values of μp = 2.79μN and μn = −1.91μN for
the proton and neutron, respectively.
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IAN C. CLOËT AND GERALD A. MILLER PHYSICAL REVIEW C 86, 015208 (2012)

TABLE I. Model parameters: m constituent quark mass, Ms scalar diquark mass, Ma axial vector diquark mass, quark–scalar-diquark
nucleon LFWF parameters cs , βs , γs [see Eq. (6)], quark–axial-vector-diquark nucleon LFWF parameters ca , βa , γa [see Eq. (6)], pion-nucleon
vertex parameter � [see Eq. (54)]. All mass-dimensioned parameters are in GeV. The first column gives the χ2 obtained in the fit expressed in
Eq. (58) and the final two columns present our results for the proton and neutron magnetic moments.

χ 2 m Ms Ma cs βs γs ca βa γa � μp(μN ) μn(μN )

0.078516 0.191 0.414 0.167 1.509 1.226 5.719 0.008 1.104 8.586 1.035 2.794 −1.849

The results for the proton Sachs form factors are shown
in Figs. 2 and 3. We find that our results agree very well,
over a large Q2 range, with the empirical parametrizations of
Kelly given in Ref. [15]. At small Q2 both the electric and
magnetic form factors fall off a little too rapidly, which is a
likely indication that the pion cloud component of the LFWF
is slightly too large. In Figs. 4 and 5 we compare our form
factor results with data for the ratios μpGEp(Q2)/GMp(Q2)
and Q2F2p(Q2)/F1p(Q2), respectively. In each case our results
agree very well with the measured ratios and, although not
shown in Fig. 4, we find that the GEp/GMp form factor ratio
crosses zero at Q2 � 12.3 GeV2.

Our results for the neutron Sachs form factors are
illustrated in Figs. 6 and 7. A comparison with the empirical
parametrizations of Ref. [15] and the recent Jefferson Lab data
for Gn

E , given in Ref. [22] shows excellent agreement. Similar
to the proton case, we find that our neutron magnetic form
factor falls slightly too fast for small values of Q2. However,
our agreement with the Kelly result for GEn is extremely good.
Figures 8 and 9 compare our form factor results with data for
the ratios μnGEn(Q2)/GMn(Q2) and GMn(Q2)/[μnGD(Q2)],
respectively, where GD(Q2) is the dipole form factor with mass
parameter � = 0.71 GeV2. The comparison between data and
our model results in Fig. 8 is very good and our description of
the GMn(Q2) data from Ref. [23] (see Fig. 9) is generally as
good as the one provided by Kelly [15] and seems to be better
for the larger values of Q2.

The importance of looking at the separate quark sector form
factors for u and d quarks in the nucleon has been stressed
in Ref. [8]. This is possible because of the charge symmetry
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FIG. 2. (Color online) Solid lines are the model results for the
proton Sachs form factors and the dashed lines are the empirical
results from Kelly given in Ref. [15].

(invariance under interchange of u and d quarks) of the nucleon
wave function [24,25]. The quark sector Dirac and Pauli form
factors are defined by

Fu
1(2) = 2Fu

1(2)p + Fu
1(2)n and Fd

1(2) = Fd
1(2)p + 2Fd

1(2)p. (59)

We illustrate results for Q4F
q

1 and Q4F
q

2 /κq , where κq ≡
F

q

2 (Q2 = 0) and q ∈ u, d, in Figs. 10 and 11, respectively. In
each case the agreement between our results and the data from
Ref. [8] is very good. We predict that Fd

1 has a zero crossing at
approximately 5.5 GeV2 and also observe a crossover between
Fu

2 and Fd
2 at approximately 3 GeV2. This is consistent with

the data in Ref. [8], where it is shown that, for both the Dirac
and Pauli quark sector form factors, the d quark sector drops
faster than the u quark sector. The data in Ref. [8] also exhibit
the behavior that on the domain 1 GeV2 � Q2 � 3.4 GeV2,
the ratio of the Pauli to Dirac form factors, in both the u- and
d-quark sectors, is almost constant.

Flavor separated form factors have been considered for a
long time in the context of generalized parton distributions
(GPDs) [26,27]. The present work is limited to elastic form
factors and benefits from the knowledge gained by eight years
of experimentation, including the extension of neutron form
factors to higher values of Q2. The wave functions of our
model do contain predictions related to GPDs and these will
be considered in the future.

IV. PROTON SPIN CONTENT

The true test of this model is the independent prediction
of the proton spin content. This prediction is implied by the
definition of the flavor-spin wave function given in Eq. (8) and
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FIG. 3. (Color online) Proton Sachs form factors and their
comparison with the empirical parametrizations of Ref. [15].
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FIG. 4. (Color online) Ratios of the proton electric to magnetic
Sachs form factors. The solid curve is our model result and the dashed
curve is the phenomenological fit of Ref. [16]. The data are from
Refs. [17–21].

the LFWFs given in Eqs. (16) and (17). The helicity parton
distribution functions (PDFs) are given by

�q (x) = q+ (x) − q− (x) , (60)

where q+(x) is the number density of quarks with helicity
parallel to the nucleon spin and q−(x) is the number density
of quarks with helicity antiparallel to the nucleon spin. The
quark spin content (namely, �� = �u + �d) is obtained by
integrating Eq. (60) over x for both the u and d quarks. In this
work we ignore contributions to �� from the heavier quark
flavors.

Using the proton spin-flavor wave function of Eq. (8), we
obtain

�u(x) = 3
2�qs(x) + 1

2�qa (x) , (61)

�d (x) = �qa (x) , (62)

for the bare nucleon, where the subscripts s and a refer
to the contributions to the helicity PDFs from the quark–
scalar-diquark and quark–axial-vector-diquark components
of the nucleon’s LFWF. The functions �qs(x) and �qa(x)
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FIG. 5. (Color online) Ratios of proton Pauli to Dirac form factors
multiplied by Q2. The solid curve is our model result and the
dashed curve is the empirical result of Ref. [15]. The data are from
Refs. [17–21].
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FIG. 6. (Color online) Solid lines are the model results for the
neutron Sachs form factors and the dashed lines are the empirical
results from Kelly given in Ref. [15].

are completely analogous to the bare nucleon form-factor
quantities f s

1 (Q2) and f a
1 (Q2), respectively, and expressions

can easily by obtained using Eq. (60) and the results given in
Eqs. (26)–(37). We find

�qs(x) = Zs

16π3

∫
d2k⊥

x2(1 − x)

×{ [
(Mx + m)ϕs

1 + 2Mxϕs
2

]2 − k2
⊥ϕs

2
2}, (63)

�qa(x) = Za

8π3

∫
d2k⊥

x2(1 − x)

×
{

1 + x2

(1 − x)2
k2
⊥ϕa

1
2− [

(Mx + m)ϕa
1 + 2Mxϕa

2

]2
}

.

(64)

The spin content is determined by the first moments of the
helicity PDFs; namely,

�u ≡
∫ 1

0
dx�u (x) = 3

2
�qs + 1

2
�qa, (65)
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FIG. 7. (Color online) The model result for the neutron Sachs
electric form factor is given by the solid line and the dashed curves
is from Kelly [15]. The data are from Ref. [22].
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FIG. 8. (Color online) Ratios of the neutron electric to magnetic
Sachs form factors. The solid curve is our model result and the dashed
curve is the phenomenological fit of Ref. [15]. The data are from
Ref. [22].

�d ≡
∫ 1

0
dx�d (x) = �qa. (66)

The dominant terms in Eqs. (63) and (64) are those containing
the nucleon mass, and these come in with a positive sign for
the scalar diquark component and with a negative sign for the
axial-vector piece. This implies that the quark spin content of
the term with the axial-vector diquark can be expected to be
negative. Importantly, these results refer to the contribution of
the nucleon without including the effects of the pion cloud.

The effect of the pion cloud on the nucleon spin sum is
determined by evaluating the diagrams illustrated in Fig. 1,
where instead of the electromagnetic current operator we insert
the quark spin operator. In this case, only the first and second
diagrams in Fig. 1 contribute because the spin of the pion zero.
We find that the nucleon spin sum, including the pion cloud,
is given by

��π = (
ZNπ + �qπ

N

)
(�u + �d) , (67)
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FIG. 9. (Color online) The solid curve is our model result for the
neutron form factors ratio of GMn/(μn GD), where GD(Q2) is the
dipole form factor with mass parameter � = 0.71 GeV2. The dashed
curve is the empirical result from Ref. [15] and the data are from
Ref. [23].
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where

�qπ
N = −3g2

πN

∫ 1

0
dx

∫
d2k⊥

2 (2π )3 (1 − x)

× k2
⊥ − (1 − x)2 M2[

k2
⊥ + (1 − x)2 M2 + xm2

π

]2 F 2
πN (x, k2

⊥). (68)

Numerical evaluation using our LFWFs gives

�u = 0.921, �d = −0.424, (69)

so that the fraction of the spin carried by the quarks in a bare
nucleon is

�� = �u + �d = 0.497. (70)

Using Eq. (67) and the results

ZNπ = 0.706, �qπ
N = 0.0281 (71)

implies that the nucleon spin sum, including the effects of the
pion cloud, is given by

��π = 0.365. (72)
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FIG. 11. (Color online) Model results for the Pauli quark sector
form factors F u
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Refs. [8,17–22,28–32].
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In contrast with previous work, the term �qπ
N is greater

than zero. This results from our relativistic treatment and
numerically arises from the cancellation of the two terms in
the numerator of the integrand appearing in Eq. (68). This
is a small effect. The value 0.365 is in good agreement with
the central value 0.366 obtained in the global analysis (using
xmin = 0.001) of Ref. [33]. Future measurements made at
higher energies may reduce this central value. However, the
present agreement is very good, considering that the model
wave function has no gluons.

V. SUMMARY AND DISCUSSION

The main point of our work is to show that it is possible to
construct a constituent quark model—capable of reproducing
the measured electromagnetic form factors—in which the
quark spin content of the nucleon is in qualitative agreement
with experiment. This phenomenology is achieved by using
relativistically moving quarks, immersed in a cloud of pions.

There are several possible improvements to the model:
including more pionic terms, increasing the flexibility of the
guess for the wave functions given in Eq. (6), improving the
treatment of the pion-nucleon vertex along the lines suggested
by Ref. [14], including the effect of intermediate � baryons
in the pion cloud contribution, and so on. While the present
model is not likely to be the final word on the subject, it does
show that the quark model, with suitable obvious modifications
from the original nonrelativistic, pion cloud-free version does
survive the “proton spin crisis” in a manner very similar to
that previously noted [2,10]. Future refinements and tests of
the model depend on the ability of experimentalists to make
improved measurements.
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