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Abstract: We report the fabrication of silicamicrostructured optical fibers
with the core exposed along the whole length, and characterize the stability
of these new fibers when exposed to some typical sensing and storage
environments. We show the fiber loss to be the best achieved to date for
exposed-core fibers, while the deterioration in the transmission properties
is up to ~2 orders of magnitude better than for the previously reported
exposed-core fibers produced in soft glass. This opens up new opportunities
for optical fiber sensors requiring long term and/or harsh environmental
applications while providing real time analysis anywhere along the fibers
length.
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1. Introduction

Microstructured optical fibers [1] (MOFs) are well-suited for sensing, as characteristic longi-
tudinal air holes used to provide the effective refractive index needed for light confinement [2]
can also act astiny sample chambers [3]. The portion of guided light located within these holes
can be used to provide the light-matter overlap needed for many fiber optic sensing applica-
tions [4,5]. Unlike conventional optical fibers, MOFs can be manufactured from a single ma-
terial [6], and with the appropriate cross-sectional design, the structure can provide the broad
range of optical properties demanded by sensors [7].

For MOFs, the portion of guided light (often described as “evanescent field”) protruding
into the holes of the structure is affected by the characteristics of the medium within these
holes [4]. This light-matter overlap provides opportunities for exploiting the interaction of
light with gases and liquids, where the absorption and fluorescence characteristics can be used
to determine the composition and concentration of the analyte [5]. In this regard, the fiber
geometry can provide extremely long interaction lengths without the need for large volumes.
Of particular interest is the suspended-core fiber [8], which can have a significant fraction of
the guided power located within the holes [9], since the geometry hasahigh air filling fraction
with a small core suspended on a number of thin struts. Unlike glass nano-wires [10], this
design provides a means for obtaining uniform micrometer-nanometer scale suspended ‘wires
while protecting the highly sensitive core, and long lengths can be fabricated by drawing a
structured preform.

The suspended-core fiber has been demonstrated in soft glasses [11-13], polymer [14] and
silica [15] materials. Chemical [15, 16] and biological [17] suspended-core fiber absorption
spectroscopy sensors, which exploit the absorbance characteristics of the light-matter over-
lap, provide opportunities for both environmental sensing and quantitative chemical analy-
sis. Suspended-core fiber sensors using in-fiber excitation and recapturing [18] of fluorescent
dyes [19] or quantum dots [20], as well as surface-enhanced Raman spectroscopy using nano-
particles [21], have also been shown to provide highly sensitive specificity of the analyte of
interest.

In principle, the suspended-core fiber also offers the potential for easier filling compared
to MOFs with hexagonally arranged cladding holes that provide a small air filling fraction
when the core issmall [22]. In practice, the time needed to fill suspended-core fibers depends
on the required interaction length and size of the holes, such as ~7 hrs for gas diffusion [15]
or ~100min for water at standard temperature and pressure [23], along a 1 m length of fiber
with @8 um holes. This makes their use impossible for real time or distributed sensing applica-
tions and difficulty still exists when attempting to ensure stable optical coupling while filling.
To overcome these problems, fabrication techniques which expose the core [24] have been
demonstrated by micro-machining fluidic side-channels at several locations along the fiber
length [25-28], which results in short exposed regions in the order of tens of microns. This
provides access to the core by the analyte, making it useful for real time sensing applications.
However, in applications where kinetic changes of the analyte need to be measured, where emp-
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tying and re-filling is required, or long lengths are needed for distributed sensing applications,
post processing methods to the fiber still remain impractical. Another technique to expose the
core is by creating an opening at the preform stage of fiber fabrication. This provides a means
to fabricate long lengths of exposed-core fiber, and has been demonstrated in polymer [29]
(polymethylmethacrylate) and soft glass [30] (Schott F2) materias, where the geometry was
shown to be practical for real time evanescent field and distributed sensing [31] applications,
with the capacity for fast filling and quick response to kinetic changes of the analyte.

Both polymer and soft glasses have properties which makes them useful for particular
applications [9, 32, 33], and their glass transition temperatures (Tg) are low enough to make
them practical for extruding the structured preform [34]. Nevertheless, these materials are not
transparent at UV wavelengths, where many biological molecules can absorb the light, and
the soft glass exposed-core fiber deteriorated quickly [30, 35], making it impractical for long
term and/or harsh environmental applications. On the other hand, silicais known to be reliable
under arange of processing and use environments, with relatively better mechanical and ther-
mal stability [36]. Highly homogeneous, high purity bulk material is commercially available,
which has led to silica telecom fibers regularly being made with low loss (~0.2dB/km at NIR
wavelengths) [37]. Also, silicahasarelatively low refractive index, which can improve the sen-
sitivity of evanescent field sensors, since reducing the index contrast (An) at the core-cladding
boundary increases the power fraction to the analyte or functionalized surface [19].

In this paper we demonstrate an alternative fabrication technique for glass exposed-core
fibers, where the fabricated geometry is a useful platform for surface analysis of the core. We
report, for thefirst time to the best of our knowledge, the fabrication of a silicamicrostructured
fiber with the core exposed along the whole length, and characterize the stability of this new
fiber when exposed to some typical sensing and storage environments.

2. Silica exposed-core fiber fabrication

2.1. Introduction to silica exposed-core fiber fabrication

The aim of this work was to develop silica exposed-core fibers (Fig. 1), which are asymmetric
and therefore needed new fabrication methods to be established. These methods expand on a
combination of work previously shown by Webb et al. [15] for fabricating silica suspended-
core fibers (wagon wheel structure) by machining the preform, and Warren-Smith et al. [30]
for cutting athin dot into the side of the symmetric preform (soft glass) in order to expose the
core region. High purity fused silica known as Suprasil F300HQ (Heraeus Quarzglas GmbH &
Co.KG) was chosen becauseit is produced to be free from bubbles and made to tight geometric
tolerances [38]. This material has high transmission in the UV-Vis-NIR spectral range making
it suitable for (bio)chemical sensing applications since it allows for the efficient excitation of a
range of fluorophores; for example quantum dot labeled proteins excited in the visible [20] and
fluorogenic peptide substrates excited in the UV [39].

2.2. Thepreform

The exposed-core fiber preform was fabricated from @12 mm F300HQ silica rod, which was
drilled with three holes, where the centers of the holesform an equilateral triangle. The preform
was sonic cleaned in methanol and Milli-Q water, then etched for 30 minutes in a buffered
hydrofluoric acid solution (BHF), made using 6 volumes of ammonium fluoride (NH4F, 40%
solution) to 1 volume of hydrofluoric acid (HF, 50% solution), which has a well known etch
rate of 100-250 nm/min [40]. After etching, the preform was rinsed with de-ionized water and
then sonic cleaned in methanol and Milli-Q water, after which it was dried with nitrogen. The
only difference between suspended-core fiber and exposed-core fiber preforms, is that for the
exposed-core fiber case aslot was cut along the length of one of the holes, as shown in Fig. 1(a).
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Fig. 1. (a) Cross section of the preform fabricated from @12 mm F300HQ silica rod; and,
scanning electron microscope images of (b) the silica exposed-core fiber with (c) the cross
section measured at the maximum to be @202 pm; and, (d) an enlarged image of the core
having an effective diameter of 10.0pum.

2.3. Fiber drawing

To draw the preform to fiber a 6m tower with graphite resistance furnace, positive pressur-
ization system and automated diameter control was used. By systematically using a series of
temperatures and pressures, hole expansion and draw characteristics were investigated for the
process of producing suspended-core fibers using the preform described in the previous section.
These investigations showed that the exposed-core fiber could be produced using atemperature
of 2000°C with pressure at 1.4 kPa, although one should consider that temperature and pressure
profiles can vary between drawing towers and furnace designs [41].

A single 127 m long uncoated exposed-core fiber (Fig. 1(b)) was fabricated and the dimen-
sions of this fiber were measured using cross-sectional images from a scanning electron mi-
croscope (SEM), shown in Figs. 1(b)-1(d), being @202 um (measured at the maximum) with
each hole being @66.0 pm, defined as the diameter of a circle whose areais equal to the cross
sectional area of the hole. The central web thickness (between the holes) is 0.85 um minimum,
while the webs each side of the core are 1.10 um minimum thickness. The core, shown by the
green box in Fig. 1(c) and enlarged in Fig. 1(d), has an effective diameter of 10.0 um, defined as
the diameter of acirclewhose areaisequal to atriangle that fitswholly within the core area [9].

3. Silica exposed-corefiber characterization
3.1. Fiber loss & fluorescence

After fabrication, the exposed-core fiber was stored in the laboratory, exposed to air, on a high
density Polyurethane foam drum with 1 m circumference. While the fiber was on the drum,
cutback fiber loss measurements were performed by coupling the light from a 100 W halogen
light bulb source with power curve of approximately Gaussian distribution and peak power
at 800nm, into one end of the exposed-core fiber. At the other end, the light from the core
was imaged onto the grating of a Ando AQ6315E Optical Spectrum Analyzer (OSA) such
that the power was maximized before each measurement. The fiber loss measurement results
taken directly after fiber draw, shown by the red spectrum in Fig. 2(a), were 1.12+0.15dB/m,
1.10£0.08dB/m and 1.43+0.39dB/m at 532nm, 900 nm and 1550 nm respectively. Further
work is required to determine the cause of the increased loss at longer wavelengths. For another
fiber loss measurement taken 26 days after fiber draw, shown by the blue spectrum in Fig. 2(a),
the results were observed to be the same within a 95% confidence interval. As a comparison,
the fiber loss measurement results for a suspended-core fiber produced in the same way, with
material from the same bulk stock, and with similar core, web and hole sizes asfor the exposed-
core fiber, is shown by the black spectrum in Fig. 2(a). This suspended-core fiber result, being
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Fig. 2. (8) Loss of silica exposed-core fiber, broadband cutback measurements taken 26
days apart (red and blue) compared to silica suspended-core fiber with similar core size
(black); and, (b) fiber Raman peaks at 532 nm.

~2 orders of magnitude lower compared to the exposed-core fiber, shows that confinement
loss is negligible in the total loss of the exposed-core fiber, and therefore additional surface
scattering loss, either from the process of cutting the slot or airborne particulates depositing
on the surface of the core [42] before or after fiber drawing, is the most likely cause of the
additional loss. For exposed-corefibers previously produced in Schott F2 |ead silicate soft glass
[30] (n ~1.62) with a core size of ~ @3 um, the fiber loss measurements taken directly after
fiber draw were 5.54+0.20 dB/m, 2.25+0.26 dB/m and 2.50+0.34 dB/m at 532 nm, 900 nm and
1550 nm respectively. Further work is required to determine the effect that core size has on the
fiber loss of the silica exposed-core fiber.

Another factor which can restrict the detection limit of a fiber optic sensor is the amount
of Raman and fluorescence peaks generated within the glass [19] which depends on the wave-
length and power of the light source. Given enough power and with a sensitive enough detector,
the Raman spectrum corresponding to the energy of the probed vibrational modes of the sil-
ica is expected, whereas fluorescence is an indication of impurities and/or structural defects
within the silica material. In order to detect the Raman and any potential fluorescence peaks,
a25mW laser excitation light source at commonly used 532 nm was coupled into a 1 m long
exposed-core fiber using a 60x objective via a dichroic mirror. The signal collected from the
fiber was imaged using the same objective, passed through the dichroic mirror and filtered
using a 532nm long pass filter, and measured using a Horiba iIHR550 Imaging Spectrometer
with Synapse CCD Detector. The peaks observed at 545 nm, 550 nm, 555 nm, 562 nm, 566 nm
and 580 nm, shown in Fig. 2(b), correspond to well known Raman peaks of silicaat 490cm™?,
605cm—1, 800cm™1, 1050cm 1, 1190 cm 1 and 1600 cm? respectively, previously used for
sensing applications [43]. The absence of any fluorescence peaks shows that the silica material
has negligible fluorescence at 532 nm for the excitation power and detector sensitivity used.
For fluorescence or Raman spectroscopy sensing applications these peaks generated within the
glass might affect the detection limit, depending on the excitation and emission wavelengths of
interest.
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3.2. Environmental stability
3.2.1. Introduction to environmental stability

Numerous sensing applications in health, the environment, agriculture and national security in-
volve the detection of analyte typically suspended in abulk liquid or gas; such as water or air.
When preparing the fiber for these applications, solvents such as acetone, isopropanol, methanol
and water are sometimes also used [44] to clean the core of dust or other particul ates deposited
on the surface. The silica exposed-core fiber serves as a unique platform for measuring any de-
terioration in the transmission properties when exposed to these typical sensing and processing
environments, providing access to the core for post exposure surface anaysis.

In previous studies, for the exposed-core fibers produced in F2 soft glass [30, 35] with a
~ @3 um core, it was found that the fiber lossincreased by 0.4-+0.048 dBm~1day 1, even when
stored in adry nitrogen filled environment. It is thought that this deterioration in the transmis-
sion properties of the fiber occurs due to changes in the properties at the core surface, such as
particulate deposits [42], micro-fracturing [44] and/or increased roughness [45] induced by
exposure to the environment. Since the deterioration found in the F2 soft glass exposed-core
fiberswasrapid, it could easily be measured by comparing standard cutback |oss measurements
over time. However, as shown in the previous section no loss was observed after 26 days for
the silica exposed-core fiber.

3.2.2. Exposureto air, water & methanol

To measure the exposure induced deterioration in the transmission properties of the silica
exposed-core fiber, alength of fiber was setup as previously described for cutback |oss measure-
ments. Instead of performing cutbacks, the transmitted power spectrum, in dBm, was recorded
from 3501750 nm every two minutes. With the fiber in air, this setup was left long enough so
that the measured power stabilized to within +0.05 dBm, then used to take time based measures
of the power. Then any changes over time in the transmission characteristics can be fitted to the
equation,

Pyt = Py o107 =110 €

where & isthe lossin dB/day. An assumption for these measurements is that the deterioration
measured comes from changes along the exposed fiber length, not just the cleaved ends of
the fiber, as the area exposed along the length is much greater than the area at the ends. Asa
sanity check, a laboratory-grade patch cord optical fiber assembly was setup in the same way,
to ensure that the measured losses were not coming from the light source or other parts of the
setup; where no deterioration was detected.

The result of £, (Eqg. (1)) for a 4.2m length of the exposed-core fiber exposed to air for
180hrs is shown in Fig. 3(a), where the 95% confidence interval is also shown in black. This
result shows that there is a sharp loss peak at 515nm, equivalent to 0.043dBm1day 1, and
a broad loss from ~450 nm to ~900nm with a peak of 0.023dBm1day 1. At wavelengths
~900 nmto ~1340 nm thelossis at ~0.0043 dBm~day 1, and drops below the detection limit
of the experiment for wavelengths > ~1340nm. The air exposure induced deterioration in the
transmission properties of the silica exposed-core fiber is lower than the confidence intervals
for cutback measurements, as shown in Fig. 2(a), and ~2 orders of magnitude better than for
the previously reported exposed-core fibers produced in F2 soft glass.

This measurement was repeated for a 1m length of the silica exposed-core fiber with a8cm
centrally located section of the fiber submersed in Milli-Q water, shown in Fig. 3(b), where
we observe that the transmission properties of the fiber is reduced by ~0.067 dBm~day—? for
wavelengths shorter than 1450 nm. When this was repeated with methanal, it was observed that
the transmission properties of the silica exposed-core fiber was significantly affected across all

#173379 - $15.00 USD Received 30 Jul 2012; revised 21 Sep 2012; accepted 22 Sep 2012; published 2 Oct 2012
(C) 2012 OSA 1 November 2012 / Vol. 2, No. 11 / OPTICAL MATERIALS EXPRESS 1544



0.05 0.2
0.04
= T 0.15
! >
goos 3
£ 0.02 E o1
5 =
2 0.01 2
S -~ 0.05
0
-0.01 ' 0
450 850 1250 1650 450 850 1250 1650

Wavelength (nm) Wavelength (nm)

Fig. 3. Deterioration in the transmission properties of the silica exposed-core fiber when
exposed to (a) air; and, (b) water.

the measured wavelengths (350-1750 nm), at arate of 12.8-16.8dBmthr—1.

This deterioration in the transmission properties is expected to come from changes in the
mechanical and/or compositional characteristics at the core surface, causing light scattering ef-
fects. When the core diameter isreduced, these light scattering effects are expected to increase,
asagreater portion of guided light travels outside the core. Further work isrequired to quantita-
tively determine the effect that core size has on the deterioration in the transmission properties
of the silica exposed-core fiber.

3.2.3. Surface mechanical and compositional characteristics

In order to determine the differences between the mechanical and compositional characteris-
tics of the exposed sample surfaces, nanometer-scale topographical and phase mapping of the
exposed-core fiber core surfaces was performed using a NT-MDT Ntegra Solaris AFM with
Smena head for Tapping Mode Atomic Force Microscopy (AFM).

Figures 4(a)—4(c), 4(d)-4(f) and 4(g)—4(i) show the AFM phase and topology results of a
25 um? section acrossthe core for the exposed-core fiber exposed to air for 19 days, Milli-Q wa-
ter for 72 hrsand methanol for 2 hrsrespectively. For the core area exposed to air, the nanometer
scale spikes in the topology and phase shift suggest small hardened impurities within the sur-
face structure, while the bulk of the material is homogeneous in composition with nanometer
scale roughness. For the core exposed to water, large peaks measuring > 100 nm in height and
several microns across the surface suggest that impurities from the water have been deposited
onto the core. The darkest areas in the phase image show up on the topology to be slightly
lower than the surrounding bulk, which may also be an indication of surface damage such as
micro-fracturing [44]. The results for the core exposed to methanol shows micron scale areas
with large phase shifts where the topology image indicates a increase in height. The methanol
exposed-core area was further investigated using a ContourGT-K1 coherence scanning inter-
ferometer (CSl), shown in Fig. 4(j), which indicates micrometer scale pitted sections along the
core instead of the increase in height observed by the AFM. It is known that topology height
reversal can occur for AFM images when the tip is strongly affected by the capillary forces and
also by the tip-sample van der Waals attraction [46]. In thisinteraction regime, the phase shift
showsto be more negative on more hydrophilic regions, and suggests pitting or micro-fracturing
of the methanol exposed sample, which is confirmed by the CSI results. Nevertheless, further
experimental evidence would be needed to confirm these hypothesis.
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Fig. 4. Tapping Mode Atomic Force Microscopy images of the exposed-core fibers exposed
to (a)—(c) air, (d)—(f) water and (g)—(i) methanol with (j) a coherence scanning interferom-
eter image aong the methanol exposed core region. (a), (d) and (g) show the phase images
across the core region indicated by the 12 um area on the x-axis, with [(b), (€) and (h) re-
spectively] enlarged phase images of the area shown by the green box; and, (c), (f) and (i)
showing their respective topologies.

4. Conclusion

A silica exposed-core fiber has been fabricated, for the first time to the best of our knowledge.
We have demonstrated preform drilling as an alternative for fabricating glass exposed-core
fibers, and shown the unique ability to perform surface analysis of the core with the silica
exposed-core fiber geometry produced. We explored and characterized the new silica exposed-
core fiber, showing it to have relatively low loss with deterioration in the transmission proper-
ties being ~2 orders of magnitude better than for the previously reported exposed-core fibers
produced in soft glass. Although the silica material shows good stability in air and water, the
buildup of contaminates on the surface and micro-fracturing deteriorates the transmission prop-
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erties, while significant degradation occurs with the use of methanol.

With high transmission properties in the UV-Vis-NIR spectral range, the silica materia is
suitablefor (bio)chemical sensing applications. The exposed-core geometry servesasaversatile
platform for real time evanescent field absorption or fluorescence spectroscopy, with capacity
for fast filling and quick response to kinetic changes of the analyte. This opens up new oppor-
tunities for optical fiber sensors requiring long term and/or harsh environmental applications
while providing long length light interaction with the analyte of interest.

In the future, further practical issues need to be solved, particularly in how to package
the fiber such that it is sensitive to the chosen analyte but protected from the applied sensing
environment.
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