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As a result of advanced treatment techniques, requiring precise target definitions, a need for more accurate delineation of the
Clinical Target Volume (CTV) has arisen. Mathematical modelling is found to be a powerful tool to provide fairly accurate
predictions for the Microscopic Extension (ME) of a tumour to be incorporated in a CTV. In general terms, biomathematical
models based on a sequence of observations or development of a hypothesis assume some links between biological mechanisms
involved in cancer development and progression to provide quantitative or qualitative measures of tumour behaviour as well as
tumour response to treatment. Generally, two approaches are taken: deterministic and stochastic modelling. In this paper, recent
mathematical models, including deterministic and stochastic methods, are reviewed and critically compared. It is concluded that
stochastic models are more promising to provide a realistic description of cancer tumour behaviour due to being intrinsically
probabilistic as well as discrete, which enables incorporation of patient-specific biomedical data such as tumour heterogeneity and
anatomical boundaries.

1. Introduction

Advanced radiotherapy techniques like 3D Conformal Ra-
diotherapy (3D-CRT), Intensity-Modulated Radiation Ther-
apy (IMRT), and Image-guided Radiation Therapy (IGRT)
restrict the high dose region to defined target volumes to
spare adjacent normal tissue. The margins are generally
reduced for modern radiotherapy techniques due to (a) more
accurate organ specification with the use of daily image
guidance that results in minimization of set up error, and
(b) superior conformity of dose distribution to irradiation
target volumes. However, a successful implementation of
these techniques, that is, achieving an acceptable Tumour
Control Probability (TCP) and Normal Tissue Complication
Probability (NTCP), requires very accurate target volume
delineation. According to ICRU report 50, the “Clinical Tar-
get Volume (CTV) is a volume encompassing visible Gross
Tumour Volume (GTV) and subclinical malignant disease”
[1]. Since subclinical disease cannot be detected by imaging

technologies, in contrast to gross tumour volume, which
is the visible extent and location of malignant disease [1],
CTV needs to be estimated. To ensure that CTV receives
the prescribed dose, the Planning Target Volume (PTV) is
drawn to account for several possible uncertainties. These
uncertainties are due to both physiologic movements which
are not controllable (e.g. patient’s respiration) and to daily
set-up variations. PTV is then the volume for which dose
calculation is performed and ensures that the whole of
CTV will receive the full prescribed radiation dose. Figure 1
schematically illustrates radiotherapy irradiation volumes
and their respective uncertainties regarding volume delin-
eation.

Among radiotherapy target volumes, delineation of the
Clinical Target Volume (CTV) is the most controversial. To
date, there is no consensus regarding the extent of histolog-
ical disease, thus the question of how far CTV is extended
beyond GTV is mostly left to the discretion of radiation
oncologists based on their experience, depending on patient’s
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Figure 1: Schematic diagram of radiotherapy irradiation volumes.

histopathological data. The uncertainty in CTV represents
a limitation on reduction of the irradiated target volume.
When the irradiated target volume is reduced due to dose
conformity of new treatment modalities, NTCP is improved.
On the other hand, the issue of CTV fuzziness becomes a
cause of concern because any PTV reduction enhances the
risk of missing a part or a few cells of subclinical disease,
as illustrated in Figure 2. It is worth mentioning that
missing one single cell reduces TCP to 37%. (The Poisson
distribution definition for TCP: TCP = e−n(D), where n(D) is
the expected number of surviving clonogens.) Therefore, in
order to confidently reduce the irradiated target volume, as
is the trend with current treatment techniques, the pattern of
microscopic extension needs to be known or predicted.

1.1. Biological Background. Normal growth and regeneration
of an organ requires cells to undergo cell division and to pro-
liferate. The rate of proliferation, however, is systematically
regulated to ensure the balance between cell proliferation
and cell loss as well as integrity and functionality of each
organ. This regulation occurs at cell cycle check points
where progression to a subsequent phase is prevented unless
prerequisites are satisfied. DNA lesions are recognized at
check points that lead onto repair pathways [4]. Normally,
cells with unrepaired DNA cannot continue their cycle
and are led to apoptosis (programmed cell death). Any
uncontrolled proliferation of cells, ensuing a series of DNA
mutations, results in abnormal aggregation of cells called
a tumour. An evolving tumour population undergoes two
stages, namely, avascular phase and vascular phase and
transition between these two phases requires angiogenesis,
a process which involves development and recruitment of
blood vessels to supply tumour cells with nutrients [5, 6].
Tumour commences its growth primarily via cell prolifera-
tion in an avascular phase. Further in its growth, individual
tumour cells secrete a substance called Tumour Angiogenesis
Factor (TAF) that initiates angiogenesis [6]. At this stage,
that is, the beginning of a vascular phase, tumour acquires
the capability to invade locally in the adjacent normal
tissue, and later tumour cells can detach themselves from
the primary mass and migrate through blood or lymphatic

Figure 2: Schematic diagram of CTV and PTV correlation for con-
ventional treatment techniques, on the left, as compared to modern
treatment techniques, on the right. CTV is indicated by red contour
and blue contour defines the PTV. As shown, the reduction of PTV
may result in missing a part of microscopic disease that leads to poor
treatment efficacy.

system to other sites in the body to produce new colonies
(i.e., metastasis) [6–9].

The Extracellular Matrix (ECM) is the external part of
tissue on which cells reside. It provides structural support
to the cells, regulates intercellular communications and so
forth. The ECM also imposes spatial constraint on tumour
proliferation. On the other hand, the tumour invasion is
known to be facilitated by gradients in the ECM density (i.e.,
an ECM gradient is a directional rise in ECM density, and
its magnitude determines how fast the ECM density rises in
that direction). These gradients cause the cells in the outer
layer of a tumour to break away from the primary tumour
mass and move along the gradient, a phenomenon called
haptotaxis [9]. It is known that, Matrix Degrading Enzymes
(MDEs) produced by cancer cells degrade the surrounding
ECM resulting in development of ECM gradients [9].

Apart from proliferation and haptotaxis, other factors
like cell-cell adhesion, cell-matrix adhesion, and ECM den-
sity also affect cell motility in the course of tumour invasion
[6].

In summary, tumour evolution is an interrelated mul-
tistage process that starts from a series of cancer-associated
gene mutations leading to formation of a colony that could
further invade adjacent tissues and finally metastasize in dis-
tant organs. Better understanding of biological mechanisms
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of cancer development helps to anticipate the behaviour of
the tumour that undoubtedly leads to a better treatment
efficacy.

1.2. Mathematical Modelling. Mathematical modelling is
a suitable tool to generate algorithms to correlate infor-
mation acquired from imaging techniques to the pattern
of growth and tumour invasion. In a typical course of
model development, biological phenomena are represented
in mathematical equations. The solutions of the equations,
in return, provide predictions of tumour evolution, tumour
aggressiveness in a given patient, and so forth. The validity
of a model is then examined by comparison with available
actual data, and iteration is performed until an adequate
match is reached and thus a plausible model is obtained.
A semirealistic model developed in this manner provides
an insight into biological mechanisms of tumour growth
and invasion under a variety of circumstances. It also allows
for assessment of potential treatment regimens. The model
could be useful for clinicians in clinical tumour volume
definition.

Oncogenesis can be modelled at three levels: (1) sub-
cellular level, (2) cellular and microscopic level that concerns
individual cell behaviour while taking into account cell-
extracellular matrix (ECM) interactions, and (3) macro-
scopic level that is related to the evolution of tumour in terms
of cell density and mostly is based upon reaction-diffusion
equations [10].

In this paper, some of the recent computational and
mathematical models developed for tumour growth and
invasion are reviewed. Two approaches used for modelling,
analytical and stochastic, are discussed individually in the
following sections.

2. Deterministic Models

2.1. Analytical Models. Analytical modelling of tumour
growth has been typically done based on the reaction-
diffusion equations in the literature. Swanson et al. [11]
reviewed some recent models developed for glioma of the
brain. The problem was initially formulated as a conservation
equation by Murray’s group [12–14] as: the rate at which
tumour cell population changes is equal to diffusion (motil-
ity) of tumour cells plus proliferation of tumour cells. For
untreated glioma, this can be represented in a mathematical
form as [11, 15]

∂c

∂t
= −∇ · J + ρc, (1)

where c(x, t) denotes the density of tumour at location x and
time t,∇·J is the diffusion component (i.e., outflow of mate-
rial out of the system), and ρc is proliferation component
(inflow of material in the system), where ρ is the proliferation
coefficient. Using the Fick’s first law that assumes the dif-
fusive flux flows from high-concentration regions to low-
concentration regions, the diffusion component is related to
tumour cell density as follows:

J = −D ∂c

∂x
in 3D−→ J = −D∇c. (2)

Thus (1) takes the form

∂c

∂t
= ∇ · (D∇c) + ρc, (3)

where D is diffusion coefficient representing active motility
of cancer cells and ∇ denotes spatial gradient operator. The
first term, the diffusion component, is related to the periph-
ery of the tumour while the second term, the proliferation
component, pertains to active part of tumour core and is
described by cellular proliferation laws (e.g., exponential
growth) [10]. The assumptions considered in this model
were the following.

(i) Brain tissue is homogeneous thus diffusion coeffi-
cient, D, is constant throughout the brain.

(ii) Tumour growth is generally exponential thus ρc is
constant.

(iii) Boundary condition: c(x, 0) = f (x), where f (x) is
initial profile of the tumour and there is no migration
beyond brain boundaries.

Thus (3) reduces to

∂c

∂t
= D∇2c + ρc. (4)

One of the consequences of (4) is that tumour density
distribution, c, is a function of the ratio of ρ/D thus two
different tumours whose different combinations of ρ and D
result in the same ratio of ρ/D, appear the same at a single
observation time. Hence, just a single MRI/CT image is not
sufficient to estimate CTV correctly without knowing the
pattern of tumour cell density distribution.

A more realistic approach was taken by Swanson et al.
[2, 17]who introduced the geometry of the brain into the
model, thus in the revised form of the model, the following
assumptions were considered.

(i) Complex geometry of brain is introduced, thus diffu-
sion coefficient, D, is not uniform and is a function
of location in the brain tissue.

(ii) Equation (3) is applied to describe the pattern of
growth in diffusive models with D being a function
of x as follows:

D(x)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DW , (diffusion coefficientin

white matter of the brain),

DG, (diffusion coefficient in

gray matter of the brain
)
,

where DW > DG.

(5)

To determine the model parameters, 12 serial CT scans of
a patient, diagnosed with astrocytoma, during his terminal
year were examined to derive estimations for velocities of
tumour margin advance through grey and white matter, νG
and νW , respectively. Fisher’s approximation (D = ν2/4ρ)



4 Computational and Mathematical Methods in Medicine

was then applied to correlate velocity, ν, of detectable tumour
margin with proliferation rate and diffusion coefficients.
According to CT scans of the right hemisphere (predomi-
nantly grey matter), νG was identified to be 0.008 cm/day,
thus Fisher approximation gives DG = 0.0013 cm2/day, and
DW being almost five times of DG becomes 0.0065 cm2/day.
To assign diffusion coefficients to corresponding brain cells,
spatial distribution of white and grey matter was adopted
from the brain web database [31]. Applying these determined
parameters in the simulation based on (3) describing virtual
gliomas growth, two-dimensional plots of tumour cell
density on coronal, sagittal and axial planes were generated,
as shown in Figure 3. Using these plots, they determined
the part of tumour volume that can be visualized using
MRI technique. Enhanced MRI technique has a detection
threshold of 400 cells/mm2. This means that any part of
tumour having a concentration below this threshold is
not detectable on a MRI image. The comparison between
detectable part and simulated profile provides an insight
into how far and at what concentration microscopic disease
is invaded beyond visible tumour. This model that derived
the behaviour of glioma according to two factors (“D” and
“ρ”) demonstrates that the distribution of ME in invasive
gliomas does not follow an isotropic pattern that is invariably
assumed by clinicians for definition of CTV.

The biomathematical modelling based on (3) in conjunc-
tion with serial pre-treatment MRI images of the patient also
provides a tool to quantify patient-specific proliferation and
diffusion rates. Wang et al. [32] examined two pretreatment
MRI images of each of a population of 32 patients diag-
nosed with Glioblastoma (GBM) to quantify patient-specific
kinetic rates of glioma cells (net proliferation and diffusion
rates). These parameters are used to predict the course
of disease and, more importantly, to assess the efficacy of
different treatment plans for each individual patient through
a survival analysis. In the survival analysis, the effectiveness
of any treatment was measured via the ratio of actual survival
time after respective therapy to the calculated survival time
(by the model) without therapy.

The evolution of mathematical modelling to gain insight
into the mechanism of GBM growth and invasion initiated
by Swanson et al. [11, 17] was followed by Stein et al.
[20] who developed a continuum model and compared the
outcome of the model with 3D in vitro experiments on the
three dimensional pattern of growth of GBM spheroids. It
was concluded that GBM spheroids consist of two classes
of cells, namely, proliferating core cells and peripheral
migrating cells. This finding was later included in other
models like the model of Thalhauser et al. [22] in which
three dependent variables, namely, the concentration of
migrating cells, proliferating cells and oxygen (mmHg) were
correlated in three partial differential equations for tumour
development around a central blood microvessel. Analysis
of the density distribution profiles of these two classes of
cells led to a hypothesis regarding emergence of metastatic
phenotype to occur for population of cells containing highly
motile cells. This hypothesis is based on the evidence that
populations of motile cells grow to lower densities compared
to aggressive growers (mobile cells), and hence they are

unlikely to cause vascular network collapse since they cause
less compressive pressure on microvessel walls. In a more
recent progress, Eikenberry et al. [8] incorporated haptotaxis
in GBM models and also extended the model stochastically
to form a deterministic-stochastic system for modelling.
The mathematical model was developed based on four
dependent variables: the concentration of migrating cells,
proliferating cells, ECM, and matrix degrading enzyme.
The system of partial differential equations was discretized
to allow for stochastic estimation of the transition prob-
ability between proliferating and migrating class of cells
at each grid point. The stochastic nature of the model
allows for applying patient-specific geometry of brain and
location of tumour inside the brain during simulation. The
simulation was performed for an actual clinical case of a
GBM patient undergoing a course of treatment including
surgical resection, gamma knife, and chemotherapy. The
model qualitatively reproduced the actual tumour growth
of the patient. However, the model failed to simulate the
deformation of surgical cavity.

The spatial-temporal evolution of the brain tumour in
the presence of chemotherapy was investigated by Tracqui et
al. [2, 12]. Twelve successive CT scans during the terminal
year of a patient diagnosed with astrocytoma were studied.
The patient received two courses of chemotherapy during 12
months before death, thus (3) can be modified as

∂c

∂t
= ∇ · (D∇c) + f (c)− g(c), (6)

where g(c) is the cell loss due to chemotherapy and defined
as

g(c) = [K1(t) + K2(t)]c (7)

with

K1(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k1, during the time the first course

of drug was delivered,

0, during the time the second course

of drug was delivered,

K2(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, during the time the first course

of drug was delivered,

k2, during the time the second course

of drug was delivered,

(8)

where k1 and k2 are positive constants.
The proliferation term, f (c), is typically taken as a linear

function of c (exponential proliferation) or a nonlinear func-
tion of c (logistic proliferation) when the proliferation is
limited, since cell density is close to its maximum:

f (c) =
{
ρc, exponential proliferation,

ρc(1− c), logistic proliferation.
(9)

The area of tumour was evaluated at each successive CT
scan and then the data was compared to the values derived
from (6). The comparison between time evolution of
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Diagnosis Death

Figure 3: The left column corresponds to the tumour at diagnosis and right column corresponds to tumour at death. The dark black contour
defines the detectable edge of tumour by (MRI), red contour indicates high density of tumour cells, and blue contour denotes low-density
disease. Courtesy of Swanson et al. [2].

simulated tumour area and tumour areas acquired from CT
scans showed a distinctive discrepancy, particularly before
the end of the first course of chemotherapy. Consequently,
the assumptions were revised and it was postulated that there
is a second cell density c2(x, y, t) present which is resistant
to the first course of chemotherapy but sensitive to the
second course. The insensitivity of the second population
was considered to be due to mutations from the radiotherapy
administered three years earlier. Given this condition, the
system was described mathematically as follows:

∂c1

∂t
= ∇ · (D∇c1) + ρ1c1(1− c)− [K1(t) + K2(t)]c1

∂c

∂t
= ∇ · (D∇c) + ρ1c1(1− c) + ρ2c2(1− c)− K1(t)c1

−K2(t)c,
(10)

where ρ1 and ρ2 are proliferation rates corresponding to
the first and second cell density, respectively, and variable c
represents the total density of tumour cells (c = c1 + c2).

After optimization and identification of unknown
parameters, the identified values were found to be in agree-
ment with known biological data (e.g., D = 1.2× 10−7 cm2/s
which is comparable with estimation of glioma cell migra-
tion rate obtained from in vitro experiments [33]).

Woodward et al. [15, 34] modified Tracqui’s model for
the same case study in terms of initial conditions related
to distribution of type one and two of cancerous cells. In
contrast to Tracqui’s model that assumed an approximate
initial distribution of 90% of type one and 10% of type
two cancerous cells, Woodward included another parameter
as the number of type one cells remaining after surgery
followed by X-ray therapy 1000 days before the first scan and
also assumed that type two cancerous cells are the result of
mutations of type one cells three years earlier. This allowed
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for prediction of distribution of each type of cells at the time
of diagnosis (rather than making a rough estimation) and
at any time during the terminal year. Furthermore, the sim-
ulated evolution of the tumour was used to retrospectively
evaluate different courses of treatments (e.g., different extent
of surgical resections instead of chemotherapy) in terms of
their respective subclinical recurrence.

Swanson et al. [11, 35] investigated the incorporation of
cell loss due to chemotherapy in a more general formulation
by defining g(c) to be a periodic function such that for the
time periods chemotherapy is on, g(c) is equal to a specific
positive constant, k (indicating the rate of cell loss due
to chemotherapy), and otherwise is zero. The model was
originally formulated assuming homogeneous drug delivery
and further developed to take into account heterogeneity
in drug delivery, whereby drug delivery is expected to be
less in white matter compared to that in gray matter. The
experimental observation of shrinkage of gliomas in specific
areas together with persistent growth in other areas of the
brain following chemotherapy was explained by this model.

Clatz et al. [10] developed a numerical model to simulate
the three-dimensional pattern of growth and invasion of
Glioblastomas. To account for different diffusion coefficients
which are dependent on the brain tissue, the anatomical atlas
of the brain in conjunction with Diffusion Tensor Image
(DTI) were employed. The algorithm comprised of four
steps. First, the patient MRI images were registered on the
brain atlas on which gross volumes were delineated by a
radiation oncologist. In the second step, the image registered
on atlas was used to produce patient’s tetrahedral mesh of
brain in which diffusion coefficients respective to each voxel
were specified using brain atlas and DTI of the patient.
Simulation was performed in the third step by applying
reaction-diffusion equation on initial tetrahedral mesh of
brain. Ultimately, to measure the validity of the model, the
simulated profile was compared with brain deformation seen
on the patient MRI images in six months later.

Bondiau et al. [36] applied the virtual model of glioma
growth developed by Clatz on actual data of a single patient
and compared tumour growth pattern derived from the
model with current radiotherapy margins. Tumour growth
was studied in two scenarios, namely, high diffusion-low
proliferation (HD-LP) and high proliferation-low diffusion
(HP-LD) tumours. It was observed that, with 2 cm margin,
2.1% and 15.1% of microscopic invasive tumour cells fall
outside margin in HP-LD and HD- LP tumours, respectively.
Also 53.5% and 55.5% of cells inside margin in HP-LD and
HD- LP, respectively, are normal brain cells. Therefore, it
was concluded that uniform clinical margins may not be
adequate to cover whole tumour neither to spare normal
tissue. Although this conclusion is supported by many other
studies, the rationale of this comparison is argued on the
basis that a model which is based on a single patient
clinical data, though sophisticated, cannot be considered as
a criterion to assess clinical margins. It first needs to be
validated against some actual clinical data (e.g., recurrence
rate) in a statistically sufficient number of patients.

The effect of external beam radiation therapy was incor-
porated in the reaction-diffusion model in the study of

Rockne et al. [23]. Therefore, the conservation of cells (3)
can be modified as:

∂c

∂t
= ∇ · (D∇c)

︸ ︷︷ ︸

Diffusion of glioma cells

+ ρc
(

1− c

k

)

︸ ︷︷ ︸

Logistic proliferation

+ R(x, t, Dose)c
(

1− c

k

)

︸ ︷︷ ︸

Cell loss due to radiotherapy

,

R(x, t, Dose) =
⎧
⎨

⎩

0, for t /∈ therapy,
(

1− e−(αD+βD2)
)

, for t ∈ therapy,

(11)

where D and k denote the dose and tumour carrying capacity,
respectively. R(x, t, Dose) is the probability of death of cancer
cells (one minus cell survival fraction given by the linear-
quadratic model of cell survival (S = e−(αD+βD2))) due to
radiotherapy.

In previous models, passive translocation of cells due
to ECM-cell interactions and active cell migration were
overlooked. Retaining reaction-diffusion formula as the
framework, Tracqui [16] introduced the effects of passive
translocation of cells due to ECM-cell interactions and
active cell migration up to adhesivity gradient. The variables
u, ρ, and c were designated for mechanical displacement
of cell-ECM composite, density of ECM, and cell density,
respectively. The parameter r denotes the proliferation rate
of cancer cells. Thus the reaction-diffusion formula (cell
conservation equation) takes the bllowing form:

∂c

∂t
= −∇ · (Jc + Jd + Jh) + rc(1− c),

Jd = −D∇c (diffusion term),

Jc = c∂u

∂t
(convection term),

Jh = hc∇ρ.

(12)

The convection term addresses ECM displacement due to
cells convection with velocity ∂u/∂t. Equation (12) indicates
that the two new terms inhibit tumour growth. Moreover, the
conservation of ECM density reads as

∂ρ

∂t
= −∇ ·

(
ρ∂u

∂t

)

︸ ︷︷ ︸

convection

+ S
(
c, p

)

︸ ︷︷ ︸

ECM biosynthesis

− G
(
c, p

)

︸ ︷︷ ︸

ECM degradation

,

(13)

where S(c, p) and G(c, p) denote the rate of formation and
loss of ECM, respectively. For the sake of simplicity, ECM
turnover was neglected, that is, S(c, p) = G(c, p) = 0. Thus
(12) and (13) together with the equation regarding viscoelas-
tic response of ECM to cells’ traction force formed a set of
differential equations for modelling. Nonhomogeneous and
nonsymmetric profile at the tumour surface was obtained
by the model. To validate the model, it was suggested to
compare growth pattern generated by the model with that
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acquired from in vitro experiments. To our knowledge, no
article addressing such a comparison associated with this
model has been found. Synthesis and degradation of ECM
which was neglected in primary calculation could be further
included.

More recently, the interactions of cell-cell and cell-
ECM were considered in a more elaborate way in reaction-
diffusion models. Gerisch and Chaplain [6] developed
an analytical Partial Differential Equation (PDE) model
to simulate tumour growth and invasion both one and
two dimensionally. In the study of Gerisch, firstly a local
continuum model was formulated based on the system of
reaction-diffusion equations proposed by Anderson et al.
[21]. It was assumed that the movement of the cells is due
to random motility with constant diffusion coefficient D1

(assuming constant ECM density), and haptotactic response
to the ECM gradient. As a matter of fact, cancer cell motility
depends on both ECM gradient and density, thus this was a
simplifying assumption. The series of differential equations
constituting the model are as follows:

∂c

∂t
= ∇ ·

[

D1∇c − χc∇ν
]

+ μ1c(1− ϑ1c − ϑ2ν),

∂v

∂t
= −γmv + μ2(1− ϑ1c − ϑ2ν),

∂m

∂t
= ∇ · [D3∇m] + αc − λm,

(14)

where c(x, t), v(x, t), m(x, t) denote the cancer cell density,
the ECM density and the concentration of Matrix Degrading
Enzyme (MDE), respectively. The parameters ϑ1 and ϑ2 are
fractions of unit volume occupied by cancer cells and ECM,
respectively. μ1, μ2, γ, D3, α and λ denote proliferation
rate of cancer cells, remodelling rate of ECM, degradation
rate of ECM, MDE diffusion coefficient, the rate of release,
and removal of MDE, respectively. Finally, χ is designated
for haptotactic function. Equation (14) differs from that of
Anderson in two aspects: Employing logistic proliferation
and applying modified haptotactic function to prevent
cellular overcrowding at boundaries. There is also a slight
difference in definition of Initial Conditions (IC) associated
with ECM.

In the second step, Gerisch modified this model (14)
to a nonlocal continuum model to include cell-cell and
cell-ECM adhesion. To this end, the haptotactic term was
substituted with a nonlocal flux term in (14). The nonlocal
term represents the velocity of cancer cells due to cellular
adhesion (cell-cell adhesion) and to the ECM (cell-ECM
adhesion). The growth profile was simulated for both local
and nonlocal models and surprisingly the detachment of a
cluster of cells that degrades ECM on its way and migrates
was obtained.

Within the realm of continuum modelling, the approach
that regards a tumour as a continuum medium whose overall
dynamic and morphology is dependent on the microenvi-
ronment material concentration is reflected in some other
works in literature [37–46]. In these models, the concentra-
tion of microenvironment materials such as nutrition supply,
like oxygen and glucose, and growth inhibitor, which is either

anticancer drugs or chemicals produced by immune system,
is assumed to influence individual cells phenotype.

2.2. Hybrid Models. The above-addressed models, both
deterministic reaction-diffusion equations whose solutions
is in the form of invading travelling waves of cancer cells
and mechano-cellular formalism (e.g., Tracqui, 1995 [16])
provide spatio-temporal spread of tumour at macroscopic
level. However, the behaviour of tumours at cellular and sub-
cellular levels, which becomes important when individual
cell effects dominate in the course of tumour growth and
invasion, such as the spatio-temporal evolution of tumour
cell heterogeneity, cannot be predicted by these modelling
approaches [47, 48]. Therefore, the continuum modelling is
appropriate for studying systems at a large scale. Discrete
modelling can overcome this limitation since it can track
individual cells and update their states at each time step.
Thus it is an appropriate tool to investigate the interaction
between cells and ECM, phenotypic transitions of cells which
leads to a nonlinear cancer system to another state that
in return affects the overall behaviour and morphology of
tumours and so forth. The important drawback of discrete
modelling is its increasingly high computational demands as
the number of cells being modelled increases. An alternative
to these scale-specific models is a multiscale approach that
refers to the models that contain more than one spatial and
temporal scale to take into account cross-scale mechanisms
in the course of tumour growth and evolution [49]. This
approach is classified as “hybrid” modelling. A hybrid model
comprises of a continuum deterministic part that controls
the concentration of ECM and chemicals, and a stochastic
discrete part governing cell migration and interactions.

Such a hybrid model of tumour growth and invasion
was developed by Anderson [19]. The formalism of hybrid
modelling enables to simulate specific cell processes (e.g.
proliferation and cell-cell adhesion) and also inclusion of
different tumour cell phenotypes at cellular level in a con-
tinuum chemical/ECM surrounding. The model parameters
consisted of concentration distributions of tumour cell (n),
ECM ( f ), MDE (m), and oxygen (c). The interaction of these
parameters was represented in a set of differential equations,
as follows:

∂c

∂t
=

oxygen diffusion
︷ ︸︸ ︷

Dc∇2c +

oxygen production
︷︸︸︷

β f −
oxygen uptake

︷︸︸︷
γn

−
oxygendecay
︷︸︸︷
αc ,

∂m

∂t
=

MDE diffusion
︷ ︸︸ ︷

Dm∇2m +

MDE production
︷︸︸︷
μn −

MDE decay
︷︸︸︷

λm ,

∂ f

∂t
=

ECM degrdation
︷ ︸︸ ︷

−δm f ,

∂n

∂t
=

random motility
︷ ︸︸ ︷

Dn∇2n −
haptotaxix

︷ ︸︸ ︷

χ∇ · (n∇ f
)
.

(15)
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As indicated in the first line of (15), oxygen is diffused
into the ECM, consumed by tumour and decayed naturally at
rates γ and α, respectively. The hybrid model, that follows the
path of each individual cell, requires discretising the system
of differential equation based on finite difference method in
a given time and space steps [21]. Each point on the grid is
correlated to neighbouring grids via coefficients indicating
the probability of transition from that grid to another. For
example, tumour cell density is expressed as

n
q+1
i, j = n

q
i, jP0 + n

q
i+1, jP1 + n

q
i−1, jP2 + n

q
i, j+1P3 + n

q
i, j−1P4,

(16)

where indices i and j represent the location and q specifies
the time. The coefficients P0,P1, . . . ,P4 are probabilities
of transition from the grid in question to the respective
neighbouring grids. Unlike purely continuum modelling,
the hybrid model, being intrinsically multiscale, allows for
investigation of the effect of tumour cell heterogeneity
on the morphology and phenotypic diversity of invading
vascular tumours (e.g., capturing the emergent property of
invasive cells) [50]. In the more recent studies of Anderson
et al. [51, 52], the hybrid model was used to simulate
the shape of a growing tumour under homogeneous and
heterogeneous matrix distribution and a phenotypically
heterogeneous tumour cell population. Also, the impact of
nutrient availability during tumour development on tumour
morphology was examined. The models predicted that harsh
microenvironment conditions lead to a tumour mass with
invasive morphology (fingering margins) dominated with
a few aggressive phenotypes. Other studies independently
conducted in vivo and in vitro experiments to examine the
role of harsh environment (e.g., hypoxia) in the invasive
morphology of tumours [18, 53]. The results of their
investigations corresponded to those predicted by the hybrid
model. However, neither of them examined phenotypic com-
position of the resulting tumours, thus these experiments
just partially validate the hybrid model.

Malignant tumour invasion, driven by haptotaxis, both
in the form of travelling waves (continuum models) [54–
56] and hybrid models [57–59], has been also modelled by
others. The model developed by Anderson and Chaplain
[58] was mathematically analysed by Kubo [60] to investigate
asymptotic profiles of solutions. The simulated tumour cell
distribution illustrated that a cluster of cells detaches from
the original tumour mass and migrates further away from
the tumour as the time evolves. The simulated tumour cell
distribution shows an explicit detachment of a cluster of cells
and qualitatively corresponds to the results of Gerisch’s study
[6].

The most recent work in the continuum deterministic
framework is the study of Swanson [61]. In this study the
Proliferation-Invasion (PI) model was developed to produce
a Proliferation Invasion Hypoxia Necrosis Angiogenesis
(PIHNA) model incorporating the mechanisms related to
angiogenesis cascade. Three different cellular types, namely,
proliferative, hypoxic, and necrotic were described mathe-
matically in a form of three partial differential equations in
which conversions of each type to others due to microen-
vironmental changes were included. It is known that, while

tumour cells grow and invade according to their respective
proliferation and diffusion rates, the microenvironment
becomes harsh and leads to the production of Tumour
Angiogenic Factor (TAF) by proliferative and hypoxic cells
in response to the metabolic demands of tumour. It is
worth noting that the rate of production of TAF by hypoxic
cells is significantly higher compared to that by proliferative
cells. The presence of TAF in tumour microenvironment
stimulates vascularisation. These two processes were also
represented in two differential equations that formed a
system of five equations for modelling. The in silico pre-
diction of malignant progression of tumour corresponded
well with imaging (MRI) and histologic data of three GBM
patients who had approximately similar size of tumour but
different hypoxic and necrotic ratios on their MR images.
In the context of microscopic extension, this model can
predict local invasion. However, it cannot visualize those
microscopic clusters of cells detached from main mass of
tumour, since it overlooks migration (via haptotaxis).

Table 1 Summarizes the major analytical models of tum-
our proliferation and diffusion reported in the literature.

Analytical modelling based on conservation of cells has
evolved from basic models such as the one proposed by Mur-
ray’s group [12–14] to very sophisticated models considering
many biological mechanisms involved in tumour growth and
invasion (e.g., Gerisch and Chaplain [6]). Some significant
achievements regarding prediction of tumour behaviour in
the course of its progression can also be obtained using
this class of modelling. However, in order to obtain a
realistic model, other critical characteristics of tumour cell
growth are yet to be taken into account. The heterogeneity
of diffusion coefficients and multilayer nature of tumours
(necrotic, hypoxic, and proliferative layers) brought about
by nutrient gradient exemplify the overlooked parameters.
Moreover, purely analytical (continuum) modelling seems
to be too inflexible to represent the biological phenomena
which are intrinsically probabilistic. Therefore, what is
actually favoured is not one single precise solution for a
given situation provided by analytical models, but rather a
probability distribution which better describes the behaviour
of such systems.

3. Stochastic Models

Stochastic models are guided by probability distribution. The
various techniques used in stochastic modelling are dom-
inated by Monte Carlo and Markov approaches which are
generally employed in the simulation of biological systems.

3.1. Markov Model. Markov models are stochastic models
which simulate the state of systems with time-dependent
random variables possessing Markov property. A stochastic
process has Markov property (or memoryless property), if
the probability distribution of future states depends only on
the present state and not on the preceding sequence of events.
This reads mathematically as

P(Xn+1 = x | X1 = x1,X2 = x2, . . . ,Xn = xn)

= P(Xn+1 = x | Xn = xn),
(17)
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Table 1: A summary of analytical models of tumour proliferation and diffusion.

Type
Site of

modelling
Incorporated
mechanisms

Model validation
and results

Comments Reference

Continuum Glioma

Random motility
with uniform
diffusion; exponential
proliferation

N/A

Prediction of basic
behaviour of
gliomas (e.g.,
tumour cell density
is a function of
ρ/D)

Cruywagen et al.
1995 [14]

Continuum Astrocytoma

Random motility
with uniform
diffusion; logistic
proliferation; cell loss
due to chemotherapy

12 CT images of a
patient/agreement
between model
parameters and
experimental data

The model is
applicable for a
specific course of
treatment

Tracqui et al. 1995
[12]

Mechano-
chemical

Multisite

Uniform diffusion;
logistic proliferation;
ECM-cell adhesion;
haptotaxis

N/A

While important
mechanisms in
tumour invasion
are considered, the
behaviour of
tumour at cellular
level cannot be
predicted

Tracqui 1995 [16]

Continuum Glioma

Random motility
with nonuniform
diffusion; exponential
proliferation

Virtual MRI
image/obtaining
nonisotropic
invasion pattern

Rough prediction
of the extent and
concentration of
local invasion.
Applicable for
tumours >1 (mm)3

Swanson et al.
2002, 2000 [2, 17]

Continuum Glioblastoma

Nonuniform
diffusion; exponential
proliferation; mass
effect

MR
images/capable to
simulate complex
tumour behaviour

Migration and
departure of cells
not taken into
account

Clatz et al. 2005
[10]

Continuum-
Stochastic

Multisite

Random motility
with uniform
diffusion; haptotaxis;
three-population
tumour cells;
heterogeneous ECM

Model predictions
consistent with
clinical findings
[18]

Stochastic nature
of the model allows
to predict avascular
invading tumour
morphology by
following
individual cells
with different
phenotypes at each
time and space step

Anderson 2005
[19]

Continuum Glioma

Random motility
with uniform
diffusion; logistic
proliferation; radially
biased motility;
shedding of invasive
cell at tumour surface

The model
reproduces in vitro
experiments data

Assuming
two-population
tumour cells,
proliferative (core)
and invasive
(periphery), and
modelling invasive
cells. Applicable for
tumours <1 (mm)3

Stein et al. 2007
[20]

Continuum Multisite

Random motility
with uniform
diffusion; logistic
proliferation;
ECM-cell adhesion;
haptotaxis, Cell-cell
adhesion

Comparison to
simulation results
of Anderson et al.
[21]

Simplifying
assumptions:
uniform diffusion
and that haptotaxis
is independent of
ECM density; the
simulation is 2D

Gerisch and
Chaplain 2008 [6]
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Table 1: Continued.

Type
Site of

modelling
Incorporated
mechanisms

Model validation
and results

Comments Reference

Continuum multisite

Random motility
with uniform
diffusion; logistic
proliferation;
two-population
tumour cells; oxygen
concentration

In vivo tumour
growth
observation

Assumption: cells
could either
proliferate or
migrate where
transition between
these two classes is
environment-
dependent;
haptotaxis not
considered

Thalhauser et al.
2009 [22]

Continuum-
Stochastic

Glioma

Random motility
with nonuniform
diffusion; logistic
proliferation;
two-population
tumour cells;
haptotaxis

The model predicts
the tumour growth
pattern of a clinical
case

Stochastic step of
the model allows
for introduction of
patient-specific
parameters (e.g.,
tumour location)

Eikenberry et al.
2009 [8]

Continuum Glioma

Random motility
with nonuniform
diffusion; logistic
proliferation;
radiotherapy

The biopsies of
nine patients/the
model reproduces
RT response

In contrast with
imaging-based RT
response, this
model
incorporates
patient-specific
tumour growth
kinetics to quantify
RT outcome

Rockne et al.
2010 [23]

where Xis are random variables having Markov property.
A Markov chain is the simplest Markov model which is a
chainlike random process that transforms from one state (i)
to another ( j) by a transition matrix whose elements are
described as

pi j = P
(
Xn+1 = j | Xn = i

)
. (18)

Benson et al. [3] produced a theoretical model to predict
the microscopic spread of tumour to regional lymph nodes
based on anatomical information adopted from the Foun-
dational Model of Anatomy (FMA) in the head and neck
cancer. A computational rule-based model was previously
proposed in this area, based on clinical data rather than
anatomical principles, by Kalet et al. [62]. FMA provides
information regarding an almost complete set of drainage
pathways or lymph chains which is known to be followed
by subclinical spread [63]. The information acquired from
FMA was supplemented by clinical data pertaining to lymph
chains that span multiple regions. The inputs to the model
were primary tumour location and T-stage. In FMA every
primary site is associated with its respective lymphatic
chains, thus lymphatic chains with subparts corresponding
to the primary tumour location were derived from FMA.
A sequence of Markov models were developed such that
each hidden Markov model was assigned to one position
in the pathway where position “0” was labelled for the
original tumour. The validity of the model was examined
by comparing the model results with two surgical data.
Overall, the model overpredicted the metastasis in specific

regions, requiring certain modifications such as revising
supplementary data added to FMA. The procedure starting
from model inputs to model validation followed by iteration
is diagrammatically shown in Figure 4.

3.2. Monte Carlo Model. Monte Carlo (MC) models are
widely used in the field of cancer biology and treatment since
this method is particularly useful for simulating systems with
considerable uncertainty in parameters.

The earliest developed MC models of tumour growth
date back to early 80’s, for example the work of Duchting
and vogelsaenger [64] for small tumours which took into
account nutritional needs of tumours. Aiming to investigate
the pattern of in vivo cancer development, Qi [65] simulated
the distribution of cancer cells in a given biochemical
environment as a two dimensional cellular automaton on
a square lattice. Qi et al. [66] later advanced the model
to take into account proliferation of cancer cells, nutrition
supply, mechanical pressure, and the cytotoxic behaviour
of immune system and reproduced Gompertz model which
is typically used to describe the growth of cancer tumour
volume (Gompertz model of cancer tumour volume growth
is V = V0 exp(A/B(1− exp(1− Bt)), where V is the volume
of tumour at time t and V0 is the initial volume. A and
B are parameters). Smolle and Stettner [67] considered
a two-dimensional tumour growth model and correlated
macroscopic behaviour of tumour (tumour morphology)
with the functionality of tumour cells at microscopic level
(e.g., interaction of tumour cells with microenvironment).
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Figure 4: Schematic diagram of the Markov model developed by Benson et al. [3].

Later, the invasiveness of tumour in the absence of active
motility was studied in a stochastic cellular automata by
Smolle et al. [68]. Aimed to provide an algorithm to predict
the extent and direction of spread of a brain tumour,
another elegant approach was presented in a patient-specific
in vivo brain tumour growth model which was developed
by Wasserman et al. [69]. The model involved a variety of
forces associated with microenvironmental (e.g., nutrient
and growth inhibitor distributions) and mechanical factors
(e.g., cell adhesiveness and resistance of brain parenchyma
to expansion) and was implemented via the finite element
method. To validate, the model was implemented on a
patient MRI data to retrospectively predict the extension of
tumour with respect to time. An approximate agreement
between simulated tumour extension and MRI image was
achieved. It is worth noting that this model explicitly ad-
dresses the problem of subclinical boundaries (CTV) in
irradiation target definitions.

One of the common approaches in stochastic modelling
is the Cellular Automaton (CA) method which employs a
grid lattice, with each site in the grid accommodating a
finite number of cells in specific states, to grow a tumour
from a few cells to macroscopic stages. When the time is
incremented by one, the defined biological rules determine
the updated states of cells in terms of their current states
and microenvironment. A 3D cellular automaton model
of untreated brain tumour was developed by Kansal et al.
[24, 70]. The site of tumour growth was modelled as a
Delaney lattice, made of Voronoi network by connecting
those sites whose polyhedra share a common face. Therefore,
the density of lattice varied continuously with the radius of
tumour, being greater in the centre and reduced towards
the surface of the tumour. The tessellation lattice was
isotropic, thus it precluded the anisotropies encountered

in the models in which cubic lattice was adopted (e.g.,
the model presented by Duchting and Vogelsaenger [64]).
However, a purely random distribution could result in
some regions with either very high or very low cell density
corresponding to small and large Voronoi cells, respectively.
To preclude biologically unreasonable variations in size
of cells, a technique called Random Sequential Addition
(RSA) was used. In this technique, during the generation
of random points, they are checked for not being within a
given distance from neighbouring points. The tumour was
proposed to be as a self-organising and ideally spherical
biosystem with three different layers (necrotic, nonprolif-
erative, and proliferative) whose thicknesses are governed
by nutrition supply gradient diffusing into inner layers.
This hypothesis was later supported by an in vitro study
conducted by Deisboeck et al. [71] and was used in the
model developed by Yang and Torquato [72], whereby the
effect of microenvironment heterogeneity on morphology
of invasive tumours was investigated. Four time-dependent
variables investigated in the Kansal’s model consist of overall
tumour radius, proliferative and nonproliferative thickness,
and probability of division. Once the lattice was generated,
the initial set up was designated whereupon proliferation
algorithm was applied. In the algorithm, the probability of
transition of cells between nonproliferative and necrotic was
considered to be a function of distance from the edge of
tumour (nutrient supply) such that nonproliferative cells
located at more than a specific distance from the surface of
tumour were turned to necrotic. In addition, the transition
between proliferative to non-proliferative occurs when there
is no sufficient space for the new cell to be generated by a
dividing cell. These transitions were considered stochastic in
the 2D cellular automata model presented by Qi [66]. In
the same framework, clonal competition (emerging a more
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rapidly growing tumour from a more slowly growing parent)
was also quantitatively analysed by introducing another set
of inputs in the model after a specific time [73].

Aimed to simulate untreated tumour growth and also the
response of tumour to different schemes of radiotherapy, a
four dimensional, patient-specific, in vivo stochastic model
was developed by Stamatakos et al. [25, 74, 75]. The model is
outlined as a 3D discretising cubic mesh structure in which
each mesh accommodates a specific Number of Biological
Cells (NBCs) which is called a Geometric Cell (GC). In
addition, different phases of tumour cell cycles have been
taken into account according to the cytokinetic model
proposed by Duchting et al. [76], as illustrated in Figure 5.
Three metabolic subregions were considered: proliferating
cell regions, resting G0 cell regions and dead cell regions.
The metabolic state of each GC was determined depending
on the distribution of its contained cells in different phases.
The initial NBC distribution is derived from imaging and
histopathological data of each individual patient, whereby
the tumour region is apportioned to three metabolic layers:
proliferating, resting, and necrotic. Time is discretized and
at the end of each time step the GC mesh is updated
such that transitions between different metabolic states are
estimated and applied (e.g., M cells in a GC for which
the mitosis time is over are transited to G0 or G1 with
the probability depending on the subregion they belong).
The time was incremented at the end of each scan and the
process iterated. In order to investigate the radiotherapy
effect on tumour shrinkage, the Linear Quadratic (LQ)
model of surviving fraction (S = e−αD−βD2

) is employed.
Three sets of radio sensitivity parameters (α and β) were
assumed corresponding to proliferative, necrotic, and resting
states and the tumour regression was simulated for three
specific cases: standard fractionation/radiosensitive tumour,
standard fractionation/moderately radiosensitive, and hyper
fractionation scheme/radiosensitive tumour [77]. The sim-
ulations of tumour shrinkage under various therapeutic
regimens qualitatively reproduced the clinical observations.

The model was gradually improved to take into account
possible parameters involved in tumour growth and response
to radiotherapy to achieve a more biologically realistic
description of cancer biology and treatment. Antipas et al.
[26] studied the effect of hypoxia in radio sensitivity of
tumours by introducing Oxygen Enhancement Ratio (OER)
parameter and investigated the influence of OER as well as
parameters corresponding to cell cycle duration on tumour
growth and shrinkage under standard and accelerated frac-
tionation regimens. The model was applied to two GBM
cases, a qualitative agreement between simulation results
and clinical experience was achieved. In addition, the effect
of oxygen on tumour behaviour appeared to conceptually
correspond to that derived by Anderson et al. [19, 50, 51].
More recently, Stamatakos et al. [27] introduced the role
of neoangiogenesis distribution in a 4D model of in vivo
tumour growth and response to radiation. In the same
framework, Dionysiou et al. [78, 79] conducted parametric
studies to investigate the effect of varying parameters on
the radiotherapy treatment outcome with emphasis on

Cell disappearance

G1 S G2 M G0 N A

Figure 5: The pathway of cells through cell cycle: G1 phase (gap 1);
S phase (DNA synthesis); G2 phase (gap 2); M phase (mitosis); G0

phase (if nutrition and oxygen is not sufficient, the cell enters this
phase for a limited time);N phase (the cell enters necrotic phase, if it
does not receive nutrition until the resting time is expired, otherwise
it enters G1); A phase (apoptotic).

genetic profile of tumour. Though the model includes some
simplifying assumptions or may lack some parameters (since
biological mechanisms in cancer are not fully understood),
the discrete and modulated nature of the model allows for
inclusion of further improvements. While this approach,
initiated by Stamatakos et al. [25, 74] and refined later
by his team [26, 27, 75, 77–79], was aimed to simulate
tumour growth and response to radiotherapy, it has the
potential to be improved to take into account infiltration
of a malignant tumour (e.g., by introducing haptotaxis and
cell-cell adhesion). This is enabled due to the discrete and
modular character of the model which allows incorporation
of further mechanisms without extensive modifications.

Individual-Based Modelling (IBM), which has gained
popularity for modelling of biological processes, is another
class of stochastic modelling [80]. In IBM approach, the
biosystem population is regarded as being composed of
individual cells whose sets of traits which determines their
interaction with microenvironment vary. The IBM allows for
explicit inclusion of variations in specifications of individual
cells (heterogeneity). Aiming to investigate cancer invasion
and the effect of microenvironment on growing tumour
morphology and phenotype a novel IBM model was devel-
oped and further extended by Gerlee et al. [9, 30, 81, 82]. The
model was constructed on a two-dimensional grid represent-
ing ECM, with each point possessing ECM, nutrition and
oxygen concentration respective to that point in the ECM.
Each point on the grid could either be occupied by a cancer
cell or be empty. It was assumed that the cell’s behaviour
or phenotype is determined based on its interaction with
neighbouring cells and microenvironment. Hence, a forward
neural network fed with microenvironment variables as
inputs to give the response of the cell (phenotype) was
established. Three layers were considered for this network:
(1) input layer which receives input microenvironment
parameters (e.g., number of neighbours, oxygen, glucose
consumption and ECM gradient); (2) hidden layer which
is connected to the input layer via connection matrix
consisting of regulatory genes which control the behaviour
of cells via weighting factors (w) of the connection matrix;
(3) output layer which is connected to the hidden layer
via connection matrix (W) and determines the phenotype
(e.g., metabolism, proliferation, quiescence, haptotaxis). The



Computational and Mathematical Methods in Medicine 13

Table 2: Summaries of stochastic models of tumour growth and invasion.

Type
Site of

modelling
Incorporated
mechanisms

Model validation and
results

Comments Reference

Monte Carlo (cellular
automaton model)

Brain

3D tessellation lattice
grid, three-population
tumour, nutrition
gradient, clonal
competition,
intercellular mechanical
stress

N/A

Since active motility is
not taken into account,
the tumour invasion
cannot be investigated

Kansal et al.
2000 [24]

Monte Carlo multisite

Different phases of cell
cycle, three-population
tumour cells, shrinkage
of tumour due to
radiotherapy, cubic grid

Application of the model
to small cell lung
cancer/qualitative
correspondence to in
vitro experiments

The microscopic
extension cannot be
predicted since each grid
element is almost 1 mm3

accommodating 106 cells

Stamatakos
2001 [25]

Monte Carlo Multisite

Different phases of cell
cycle, three-population
tumour cells, shrinkage
of tumour due to
radiotherapy, cubic grid,
hypoxia

Application of the model
to two GBM
cases/qualitative
correspondence to
clinical observations

The possibility to
optimize radiotherapy
fractionation regimens,
unable to depict
microscopic spread

Antipas et al.
2004 [26]

Monte Carlo Multisite

Different phases of cell
cycle, three-population
tumour cells, shrinkage
of tumour due to
radiotherapy, cubic grid,
hypoxia,
neo-angiogenesis

Parametric validation
against two different
categories of
GBM/qualitative
correspondence to
experiments

Generally, the discrete
nature of these models
allows for inclusion of
other parameters

Stamatakos et
al. 2006 [27]

Markov model
Head and

Neck

Lymphatic drainage
pathway, T-stage,
tumour location

Comparison to two
surgical data/over
prediction of metastasis

Quantitative prediction
of microscopic spread
was found to be feasible

Benson et al.
2006 [3]

Monte Carlo
(individual-based
model)

Multisite

Three-population
tumour, 2D grid,
nutrition and oxygen
concentration, different
phases of cell cycle

Comparison to the study
of Anderson [19] and
also experimental results
[28, 29]/good agreement

Haptotaxis is not taken
into account thus
tumour invasion is not
depicted

Gerlee and
Anderson
2007 [30]

Monte Carlo
(individual-based
model)

Multisite

Three-population
tumour, 2D grid,
nutrition and oxygen
concentration, different
phases of cell cycle,
haptotaxis

Comparison to the study
of Anderson [19] and
also experiment
results/good agreement

The influence of
evolution of tumour cell
phenotype in response
to microenvironment on
tumour development
and progression is an
important conclusion to
be used in the study of
microscopic extension

Gerlee and
Anderson
2009 [9]

nutrition concentrations were modelled by reaction diffusion
equations according to which concentrations were calculated
for each grid at every time step (10−1 cell cycle). The
emergence of glycolytic phenotype associated with anaerobic
metabolism pathway of cells was investigated in subsequent
extension of the model [81], and more recently haptotaxis
was taken into account [9]. The effect of haptotaxis was
included in the model by a differential equation describing
degradation of ECM at grid points. Accordingly, cells take
the direction with maximum ECM gradient, and when
there is no gradient, the existing cells go into proliferation
mode until the gradient is sufficient to move. The switch
between proliferation and haptotaxis was also depended on

the number of vacant neighbours. The more number of
vacancies, the more probable the cell stays in proliferation
mode. Finally, it was demonstrated that with the emergence
of haptotaxis, tumour growth is altered showing different
morphologies (compact or branched) depending on the oxy-
gen and ECM concentration. This outcome was supported
by other analyses of the model [82, 83] and conceptually
corresponded to the simulation results of the hybrid IBM
model of Anderson et al. [19, 51].

To summarize, in clinical situations, physicians propose
CTVs based on their experience of the extent of malignant
tumours growth. Therefore, the ability to accurately model
the tumour extension at microscopic scale is highly desirable.
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Within the realm of stochastic modelling, a significant
number of research works has been developed to contribute
to the understanding of the tumour growth and invasion
via a variety of classes of Monte Carlo models. However,
irrespective of the class, these studies aim to gain insight
into either the biology of cancer growth in general terms
or the response of tumour to radiotherapy rather than the
microscopic extension of tumour which is to be incorporated
in CTV. Hence, there is room for investigation in this respect,
in the light of information acquired from these studies.
Table 2 summarizes a few major models of tumour growth
and invasion which represent various classes of Monte Carlo
models.

4. Conclusion

An infiltrating neoplasm undergoes several stages in the
course of its growth and progression and understanding
of the mechanisms governing the evolution of tumour is
required to deliver an appropriate therapy which results
in optimal tumour control and reduced normal tissue side
effects. Mathematical modelling is recognized as a great tool
to facilitate this understanding. Furthermore, mathemati-
cal models provide predictions of the probable response
of tumour to therapeutic regimens in a variety of cir-
cumstances, different in terms of factors such as the
tumour microenvironment, and stage. In this paper, we
have reviewed the evolution of mathematical modelling of
tumour growth and invasion in both analytical and stochas-
tic approaches. Analytical models are capable to describe
the behaviour of tumour at macroscopic level for spe-
cific conditions; however, they fail to provide predictions at
microscopic (cellular and subcellular) level. In addition, the
ongoing research to enhance the limited insight into complex
and dynamic cancer systems may reveal some further
parameters which have to be included in models. However,
analytical models are not flexible for these modifications.
On the other hand, stochastic models efficiently depict the
characteristic and behaviour of tumour as this class of
modelling enables introducing new parameters as well as
specific anatomical boundaries. Finally, we came to believe
that while none of the above-mentioned models address
explicitly the microscopic extension of tumour, they have
the potential to be used to deduce the extent of subclinical
disease which is not detected by imaging techniques. To
serve this purpose, however, models have to be further
modified, applying the relevant biological parameters, to
become site-specific. The tumour sites that have a relatively
high histopathological data available, such as prostate and
gliomas can be potentially modelled and validated faster
than those having little or no clinical data related to their
microscopic extension.
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