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Shape Similarity Analysis by Self-Tuning Locally
Constrained Mixed-Diffusion

Lei Luo, Chunhua Shen, Chunyuan Zhang, Member, IEEE, Anton van den Hengel, Member, IEEE

Abstract—Similarity analysis is a powerful tool for shape
matching/retrieval and other computer vision tasks. In the
literature, various shape (dis)similarity measures have been
introduced. Different measures specialize on different aspects of
the data. In this paper, we consider the problem of improving
retrieval accuracy by systematically fusing several different
measures. To this end, we propose the locally constrained mixed-
diffusion method, which partly fuses the given measures into
one and propagates on the resulted locally dense data space.
Furthermore, we advocate the use of self-adaptive neighbor-
hoods to automatically determine the appropriate size of the
neighborhoods in the diffusion process, with which the retrieval
performance is comparable to the best manually tuned ANNs.
The superiority of our approach is empirically demonstrated on
both shape and image datasets. Our approach achieves a score of
100% in the bull’s eye test on the MPEG-7 shape dataset, which
is the best reported result to date.

Index Terms—Shape similarity analysis, shape/image retrieval,
locally constrained mixed-diffusion.

I. INTRODUCTION

Shape retrieval tasks require that we recover from a database
a set of shapes which are most similar to a query shape. An
important component of most retrieval system is the distance
measure used to measure shape similarity. A wide range
of studies have focused on designing robust and informa-
tive shape representations in order to achieve high retrieval
accuracy [1]-[5]. Each representation tends to emphasize a
different aspect of object shape, however, and thus no defini-
tive solution has been identified. Overcoming this problem
requires reconciling shape information from different parts of
an object, or different scales of analysis. The broader structural
similarity between shapes thus needs to be reconciled with the
differences in fine-grained surface properties, for instance, and
the influence of potentially identical parts reconciled against
largely dissimilar wholes. It is unrealistic to design a universal
representation that works well for all problems on all datasets.
Moreover, the pairwise similarity or distance defined on most
conventional representations is often incapable of capturing
category-level information across classes. To exploit these
high-level relationships, it requires more sophisticated analysis
of shapes.
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Recently, many learning-based methods have been proposed
to conquer the two above-mentioned problems in shape re-
trieval. These methods exploit the underlying structure of the
datasets to improve the retrieval accuracy obtained by existing
ranking approaches [6]-[11]. Other approaches such as rank
aggregation concentrate on integrating different rankings into
a single more accurate measure [12]-[15].

In this work, we consider the problem of improving retrieval
accuracy by fusing different similarity or distance measures.
Because different measures specialize on different aspects of
the data, the intuition here is that better performance might
be achieved by combining multiple complementary measures.
Our goal is that in an integrated ranking system, an instance
being ranked high in all measures should be at the top. At
the same time, an instance being ranked high in a particular
measure also deserves a position in the retrieved list.

If we consider, for example, Shape Contexts (SC) [2] and
Inner-Distance Shape Contexts (IDSC) [1], which are two
state-of-the-art shape distance measures. SC encodes primarily
global shape information and generally works very well for
rigid objects. IDSC focuses instead on internal structures and
is thus more effective for articulated and deformable shapes.
Given a query shape ¢, let A, and B, be the set of database
shapes ranked highly by SC and IDSC respectively. A shape
x may be relevant to g in some cases while x € A, U By, but
the probability is higher when x € A, N B,. Building upon
this fact, the proposed mixed-diffusion method integrates both
global and local information into a measure which is capable
of effectively using information from both measures to achieve
a more accurate and robust result.

Fig. 1 shows 9 shapes returned when querying a shape from
the MPEG-7 dataset [16] as measured by SC, IDSC and our
method. The methods return 13, 12 and 20 shapes respectively
of the 20 correct shapes in the “bull’s eye test”. Besides
retrieving better matched shapes, our method also improves
the ranking order of the results. For example, the ninth result
of SC is ranked higher using IDSC. Our method returns the
object in the third position, which better reflects its visual
similarity to the query.

The main idea of our proposed Locally Constrained Mixed-
Diffusion (LCMD) method is to fuse a few given measures into
a single one and then propagate on it using the Locally Con-
strained Diffusion Process (LCDP) of [8]. A straightforward
fusion approach is to linearly combine measures altogether,
which often submerges useful information in background.
On the other hand, as a promising diffusion method, LCDP
performs well only in a dense data space. In [8], the authors
densify the data space by adding so-called “ghost points”
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Top to bottom: The retrieval results of SC, IDSC and LCMD+SAN on the MPEG-7 shape dataset [16] using a query from the MPEG-7 dataset.

Incorrect results (according to [16]) are marked with slash, and shapes with red ordinal numbers and shapes in red boxes are DNs and SANs of the query,

respectively.

(GP). However, as we show later, unsupervised GP gains little
in our experiments (see Fig. 3(a) for example). In LCDM,
we set the affinity scores of distant instances to zeros in all
measures, and then linearly combine them together for the
next diffusion process. Therefore, the useful information of
each measure is kept in diffusion because most of irrelevant
instances are excluded. Furthermore, the reserved neighbors
in different measures form a locally dense space, which meets
the requirement of LCDP.

Closest work to ours is Bai et al. [12]. Their co-transduction
method fuses different measures through a semi-supervised
learning framework. However, the co-transduction method
only makes use of A, U B, to retrieval more in the SC
and IDSC example. The ranking order of an element in the
fusing result is less considered. In contrast, we not only
reserve neighbors to reveal A, U B,, but also combine them to
utilize A, N B,. Objects occurring both in A, and B, achieve
higher positions in our results. Besides, the performance of
co-transduction is highly dependent on the original measures’
first-ranking accuracies. LCDP is robust to noise in that it
works on a neighborhood graph of the data. By exploiting
the robustness of LCDP, the proposed method reduces the
dependence.

The size of neighborhood has important impact on the
performance of LCDP. Ideally, the neighborhood size should
be data dependent. Yang et al. [6] proposed the Dominant
Neighborhood (DN) to automatically determine the optimal
number of neighbors, which reduces the risk of using sub-
optimal neighbors in LCDP. However, the implementation of
DN still needs to specify initial k-nearest neighbors (KNN)
for each dataset. As demonstrated in Fig. 1, shapes marked
with red ordinal numbers are dominant neighbors (DN’s) of
the query. The pattern consisting of the 4th and 6th shapes in
the first row is lost, while the incorrect 5th and 7th shapes
in the second row are excluded. We extend DN to Self-
Adaptive Neighborhood (SAN) in two folds. First, we weight
the neighbors by their affinities against the query, which
helps determine the size of neighborhood. Second, we reserve
other high rankings besides dominant neighbors, which helps

preserve diverse patterns of the same class. The self-adaptive
neighbors of the query are marked with red boxes in Fig.
1. Although including some incorrect neighbors, the LCMD
process can complement and benefit from the diverse patterns
of SAN. Briefly, the greatest advantage of SAN is its self-
adaptation. It cannot perform better than the best manually
set kNN, although the results are acceptable as shown in
our experiments. In the next section, we briefly review some
work that is closest to ours. Then the locally constrained
mixed-diffusion method and the self-adaptive neighborhood
are introduced in Sec. III and Sec. IV, respectively. Sec. V
describes how to construct the affinity matrices from the given
distance measures. Sec. VI shows the experimental results on
both shape and image datasets.

II. RELATED WORK

Since a large number of shape similarity methods have
been proposed in the literature, here we only focus on some
recent methods that are relevant to ours. Shape Context (SC)
introduced by Belongie et al. [2] might be one of most popular
shape descriptors. SC encodes the global information of a
shape into a histogram and generally works very well for rigid
objects. Ling and Jacobs [1] introduced Inner-Distance Shape
Context (IDSC) by replacing the Euclidean distance used in
SC with the geodesic distance, which is more suitable for
articulated shapes. Gorelick et al. [4] divided a shape into
parts by describing shapes using Poisson equations. Felzen-
szwalb and Schwartz [3] instead decomposed the boundary
into segments and represented a shape hierarchically. Gopalan
et al. [5] proposed to combine shape decomposition and IDSC
to cope with non-planar shapes. Their Articulation-Invariant
Representation (AIR) approach obtains the best retrieval rate
among non-learning based methods in the “bull’s eye test”
on the MPEG-7 dataset. However, the pairwise similarity
defined on these representations is often incapable of captur-
ing category-level information across classes. Recently, many
learning-based methods have been proposed to exploit the
high-level relationships, which can loosely be divided into two
categories—post-processing and rank aggregation.



Post-processing methods usually take an initial ranking
based on an existing approach and then exploit the underlying
structure to improve the results. Yang et al. [10] proposed to
improve shape retrieval accuracy by exploiting the underlying
shape manifold structure. They learned the similarity of two
shapes from their context information with Label Propagation
(LP). Kontschieder et al. [9] proposed a modified mutual kNN
graph to represent the shape manifold. Yang et al. [8] added
synthetic points to densify the shape space due to the fact that
the diffusion process may not propagate properly in a spare
graph space. They also proposed LCDP to improve the noise
stability, which we have borrowed in our method. Jegou et al.
[17] introduced the Contextual Dissimilarity Measure (CMD)
which takes the neighborhood of an image into account.
Pedronette and Torres [7] introduced a similar contextual space
for image re-ranking. Recently, Yang and Latecki [6] proposed
to learn on Tensor Product Graphs (TPG) to better reveal
the intrinsic structure of the data manifold, which achieved
promising results on the MPEG-7 shape dataset.

Rank aggregation methods fuse multiple measurements to
improve accuracy in retrieval tasks. Santini and Jain [14]
proposed the fuzzy feature contrast model to integrate sev-
eral features based on fuzzy logic, which has been applied
successfully in an content-based image retrieval system [18].
Zhou and Burges [13] learned multiple views of the same
instance with a Markov mixture model. In their method, each
view of the data is represented as a graph. Bai et al. [12]
considered the query as the only labeled instance and then
fused different similarity measures within the co-training [19]
framework. We implement rank aggregation in a novel way.

Many of the above-mentioned methods need to use KNN
to convert distances into similarities [6], [8]-[10], [12], or to
restrict the diffusion process [6], [8], [9], [17]. In general, the
size of kNN is critical and difficult to determine. The common
practice has been trial-and-error for k£ on different datasets, or
for different instances on the same dataset. In [6], the authors
introduced the notion of Dominant Neighborhood (DN) to cap-
ture the most supportive neighbors of kNN. Elements that are
not strongly associated with others in the kNN are excluded
from post-processing, which mitigates the risk of using wrong
neighbors, yet it may lose some patterns of the class to which
the query belongs. Moreover, the implementation of DN still
has to specify k for different datasets. Here we extend DN such
that the size of the neighborhood can be adaptively determined
without using heuristics.

Next we present our main results.

III. LOCALLY CONSTRAINED MIXED-DIFFUSION

Given a set of data points X = {z1,...z,,} and several dif-
ferent similarity measures {S1, ..., Sy, }, where the similarity
of z; and z; in 5; is defined as p;(x;, z;). For each measure
S, there is a fully connected directed graph G; = (V, E, w;),
which shares the same sets of vertexes V' = X and edges F =
{E(t,)|EG, ) = (x4, z4), Vo, 25 € X, # j}. The edge of
G| is labeled with the strength of affinity w; (4, j) = pi(z;, x;).
Now the challenge is how to fuse G, ...,G,, altogether to
utilize the abundant information of multi-measures. A simple

approach is to linearly combine them:

m

w(i, j) = le cqwi(z;, ;) = Zl:l api(@i,z;), (1)

where w(4, j) is the weight of E(7, j) on the fused graph G =
(V,E,w), ¢; € [0, 1] denotes the contribution of each measure
and we have Zl";l c; = 1. The weight ¢; deserves a large
value if the corresponding graph S; is reliable. G represents
a Markov chain on X, whose transition matrix P = [p;;]
with

nxn’
__ w(i,j)

Pij ==n 7 ~-

> j=1 w(i, j)

p;; represents the probability of transition in one time step

from node x; to node x;, and P®__the t-th power of P—

gives the transition probability in ¢ time steps. Then, a graph

diffusion procedure can be performed on G to exploit the
underlying relation between the data points [20].

Here a potential problem is that useful information of some
measures may be submerged into the background during the
construction of G, which may weaken the underlying relation
and make the diffusion process fail. Let us consider the
following extreme example. Assume c¢; = ... %;
z; and x; are immediate neighbors in G, with a large
weight wy (i, j) = Cmyp while they are far away in other
measures with w;(4,7) < p (¢ = 1,..,p—L,p+1,...,m);
xp is a far neighbor of x; with w;(i,k) = (C + 1)p in
all measures. Here p is the mean weight of the linearly
combined graph G and C' is a large positive constant. Then
w(i,j) = XL, aw(zi,z;) = 5 300 wi(zi,z;) < Cu+
m=l, < (C+ 1)p = w(i,k). Thus, the weight between
x; and x; is smaller than the weight between x; and x;,—
the information of the significantly large affinity w,(Z,7) is
lost in the background. In general, two possible cases can
lead to a large w, (i, j): noise, which will be discussed later;
or a strong similarity between x; and x; in a particular
measure of Gp,. For the second possibility, as discussed in the
above extreme example, w,(%,j) can be submerged into the
background and this incurs an irreversible loss. Usually, one
cares more about a salient feature in one measure than a trivial
feature appearing in multiple measures. But a diffusion process
built on a misleading graph (e.g., the graph obtained by naive
linear combination of multiple graphs in (2)) is doomed to
fail to capture the underlying data structure that one is really
interested in. In [13], a Markov mixture model was proposed,
which is able to keep the information of all measures of the
data. However, salient information in a particular measure may
still be submerged into the background.

In this work, we propose to preserve the useful information
using LCMD. To this end, we first simplify the fully-connected
graphs G, ..., G, using kNN graphs Gk, ..., Gyg, Where
wik (4,7) = wi(4, ) = pi(4, j) if =; belongs to kNN of z; on
G and wik (4, j) = 0 otherwise. Then we fuse them altogether
to Gg. If there is an edge between z; and z; on Gk, there
is an edge on G, whose weight is defined as:

wic(i,j) =), mepi(i, ), 3)

where y; = 1 if wyg > 0 and 3y = 0 if wixg = 0.
Thus, wgk(4,7) is not zero only if x; is a kNN of z; in
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at least one measure, and at most mkn edges are kept in
Gk . Since the edges with small weights are all set to zeros,
a strong edge in a particular measure contributes more in
G k. In the previous example, although the weight wg (7, j) =
S yiapi (i, ) = cppp(xi, xj) = Cpu is small, it is larger

than at least — mkn zero-weight edges.

Then, the transition probability of the Markov chain on Gx
is Px = [pijx],,y,,» Where:

Pijk = =
ST (i)

“)
We can run the chain forward in time, which means taking
larger power of Px. Note that Pf((t) reveals the relevant
local geometric structures of G at the scale of ¢. This
simple Markov based diffusion strategy can be problematic
because the relation between z; and x; depends on the narrow
connection of kNN(z;) and kNN(z;) while the reserved edges
in Gk may sometimes be caused by noise in some particular
measures. We propose to employ LCDP [8] to exclude the
influence of noise and outliers in the diffusion process. LCDP
extends the connection by considering the paths between
kNNs of x; and kNNs of x;. The diffusion process can then

be defined as:
P = PP Py, (5)

where P]((O])( = P is the original transition probability matrix
computed by (2). If most paths from kNNs of z; to kNNs of
x; are short, the two kNN are compatible and therefore the
probability of transition from x; to x; is high. Meanwhile,
the influence of noise and outliers in the diffusion process is
reduced since more paths are considered in diffusion. On the
other hand, more paths means that more data are required. As
a result, LCDP works well only in a dense data space. A kNN
graph constructed from a single measure may not provide a
sufficiently dense space. As shown in [8], one can densify
it by adding GPs. However, compared with supervised-GP,
unsupervised-GP gains little in the experiments as discussed
in [8] (also in Table I of our experiments). LCMD avoids the
supervised procedure as the reserved neighbors in different
measures form a locally dense space in G .

IV. SELF-ADAPTIVE NEIGHBORHOOD

The size of neighborhood £ is critical for defining the local
structure. The original LCDP needs to manually tune & for
different datasets. Even worse, ideally, the appropriate size
should even be different for different instances of the same
dataset. As a global parameter, setting a single & is unlikely
to capture the local structures of the data, especially when the
sizes of classes are significantly different.

Yang and Latecki [6] introduced DN based on the dominant
set [21] to automatically determine the optimal number of
neighbors. A dominant set is a subset of the data which
corresponds to a maximally cohesive cluster. The dominant
neighborhood DN(x;) of a data point z; is the dominant set
of kNN(z;). DN(z;) reserves the most compact neighborhood
structure of kNN(z;) while excluding the points that are not
strongly associated with others. However, it still requires to

manually specify the value for k. Furthermore, some neighbors
belonging to other patterns of the same class of z; may be
discarded since they are highly different from DN(z;).

To better reveal the neighborhood structure of each data
point, we propose a novel method, termed Self-Adaptive
Neighborhood (SAN). Instead of directly using DN(z;), we
improve it using the classic e-nearest-neighbor (e-NN) theory.
Assuming that x4 (;) is the farthest neighbor of x; in DN(x;),
the affinity between x; and xy(; serves as the radius of e-
NN in SAN. Consequently, as shown in the red boxes of Fig.
1, besides the dominant neighbors marked with red ordinal
numbers, other neighbors of z; still have a chance to contribute
in the next diffusion process, which complements the single
pattern of DN.

Let W = [wy],,, be the affinity matrix computed by
an original measure S. We assume that W is symmetric
(if not, replacing W by W%WT). Then, an indicator vector
z; = (%1, ..., Zin) 18 introduced for each data point z;. The
dominant set DN(z;) of kNN(x;) can be obtained by solving
the following quadratic program [6]:

max f(z;) = z] Wz,
Zij = O,l‘j ¢ k:NN(xl),
st 2oz =1
j=1

Zij > 0,] = 1,...,n.

(6)

Each neighbor in kNN(z;) is treated equally in the DN
method. So, when the selected size of KNN(x;) is significantly
larger than the intrinsic size of x;’s neighborhood, the resulting
DN(z;) may be a compact cluster from a different class. This
explains why the work of [6] has to specify k for different
datasets in order to achieve good performance.

Unlike the pair-wise clustering in [21], there is a natural
center point—a; itself, associated with kNN(z;) in a retrieval
task. Starting from x;, a closer point in ANN(x;) is more likely
to be a true neighbor of x;. Therefore, we introduce a weight
vector u; = (w1, ..., Ui, ) for kNN(z;). The weight is defined

as:

where T; = sze JNN(x;) or j—i Wij 18 a normalization factor.
As demonstrated in Fig. 2, the dominant set of (a) is apart
from z; to the bottom-right dense area. In (b), the data points
are weighted with their distances to z;, where the dominant
set shifts to the denser area surrounding x;. Taking x; itself
into account, the objective is redefined as:

max f(z) = 2! (ol Woy)as = o/ W/
Zij = 07.1‘]' ¢ k‘NN(J?l) U {l‘l},
st Dz =1
j=1
Zij > 07] = 17 ey T

where we have defined W/ = «/uiTWOW/ui. Wy is trans-
formed from W by setting the diagonal entries to zeros.
Because if W is used directly, the solution can probably be

xj € ENN(z;) or j = 1;
otherwise;

(7

®)
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Fig. 2.

e; (the ith column of identity matrix I,,) as the similarity of
1 to itself is usually much larger than others.

The local maximizers of (8) can be obtained by the iterative
method of [21]. At each iteration, the indicator vector z; is
updated by the following recursion equation:

(Wizi(t));

ZU@+1%:%N0';WBW§RB’

i=1.,n. (9
Initialized with z; = u;, the objective function (8) is strictly
increasing along the trajectory of (9) and converges to a local
solution [21]. After (9) converges to a local solution z, we
obtain the dominant set DS(x;) of the weighted KNN(z;),
where z; € DS(z;) if and only if z;; > 0. No matter
how large the initial kNN is, the near neighbors of z; with
large weight are more likely to be selected by DS(z;) than
distant points with small weights. Let z.;) and xs(;) be the
closest and the farthest points in DS(x;)/{x;}, respectively.
To preserve patterns other than DS(x;) in the class of z;, we
combine DS(xz;) with the e-NN method. DS(x;) is extended
to DS'(z;) = {xj|w;; > €}, where the radius €; = w;(;).
Finally, SAN(x;) is defined as:

SAN(z;) =
_DS/(JZ,L'), T; € DS(Z‘,) & Rank(xc(i)) < 1NN}
ENN(z;), otherwise;

(10
where Rank(z.(;)) < tinn means the original rank of x..;
is higher than the given threshold ¢;xn. We introduce the
constraints in (10) to discard possible wrong neighborhoods.
It is based on the intuition that if x; itself is not included in
DS(z;) or x ;) is far from z; in the measure S, DS(x;) may
possibly depart from z; to another denser class. We replace
DS(z;) with kNN(z;) in these cases, where kNN(z;) is the
classic kNN of z;, whose size k = mean({#SAN(z;)|z; €
DS(z;), Rank(z.;)) < tinn}) is the mean size of the confi-
dent SANS.
Briefly, SAN is a variation of e-NN, whose bound is not
predefined but adapted by applying the dominant set in the
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weighted initial KNN. Thus, there is no need to specify the
size of neighborhood for each dataset if we substitute SAN
for kNN in the previous section.

V. THE AFFINITY MATRIX

In shape/image retrieval tasks, a distance metric often needs
to be defined. The provided pairwise distance matrices need to
be converted to affinity matrices before propagation. Moreover,
the scale differences between distance matrices should be
taken into account as they may cause problems to (3). Let
D = [dyj],, .., be a distance matrix provided by some distance
function. Usually it can be converted by applying a Gaussian
kernel:

2.

i
wij = exp(——3 ).

ij

(11

The scale of the kernel o;; can be selected by studying the
local statistics of the neighborhood of x; and x;. A widely-
used approach [22] adapts 0;; based on the mean distance
between z;, x; and their kKNNs:

oi; = a - mean({knnd(z;), knnd(z;)}) (12)

where mean({knnd(z;), knnd(z;)}) represents the mean dis-
tance of the £ nearest neighbor distances of x; and x;, and «
is an adjusting parameter. Both k£ and « are highly dependent
on the dataset been used and are determined empirically.

By substituting SAN for kNN, we can adapt k = k for
different datasets. The problem here is that the implementation
of SAN is based on an affinity matrix and what we have is a
distance matrix. We simply use [dmax — dij],, ., as the affinity
matrix in this case, where dp.x is the maximal element of D.
Another parameter « is set to % according to the three-sigma
rule, which states that the mean distance is typically within
30 ije

VI. EXPERIMENTS

We evaluate the proposed algorithm on shape/image re-
trieval and cluster analysis tasks. For both of them, we firstly



TABLE 1
BULL’S EYE SCORES AND RETRIEVAL RATES OF TOP 20 RANKINGS ON
MPEG-7 SHAPE DATABASE [16].

TABLE 11
1NN CLASSIFICATION ACCURACIES AND RETRIEVAL RATES OF TOP 150
RANKINGS ON SWEDISH LEAF DATASET [23].

. Bull’s eye | Retrieval rate of . ] . Retrieval rate of
Algorithm score top 20 rankings Algorithm | 'INN accuracy top 150 rankings
SC [2] 86.21% 79.20% SC [2] 94% 86.5%
IDSC [1] 85.52% 77.12% IDSC [1] 94.13% 86.2%
AlIR [5] 93.67% 88.17% LCDP [8] (IDSC) 98.2% 94.8%
LCDP [8] (IDSC) 92.36% 86.69% LCDP+unsupervised-GP (IDSC) 97.6%
LCDP-+unsupervised-GP (IDSC) 93.32% LCDP+supervised-GP (IDSC) 99.3%
LCDP+supervised-GP (IDSC) 97.21% Co-transduction [12] (SC+IDSC) 92.87%
Co-transduction [12] (SC+IDSC) 97.72% 95.62% TPG+DN [6] (IDSC) 97.33% 93.96%
DN+TPG [6] (AIR) 99.99% 94.28% LCMD+SAN (SC+IDSC) 97.87% 96.37%
LCMD+SAN (SC+IDSC) 99.67% 97.91% LCMD+kNN (SC+IDSC) 98.4% 97.28%
LCMD+kNN (SC+IDSC) 98.84% 98.94%
LCMD+SAN (SC+AIR) 100% 99.44%
LCMD+kNN (SC+AIR) 100% 99.70%
LCMD+SAN (SC+IDSC+AIR) 100% 99.89% others in each ranking. TPG+DN obtains the second highest
LCMD+iNN (SC+IDSC+AIR) 100% 99.96%

construct a single affinity matrix from two or three predefined
measures with equal weights. Of course our LCDM framework
does not limit to three input measures. In theory, the more
measures we input and the less they correlate, the better
LCMD may perform. In our experiments, the size k of the
initial kNN and the threshold ¢1nN for SAN is set to 100 and
5, respectively. The number of iterations ¢ in the diffusion
process is set to 15. Note that, if the input measures are
highly correlated, the iterative convergence rate could be slow
(discussed later in this section).

A. Shape and image retrieval

1) MEPG-7 shape database: The popular MPEG-7 CE-
Shape-1 part B database contains 1400 silhouettes from 70
classes, where each class has 20 different shapes [16]. The
retrieval accuracy is usually measured by the “bull’s eye test”,
where every shape in the database serves as a query and the
number of shapes from the same class among the top 40
rankings is counted. The bull’s eye score is the ratio of all
counted hits and the maximum possible number of correct
hits (which is 20 x 1400). In the computation of SAN, the
proportions of “otherwise” definition in (10) occurred are
5.6%, 4.5% and 0% for SC, IDSC and articulation-invariant
representation (AIR) [5], respectively. Using SC and AIR as
the original distance measures, the proposed LCMD+SAN
method obtains a bull’s eye score of 100%. To our knowledge,
this is the best result that has been reported on this widely-used
shape dataset. Table I summarizes several recent methods on
the MPEG-7 database, where inputs of learning based methods
are stated in brackets. The reported results of LCMD+kNN are
obtained with the best manually tuned KNN. We see that SAN
can produce comparable results without trial-and-error for the
neighborhood size, and LCMD with three inputs performs
better than two inputs. We also plot the percentage of correct
results among the first & most similar shapes in Fig. 3(a)
to visualize the gain in retrieval rates by our method. Since
each class contains 20 shapes and the bull’s eye test retrieves
40 shapes, the curves increase for £ > 20. Thus, a bull’s
eye score of 100% does not mean perfect retrieval accuracy.
Nevertheless, it is clear that the proposed method outperforms

score on the bull’s eye test, which is 0.01% lower. However,
as shown in Table I, the top 20 rankings’ retrieval rate of it
(94.28%) is quite lower than the proposed method. The LCMD
method performs much better in the stricter criterion, which
demonstrates the effectiveness of the proposed method on high
rankings.

2) Swedish leaf dataset: The Swedish leaf dataset comes
from a leaf classification project at Linkoping University and
the Swedish Museum of Natural History [23], which contains
1125 leaf images from 15 different Swedish tree species, with
75 leaves per species. We ignore the appearance and only
utilize the outline (shape) of a leaf. The 1-nearest-neighbor
(INN) classification are usually reported in previous work [1],
[8], [23], where 25 leaves are used as training samples and
others for testing per species. As shown in Table II, the best
INN classification accuracy is obtained by adding supervised-
GP in [8], while the best one of unsupervised methods is
LCMD with SC and IDSC. We set the sizes of kNN to 18 for
SC and IDSC to obtain the best accuracy. Substituted kNN
with SAN, the accuracy is slightly lower than LCDP with
IDSC. That is because SAN, whose greatest advantage is its
self-adaptation, is an acceptable but not the best definition
of neighborhood. In the computation of SAN, the “otherwise”
definition in (10) account for 9.2% and 7.1% to all data points
for SC and IDSC, respectively. We also report the retrieval
rates of the top 150 (75 x 2) rankings similar to the bull’s
eye test in the table, where LCMD with manually specified
kNN also takes the highest score (97.28%) and LCMD+SAN
is in the second place (96.37%). Fig. 3(b) shows the retrieval
curves of the top 75 rankings. It is clear that our proposed
approach consistently retrieves most relevant leaves in each
ranking compared with other methods, because LCMD could
refine the order of rankings at the same time of retrieving
more.

3) Nister and Stewenius dataset: We then evaluate the
proposed approach on the Nister and Stewenius (N-S) image
dataset [24]. N-S dataset consists of 2,550 objects or scenes,
each of which has 4 images in different viewpoints. The task
is to find the copies of each query in the totally 10,200 images.
The result is evaluated by the average number of corrects in
the top 4 returning images. Thus the highest possible score is
4. Due to the sparsity of data space, diffusion based manifold
learning approaches are difficult to implement in this dataset.
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TABLE III
RETRIEVAL RESULTS ON N-S DATASET [24].

Algorithm Base N-S score

3.26 (1 visual vocabulary) 3.57
CMD 71 | 333 (19 visual vocabularies) 3.68
Co-transduction [12] 3.26 3.66
TPG+DN [6] 3.22 3.61

3.61 (t = 15)

LEMD+SAN 1 5501 | 3072 | 2813 | 3.65 (t = 100)
LCMD+kNN 3.70

! http://bigimbaz.inrialpes.fr/herve/share/ukb_k30000_bof.gz;
2 http://vis.uky.edu/~stewe/ukbench/data/vw_ukbench610_normal.zip;
3 http://vis.uky.edu/~stewe/ukbench/database_as_visual_words.zip.

Even such, recent studies [6], [12], [17] make significantly
improvement as shown in Table III. The bases of the proposed
algorithm are three vocabulary tree methods. One is introduced
in [17] with a 30,000 size vocabulary, and the left two in [24]
with different 1,000,000 size vocabularies. The percentages of
“otherwise” definition of (10) in the computation of SAN are
5.7%, 1.2% and 5.0% for the three inputs, respectively. As
shown in the table, LCMD achieves the highest score (3.70)
by fixing the neighborhood sizes of inputs to 7. CMD [17]
obtains the second highest score (3.68) while 19 distinct visual
vocabularies are used in it in contrast to 3 in the proposed
algorithm. The similar computation processes of the original
measures make the input affinity matrices highly correlated,
which slows down the iterative convergence rate of LCMD.
We have set ¢ = 100, which gains a better score (3.65) in
LCMD+SAN than the predefined ¢ = 15 (3.61). The score
is a little lower than LCMD with manually tuned ANN. It
may be due to the fact that the compact cluster searched by
(8) is somewhat random when the size of each class in this
dataset (4 images per class) is so small. However, the result
is still comparable with other methods when it is no need to
trial-and-error for the neighborhood size.

4) Caltech-101 dataset: The number of instances per class
is constant in the previous datasets. We also test our method
on the well-known diverse Caltech-101 dataset [25], which

Percentatge of correct results

—e— LCMD+SAN (SC+IDSC) Sog,
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(b)

The curves of retrieval rates on MPEG-7 shape dataset [16] (a) and Swedish Leaf dataset [23] (b).

contains 101 classes with 8,677 images in total. The size of
each class varies from 31 to 800. Adapted from [6], we use a
subset consisted of 2,788 images from 12 classes as examples
shown in Fig. 4. Each image is represented by multiple
assignments [17] and the spatial pyramid method [26] based
on a 2048 size SIFT [27] codebook. The distance between
two images is defined as the x? distance of their representation
vectors. Since LCMD needs at least two measures, we generate
the reverse distance (adapted from the reverse similarity of
[12]) of the previous one. Let D;; denote the original X2
distance of image ¢ and j, the reverse distance Dirj is the
ranking number of ¢ when using j as a query. The reverse
distance represents the symmetrical character of the original
measure. When two images are both in the top rankings using
the other one as the query, they are more likely to be from
the same category. Since the numerical value of the reverse
distance is only a reflection of the relation between images,
we use the corresponded SAN of the original distance in
the determination of the reverse distance’s neighborhood size.
In the computation of SAN the proportion of “otherwise”
definition in (10) occurred is 10.3%. The results are shown
in Table IV, where the retrieval accuracy is defined as the
mean ratio of correct hits in the top K (K is the size of each
query’s class) retrieval results. Obviously, LCMD outperforms
other methods in the retrieval rate. Since the reverse distance
is derived from the X2 distance, the iterative convergence rate
slows down on this dataset. However, the retrieval accuracy
of LCMD+SAN with ¢ = 15 (94.86%) is already better
than TPG+DN [6] (91.53%), while the result with ¢ = 100
(98.23%) is comparable to LCMD with manually tuned ANN
(98.67% with k = 36).

B. Cluster analysis

Besides shape retrieval, the learned affinity matrix by the
proposed approach can also be used for cluster analysis. We
apply Affinity Propagation (AP) [28] on the learned affinity
matrixes of MPEG-7, Swedish Leaf and Caltech-101 datasets,



TABLE IV
RETRIEVAL RATES ON 12 IMAGE CLASSES FROM THE CALTECH-101
DATASET [25].

LCMD+SAN | LCMD+SAN
Base TPG+DN | LCMD+kNN (t = 15) (t = 100)
83.82% 91.53% 98.67% 94.86% 98.23%
TABLE V

CLUSTERING PERFORMANCE ON MPEG-7 SHAPE DATABASE [16]

Algorithm TPG+DN | Co-trained spectral | LCMD+SAN | LCMD+kNN
(AIR) [29] (SC+AIR) (SC+AIR) (SC+AIR)
F-score 0.937 0.900 (0.019) 0.993 0.999
NMI 0.971 0.981 (0.004) 0.997 0.999

respectively. For the convenience of comparison, the number
of clusters in all experiments are set to the ground truth. Two
evaluation measures—normalized mutual information (NMI)
and F-score, are reported. For both of them, the higher value
indicates better clustering quality in some sense.

1) MEPG-7 shape database: Two references, TPG for
diffusion methods and co-trained spectral clustering [29] for
multi-view methods are compared with the proposed algorithm
in this section. TPG and LCMD are both learning based
methods, which produce a new affinity matrix as output. The
original distance measure of TPG is AIR, and the measures
of LCMD are AIR and SC. We apply AP on the learnt
affinity matrixes for clustering. In contrast, co-trained spectral
clustering, whose output is cluster labels, is specially designed
for multi-view clustering and does not need AP anymore. Table
V shows the clustering performance of the three methods.
Since co-trained spectral clustering employs k-means in the
last step, the performance measures of which are the means
and standard deviations (in the brackets) with 20 different
runs of k-means with random initializations as in [29]. It
is clear that the proposed LCMD approach, with SAN or
manually set kNN, outperforms the other two with very high
scores in both F-score and NMI. Actually, only 5 and 1
out of 1400 shapes are mis-clustered in LCMD+SAN and
LCMD+kNN, respectively. It is interesting that the single view
method (TPG) performs better than the multi-views method
(co-trained spectral clustering) in F-score. It may be because
that co-trained spectral clustering throws away the within
cluster details of the origin distance matrix, which may drop
the effectiveness of clustering.

2) Swedish Leaf Dataset: Clustering on Swedish Leaf
dataset is harder than the previous task because the items in
this dataset are all less discriminative leaves. By substituting
IDSC with AIR, the experiment setting on this dataset is the
same as that on MPEG-7. Table VI summarizes the experiment
results of the three methods. Again, our LCMD approach
outperforms the competitors.

Fig. 4. Examples (two images for each class) from the selected subset of the Caltech-101 dataset [25].

TABLE VI
CLUSTERING PERFORMANCE ON SWEDISH LEAF DATASET [23]

Algorithm TPG+DN | Co-trained spectral | LCMD+SAN | LCMD+kNN
(IDSC) (SC+IDSC) (SC+IDSC) (SC+IDSC)
F-score 0.828 0.801 (0.045) 0.834 0.830
NMI 0.912 0.892 (0.015) 0.929 0.933

TABLE VII
CLUSTERING PERFORMANCE ON 12 IMAGE CLASSES FROM THE
CALTECH-101 DATASET [25]

. LCMD+SAN | LCMD+SAN | LCMD
Algorithm Base TPG+DN [6] (t = 15) t = 100) +ENN
F-score 0.564 0.640 0.777 0.745 0.745
NMI 0.713 0.769 0.885 0.885 0.885

3) Caltech-101 dataset: Multiple measures are both utilized
in the previous two experiments. We also test the proposed
algorithm with a single measure on the subset of Caltech-101
dataset. All settings are the same as in the retrieval experiment.
We report the clustering performances of the base x? distance
measure, TPG learning, and our LCMD method in Table VII.
It can be seen that both TPG and LCMD can improve the x?
distance measure, while our method is better. As mentioned in
the retrieval experiment, the iterative convergence rate slows
down due to the use of “reverse distance” in this dataset. When
in the clustering experiments, a small number of ¢ is sufficient
as shown in the table.

VII. CONCLUSION

In this paper, we present a locally constrained mixed-
diffusion method for shape/image retrieval. We not only utilize
the union of different measures to recall more correct results,
but also make use of the intersection of them to refine the order
of top retrieval results. We have also provided a new definition
of neighborhood whose size is self-tuned. Experiments on
both shape and image datasets demonstrate the effectiveness
of the proposed approach, and also show the potential use in
other computer vision tasks, e.g. cluster analysis. Recently,
Liu et al. [30] proposed k-dense neighborhood, which is a
new dense subgraph detection method. The advantage of k-
dense neighborhood is that it can control the size of the dense
subgraph. We are going to use it to substitute the dominant
set in the construction of SAN. Since our approach is generic
and not limited to shape/image retrieval, we will extend it to
a broad range of retrieval and matching problems in computer
vision in the future.

A limitation of this work is its high time complexity. In the
construction of SAN, the main computation load is the repli-
cator dynamics procedure of (9). Suppose the average number
of iterations for the equation is {py, its time complexity is
O(ktpn), where k = 100 is the size of initial ANN. The



diffusion process in LCMD needs to multiply the simiarity
matrices as in (5), which is O(n?). Thus, to query each object
in the dataset once, the total time complexity of LCMD+SAN,
similar to [6] and [8], is O(n3t+ ktpn) for the whole dataset,
or O(n’t + kt%) for each query on average, where ¢ = 15
is the iteration times of (5). In a practical retrieval system,
there is no need to compute the affinity matrix of the entire
dataset, and we can construct input matrices only using the
first N < n most similar objects for each measure as in [10]
and [12]. Then the matrix size n is less than mNN, where m
is the number of input measures.
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