
 

PUBLISHED VERSION  

   

 

 

Westra, Seth Pieter; Brown, Casey; Lall, Upmanu; Sharma, Ashish  
Modeling multivariable hydrological series: principal component analysis or independent 
component analysis? Water Resources Research, 2007; 43:W06429  

 

Copyright 2007 by the American Geophysical Union 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/72514  

 

PERMISSIONS 

http://www.agu.org/pubs/authors/usage_permissions.shtml 

AGU allows authors to deposit their journal articles if the version is the final published 
citable version of record, the AGU copyright statement is clearly visible on the posting, 
and the posting is made 6 months after official publication by the AGU. 

 

 

 

 

 

date ‘rights url’ accessed:15 August 2012 

http://hdl.handle.net/2440/72514�
http://hdl.handle.net/2440/72514�
http://hdl.handle.net/2440/72514�
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Principal component analysis or independent

component analysis?

Seth Westra,1 Casey Brown,2 Upmanu Lall,2 and Ashish Sharma1

Received 11 October 2006; revised 6 February 2007; accepted 20 February 2007; published 29 June 2007.

[1] The generation of synthetic multivariate rainfall and/or streamflow time series that
accurately simulate both the spatial and temporal dependence of the original multivariate
series remains a challenging problem in hydrology and frequently requires either the
estimation of a large number of model parameters or significant simplifying assumptions
on the model structure. As an alternative, we propose a relatively parsimonious two-step
approach to generating synthetic multivariate time series at monthly or longer timescales,
by first transforming the data to a set of statistically independent univariate time series
and then applying a univariate time series model to the transformed data. The
transformation is achieved through a technique known as independent component analysis
(ICA), which uses an approximation of mutual information to maximize the independence
between the transformed series. We compare this with principal component analysis
(PCA), which merely removes the covariance (or spatial correlation) of the multivariate
time series, without necessarily ensuring complete independence. Both methods are tested
using a monthly multivariate data set of reservoir inflows from Colombia. We show
that the discrepancy between the synthetically generated data and the original data,
measured as the mean integrated squared bias, is reduced by 25% when using ICA
compared with PCA for the full joint distribution and by 28% when considering marginal
densities in isolation. These results suggest that there may be significant benefits to
maximizing statistical independence, rather than merely removing correlation, when
developing models for the synthetic generation of multivariate time series.

Citation: Westra, S., C. Brown, U. Lall, and A. Sharma (2007), Modeling multivariable hydrological series: Principal component

analysis or independent component analysis?, Water Resour. Res., 43, W06429, doi:10.1029/2006WR005617.

1. Introduction

[2] An important objective in stochastic hydrology is to
generate synthetic rainfall and/or streamflow sequences that
have similar statistics and dependence structures to those of
the historical record. These sequences represent plausible
future rainfall and/or streamflow scenarios which can be
used as inputs in a range of applications, such as the design
and operation of reservoirs, irrigation systems and hydro-
electric systems.
[3] A large volume of literature exists on modeling single

variable (univariate) hydrological time series, of which the
autoregressive (AR) and autoregressive moving average
(ARMA) class of models are arguably the most common
[Box et al., 1994; Bras and Rodrigues-Iturbe, 1985; Loucks
et al., 1981; Salas, 1992], particularly for time series of
monthly or greater timescales. These are parametric models
that seek to preserve the mean, standard deviation and
correlation structure of the original time series, under the

assumption that the data are normally distributed, which
frequently necessitates that the data be transformed prior to
analysis. Alternatively, a number of nonparametric approaches
are available [e.g., Lall et al., 1996; Lall and Sharma, 1996;
Sharma, 2000; Sharma and O’Neill, 2002; Sharma et al.,
1997] which do not require prior assumptions on the nature of
the probability distribution.
[4] The situation becomes more complicated when con-

sidering the multivariate case. This is because, in addition to
simulating temporal dependence, it is also necessary to
focus on maintaining spatial dependence. A number of
multivariate methods exist, such as a multivariate extension
to the ARMA suite of models, which seek to maintain the
covariance structure of the observed time series [Pegram
and James, 1972; Salas, 1992; Wilks, 1995]. The trouble
with such approaches is that it is usually necessary to
estimate a large number of parameters, which can render
the approach considerably more difficult to apply compared
to univariate methods. To simplify parameter estimation, it
is sometimes possible to diagonalize the covariance matrix
using a technique such as principal components analysis
(PCA) to decouple the multivariate time series into compo-
nent univariate models so that model parameters do not
have to be estimated jointly [Salas, 1992]. A more funda-
mental difficulty with the multivariate ARMA model is that,
as parameters are often estimated using the method of
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moments, involving maintaining order one and two moment
statistics, it only considers the covariance structure of the
multivariate time series. Although the covariance is an
important measure of dependence, it in general does not
capture the complete dependence structure of the stochastic
process [Waymire and Gupta, 1981].
[5] As an example of some of the difficulties with using

traditional multivariate methods, we present December
streamflow time series in three locations in Colombia in
Figure 1, which highlight some common issues with cap-
turing joint dependence. Some notable challenges using
traditional multivariate methods for this type of data in-
clude: (1) the sparsity of the data, with each time series

containing only 42 data points, making parameter estima-
tion for the multivariate case difficult; (2) the possible non-
Gaussian distribution of the individual time series, which
would necessitate the additional step of finding a suitable
transformation to the data; and (3) the possible nonlinear
dependence between the individual time series.
[6] To model a data set of this nature, it is desirable to

have a method which is parsimonious, and does not make
assumptions on the probability distribution of individual
variables or the nature of the spatial dependence among
them. In this paper we present such an approach in which a
rotation is applied to the multivariate data set with the aim
of minimizing an estimate of dependence (mutual informa-
tion) [see Fraser and Swinney, 1986] between the rotated
series. This technique, known as independent component
analysis, is related to the PCA approach described above,
except that whereas PCA seeks only to diagonalize the
covariance matrix, ICA is also capable of minimizing
higher-order dependence. Once a rotation is found that
minimizes the dependence of the rotated components, it is
possible to consider each of the time series as a univariate
case, so that only the temporal characteristics of the time
series need to be considered. The inverse of the original
rotation is then applied to the synthetically generated
univariate series, to ensure that the spatial dependence is
preserved.
[7] The remainder of this paper is organized as follows. In

section 2, we provide an overview of themathematical basis of
both PCA and ICA, and illustrate the importance of consider-
ing not only covariance, but also higher-order moments, when
seeking a statistically independent representation of the data
set. Section 3 provides an overview of the hydrologic data set
used in the analysis. The benefits of considering higher-order
statistics are highlighted in section 4 after applying both PCA
and ICA to the hydrologic data.

2. Component Extraction Techniques

2.1. Principal Component Analysis

[8] Principal component analysis (PCA) is a widely used
component extraction technique that focuses on providing a
representation of a multivariate data set using the informa-
tion that is contained within the covariance matrix, so that
the extracted components are mutually uncorrelated. In
addition, the principal components have the important
property that successive components explain the maximum
residual variance of the data in a least squares sense. For
these reasons, an important application of the PCA tech-
nique is to reduce the dimension of the original data set, by
retaining only those principal components that explain a
significant portion of the data variance.
[9] To explain the PCA method, we first define x as the

m-dimensional column vector of observations that have been
centered so that x = x0 � E{x0}, where x0 represents the
original, noncentered data set. The solution to the PCA
problem is then simply defined in terms of the unit-norm
eigenvectors e1, . . ., em of the covariancematrixCx=E{xx

T},
which have been ordered so that the corresponding
eigenvalues d1, . . ., dm satisfy d1 � d2 � . . . � dm. The first
principal component of x may now be written as

PC1 ¼ eT1x ð1Þ

Figure 1. Example of a trivariate streamflow data set
located in Colombia, plotted as bivariate pairs. The data
have been normalized and highlight a number of issues
common to the synthetic generation of a multivariate data
set, including sparsity of the data set (42 data points), non-
Gaussianity of the joint and marginal probability densities,
and possible nonlinear dependence between the data.
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with successive PCs defined in a similar fashion. The
solution to the PCA problem therefore requires only the
use of classic algebraic methods to find the eigenvectors and
corresponding eigenvalues of x. (For computational aspects
of eigenvector/eigenvalue estimation, refer to Golub and
Van Loan [1996].) Because of the ordering of the eigenvec-
tors and eigenvalues, reducing the dimension of the data set to
dimension n, with n � m, is now trivial and simply involves
discarding all principal components of order greater than n.
[10] A related method is known as whitening, which not

only requires that the components are mutually uncorrelat-
ed, but also that the variances of the extracted components
are equated to unity. Letting E = (e1, . . ., en) be the matrix
whose columns are the unit norm eigenvectors, and D =
diag(d1, . . ., dn) be the diagonal matrix of the eigenvalues of
Cx, then the linear whitening transform is given by

V ¼ D�1=2ET ð2Þ

This matrix can always be found, and as will be discussed in
the following section, is an important preprocessing step for
independent component analysis [Hyvarinen et al., 2001].

2.2. Overview of ICA

[11] The ICA method, first introduced by Herault and
Jutten [1986], may be considered as an extension to PCA
[Oja, 2004], except that whereas PCA focuses on identify-
ing components based only on second-order statistics (co-
variance), ICA also considers higher-order properties which
allows it to search for components that are statistically
mutually independent. ICA already has been applied suc-
cessfully in a wide range of areas, including blind source
separation (BSS) and feature extraction [see Hyvarinen,
1999, and references therein; Lee, 1998].
[12] The simplest form of ICA occurs when an m-

dimensional observation vector, x = (x1, . . ., xm)
T of length

l is derived through the mixing of an n-dimensional
‘‘source’’ vector, s = (s1, . . ., sn)

T, also of length l, commonly
referred to as the independent components [Comon, 1994].
These ICs are assumed to be non-Gaussian (with the possible
exception of at most one IC, since by knowing all but one IC,
the final IC can be specified automatically), mutually statis-
tically independent and zero mean. In addition, it is assumed
that n�m. Put into vector-matrix notation, and assuming that
the mixing is both linear and stationary, yields

x ¼ As ð3Þ

where A is known as the mixing matrix of dimension m� n.
The objective of ICA is to estimate the mixing matrix, A, as
well as the independent components, s, knowing only the
observations x. This can be achieved up to some scalar
multiple of s, since any constant multiplying an independent
component in equation (3) can be cancelled by dividing the
corresponding column of the mixing matrix A by the same
constant.
[13] Central to the identification of the ICs from the data

x is the assumption that all except at most one IC will be
‘‘maximally non-Gaussian’’ [Hyvarinen et al., 2001]. This
follows from the logic outlined in the central limit theorem,
which is that if one mixes independent random variables
through a linear transformation, the result will be a set of
variables that tend to be Gaussian. If one reverses this logic,

it can be presumed that the original independent compo-
nents must have a distribution that has minimal similarity to
a Gaussian distribution. Consequently, the approach adop-
ted to extract ICs from data containing mixed signals
amounts to finding a transformation that results in variables
that exhibit maximal non-Gaussianity as defined through an
appropriately specified statistic.
[14] The principal advantage of ICA over PCA is that

ICA results in components that are independent, whereas
PCA leads to components that, while being uncorrelated,
may exhibit strong dependence on each other. The indepen-
dent components are extracted using higher-order informa-
tion, i.e., information other than that contained in the
covariance matrix of x [Oja, 2004]. PCA remains a valuable
preprocessing step, however, both as a means of dimension
reduction, and as a starting point for whitening (or sphering)
the data such that x is linearly transformed into another
n-dimensional vector z that has a unit covariance matrix.
Although the additional step of minimizing dependence
increases the computational load involved in estimating
components, the increase in computing time was found to
be relatively insignificant for the short data sets considered in
this paper.

2.3. Example

[15] To illustrate some important differences between
PCA and ICA, and demonstrate why it is necessary also
to account for higher-order dependence when separating
signals for synthetic time series generation, we present the
following example. The example is set up by combining
two independent signals each of length 5000 which each
have a uniform distribution U[�

ffiffiffi
3
p

;
ffiffiffi
3
p

], denoted by s1 and
s2. The bounds of the uniform distribution were selected so
that the signals have unit variance. The mixed components,
x1 and x2, are derived through equation (3) using the
following mixing matrix:

A ¼
3 1

1 2

2
4

3
5 ð4Þ

These mixed components exhibit joint dependence and are
what we refer to as the ‘‘observed’’ data set, analogous to
the multivariate streamflow data that we will be considering
later in the paper. The joint probability density function of
x1 and x2 is shown in Figure 2a. As can be seen, the mixed
signals appear to be much closer to a normal distribution
compared to the original signals, which by construction are
uniformly distributed. This is anticipated because of the
central limit theorem, which states that under certain
conditions, the distribution of a sum of independent random
variables tends toward a Gaussian distribution [Hyvarinen
et al., 2001]. The eigenvectors are also shown, with e1
representing the direction of maximum variance, and e2
constrained to be orthogonal to e1.
[16] We now use a linear transform, V, to whiten the data

such that the elements of z are mutually uncorrelated, and
all have unit variance. We thus have the following relation-
ships between the independent components, s, the observed
variables, x, and the whitened data, z:

z ¼ Vx ¼ VAs ð5Þ
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The whitened variables are shown in Figure 2b. The
marginal probability distributions are clearly not uniformly
distributed, and demonstrate that the original source signals, s,
still have not been found. The advantage of this process,
however, is that since we are now dealing with a transformed
variable whose elements have zero mean, are mutually uncor-
related and have unit variance, the ICA solution is limited to
some orthogonal rotation of the whitened data set about the
origin. Denoting a unit vector defining a line passing through
the origin of the data in Figure 2b by w, then the projection of
z on the line is given by y = wTz. It has been shown [Oja,
2004] that because of prewhitening the data, no matter what
the angle of the projection, it always holds that y has zero
mean and unit variance.
[17] The object of ICA therefore is to find a suitable vector,

w, that ensures the resulting components y are independent,
which is obtained through amaximization of the higher-order
moments of wTz as described in section 2.4. The solution is
shown in Figure 2c, and illustrates that the optimum
solution recovers the uniform distribution of the original
signals. This process is repeated until all the ICs are found,
and w approximates one of the rows of the matrix [VA]�1.
Thus y becomes an estimator of the original independent
components, s.

2.4. Estimating the Independent Components

[18] As mentioned previously, the objective of ICA is to
find projections which yield components that are as inde-
pendent as possible, where independence means that the
joint probability density function can be factorized as
follows:

f y1; y2; :::; ynð Þ ¼ f1 y1ð Þf2 y2ð Þ:::fn ynð Þ ð6Þ

where fi represents the marginal probability density function
of yi, and f (y1, y2, . . ., yn) represents the joint probability
density function of all the yi. It has furthermore been
illustrated that, as inferred from the central limit theorem,
this objective is equivalent to finding the directions of
maximum non-Gaussianity. ICA can thus be thought of as
consisting of two basic elements:
[19] 1. Identifying some measure of the non-Gaussianity

of the projection wTz, often referred to as an objective
function or contrast function.
[20] 2. Finding some algorithm that will optimize this

non-Gaussianity.
[21] One of the most commonly used measures of non-

Gaussianity is kurtosis, however this measure has been
found to be highly sensitive to outliers [Hyvarinen, 1997],
and hence has not been used in this study. An alternative
method uses a quantity known as negentropy [Comon,

Figure 2. (a) Plot of x = [x1, x]. The directions of
eigenvectors e1 and e2 are shown and represent the principal
directions of the bivariate data set. The principal compo-
nents are the projections of x onto the principal directions e1
and e2. (b) Plot of the whitened data time series z = [z1, z2].
To find the ICA solution, we search for a vector w such
that the projection y = wTz has maximum non-Gaussianity.
(c) Plot of the estimated independent components, y = [y1, y2].
The probability distributions are also shown and approximate a
normal distribution.
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1994; Hyvarinen et al., 2001], and is based on the infor-
mation theoretic result that a Gaussian variable has the
largest entropy of all random variables of equal variance.
Negentropy J for a random variable y is defined as

J yð Þ ¼ HðygaussÞ � H yð Þ; ð7Þ

where H(y) is the differential entropy of y defined as

H yð Þ ¼ �
Z

f yð Þ log f yð Þdy ð8Þ

and H(ygauss) is similarly defined as the entropy of a
Gaussian variable ygauss of the same covariance matrix as
y [Comon, 1994]. The benefit of this quantity is that it is
always nonnegative, zero only when y has a Gaussian
distribution, and that estimation of the ICs by maximization
of this quantity is equivalent to the minimization of the
mutual information, provided that the estimates are con-
strained to be uncorrelated [Hyvarinen et al., 2001]. The
problem, however, is that using negentropy is computation-
ally difficult, as it requires the estimate of the probability
density function of y as shown in equation (8). An approx-
imation of negentropy can be used instead, which is given
as

J yð Þ 	 E G yð Þf g � E G ygauss

� �n oh i2
ð9Þ

where G is an appropriately chosen nonlinear function often
referred to as a contrast function, and the second term in the
parentheses is a normalization constant that makes the
negentropy J equal to zero if y has a Gaussian distribution.
It has been shown that G can be almost any nonquadratic,
well behaving even function [Hyvarinen and Oja, 1998]. In
the present case, we use

G yð Þ ¼ log cosh yð Þ ð10Þ

as this is regarded as a good general purpose contrast
function because of its convergence properties and robust-
ness against outliers [Hyvarinen, 1997]. Since the second
term in equation (9) is constant, maximizing non-Gaussianity
for a projection y = wTz can be achieved simply by looking
at the extrema of the contrast function E{G(y)} =
E{G(wTz)} over the unit sphere jjwjj. The FastICA algo-
rithm [Hyvarinen and Oja, 1997] has been found to be an
efficient method for finding this extrema, with the central
updating rule given as

w �E G0 wT z

 �

z
� �

� E G00 wTz

 �� �

w ð11Þ

where G0 and G00 are the first and second derivatives of G,
respectively. The iteration of this updating rule constrained
to the unit sphere is sufficient for estimating one of the ICs.
To estimate all the independent components, it is necessary
to orthogonalize the vectors w after each iteration. Here we
use a method known as symmetric orthogonalization, which
estimates each of the individual vectors wi, with i = 1, . . ., n,
in parallel. This ensures that estimation errors in finding the
first vector are not cumulated in subsequent vectors, with
further details provided by Hyvarinen et al. [2001].

[22] The algorithm that we use for the present analysis
can now be summarized as follows [Hyvarinen et al., 2001]:
[23] 1. Center the data set: x = x0 � E{x0}.
[24] 2. Prewhiten the data set using z = Vx.
[25] 3. Choose n, the number of independent components

to estimate.
[26] 4. Choose random initial values for thewi, i = 1, . . ., n,

each of unit norm.
[27] 5. Do a symmetric orthogonalization of the matrixW =

(w1, . . ., wn)
T by W <� (WWT)�1/2W.

[28] 6. For every i = 1, . . ., n, estimate wi using
equation (11).
[29] 7. If not converged, go back to step 5.

2.5. Using ICA for Stochastic Generation

[30] To illustrate the utility of ICA in the generation of
synthetic rainfall and/or streamflow time series, and to
highlight the importance of higher-order statistics in finding
independent univariate representations of the data set, we
present the following example. We commence with the PCA
and ICA solutions to the same two-dimensional uniform
data set that was presented in section 2.3, shown again as
blue dots in Figures 3a and 3b, respectively. The marginal
distributions are shown as histograms, and represent the
probability density estimates of the transformed, univariate
time series.
[31] The synthetically generated data are shown as red

dots in Figures 3a and 3b, and are obtained by applying a
univariate bootstrap with replacement to each of the trans-
formed time series. The bootstrap was selected to show the
effect of considering the transformed univariate time series
independently from each other in a synthetic modeling
framework, however a range of univariate time series
approaches that capture temporal dependence would be
expected to yield similar results, provided that the marginal
probability density estimates are maintained.
[32] The results of this analysis demonstrate that, as

expected, the joint density is captured only for the ICA
solution, whereas the PCA solution results in a significantly
different joint density to the original data, since this solution
is not truly statistically independent. More interesting is the
effect when the bootstrapped data are rotated back to the
original data space via the inverse PCA or ICA transforms,
shown as red dots in Figures 3c and 3d, respectively. Once
again, only in the case of ICA is the joint density main-
tained. In the case of the PCA solution, however, not only is
the joint density represented inaccurately, but the marginal
density estimates also do not reflect the true marginal
density, with the tails of the synthetically generated data
set being markedly longer than for the original data. If the
above conclusions also can be applied to the synthetic
generation of rainfall and/or streamflow data, then the
consideration of only second-order dependence could result
in significant distortions in both the spatial dependence and
the representation of extreme events.
[33] The example above presents an informal argument

for using ICA as the basis for decomposing the multivariate
data for synthetic generation. A more rigorous approach is
described in section 4 of this paper, using univariate and
multivariate kernel density estimates to compare the mar-
ginal and joint density of the original time series with the
marginal and joint density of the ICA and PCA-derived
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synthetically generated data, respectively. A multivariate
streamflow data set of reservoir inflows from Colombia is
used for this analysis, and this data set is described in more
detail in the following section.

3. Data

[34] Streamflow data at 20 stations in Colombia have
been used for this analysis, the locations of which are shown
in Figure 4. Of these streamflow stations, a more detailed
analysis of three rivers: the Rio Grande, the Cuaca at the
Salvajina station and the Alto Anchicaya, was conducted to

illustrate the method discussed in this paper. Summary
statistics for these three stations are provided in Table 1.
Each data station is located at a reservoir inflow point and
represents observed inflows to three hydroelectric generat-
ing reservoirs. Measurements were initiated during the
design phase of each proposed reservoir/dam and continue
to the present. Each station retains the name of the river on
which it is located. The stations are located in one of the
three major basins that drain the country, the Magdalena-
Cauca, which flows north to the Caribbean Sea. The other
two are the Orinoco basin, which also flows to the Carib-
bean and the Amazon, and are not represented by this data

Figure 3. Illustration of the importance of higher-order statistics in synthetically generating multivariate
data: (a) PCA-transformed and (b) ICA-transformed data (blue dots), with data generated synthetically by
bootstrapping from the marginal distributions shown as red dots. As expected, even though for both cases
the marginal distribution is approximately maintained, only the solution from ICA is able to accurately
capture the joint dependence. The inverse transformation is then applied to both the (c) PCA and (d) ICA
solutions. Here, for the PCA solution, neither the joint nor the marginal distributions are accurately
simulated, showing that focusing only on correlation statistics can have profound implications in terms of
incorrectly reflecting the joint and marginal statistics from the original data set.
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set. The data represent unimpaired flows, which in certain
cases (e.g., the Alto Anchicaya from 1963–1975) has been
calibrated using regions with longer and more reliable
records.
[35] The critical hydrologic season for hydroelectric gen-

eration is October – November – December. During
January – February – March reservoir inflow is low and
the system relies on storage of inflows that occur in the
previous months. In this study, we use December stream-
flow as representative of the critical reservoir inflow period.

4. Method and Results

[36] The aim of this paper is to demonstrate how ICA can
be used to reduce a multivariate time series into a set of
statistically independent univariate time series, so that
spatial dependence and temporal dependence can be con-
sidered in separate models. The importance of considering
independence was demonstrated in section 2.5 using an
artificial bivariate example.
[37] The performance of ICA and PCA as tools for the

synthetic generation of rainfall and/or streamflow time
series is now tested using a trivariate streamflow time series
obtained from the Colombia data set described above. The
trivariate case was selected to balance the need to induce a
realistic level of complexity, while simultaneously acknowl-
edging that higher-dimensional data sets would start to
become troublesome given that the length of the streamflow

time series is only 42 data points. To demonstrate the
benefits of considering higher-order statistics, we adopt
the approach illustrated in Figure 5, with each step de-
scribed in more detail below:
[38] Step 1: We begin by decomposing the multivariate

data set into univariate representations, using both PCA and
ICA. As discussed above, the PCA solution involves
diagonalizing the covariance matrix, while the ICA solution
provides an additional rotation to the diagonalized data set
so that an estimate of the mutual information is minimized.
[39] Step 2: We then apply a bootstrap with replacement

to the individual PCs and ICs, thereby treating the compo-
nents as univariate time series. Each bootstrapped sample is
of length l, which is the length of the original component (in
this case, 42 data points), and this was repeated to obtain
p samples for each component, where p is set to 100 for the
remainder of this analysis. The objective of the bootstrap is to
maintain the marginal distribution of the components, while
at the same time eliminating any joint dependence between
the components which may be present.
[40] Step 3: The bootstrapped components are then rotated

back to the original data space to obtain the synthetically
generated PC and IC solutions, using the inverse of the
rotation matrix obtained by PCA and ICA, respectively.
Thus we have p synthetically generated, multivariate time
series of length l from PCA and ICA. As highlighted by
the example in section 2.5, the lack of independence can
result in distortions to both the marginal and joint density
attributes.
[41] Step 4: To support the visual assessment of perfor-

mance described above, we use a kernel density estimate of
both the joint density and the marginal densities to compare
the performance of PCA and ICA. This is achieved by
constructing a kernel density estimate using (1) the original
multivariate data, (2) each of the p PCA-generated synthetic
data sets, and (3) each of the p ICA-generated synthetic data
sets. To ensure consistency between the density estimates, a
grid was developed of size 50d for the original multivariate
data, where for this study we set d = 3 for the trivariate joint
density, and d = 1 when considering the marginal densities,
and this grid was used as the basis for all the density
estimates. The bandwidth was estimated using the Gaussian
reference bandwidth (for additional details, refer to Sharma
[2000], and Sharma et al. [1998]).
[42] Step 5: To estimate the bias of the joint and marginal

density estimates obtained from the PCA- and ICA-gener-
ated synthetic data sets compared to the joint and marginal
density estimates of the original data, a kernel density
surface was constructed as the unweighted mean of each
of the p density estimates evaluated at each of the 50d grid
points.

Figure 4. Streamflow stations used in the analysis.

Table 1. List of Three Streamflow Stations Used in the Analysisa

Station Record Statistic Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Mean

Alto Anchicaya 1962–2004 Mean 41.6 37.2 35.8 49.7 54.2 44.3 31.3 29.0 38.3 58.8 60.8 51.4 44.4
Standard deviation 13.2 14.6 10.6 15.3 11.5 10.2 10.2 12.1 12.1 13.3 10.9 12.0 6.7

Rio Grande 1942–2004 Mean 23.3 22.0 23.6 32.4 40.0 36.6 32.6 32.8 36.5 44.5 43.6 32.6 33.5
Standard deviation 7.5 8.6 8.9 10.1 11.2 10.4 10.5 10.4 11.1 11.1 9.4 8.5 6.6

Salvajina 1947–2004 Mean 165.2 143.9 136.5 149.8 151.1 127.0 103.8 74.8 63.2 109.5 195.7 212.4 136.8
Standard deviation 67.2 69.7 64.7 51.9 47.3 34.6 26.7 17.7 21.4 43.0 66.1 86.7 31.5

aAll units are m3/s.
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[43] Step 6: The mean integrated squared bias (MISB)
was then evaluated as follows [Scott, 1992]:

E

Z
f � E f̂

� �
 �
dx

� �
ð12Þ

where E{} denotes the expectation operator over each of the
bootstrap samples, E{f̂} is the mean kernel density estimate
from either the PCA or the ICA generated data sets, and f is
the kernel density estimate of the original multivariate data,
which is taken to be the true density. The MISB is
calculated using both trivariate kernel density estimates to
evaluate the joint dependence structure, and using univariate
kernel density estimates to evaluate whether the original
marginal distributions are maintained in the synthetic data.
[44] The above analysis allows for the comparison of

PCA and ICA as a basis for generating synthetic data. This
method is now tested on the multivariate streamflow data
set described in the previous section.

4.1. Application to Three Streamflow Stations
in Columbia

[45] To assist in visualizing the approach to streamflow
generation, we demonstrate the technique using three

streamflow time series from the Colombia data set, located
at stations Rio Grande, Salvajina and Alto Anchicaya. This
data set is presented in Figure 1, and can be considered to be
a typical data set for most multivariate problems. Note that
this data have been normalized, and therefore is centered
around zero with a standard deviation of one.
[46] The results are shown in Figure 6. The data set is

trivariate, although for clarity we present only the bivariate
plots. The contours are therefore a trivariate density func-
tion integrated over the third (hidden) dimension, to form
the bivariate contours shown.
[47] The left plots represent the original data set, with the

kernel density estimate of this data superimposed. In the
middle plots, the results from the ICA-derived data are
shown, with the contours representing the mean kernel
density estimate surface of the 100 bootstrapped samples.
The same is repeated in the right plots, using the PCA
results. In both the ICA and PCA plots, the original data
points are superimposed on the contours.
[48] As can be seen from Figure 6, the ICA results show a

much closer agreement to the original data compared with
the PCA solution. In the top plots, where the stations Rio
Grande and Salvajina are plotted against each other, it is
apparent that one value is separated from the majority of

Figure 5. Stepwise approach to generating synthetic data using PCA and ICA.
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other values. We assume this value has been properly
recorded, and therefore does not constitute an outlier. As
such, any stochastic generation technique should maintain
the joint dependence implied by such a value. It is apparent
that the ICA-derived data succeed in this attempt, while the
PCA generated data are unable to regenerate this point.
Furthermore, the contours of the PCA-derived data appear
to be much further apart compared to both the ICA-derived
data and the original data, indicating a redistribution of the
probability across a broader region than was sampled in the
historical record. A similar result is observed when exam-
ining the middle plots. Finally, in the bottom plots no such
extreme values could be observed, although the dependence
does not appear to be normally distributed. In particular, the
variance of the conditional probability density of Rio
Grande increase as Alto Anchicaya flows increase, which
is better simulated by the ICA derived samples than for the
PCA case. Readers should note that the joint probability plots
for both ICA and PCA represent the average probability
density across many realizations, and hence are smoother
than similar plots across a single historical sample.

[49] Thus far, we have simply compared the visual
performance of the time series. The MISB, described in
section 2.5, was evaluated for this time series as well, and it
was found to be 0.00228 for the ICA results, and 0.00652
for the PCA results. Thus the bias for the PCA results is
approximately three times greater than for the ICA results.
Improvements were also apparent in the estimation of the
marginal distributions, with the marginal MISB for Rio
Grande, Salvajina and Alto Anchicaya found to be 0.00019,
0.00033 and 0.00007 for the ICA analysis, and 0.00047,
0.00122 and 0.00011 for the PCA analysis, respectively.

4.2. General Application

[50] To test the consistency of the results, we considered
the full range of trivariate data sets out of the 20 available
streamflow records. In total, 1140 such combinations exist.
One of the disadvantages to using ICA is that, unlike PCA,
the solution requires an iterative approach to optimization,
with associated problems of convergence and local optima.
In the case of convergence, a total of 148 samples failed to
converge, representing 13% of the total samples. We do not
consider this to be a particular problem, however, because

Figure 6. Results of the trivariate example first shown in Figure 1. (left) Original data with the trivariate
kernel density estimate generated from the original data shown as contours. (middle) Original data but
with the contours representing the kernel density estimate from the ICA-generated synthetic data. (right)
Original data points with contours representing the kernel density estimate from the PCA-generated
synthetic data.
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nonconvergence is most likely to occur when the original
data are close to a Gaussian distribution, since any orthog-
onal rotation of a Gaussian data set will remain Gaussian,
the ICA solution would not be expected to improve signif-
icantly on the PCA solution [Hyvarinen et al., 2001].
[51] The results therefore are based on the 992 trivariate

combinations that converged, and are summarized in
Table 2. The ICA MISB was between 27% and 176% of
the PCA result, thereby suggesting a significant degree of
variability between individual samples, with the ICA MISB
being on average 25% lower than the PCA MISB when
calculated over all 992 trivariate combinations. However,
there were 170 cases (17% of the total sample) where the
ICA MISB was higher than the PCA result. It is likely that
the worsening performance for these stations was due to the
difficulty in estimating statistical independence, particularly
since the data set is only 42 data points long. A similar
analysis was then conducted on the marginal distributions,
and it was found that the MISB was on average about 28%
lower for the ICA solution than for the PCA solution,
although once again the results were highly variable.
[52] In contrast to the significant reduction in bias repre-

sented by the MISB, the sample variance did not change
significantly between the ICA and PCA solutions, so that
the mean integrated square error (MISE), a term which
incorporates both the variance and bias components, was
only 5% lower for ICA than for PCA. We hypothesize that
the consistency in the variance results is due to the rela-
tionship between the variance component and the length of
the bootstrap sample, which remains constant over the
experiment.

5. Conclusions

[53] This paper presents a novel two-step approach for
the synthetic generation of multivariate hydrological time
series, which involves first decomposing the time series into
univariate components, followed by synthetically generating
additional data from the statistically independent, univariate
time series, with the objective of maintaining the marginal
probability density structure. The importance of maximizing
independence was demonstrated through a comparison be-
tween PCA, a second-order method that diagonalizes the
covariance matrix, and ICA which also considers higher-
order statistics. As case studies, we considered first an
artificial example based on a mixture of two independent,
uniformly distributed samples, followed by real example
which uses trivariate data drawn from a 20 dimensional data
set of Colombian streamflow representing all major inflows
to the hydroelectricity system (not presented).
[54] The results of this analysis of Colombian streamflow

indicate that, on average, using ICA to decompose the

multivariate data set results in an improvement in the
manner in which joint dependence is represented, with
the MISB of the joint being on average 25% lower than
the PCA equivalent. Similarly, the MISB of the marginal
distributions are on average 28% lower for the ICA solution
when compared with the PCA solution. However, the ICA
approach resulted in a higher MISB in a number of cases,
which is mostly likely to be due to the difficulty in
characterizing independence for sample lengths of 42 data
points.
[55] This study therefore moves one step closer to devel-

oping a stochastic generation model that is able to simulta-
neously maintain spatial and temporal dependence. Areas
for future research include applying a range of parametric
and nonparametric univariate autoregressive models to the
components to determine whether performance is main-
tained, and testing whether the method works at higher
dimensions by incorporating a dimension reduction step in
the analysis. A final area for future research involves
comparing a range of alternative ICA algorithms such as
algorithms that use direct estimates of mutual information
[e.g., Stogbauer et al., 2004], to determine the sensitivity of
the results to the algorithm used. To the authors knowledge,
this type of analysis has not been conducted for the
relatively short data sets commonly used in hydrology.

Notation

d dimension of the multivariate data set.
l length of time series.
m number of observations.
n number of reduced dimensions.
p number of bootstrap samples.
x an m-dimensional vector of observed data which has

been centered.
z whitened data.
s an n-dimensional vector ofindependent components.
y estimator of s.
n an m-dimensional vector of independent and

identically distributed Gaussian noise.
A an m � n mixing matrix.
wj weight vectors.
W weight matrix, W = (w1, . . ., wn)

T.
Cx covariance matrix of x, Cx = E{xxT}.
ei eigenvectors of Cx.
E matrix of eigenvectors.
D matrix of eigenvalues of Cx, given as D =

diag(d1, . . ., dn).
PCi ith principal component of x.
V whitening transform.
I identity matrix.

E{.} mathematical expectation.
f (.) probability density function.
fi(.) marginal probability density functions.
G(.) a scalar nonlinear function.
H(.) differential entropy.
J(.) negentropy.
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Table 2. Comparison of the Mean Integrated Square Bias (MISB)

When Using PCA and ICA, for the Univariate and Trivariate Cases

MISB (PCA)
Averaged Across

All Sample
Combinations

MISB (ICA)
Averaged Across

All Sample
Combinations

Percentage
Improvement,

%

Marginal distribution 0.00061 0.00044 28
Trivariate distribution 0.00293 0.00219 25
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